nvme-fc: cancel async events before freeing event struct
[linux/fpc-iii.git] / block / blk-merge.c
blob86c4c1ef874291456b6b87282a03208567173955
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
11 #include <trace/events/block.h>
13 #include "blk.h"
15 static inline bool bio_will_gap(struct request_queue *q,
16 struct request *prev_rq, struct bio *prev, struct bio *next)
18 struct bio_vec pb, nb;
20 if (!bio_has_data(prev) || !queue_virt_boundary(q))
21 return false;
24 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
25 * is quite difficult to respect the sg gap limit. We work hard to
26 * merge a huge number of small single bios in case of mkfs.
28 if (prev_rq)
29 bio_get_first_bvec(prev_rq->bio, &pb);
30 else
31 bio_get_first_bvec(prev, &pb);
32 if (pb.bv_offset & queue_virt_boundary(q))
33 return true;
36 * We don't need to worry about the situation that the merged segment
37 * ends in unaligned virt boundary:
39 * - if 'pb' ends aligned, the merged segment ends aligned
40 * - if 'pb' ends unaligned, the next bio must include
41 * one single bvec of 'nb', otherwise the 'nb' can't
42 * merge with 'pb'
44 bio_get_last_bvec(prev, &pb);
45 bio_get_first_bvec(next, &nb);
46 if (biovec_phys_mergeable(q, &pb, &nb))
47 return false;
48 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
53 return bio_will_gap(req->q, req, req->biotail, bio);
56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
58 return bio_will_gap(req->q, NULL, bio, req->bio);
61 static struct bio *blk_bio_discard_split(struct request_queue *q,
62 struct bio *bio,
63 struct bio_set *bs,
64 unsigned *nsegs)
66 unsigned int max_discard_sectors, granularity;
67 int alignment;
68 sector_t tmp;
69 unsigned split_sectors;
71 *nsegs = 1;
73 /* Zero-sector (unknown) and one-sector granularities are the same. */
74 granularity = max(q->limits.discard_granularity >> 9, 1U);
76 max_discard_sectors = min(q->limits.max_discard_sectors,
77 bio_allowed_max_sectors(q));
78 max_discard_sectors -= max_discard_sectors % granularity;
80 if (unlikely(!max_discard_sectors)) {
81 /* XXX: warn */
82 return NULL;
85 if (bio_sectors(bio) <= max_discard_sectors)
86 return NULL;
88 split_sectors = max_discard_sectors;
91 * If the next starting sector would be misaligned, stop the discard at
92 * the previous aligned sector.
94 alignment = (q->limits.discard_alignment >> 9) % granularity;
96 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
97 tmp = sector_div(tmp, granularity);
99 if (split_sectors > tmp)
100 split_sectors -= tmp;
102 return bio_split(bio, split_sectors, GFP_NOIO, bs);
105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
106 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
108 *nsegs = 0;
110 if (!q->limits.max_write_zeroes_sectors)
111 return NULL;
113 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
114 return NULL;
116 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
119 static struct bio *blk_bio_write_same_split(struct request_queue *q,
120 struct bio *bio,
121 struct bio_set *bs,
122 unsigned *nsegs)
124 *nsegs = 1;
126 if (!q->limits.max_write_same_sectors)
127 return NULL;
129 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
130 return NULL;
132 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
136 * Return the maximum number of sectors from the start of a bio that may be
137 * submitted as a single request to a block device. If enough sectors remain,
138 * align the end to the physical block size. Otherwise align the end to the
139 * logical block size. This approach minimizes the number of non-aligned
140 * requests that are submitted to a block device if the start of a bio is not
141 * aligned to a physical block boundary.
