2 * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
3 * cleaned up code to current version of sparse and added the slicing-by-8
4 * algorithm to the closely similar existing slicing-by-4 algorithm.
6 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
7 * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
8 * Code was from the public domain, copyright abandoned. Code was
9 * subsequently included in the kernel, thus was re-licensed under the
12 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
13 * Same crc32 function was used in 5 other places in the kernel.
14 * I made one version, and deleted the others.
15 * There are various incantations of crc32(). Some use a seed of 0 or ~0.
16 * Some xor at the end with ~0. The generic crc32() function takes
17 * seed as an argument, and doesn't xor at the end. Then individual
18 * users can do whatever they need.
19 * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
20 * fs/jffs2 uses seed 0, doesn't xor with ~0.
21 * fs/partitions/efi.c uses seed ~0, xor's with ~0.
23 * This source code is licensed under the GNU General Public License,
24 * Version 2. See the file COPYING for more details.
27 /* see: Documentation/crc32.txt for a description of algorithms */
29 #include <linux/crc32.h>
30 #include <linux/crc32poly.h>
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/sched.h>
34 #include "crc32defs.h"
37 # define tole(x) ((__force u32) cpu_to_le32(x))
43 # define tobe(x) ((__force u32) cpu_to_be32(x))
48 #include "crc32table.h"
50 MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
51 MODULE_DESCRIPTION("Various CRC32 calculations");
52 MODULE_LICENSE("GPL");
54 #if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
56 /* implements slicing-by-4 or slicing-by-8 algorithm */
57 static inline u32 __pure
58 crc32_body(u32 crc
, unsigned char const *buf
, size_t len
, const u32 (*tab
)[256])
60 # ifdef __LITTLE_ENDIAN
61 # define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
62 # define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
63 t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
64 # define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
65 t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
67 # define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
68 # define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
69 t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
70 # define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
71 t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
78 const u32
*t0
=tab
[0], *t1
=tab
[1], *t2
=tab
[2], *t3
=tab
[3];
79 # if CRC_LE_BITS != 32
80 const u32
*t4
= tab
[4], *t5
= tab
[5], *t6
= tab
[6], *t7
= tab
[7];
85 if (unlikely((long)buf
& 3 && len
)) {
88 } while ((--len
) && ((long)buf
)&3);
91 # if CRC_LE_BITS == 32
102 for (i
= 0; i
< len
; i
++) {
104 for (--b
; len
; --len
) {
106 q
= crc
^ *++b
; /* use pre increment for speed */
107 # if CRC_LE_BITS == 32
116 /* And the last few bytes */
118 u8
*p
= (u8
*)(b
+ 1) - 1;
120 for (i
= 0; i
< len
; i
++)
121 DO_CRC(*++p
); /* use pre increment for speed */
124 DO_CRC(*++p
); /* use pre increment for speed */
137 * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
139 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for other
140 * uses, or the previous crc32/crc32c value if computing incrementally.
141 * @p: pointer to buffer over which CRC32/CRC32C is run
142 * @len: length of buffer @p
143 * @tab: little-endian Ethernet table
144 * @polynomial: CRC32/CRC32c LE polynomial
146 static inline u32 __pure
crc32_le_generic(u32 crc
, unsigned char const *p
,
147 size_t len
, const u32 (*tab
)[256],
154 for (i
= 0; i
< 8; i
++)
155 crc
= (crc
>> 1) ^ ((crc
& 1) ? polynomial
: 0);
157 # elif CRC_LE_BITS == 2
160 crc
= (crc
>> 2) ^ tab
[0][crc
& 3];
161 crc
= (crc
>> 2) ^ tab
[0][crc
& 3];
162 crc
= (crc
>> 2) ^ tab
[0][crc
& 3];
163 crc
= (crc
>> 2) ^ tab
[0][crc
& 3];
165 # elif CRC_LE_BITS == 4
168 crc
= (crc
>> 4) ^ tab
[0][crc
& 15];
169 crc
= (crc
>> 4) ^ tab
[0][crc
& 15];
171 # elif CRC_LE_BITS == 8
172 /* aka Sarwate algorithm */
175 crc
= (crc
>> 8) ^ tab
[0][crc
& 255];
178 crc
= (__force u32
) __cpu_to_le32(crc
);
179 crc
= crc32_body(crc
, p
, len
, tab
);
180 crc
= __le32_to_cpu((__force __le32
)crc
);
186 u32 __pure
crc32_le(u32 crc
, unsigned char const *p
, size_t len
)
188 return crc32_le_generic(crc
, p
, len
, NULL
, CRC32_POLY_LE
);
190 u32 __pure
__crc32c_le(u32 crc
, unsigned char const *p
, size_t len
)
192 return crc32_le_generic(crc
, p
, len
, NULL
, CRC32C_POLY_LE
);
195 u32 __pure
crc32_le(u32 crc
, unsigned char const *p
, size_t len
)
197 return crc32_le_generic(crc
, p
, len
,
198 (const u32 (*)[256])crc32table_le
, CRC32_POLY_LE
);
200 u32 __pure
__crc32c_le(u32 crc
, unsigned char const *p
, size_t len
)
202 return crc32_le_generic(crc
, p
, len
,
203 (const u32 (*)[256])crc32ctable_le
, CRC32C_POLY_LE
);
206 EXPORT_SYMBOL(crc32_le
);
207 EXPORT_SYMBOL(__crc32c_le
);
210 * This multiplies the polynomials x and y modulo the given modulus.
