Linux 4.15.6
[linux/fpc-iii.git] / Documentation / trace / stm.txt
blob03765750104b30e24cb450d6fea78f165e705539
1 System Trace Module
2 ===================
4 System Trace Module (STM) is a device described in MIPI STP specs as
5 STP trace stream generator. STP (System Trace Protocol) is a trace
6 protocol multiplexing data from multiple trace sources, each one of
7 which is assigned a unique pair of master and channel. While some of
8 these masters and channels are statically allocated to certain
9 hardware trace sources, others are available to software. Software
10 trace sources are usually free to pick for themselves any
11 master/channel combination from this pool.
13 On the receiving end of this STP stream (the decoder side), trace
14 sources can only be identified by master/channel combination, so in
15 order for the decoder to be able to make sense of the trace that
16 involves multiple trace sources, it needs to be able to map those
17 master/channel pairs to the trace sources that it understands.
19 For instance, it is helpful to know that syslog messages come on
20 master 7 channel 15, while arbitrary user applications can use masters
21 48 to 63 and channels 0 to 127.
23 To solve this mapping problem, stm class provides a policy management
24 mechanism via configfs, that allows defining rules that map string
25 identifiers to ranges of masters and channels. If these rules (policy)
26 are consistent with what decoder expects, it will be able to properly
27 process the trace data.
29 This policy is a tree structure containing rules (policy_node) that
30 have a name (string identifier) and a range of masters and channels
31 associated with it, located in "stp-policy" subsystem directory in
32 configfs. The topmost directory's name (the policy) is formatted as
33 the STM device name to which this policy applies and and arbitrary
34 string identifier separated by a stop. From the examle above, a rule
35 may look like this:
37 $ ls /config/stp-policy/dummy_stm.my-policy/user
38 channels masters
39 $ cat /config/stp-policy/dummy_stm.my-policy/user/masters
40 48 63
41 $ cat /config/stp-policy/dummy_stm.my-policy/user/channels
42 0 127
44 which means that the master allocation pool for this rule consists of
45 masters 48 through 63 and channel allocation pool has channels 0
46 through 127 in it. Now, any producer (trace source) identifying itself
47 with "user" identification string will be allocated a master and
48 channel from within these ranges.
50 These rules can be nested, for example, one can define a rule "dummy"
51 under "user" directory from the example above and this new rule will
52 be used for trace sources with the id string of "user/dummy".
54 Trace sources have to open the stm class device's node and write their
55 trace data into its file descriptor. In order to identify themselves
56 to the policy, they need to do a STP_POLICY_ID_SET ioctl on this file
57 descriptor providing their id string. Otherwise, they will be
58 automatically allocated a master/channel pair upon first write to this
59 file descriptor according to the "default" rule of the policy, if such
60 exists.
62 Some STM devices may allow direct mapping of the channel mmio regions
63 to userspace for zero-copy writing. One mappable page (in terms of
64 mmu) will usually contain multiple channels' mmios, so the user will
65 need to allocate that many channels to themselves (via the
66 aforementioned ioctl() call) to be able to do this. That is, if your
67 stm device's channel mmio region is 64 bytes and hardware page size is
68 4096 bytes, after a successful STP_POLICY_ID_SET ioctl() call with
69 width==64, you should be able to mmap() one page on this file
70 descriptor and obtain direct access to an mmio region for 64 channels.
72 Examples of STM devices are Intel(R) Trace Hub [1] and Coresight STM
73 [2].
75 stm_source
76 ==========
78 For kernel-based trace sources, there is "stm_source" device
79 class. Devices of this class can be connected and disconnected to/from
80 stm devices at runtime via a sysfs attribute called "stm_source_link"
81 by writing the name of the desired stm device there, for example:
83 $ echo dummy_stm.0 > /sys/class/stm_source/console/stm_source_link
85 For examples on how to use stm_source interface in the kernel, refer
86 to stm_console, stm_heartbeat or stm_ftrace drivers.
88 Each stm_source device will need to assume a master and a range of
89 channels, depending on how many channels it requires. These are
90 allocated for the device according to the policy configuration. If
91 there's a node in the root of the policy directory that matches the
92 stm_source device's name (for example, "console"), this node will be
93 used to allocate master and channel numbers. If there's no such policy
94 node, the stm core will pick the first contiguous chunk of channels
95 within the first available master. Note that the node must exist
96 before the stm_source device is connected to its stm device.
98 stm_console
99 ===========
101 One implementation of this interface also used in the example above is
102 the "stm_console" driver, which basically provides a one-way console
103 for kernel messages over an stm device.
105 To configure the master/channel pair that will be assigned to this
106 console in the STP stream, create a "console" policy entry (see the
107 beginning of this text on how to do that). When initialized, it will
108 consume one channel.
110 stm_ftrace
111 ==========
113 This is another "stm_source" device, once the stm_ftrace has been
114 linked with an stm device, and if "function" tracer is enabled,
115 function address and parent function address which Ftrace subsystem
116 would store into ring buffer will be exported via the stm device at
117 the same time.
119 Currently only Ftrace "function" tracer is supported.
121 [1] https://software.intel.com/sites/default/files/managed/d3/3c/intel-th-developer-manual.pdf
122 [2] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0444b/index.html