143 static inline unsigned get_max_io_size(struct request_queue *q,
144 struct bio *bio)
146 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
147 unsigned max_sectors = sectors;
148 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
149 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
150 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
152 max_sectors += start_offset;
153 max_sectors &= ~(pbs - 1);
154 if (max_sectors > start_offset)
155 return max_sectors - start_offset;
157 return sectors & ~(lbs - 1);
160 static inline unsigned get_max_segment_size(const struct request_queue *q,
161 struct page *start_page,
162 unsigned long offset)
164 unsigned long mask = queue_segment_boundary(q);
166 offset = mask & (page_to_phys(start_page) + offset);
169 * overflow may be triggered in case of zero page physical address
170 * on 32bit arch, use queue's max segment size when that happens.
172 return min_not_zero(mask - offset + 1,
173 (unsigned long)queue_max_segment_size(q));
177 * bvec_split_segs - verify whether or not a bvec should be split in the middle
178 * @q: [in] request queue associated with the bio associated with @bv
179 * @bv: [in] bvec to examine
180 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
181 * by the number of segments from @bv that may be appended to that
182 * bio without exceeding @max_segs
183 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
184 * by the number of sectors from @bv that may be appended to that
185 * bio without exceeding @max_sectors
186 * @max_segs: [in] upper bound for *@nsegs
187 * @max_sectors: [in] upper bound for *@sectors
189 * When splitting a bio, it can happen that a bvec is encountered that is too
190 * big to fit in a single segment and hence that it has to be split in the
191 * middle. This function verifies whether or not that should happen. The value
192 * %true is returned if and only if appending the entire @bv to a bio with
193 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
194 * the block driver.
196 static bool bvec_split_segs(const struct request_queue *q,
197 const struct bio_vec *bv, unsigned *nsegs,
198 unsigned *sectors, unsigned max_segs,
199 unsigned max_sectors)
201 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
202 unsigned len = min(bv->bv_len, max_len);
203 unsigned total_len = 0;
204 unsigned seg_size = 0;
206 while (len && *nsegs < max_segs) {
207 seg_size = get_max_segment_size(q, bv->bv_page,
208 bv->bv_offset + total_len);
209 seg_size = min(seg_size, len);
211 (*nsegs)++;
212 total_len += seg_size;
213 len -= seg_size;
215 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
216 break;
219 *sectors += total_len >> 9;
221 /* tell the caller to split the bvec if it is too big to fit */
222 return len > 0 || bv->bv_len > max_len;
226 * blk_bio_segment_split - split a bio in two bios
227 * @q: [in] request queue pointer
228 * @bio: [in] bio to be split
229 * @bs: [in] bio set to allocate the clone from
230 * @segs: [out] number of segments in the bio with the first half of the sectors
232 * Clone @bio, update the bi_iter of the clone to represent the first sectors
233 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
234 * following is guaranteed for the cloned bio:
235 * - That it has at most get_max_io_size(@q, @bio) sectors.
236 * - That it has at most queue_max_segments(@q) segments.
238 * Except for discard requests the cloned bio will point at the bi_io_vec of
239 * the original bio. It is the responsibility of the caller to ensure that the
240 * original bio is not freed before the cloned bio. The caller is also
241 * responsible for ensuring that @bs is only destroyed after processing of the
242 * split bio has finished.
244 static struct bio *blk_bio_segment_split(struct request_queue *q,
245 struct bio *bio,
246 struct bio_set *bs,
247 unsigned *segs)
249 struct bio_vec bv, bvprv, *bvprvp = NULL;
250 struct bvec_iter iter;
251 unsigned nsegs = 0, sectors = 0;
252 const unsigned max_sectors = get_max_io_size(q, bio);
253 const unsigned max_segs = queue_max_segments(q);
255 bio_for_each_bvec(bv, bio, iter) {
257 * If the queue doesn't support SG gaps and adding this
258 * offset would create a gap, disallow it.