211 * This follows the "little-endian" CRC convention that the lsbit
212 * represents the highest power of x, and the msbit represents x^0.
214 static u32 __attribute_const__
gf2_multiply(u32 x
, u32 y
, u32 modulus
)
216 u32 product
= x
& 1 ? y
: 0;
219 for (i
= 0; i
< 31; i
++) {
220 product
= (product
>> 1) ^ (product
& 1 ? modulus
: 0);
222 product
^= x
& 1 ? y
: 0;
229 * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
230 * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
231 * @len: The number of bytes. @crc is multiplied by x^(8*@len)
232 * @polynomial: The modulus used to reduce the result to 32 bits.
234 * It's possible to parallelize CRC computations by computing a CRC
235 * over separate ranges of a buffer, then summing them.
236 * This shifts the given CRC by 8*len bits (i.e. produces the same effect
237 * as appending len bytes of zero to the data), in time proportional
240 static u32 __attribute_const__
crc32_generic_shift(u32 crc
, size_t len
,
243 u32 power
= polynomial
; /* CRC of x^32 */
246 /* Shift up to 32 bits in the simple linear way */
247 for (i
= 0; i
< 8 * (int)(len
& 3); i
++)
248 crc
= (crc
>> 1) ^ (crc
& 1 ? polynomial
: 0);
255 /* "power" is x^(2^i), modulo the polynomial */
257 crc
= gf2_multiply(crc
, power
, polynomial
);
263 /* Square power, advancing to x^(2^(i+1)) */
264 power
= gf2_multiply(power
, power
, polynomial
);
270 u32 __attribute_const__
crc32_le_shift(u32 crc
, size_t len
)
272 return crc32_generic_shift(crc
, len
, CRC32_POLY_LE
);
275 u32 __attribute_const__
__crc32c_le_shift(u32 crc
, size_t len
)
277 return crc32_generic_shift(crc
, len
, CRC32C_POLY_LE
);
279 EXPORT_SYMBOL(crc32_le_shift
);
280 EXPORT_SYMBOL(__crc32c_le_shift
);
283 * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
284 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
285 * other uses, or the previous crc32 value if computing incrementally.
286 * @p: pointer to buffer over which CRC32 is run
287 * @len: length of buffer @p
288 * @tab: big-endian Ethernet table
289 * @polynomial: CRC32 BE polynomial
291 static inline u32 __pure
crc32_be_generic(u32 crc
, unsigned char const *p
,
292 size_t len
, const u32 (*tab
)[256],
299 for (i
= 0; i
< 8; i
++)
301 (crc
<< 1) ^ ((crc
& 0x80000000) ? polynomial
:
304 # elif CRC_BE_BITS == 2
307 crc
= (crc
<< 2) ^ tab
[0][crc
>> 30];
308 crc
= (crc
<< 2) ^ tab
[0][crc
>> 30];
309 crc
= (crc
<< 2) ^ tab
[0][crc
>> 30];
310 crc
= (crc
<< 2) ^ tab
[0][crc
>> 30];
312 # elif CRC_BE_BITS == 4
315 crc
= (crc
<< 4) ^ tab
[0][crc
>> 28];
316 crc
= (crc
<< 4) ^ tab
[0][crc
>> 28];
318 # elif CRC_BE_BITS == 8
321 crc
= (crc
<< 8) ^ tab
[0][crc
>> 24];
324 crc
= (__force u32
) __cpu_to_be32(crc
);
325 crc
= crc32_body(crc
, p
, len
, tab
);
326 crc
= __be32_to_cpu((__force __be32
)crc
);
332 u32 __pure
crc32_be(u32 crc
, unsigned char const *p
, size_t len
)
334 return crc32_be_generic(crc
, p
, len
, NULL
, CRC32_POLY_BE
);
337 u32 __pure
crc32_be(u32 crc
, unsigned char const *p
, size_t len
)
339 return crc32_be_generic(crc
, p
, len
,
340 (const u32 (*)[256])crc32table_be
, CRC32_POLY_BE
);
343 EXPORT_SYMBOL(crc32_be
);