Linux 4.15.6
[linux/fpc-iii.git] / kernel / locking / qspinlock.c
blob294294c71ba46a971652470f13507dd3ac231eed
1 /*
2 * Queued spinlock
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
15 * (C) Copyright 2013-2014 Red Hat, Inc.
16 * (C) Copyright 2015 Intel Corp.
17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
19 * Authors: Waiman Long <waiman.long@hpe.com>
20 * Peter Zijlstra <peterz@infradead.org>
23 #ifndef _GEN_PV_LOCK_SLOWPATH
25 #include <linux/smp.h>
26 #include <linux/bug.h>
27 #include <linux/cpumask.h>
28 #include <linux/percpu.h>
29 #include <linux/hardirq.h>
30 #include <linux/mutex.h>
31 #include <linux/prefetch.h>
32 #include <asm/byteorder.h>
33 #include <asm/qspinlock.h>
36 * The basic principle of a queue-based spinlock can best be understood
37 * by studying a classic queue-based spinlock implementation called the
38 * MCS lock. The paper below provides a good description for this kind
39 * of lock.
41 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
43 * This queued spinlock implementation is based on the MCS lock, however to make
44 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
45 * API, we must modify it somehow.
47 * In particular; where the traditional MCS lock consists of a tail pointer
48 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
49 * unlock the next pending (next->locked), we compress both these: {tail,
50 * next->locked} into a single u32 value.
52 * Since a spinlock disables recursion of its own context and there is a limit
53 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
54 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
55 * we can encode the tail by combining the 2-bit nesting level with the cpu
56 * number. With one byte for the lock value and 3 bytes for the tail, only a
57 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
58 * we extend it to a full byte to achieve better performance for architectures
59 * that support atomic byte write.
61 * We also change the first spinner to spin on the lock bit instead of its
62 * node; whereby avoiding the need to carry a node from lock to unlock, and
63 * preserving existing lock API. This also makes the unlock code simpler and
64 * faster.
66 * N.B. The current implementation only supports architectures that allow
67 * atomic operations on smaller 8-bit and 16-bit data types.
71 #include "mcs_spinlock.h"
73 #ifdef CONFIG_PARAVIRT_SPINLOCKS
74 #define MAX_NODES 8
75 #else
76 #define MAX_NODES 4
77 #endif
80 * Per-CPU queue node structures; we can never have more than 4 nested
81 * contexts: task, softirq, hardirq, nmi.
83 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
85 * PV doubles the storage and uses the second cacheline for PV state.
87 static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
90 * We must be able to distinguish between no-tail and the tail at 0:0,
91 * therefore increment the cpu number by one.
94 static inline __pure u32 encode_tail(int cpu, int idx)
96 u32 tail;
98 #ifdef CONFIG_DEBUG_SPINLOCK
99 BUG_ON(idx > 3);
100 #endif
101 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
102 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
104 return tail;
107 static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
109 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
110 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
112 return per_cpu_ptr(&mcs_nodes[idx], cpu);
115 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
118 * By using the whole 2nd least significant byte for the pending bit, we
119 * can allow better optimization of the lock acquisition for the pending
120 * bit holder.
122 * This internal structure is also used by the set_locked function which
123 * is not restricted to _Q_PENDING_BITS == 8.
125 struct __qspinlock {
126 union {
127 atomic_t val;
128 #ifdef __LITTLE_ENDIAN
129 struct {
130 u8 locked;
131 u8 pending;
133 struct {
134 u16 locked_pending;
135 u16 tail;
137 #else
138 struct {
139 u16 tail;
140 u16 locked_pending;
142 struct {
143 u8 reserved[2];
144 u8 pending;
145 u8 locked;
147 #endif
151 #if _Q_PENDING_BITS == 8
153 * clear_pending_set_locked - take ownership and clear the pending bit.
154 * @lock: Pointer to queued spinlock structure
156 * *,1,0 -> *,0,1
158 * Lock stealing is not allowed if this function is used.
160 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
162 struct __qspinlock *l = (void *)lock;
164 WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
168 * xchg_tail - Put in the new queue tail code word & retrieve previous one
169 * @lock : Pointer to queued spinlock structure
170 * @tail : The new queue tail code word
171 * Return: The previous queue tail code word
173 * xchg(lock, tail)
175 * p,*,* -> n,*,* ; prev = xchg(lock, node)
177 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
179 struct __qspinlock *l = (void *)lock;
182 * Use release semantics to make sure that the MCS node is properly
183 * initialized before changing the tail code.