260 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
261 goto split;
263 if (nsegs < max_segs &&
264 sectors + (bv.bv_len >> 9) <= max_sectors &&
265 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
266 nsegs++;
267 sectors += bv.bv_len >> 9;
268 } else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
269 max_sectors)) {
270 goto split;
273 bvprv = bv;
274 bvprvp = &bvprv;
277 *segs = nsegs;
278 return NULL;
279 split:
280 *segs = nsegs;
281 return bio_split(bio, sectors, GFP_NOIO, bs);
285 * __blk_queue_split - split a bio and submit the second half
286 * @q: [in] request queue pointer
287 * @bio: [in, out] bio to be split
288 * @nr_segs: [out] number of segments in the first bio
290 * Split a bio into two bios, chain the two bios, submit the second half and
291 * store a pointer to the first half in *@bio. If the second bio is still too
292 * big it will be split by a recursive call to this function. Since this
293 * function may allocate a new bio from @q->bio_split, it is the responsibility
294 * of the caller to ensure that @q is only released after processing of the
295 * split bio has finished.
297 void __blk_queue_split(struct request_queue *q, struct bio **bio,
298 unsigned int *nr_segs)
300 struct bio *split;
302 switch (bio_op(*bio)) {
303 case REQ_OP_DISCARD:
304 case REQ_OP_SECURE_ERASE:
305 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
306 break;
307 case REQ_OP_WRITE_ZEROES:
308 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
309 nr_segs);
310 break;
311 case REQ_OP_WRITE_SAME:
312 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
313 nr_segs);
314 break;
315 default:
316 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
317 break;
320 if (split) {
321 /* there isn't chance to merge the splitted bio */
322 split->bi_opf |= REQ_NOMERGE;
325 * Since we're recursing into make_request here, ensure
326 * that we mark this bio as already having entered the queue.
327 * If not, and the queue is going away, we can get stuck
328 * forever on waiting for the queue reference to drop. But
329 * that will never happen, as we're already holding a
330 * reference to it.
332 bio_set_flag(*bio, BIO_QUEUE_ENTERED);
334 bio_chain(split, *bio);
335 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
336 generic_make_request(*bio);
337 *bio = split;
342 * blk_queue_split - split a bio and submit the second half
343 * @q: [in] request queue pointer
344 * @bio: [in, out] bio to be split
346 * Split a bio into two bios, chains the two bios, submit the second half and
347 * store a pointer to the first half in *@bio. Since this function may allocate
348 * a new bio from @q->bio_split, it is the responsibility of the caller to
349 * ensure that @q is only released after processing of the split bio has
350 * finished.
352 void blk_queue_split(struct request_queue *q, struct bio **bio)
354 unsigned int nr_segs;
356 __blk_queue_split(q, bio, &nr_segs);
358 EXPORT_SYMBOL(blk_queue_split);
360 unsigned int blk_recalc_rq_segments(struct request *rq)
362 unsigned int nr_phys_segs = 0;
363 unsigned int nr_sectors = 0;
364 struct req_iterator iter;
365 struct bio_vec bv;
367 if (!rq->bio)
368 return 0;
370 switch (bio_op(rq->bio)) {
371 case REQ_OP_DISCARD:
372 case REQ_OP_SECURE_ERASE:
373 case REQ_OP_WRITE_ZEROES:
374 return 0;
375 case REQ_OP_WRITE_SAME:
376 return 1;
379 rq_for_each_bvec(bv, rq, iter)
380 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
381 UINT_MAX, UINT_MAX);
382 return nr_phys_segs;
385 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
386 struct scatterlist *sglist)
388 if (!*sg)
389 return sglist;
392 * If the driver previously mapped a shorter list, we could see a
393 * termination bit prematurely unless it fully inits the sg table
394 * on each mapping. We KNOW that there must be more entries here
395 * or the driver would be buggy, so force clear the termination bit
396 * to avoid doing a full sg_init_table() in drivers for each command.
398 sg_unmark_end(*sg);
399 return sg_next(*sg);
402 static unsigned blk_bvec_map_sg(struct request_queue *q,
403 struct bio_vec *bvec, struct scatterlist *sglist,
404 struct scatterlist **sg)
406 unsigned nbytes = bvec->bv_len;
407 unsigned nsegs = 0, total = 0;
409 while (nbytes > 0) {
410 unsigned offset = bvec->bv_offset + total;
411 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
412 offset), nbytes);
413 struct page *page = bvec->bv_page;
416 * Unfortunately a fair number of drivers barf on scatterlists
417 * that have an offset larger than PAGE_SIZE, despite other
418 * subsystems dealing with that invariant just fine. For now
419 * stick to the legacy format where we never present those from
420 * the block layer, but the code below should be removed once
421 * these offenders (mostly MMC/SD drivers) are fixed.
