Linux 4.15.6
[linux/fpc-iii.git] / Documentation / powerpc / pci_iov_resource_on_powernv.txt
blobb55c5cd83f8d76df8cf530faccfc5d8974f13d01
1 Wei Yang <weiyang@linux.vnet.ibm.com>
2 Benjamin Herrenschmidt <benh@au1.ibm.com>
3 Bjorn Helgaas <bhelgaas@google.com>
4 26 Aug 2014
6 This document describes the requirement from hardware for PCI MMIO resource
7 sizing and assignment on PowerKVM and how generic PCI code handles this
8 requirement. The first two sections describe the concepts of Partitionable
9 Endpoints and the implementation on P8 (IODA2). The next two sections talks
10 about considerations on enabling SRIOV on IODA2.
12 1. Introduction to Partitionable Endpoints
14 A Partitionable Endpoint (PE) is a way to group the various resources
15 associated with a device or a set of devices to provide isolation between
16 partitions (i.e., filtering of DMA, MSIs etc.) and to provide a mechanism
17 to freeze a device that is causing errors in order to limit the possibility
18 of propagation of bad data.
20 There is thus, in HW, a table of PE states that contains a pair of "frozen"
21 state bits (one for MMIO and one for DMA, they get set together but can be
22 cleared independently) for each PE.
24 When a PE is frozen, all stores in any direction are dropped and all loads
25 return all 1's value. MSIs are also blocked. There's a bit more state that
26 captures things like the details of the error that caused the freeze etc., but
27 that's not critical.
29 The interesting part is how the various PCIe transactions (MMIO, DMA, ...)
30 are matched to their corresponding PEs.
32 The following section provides a rough description of what we have on P8
33 (IODA2).  Keep in mind that this is all per PHB (PCI host bridge).  Each PHB
34 is a completely separate HW entity that replicates the entire logic, so has
35 its own set of PEs, etc.
37 2. Implementation of Partitionable Endpoints on P8 (IODA2)
39 P8 supports up to 256 Partitionable Endpoints per PHB.
41   * Inbound
43     For DMA, MSIs and inbound PCIe error messages, we have a table (in
44     memory but accessed in HW by the chip) that provides a direct
45     correspondence between a PCIe RID (bus/dev/fn) with a PE number.
46     We call this the RTT.
48     - For DMA we then provide an entire address space for each PE that can
49       contain two "windows", depending on the value of PCI address bit 59.
50       Each window can be configured to be remapped via a "TCE table" (IOMMU
51       translation table), which has various configurable characteristics
52       not described here.
54     - For MSIs, we have two windows in the address space (one at the top of
55       the 32-bit space and one much higher) which, via a combination of the
56       address and MSI value, will result in one of the 2048 interrupts per
57       bridge being triggered.  There's a PE# in the interrupt controller
58       descriptor table as well which is compared with the PE# obtained from
59       the RTT to "authorize" the device to emit that specific interrupt.
61     - Error messages just use the RTT.
63   * Outbound.  That's where the tricky part is.
65     Like other PCI host bridges, the Power8 IODA2 PHB supports "windows"
66     from the CPU address space to the PCI address space.  There is one M32
67     window and sixteen M64 windows.  They have different characteristics.
68     First what they have in common: they forward a configurable portion of
69     the CPU address space to the PCIe bus and must be naturally aligned
70     power of two in size.  The rest is different:
72     - The M32 window:
74       * Is limited to 4GB in size.
76       * Drops the top bits of the address (above the size) and replaces
77         them with a configurable value.  This is typically used to generate
78         32-bit PCIe accesses.  We configure that window at boot from FW and
79         don't touch it from Linux; it's usually set to forward a 2GB
80         portion of address space from the CPU to PCIe
81         0x8000_0000..0xffff_ffff.  (Note: The top 64KB are actually
82         reserved for MSIs but this is not a problem at this point; we just
83         need to ensure Linux doesn't assign anything there, the M32 logic
84         ignores that however and will forward in that space if we try).
86       * It is divided into 256 segments of equal size.  A table in the chip
87         maps each segment to a PE#.  That allows portions of the MMIO space
88         to be assigned to PEs on a segment granularity.  For a 2GB window,
89         the segment granularity is 2GB/256 = 8MB.
91     Now, this is the "main" window we use in Linux today (excluding
92     SR-IOV).  We basically use the trick of forcing the bridge MMIO windows
93     onto a segment alignment/granularity so that the space behind a bridge
94     can be assigned to a PE.
96     Ideally we would like to be able to have individual functions in PEs
97     but that would mean using a completely different address allocation
98     scheme where individual function BARs can be "grouped" to fit in one or
99     more segments.