185 return (u32)xchg_release(&l->tail,
186 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
189 #else /* _Q_PENDING_BITS == 8 */
192 * clear_pending_set_locked - take ownership and clear the pending bit.
193 * @lock: Pointer to queued spinlock structure
195 * *,1,0 -> *,0,1
197 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
199 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
203 * xchg_tail - Put in the new queue tail code word & retrieve previous one
204 * @lock : Pointer to queued spinlock structure
205 * @tail : The new queue tail code word
206 * Return: The previous queue tail code word
208 * xchg(lock, tail)
210 * p,*,* -> n,*,* ; prev = xchg(lock, node)
212 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
214 u32 old, new, val = atomic_read(&lock->val);
216 for (;;) {
217 new = (val & _Q_LOCKED_PENDING_MASK) | tail;
219 * Use release semantics to make sure that the MCS node is
220 * properly initialized before changing the tail code.
222 old = atomic_cmpxchg_release(&lock->val, val, new);
223 if (old == val)
224 break;
226 val = old;
228 return old;
230 #endif /* _Q_PENDING_BITS == 8 */
233 * set_locked - Set the lock bit and own the lock
234 * @lock: Pointer to queued spinlock structure
236 * *,*,0 -> *,0,1
238 static __always_inline void set_locked(struct qspinlock *lock)
240 struct __qspinlock *l = (void *)lock;
242 WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
247 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
248 * all the PV callbacks.
251 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
252 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
253 struct mcs_spinlock *prev) { }
254 static __always_inline void __pv_kick_node(struct qspinlock *lock,
255 struct mcs_spinlock *node) { }
256 static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
257 struct mcs_spinlock *node)
258 { return 0; }
260 #define pv_enabled() false
262 #define pv_init_node __pv_init_node
263 #define pv_wait_node __pv_wait_node
264 #define pv_kick_node __pv_kick_node
265 #define pv_wait_head_or_lock __pv_wait_head_or_lock
267 #ifdef CONFIG_PARAVIRT_SPINLOCKS
268 #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
269 #endif
271 #endif /* _GEN_PV_LOCK_SLOWPATH */
274 * queued_spin_lock_slowpath - acquire the queued spinlock
275 * @lock: Pointer to queued spinlock structure
276 * @val: Current value of the queued spinlock 32-bit word
278 * (queue tail, pending bit, lock value)
280 * fast : slow : unlock
281 * : :
282 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
283 * : | ^--------.------. / :
284 * : v \ \ | :
285 * pending : (0,1,1) +--> (0,1,0) \ | :
286 * : | ^--' | | :
287 * : v | | :
288 * uncontended : (n,x,y) +--> (n,0,0) --' | :
289 * queue : | ^--' | :
290 * : v | :
291 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
292 * queue : ^--' :
294 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
296 struct mcs_spinlock *prev, *next, *node;
297 u32 new, old, tail;
298 int idx;
300 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
302 if (pv_enabled())
303 goto queue;
305 if (virt_spin_lock(lock))
306 return;
309 * wait for in-progress pending->locked hand-overs
311 * 0,1,0 -> 0,0,1
313 if (val == _Q_PENDING_VAL) {
314 while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
315 cpu_relax();
319 * trylock || pending
321 * 0,0,0 -> 0,0,1 ; trylock
322 * 0,0,1 -> 0,1,1 ; pending
324 for (;;) {
326 * If we observe any contention; queue.
328 if (val & ~_Q_LOCKED_MASK)
329 goto queue;
331 new = _Q_LOCKED_VAL;
332 if (val == new)
333 new |= _Q_PENDING_VAL;
336 * Acquire semantic is required here as the function may
337 * return immediately if the lock was free.
339 old = atomic_cmpxchg_acquire(&lock->val, val, new);
340 if (old == val)
341 break;
343 val = old;
347 * we won the trylock
349 if (new == _Q_LOCKED_VAL)
350 return;
353 * we're pending, wait for the owner to go away.
355 * *,1,1 -> *,1,0
357 * this wait loop must be a load-acquire such that we match the
358 * store-release that clears the locked bit and create lock
359 * sequentiality; this is because not all clear_pending_set_locked()
360 * implementations imply full barriers.
362 smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));
365 * take ownership and clear the pending bit.