423 page += (offset >> PAGE_SHIFT);
424 offset &= ~PAGE_MASK;
426 *sg = blk_next_sg(sg, sglist);
427 sg_set_page(*sg, page, len, offset);
429 total += len;
430 nbytes -= len;
431 nsegs++;
434 return nsegs;
437 static inline int __blk_bvec_map_sg(struct bio_vec bv,
438 struct scatterlist *sglist, struct scatterlist **sg)
440 *sg = blk_next_sg(sg, sglist);
441 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
442 return 1;
445 /* only try to merge bvecs into one sg if they are from two bios */
446 static inline bool
447 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
448 struct bio_vec *bvprv, struct scatterlist **sg)
451 int nbytes = bvec->bv_len;
453 if (!*sg)
454 return false;
456 if ((*sg)->length + nbytes > queue_max_segment_size(q))
457 return false;
459 if (!biovec_phys_mergeable(q, bvprv, bvec))
460 return false;
462 (*sg)->length += nbytes;
464 return true;
467 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
468 struct scatterlist *sglist,
469 struct scatterlist **sg)
471 struct bio_vec uninitialized_var(bvec), bvprv = { NULL };
472 struct bvec_iter iter;
473 int nsegs = 0;
474 bool new_bio = false;
476 for_each_bio(bio) {
477 bio_for_each_bvec(bvec, bio, iter) {
479 * Only try to merge bvecs from two bios given we
480 * have done bio internal merge when adding pages
481 * to bio
483 if (new_bio &&
484 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
485 goto next_bvec;
487 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
488 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
489 else
490 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
491 next_bvec:
492 new_bio = false;
494 if (likely(bio->bi_iter.bi_size)) {
495 bvprv = bvec;
496 new_bio = true;
500 return nsegs;
504 * map a request to scatterlist, return number of sg entries setup. Caller
505 * must make sure sg can hold rq->nr_phys_segments entries
507 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
508 struct scatterlist *sglist)
510 struct scatterlist *sg = NULL;
511 int nsegs = 0;
513 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
514 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg);
515 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
516 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg);
517 else if (rq->bio)
518 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
520 if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
521 (blk_rq_bytes(rq) & q->dma_pad_mask)) {
522 unsigned int pad_len =
523 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
525 sg->length += pad_len;
526 rq->extra_len += pad_len;
529 if (q->dma_drain_size && q->dma_drain_needed(rq)) {
530 if (op_is_write(req_op(rq)))
531 memset(q->dma_drain_buffer, 0, q->dma_drain_size);
533 sg_unmark_end(sg);
534 sg = sg_next(sg);
535 sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
536 q->dma_drain_size,
537 ((unsigned long)q->dma_drain_buffer) &
538 (PAGE_SIZE - 1));
539 nsegs++;
540 rq->extra_len += q->dma_drain_size;
543 if (sg)
544 sg_mark_end(sg);
547 * Something must have been wrong if the figured number of
548 * segment is bigger than number of req's physical segments
550 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
552 return nsegs;
554 EXPORT_SYMBOL(blk_rq_map_sg);
556 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
558 if (req_op(rq) == REQ_OP_DISCARD)
559 return queue_max_discard_segments(rq->q);
560 return queue_max_segments(rq->q);
563 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
564 unsigned int nr_phys_segs)
566 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
567 goto no_merge;
569 if (blk_integrity_merge_bio(req->q, req, bio) == false)
570 goto no_merge;
573 * This will form the start of a new hw segment. Bump both
574 * counters.