101     - The M64 windows:
103       * Must be at least 256MB in size.
105       * Do not translate addresses (the address on PCIe is the same as the
106         address on the PowerBus).  There is a way to also set the top 14
107         bits which are not conveyed by PowerBus but we don't use this.
109       * Can be configured to be segmented.  When not segmented, we can
110         specify the PE# for the entire window.  When segmented, a window
111         has 256 segments; however, there is no table for mapping a segment
112         to a PE#.  The segment number *is* the PE#.
114       * Support overlaps.  If an address is covered by multiple windows,
115         there's a defined ordering for which window applies.
117     We have code (fairly new compared to the M32 stuff) that exploits that
118     for large BARs in 64-bit space:
120     We configure an M64 window to cover the entire region of address space
121     that has been assigned by FW for the PHB (about 64GB, ignore the space
122     for the M32, it comes out of a different "reserve").  We configure it
123     as segmented.
125     Then we do the same thing as with M32, using the bridge alignment
126     trick, to match to those giant segments.
128     Since we cannot remap, we have two additional constraints:
130     - We do the PE# allocation *after* the 64-bit space has been assigned
131       because the addresses we use directly determine the PE#.  We then
132       update the M32 PE# for the devices that use both 32-bit and 64-bit
133       spaces or assign the remaining PE# to 32-bit only devices.
135     - We cannot "group" segments in HW, so if a device ends up using more
136       than one segment, we end up with more than one PE#.  There is a HW
137       mechanism to make the freeze state cascade to "companion" PEs but
138       that only works for PCIe error messages (typically used so that if
139       you freeze a switch, it freezes all its children).  So we do it in
140       SW.  We lose a bit of effectiveness of EEH in that case, but that's
141       the best we found.  So when any of the PEs freezes, we freeze the
142       other ones for that "domain".  We thus introduce the concept of
143       "master PE" which is the one used for DMA, MSIs, etc., and "secondary
144       PEs" that are used for the remaining M64 segments.
146     We would like to investigate using additional M64 windows in "single
147     PE" mode to overlay over specific BARs to work around some of that, for
148     example for devices with very large BARs, e.g., GPUs.  It would make
149     sense, but we haven't done it yet.
151 3. Considerations for SR-IOV on PowerKVM
153   * SR-IOV Background
155     The PCIe SR-IOV feature allows a single Physical Function (PF) to
156     support several Virtual Functions (VFs).  Registers in the PF's SR-IOV
157     Capability control the number of VFs and whether they are enabled.
159     When VFs are enabled, they appear in Configuration Space like normal
160     PCI devices, but the BARs in VF config space headers are unusual.  For
161     a non-VF device, software uses BARs in the config space header to
162     discover the BAR sizes and assign addresses for them.  For VF devices,
163     software uses VF BAR registers in the *PF* SR-IOV Capability to
164     discover sizes and assign addresses.  The BARs in the VF's config space
165     header are read-only zeros.
167     When a VF BAR in the PF SR-IOV Capability is programmed, it sets the
168     base address for all the corresponding VF(n) BARs.  For example, if the
169     PF SR-IOV Capability is programmed to enable eight VFs, and it has a
170     1MB VF BAR0, the address in that VF BAR sets the base of an 8MB region.
171     This region is divided into eight contiguous 1MB regions, each of which
172     is a BAR0 for one of the VFs.  Note that even though the VF BAR
173     describes an 8MB region, the alignment requirement is for a single VF,
174     i.e., 1MB in this example.
176   There are several strategies for isolating VFs in PEs:
178   - M32 window: There's one M32 window, and it is split into 256
179     equally-sized segments.  The finest granularity possible is a 256MB
180     window with 1MB segments.  VF BARs that are 1MB or larger could be
181     mapped to separate PEs in this window.  Each segment can be
182     individually mapped to a PE via the lookup table, so this is quite
183     flexible, but it works best when all the VF BARs are the same size.  If
184     they are different sizes, the entire window has to be small enough that
185     the segment size matches the smallest VF BAR, which means larger VF
186     BARs span several segments.
188   - Non-segmented M64 window: A non-segmented M64 window is mapped entirely
189     to a single PE, so it could only isolate one VF.
191   - Single segmented M64 windows: A segmented M64 window could be used just
192     like the M32 window, but the segments can't be individually mapped to
193     PEs (the segment number is the PE#), so there isn't as much
194     flexibility.  A VF with multiple BARs would have to be in a "domain" of
195     multiple PEs, which is not as well isolated as a single PE.