367 * *,1,0 -> *,0,1
369 clear_pending_set_locked(lock);
370 return;
373 * End of pending bit optimistic spinning and beginning of MCS
374 * queuing.
376 queue:
377 node = this_cpu_ptr(&mcs_nodes[0]);
378 idx = node->count++;
379 tail = encode_tail(smp_processor_id(), idx);
381 node += idx;
382 node->locked = 0;
383 node->next = NULL;
384 pv_init_node(node);
387 * We touched a (possibly) cold cacheline in the per-cpu queue node;
388 * attempt the trylock once more in the hope someone let go while we
389 * weren't watching.
391 if (queued_spin_trylock(lock))
392 goto release;
395 * We have already touched the queueing cacheline; don't bother with
396 * pending stuff.
398 * p,*,* -> n,*,*
400 * RELEASE, such that the stores to @node must be complete.
402 old = xchg_tail(lock, tail);
403 next = NULL;
406 * if there was a previous node; link it and wait until reaching the
407 * head of the waitqueue.
409 if (old & _Q_TAIL_MASK) {
410 prev = decode_tail(old);
412 * The above xchg_tail() is also a load of @lock which generates,
413 * through decode_tail(), a pointer.
415 * The address dependency matches the RELEASE of xchg_tail()
416 * such that the access to @prev must happen after.
418 smp_read_barrier_depends();
420 WRITE_ONCE(prev->next, node);
422 pv_wait_node(node, prev);
423 arch_mcs_spin_lock_contended(&node->locked);
426 * While waiting for the MCS lock, the next pointer may have
427 * been set by another lock waiter. We optimistically load
428 * the next pointer & prefetch the cacheline for writing
429 * to reduce latency in the upcoming MCS unlock operation.
431 next = READ_ONCE(node->next);
432 if (next)
433 prefetchw(next);
437 * we're at the head of the waitqueue, wait for the owner & pending to
438 * go away.
440 * *,x,y -> *,0,0
442 * this wait loop must use a load-acquire such that we match the
443 * store-release that clears the locked bit and create lock
444 * sequentiality; this is because the set_locked() function below
445 * does not imply a full barrier.
447 * The PV pv_wait_head_or_lock function, if active, will acquire
448 * the lock and return a non-zero value. So we have to skip the
449 * smp_cond_load_acquire() call. As the next PV queue head hasn't been
450 * designated yet, there is no way for the locked value to become
451 * _Q_SLOW_VAL. So both the set_locked() and the
452 * atomic_cmpxchg_relaxed() calls will be safe.
454 * If PV isn't active, 0 will be returned instead.
457 if ((val = pv_wait_head_or_lock(lock, node)))
458 goto locked;
460 val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));
462 locked:
464 * claim the lock:
466 * n,0,0 -> 0,0,1 : lock, uncontended
467 * *,0,0 -> *,0,1 : lock, contended
469 * If the queue head is the only one in the queue (lock value == tail),
470 * clear the tail code and grab the lock. Otherwise, we only need
471 * to grab the lock.
473 for (;;) {
474 /* In the PV case we might already have _Q_LOCKED_VAL set */
475 if ((val & _Q_TAIL_MASK) != tail) {
476 set_locked(lock);
477 break;
480 * The smp_cond_load_acquire() call above has provided the
481 * necessary acquire semantics required for locking. At most
482 * two iterations of this loop may be ran.
484 old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
485 if (old == val)
486 goto release; /* No contention */
488 val = old;
492 * contended path; wait for next if not observed yet, release.
494 if (!next) {
495 while (!(next = READ_ONCE(node->next)))
496 cpu_relax();
499 arch_mcs_spin_unlock_contended(&next->locked);
500 pv_kick_node(lock, next);
502 release:
504 * release the node
506 __this_cpu_dec(mcs_nodes[0].count);
508 EXPORT_SYMBOL(queued_spin_lock_slowpath);
511 * Generate the paravirt code for queued_spin_unlock_slowpath().
513 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
514 #define _GEN_PV_LOCK_SLOWPATH
516 #undef pv_enabled
517 #define pv_enabled() true
519 #undef pv_init_node
520 #undef pv_wait_node
521 #undef pv_kick_node
522 #undef pv_wait_head_or_lock
524 #undef queued_spin_lock_slowpath
525 #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
527 #include "qspinlock_paravirt.h"
528 #include "qspinlock.c"
530 #endif