576 req->nr_phys_segments += nr_phys_segs;
577 return 1;
579 no_merge:
580 req_set_nomerge(req->q, req);
581 return 0;
584 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
586 if (req_gap_back_merge(req, bio))
587 return 0;
588 if (blk_integrity_rq(req) &&
589 integrity_req_gap_back_merge(req, bio))
590 return 0;
591 if (blk_rq_sectors(req) + bio_sectors(bio) >
592 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
593 req_set_nomerge(req->q, req);
594 return 0;
597 return ll_new_hw_segment(req, bio, nr_segs);
600 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
602 if (req_gap_front_merge(req, bio))
603 return 0;
604 if (blk_integrity_rq(req) &&
605 integrity_req_gap_front_merge(req, bio))
606 return 0;
607 if (blk_rq_sectors(req) + bio_sectors(bio) >
608 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
609 req_set_nomerge(req->q, req);
610 return 0;
613 return ll_new_hw_segment(req, bio, nr_segs);
616 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
617 struct request *next)
619 unsigned short segments = blk_rq_nr_discard_segments(req);
621 if (segments >= queue_max_discard_segments(q))
622 goto no_merge;
623 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
624 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
625 goto no_merge;
627 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
628 return true;
629 no_merge:
630 req_set_nomerge(q, req);
631 return false;
634 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
635 struct request *next)
637 int total_phys_segments;
639 if (req_gap_back_merge(req, next->bio))
640 return 0;
643 * Will it become too large?
645 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
646 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
647 return 0;
649 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
650 if (total_phys_segments > blk_rq_get_max_segments(req))
651 return 0;
653 if (blk_integrity_merge_rq(q, req, next) == false)
654 return 0;
656 /* Merge is OK... */
657 req->nr_phys_segments = total_phys_segments;
658 return 1;
662 * blk_rq_set_mixed_merge - mark a request as mixed merge
663 * @rq: request to mark as mixed merge
665 * Description:
666 * @rq is about to be mixed merged. Make sure the attributes
667 * which can be mixed are set in each bio and mark @rq as mixed
668 * merged.
670 void blk_rq_set_mixed_merge(struct request *rq)
672 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
673 struct bio *bio;
675 if (rq->rq_flags & RQF_MIXED_MERGE)
676 return;
679 * @rq will no longer represent mixable attributes for all the
680 * contained bios. It will just track those of the first one.
681 * Distributes the attributs to each bio.
683 for (bio = rq->bio; bio; bio = bio->bi_next) {
684 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
685 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
686 bio->bi_opf |= ff;
688 rq->rq_flags |= RQF_MIXED_MERGE;
691 static void blk_account_io_merge(struct request *req)
693 if (blk_do_io_stat(req)) {
694 struct hd_struct *part;
696 part_stat_lock();
697 part = req->part;
699 part_dec_in_flight(req->q, part, rq_data_dir(req));
701 hd_struct_put(part);
702 part_stat_unlock();
706 * Two cases of handling DISCARD merge:
707 * If max_discard_segments > 1, the driver takes every bio
708 * as a range and send them to controller together. The ranges
709 * needn't to be contiguous.
710 * Otherwise, the bios/requests will be handled as same as
711 * others which should be contiguous.
713 static inline bool blk_discard_mergable(struct request *req)
715 if (req_op(req) == REQ_OP_DISCARD &&
716 queue_max_discard_segments(req->q) > 1)
717 return true;
718 return false;
721 static enum elv_merge blk_try_req_merge(struct request *req,
722 struct request *next)
724 if (blk_discard_mergable(req))
725 return ELEVATOR_DISCARD_MERGE;
726 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
727 return ELEVATOR_BACK_MERGE;
729 return ELEVATOR_NO_MERGE;
733 * For non-mq, this has to be called with the request spinlock acquired.
734 * For mq with scheduling, the appropriate queue wide lock should be held.