197   - Multiple segmented M64 windows: As usual, each window is split into 256
198     equally-sized segments, and the segment number is the PE#.  But if we
199     use several M64 windows, they can be set to different base addresses
200     and different segment sizes.  If we have VFs that each have a 1MB BAR
201     and a 32MB BAR, we could use one M64 window to assign 1MB segments and
202     another M64 window to assign 32MB segments.
204   Finally, the plan to use M64 windows for SR-IOV, which will be described
205   more in the next two sections.  For a given VF BAR, we need to
206   effectively reserve the entire 256 segments (256 * VF BAR size) and
207   position the VF BAR to start at the beginning of a free range of
208   segments/PEs inside that M64 window.
210   The goal is of course to be able to give a separate PE for each VF.
212   The IODA2 platform has 16 M64 windows, which are used to map MMIO
213   range to PE#.  Each M64 window defines one MMIO range and this range is
214   divided into 256 segments, with each segment corresponding to one PE.
216   We decide to leverage this M64 window to map VFs to individual PEs, since
217   SR-IOV VF BARs are all the same size.
219   But doing so introduces another problem: total_VFs is usually smaller
220   than the number of M64 window segments, so if we map one VF BAR directly
221   to one M64 window, some part of the M64 window will map to another
222   device's MMIO range.
224   IODA supports 256 PEs, so segmented windows contain 256 segments, so if
225   total_VFs is less than 256, we have the situation in Figure 1.0, where
226   segments [total_VFs, 255] of the M64 window may map to some MMIO range on
227   other devices:
229      0      1                     total_VFs - 1
230      +------+------+-     -+------+------+
231      |      |      |  ...  |      |      |
232      +------+------+-     -+------+------+
234                            VF(n) BAR space
236      0      1                     total_VFs - 1                255
237      +------+------+-     -+------+------+-      -+------+------+
238      |      |      |  ...  |      |      |   ...  |      |      |
239      +------+------+-     -+------+------+-      -+------+------+
241                            M64 window
243                 Figure 1.0 Direct map VF(n) BAR space
245   Our current solution is to allocate 256 segments even if the VF(n) BAR
246   space doesn't need that much, as shown in Figure 1.1:
248      0      1                     total_VFs - 1                255
249      +------+------+-     -+------+------+-      -+------+------+
250      |      |      |  ...  |      |      |   ...  |      |      |
251      +------+------+-     -+------+------+-      -+------+------+
253                            VF(n) BAR space + extra
255      0      1                     total_VFs - 1                255
256      +------+------+-     -+------+------+-      -+------+------+
257      |      |      |  ...  |      |      |   ...  |      |      |
258      +------+------+-     -+------+------+-      -+------+------+
260                            M64 window
262                 Figure 1.1 Map VF(n) BAR space + extra
264   Allocating the extra space ensures that the entire M64 window will be
265   assigned to this one SR-IOV device and none of the space will be
266   available for other devices.  Note that this only expands the space
267   reserved in software; there are still only total_VFs VFs, and they only
268   respond to segments [0, total_VFs - 1].  There's nothing in hardware that
269   responds to segments [total_VFs, 255].
271 4. Implications for the Generic PCI Code
273 The PCIe SR-IOV spec requires that the base of the VF(n) BAR space be
274 aligned to the size of an individual VF BAR.
276 In IODA2, the MMIO address determines the PE#.  If the address is in an M32
277 window, we can set the PE# by updating the table that translates segments
278 to PE#s.  Similarly, if the address is in an unsegmented M64 window, we can
279 set the PE# for the window.  But if it's in a segmented M64 window, the
280 segment number is the PE#.
282 Therefore, the only way to control the PE# for a VF is to change the base
283 of the VF(n) BAR space in the VF BAR.  If the PCI core allocates the exact
284 amount of space required for the VF(n) BAR space, the VF BAR value is fixed
285 and cannot be changed.
287 On the other hand, if the PCI core allocates additional space, the VF BAR
288 value can be changed as long as the entire VF(n) BAR space remains inside
289 the space allocated by the core.
291 Ideally the segment size will be the same as an individual VF BAR size.
292 Then each VF will be in its own PE.  The VF BARs (and therefore the PE#s)
293 are contiguous.  If VF0 is in PE(x), then VF(n) is in PE(x+n).  If we
294 allocate 256 segments, there are (256 - numVFs) choices for the PE# of VF0.
296 If the segment size is smaller than the VF BAR size, it will take several
297 segments to cover a VF BAR, and a VF will be in several PEs.  This is
298 possible, but the isolation isn't as good, and it reduces the number of PE#
299 choices because instead of consuming only numVFs segments, the VF(n) BAR
300 space will consume (numVFs * n) segments.  That means there aren't as many
301 available segments for adjusting base of the VF(n) BAR space.