736 static struct request *attempt_merge(struct request_queue *q,
737 struct request *req, struct request *next)
739 if (!rq_mergeable(req) || !rq_mergeable(next))
740 return NULL;
742 if (req_op(req) != req_op(next))
743 return NULL;
745 if (rq_data_dir(req) != rq_data_dir(next)
746 || req->rq_disk != next->rq_disk)
747 return NULL;
749 if (req_op(req) == REQ_OP_WRITE_SAME &&
750 !blk_write_same_mergeable(req->bio, next->bio))
751 return NULL;
754 * Don't allow merge of different write hints, or for a hint with
755 * non-hint IO.
757 if (req->write_hint != next->write_hint)
758 return NULL;
760 if (req->ioprio != next->ioprio)
761 return NULL;
764 * If we are allowed to merge, then append bio list
765 * from next to rq and release next. merge_requests_fn
766 * will have updated segment counts, update sector
767 * counts here. Handle DISCARDs separately, as they
768 * have separate settings.
771 switch (blk_try_req_merge(req, next)) {
772 case ELEVATOR_DISCARD_MERGE:
773 if (!req_attempt_discard_merge(q, req, next))
774 return NULL;
775 break;
776 case ELEVATOR_BACK_MERGE:
777 if (!ll_merge_requests_fn(q, req, next))
778 return NULL;
779 break;
780 default:
781 return NULL;
785 * If failfast settings disagree or any of the two is already
786 * a mixed merge, mark both as mixed before proceeding. This
787 * makes sure that all involved bios have mixable attributes
788 * set properly.
790 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
791 (req->cmd_flags & REQ_FAILFAST_MASK) !=
792 (next->cmd_flags & REQ_FAILFAST_MASK)) {
793 blk_rq_set_mixed_merge(req);
794 blk_rq_set_mixed_merge(next);
798 * At this point we have either done a back merge or front merge. We
799 * need the smaller start_time_ns of the merged requests to be the
800 * current request for accounting purposes.
802 if (next->start_time_ns < req->start_time_ns)
803 req->start_time_ns = next->start_time_ns;
805 req->biotail->bi_next = next->bio;
806 req->biotail = next->biotail;
808 req->__data_len += blk_rq_bytes(next);
810 if (!blk_discard_mergable(req))
811 elv_merge_requests(q, req, next);
814 * 'next' is going away, so update stats accordingly
816 blk_account_io_merge(next);
819 * ownership of bio passed from next to req, return 'next' for
820 * the caller to free
822 next->bio = NULL;
823 return next;
826 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
828 struct request *next = elv_latter_request(q, rq);
830 if (next)
831 return attempt_merge(q, rq, next);
833 return NULL;
836 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
838 struct request *prev = elv_former_request(q, rq);
840 if (prev)
841 return attempt_merge(q, prev, rq);
843 return NULL;
846 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
847 struct request *next)
849 struct request *free;
851 free = attempt_merge(q, rq, next);
852 if (free) {
853 blk_put_request(free);
854 return 1;
857 return 0;
860 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
862 if (!rq_mergeable(rq) || !bio_mergeable(bio))
863 return false;
865 if (req_op(rq) != bio_op(bio))
866 return false;
868 /* different data direction or already started, don't merge */
869 if (bio_data_dir(bio) != rq_data_dir(rq))
870 return false;
872 /* must be same device */
873 if (rq->rq_disk != bio->bi_disk)
874 return false;
876 /* only merge integrity protected bio into ditto rq */
877 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
878 return false;
880 /* must be using the same buffer */
881 if (req_op(rq) == REQ_OP_WRITE_SAME &&
882 !blk_write_same_mergeable(rq->bio, bio))
883 return false;
886 * Don't allow merge of different write hints, or for a hint with
887 * non-hint IO.
889 if (rq->write_hint != bio->bi_write_hint)
890 return false;
892 if (rq->ioprio != bio_prio(bio))
893 return false;
895 return true;
898 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
900 if (blk_discard_mergable(rq))
901 return ELEVATOR_DISCARD_MERGE;
902 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
903 return ELEVATOR_BACK_MERGE;
904 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
905 return ELEVATOR_FRONT_MERGE;
906 return ELEVATOR_NO_MERGE;