1 // SPDX-License-Identifier: GPL-2.0
3 * Deadline Scheduling Class (SCHED_DEADLINE)
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
20 #include <linux/slab.h>
21 #include <uapi/linux/sched/types.h>
23 struct dl_bandwidth def_dl_bandwidth
;
25 static inline struct task_struct
*dl_task_of(struct sched_dl_entity
*dl_se
)
27 return container_of(dl_se
, struct task_struct
, dl
);
30 static inline struct rq
*rq_of_dl_rq(struct dl_rq
*dl_rq
)
32 return container_of(dl_rq
, struct rq
, dl
);
35 static inline struct dl_rq
*dl_rq_of_se(struct sched_dl_entity
*dl_se
)
37 struct task_struct
*p
= dl_task_of(dl_se
);
38 struct rq
*rq
= task_rq(p
);
43 static inline int on_dl_rq(struct sched_dl_entity
*dl_se
)
45 return !RB_EMPTY_NODE(&dl_se
->rb_node
);
49 static inline struct dl_bw
*dl_bw_of(int i
)
51 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
52 "sched RCU must be held");
53 return &cpu_rq(i
)->rd
->dl_bw
;
56 static inline int dl_bw_cpus(int i
)
58 struct root_domain
*rd
= cpu_rq(i
)->rd
;
61 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
62 "sched RCU must be held");
63 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
69 static inline struct dl_bw
*dl_bw_of(int i
)
71 return &cpu_rq(i
)->dl
.dl_bw
;
74 static inline int dl_bw_cpus(int i
)
81 void add_running_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
83 u64 old
= dl_rq
->running_bw
;
85 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
86 dl_rq
->running_bw
+= dl_bw
;
87 SCHED_WARN_ON(dl_rq
->running_bw
< old
); /* overflow */
88 SCHED_WARN_ON(dl_rq
->running_bw
> dl_rq
->this_bw
);
92 void sub_running_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
94 u64 old
= dl_rq
->running_bw
;
96 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
97 dl_rq
->running_bw
-= dl_bw
;
98 SCHED_WARN_ON(dl_rq
->running_bw
> old
); /* underflow */
99 if (dl_rq
->running_bw
> old
)
100 dl_rq
->running_bw
= 0;
104 void add_rq_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
106 u64 old
= dl_rq
->this_bw
;
108 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
109 dl_rq
->this_bw
+= dl_bw
;
110 SCHED_WARN_ON(dl_rq
->this_bw
< old
); /* overflow */
114 void sub_rq_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
116 u64 old
= dl_rq
->this_bw
;
118 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
119 dl_rq
->this_bw
-= dl_bw
;
120 SCHED_WARN_ON(dl_rq
->this_bw
> old
); /* underflow */
121 if (dl_rq
->this_bw
> old
)
123 SCHED_WARN_ON(dl_rq
->running_bw
> dl_rq
->this_bw
);
126 void dl_change_utilization(struct task_struct
*p
, u64 new_bw
)
130 if (task_on_rq_queued(p
))
134 if (p
->dl
.dl_non_contending
) {
135 sub_running_bw(p
->dl
.dl_bw
, &rq
->dl
);
136 p
->dl
.dl_non_contending
= 0;
138 * If the timer handler is currently running and the
139 * timer cannot be cancelled, inactive_task_timer()
140 * will see that dl_not_contending is not set, and
141 * will not touch the rq's active utilization,
142 * so we are still safe.
144 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
147 sub_rq_bw(p
->dl
.dl_bw
, &rq
->dl
);
148 add_rq_bw(new_bw
, &rq
->dl
);
152 * The utilization of a task cannot be immediately removed from
153 * the rq active utilization (running_bw) when the task blocks.
154 * Instead, we have to wait for the so called "0-lag time".
156 * If a task blocks before the "0-lag time", a timer (the inactive
157 * timer) is armed, and running_bw is decreased when the timer
160 * If the task wakes up again before the inactive timer fires,
161 * the timer is cancelled, whereas if the task wakes up after the
162 * inactive timer fired (and running_bw has been decreased) the
163 * task's utilization has to be added to running_bw again.
164 * A flag in the deadline scheduling entity (dl_non_contending)
165 * is used to avoid race conditions between the inactive timer handler
168 * The following diagram shows how running_bw is updated. A task is
169 * "ACTIVE" when its utilization contributes to running_bw; an
170 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
171 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
172 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
173 * time already passed, which does not contribute to running_bw anymore.
174 * +------------------+
176 * +------------------>+ contending |
177 * | add_running_bw | |
178 * | +----+------+------+
181 * +--------+-------+ | |
182 * | | t >= 0-lag | | wakeup
183 * | INACTIVE |<---------------+ |
184 * | | sub_running_bw | |
185 * +--------+-------+ | |
190 * | +----+------+------+
191 * | sub_running_bw | ACTIVE |
192 * +-------------------+ |
193 * inactive timer | non contending |
194 * fired +------------------+
196 * The task_non_contending() function is invoked when a task
197 * blocks, and checks if the 0-lag time already passed or
198 * not (in the first case, it directly updates running_bw;
199 * in the second case, it arms the inactive timer).
201 * The task_contending() function is invoked when a task wakes
202 * up, and checks if the task is still in the "ACTIVE non contending"
203 * state or not (in the second case, it updates running_bw).
205 static void task_non_contending(struct task_struct
*p
)
207 struct sched_dl_entity
*dl_se
= &p
->dl
;
208 struct hrtimer
*timer
= &dl_se
->inactive_timer
;
209 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
210 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
214 * If this is a non-deadline task that has been boosted,
217 if (dl_se
->dl_runtime
== 0)
220 WARN_ON(hrtimer_active(&dl_se
->inactive_timer
));
221 WARN_ON(dl_se
->dl_non_contending
);
223 zerolag_time
= dl_se
->deadline
-
224 div64_long((dl_se
->runtime
* dl_se
->dl_period
),
228 * Using relative times instead of the absolute "0-lag time"
229 * allows to simplify the code
231 zerolag_time
-= rq_clock(rq
);
234 * If the "0-lag time" already passed, decrease the active
235 * utilization now, instead of starting a timer
237 if (zerolag_time
< 0) {
239 sub_running_bw(dl_se
->dl_bw
, dl_rq
);
240 if (!dl_task(p
) || p
->state
== TASK_DEAD
) {
241 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
243 if (p
->state
== TASK_DEAD
)
244 sub_rq_bw(p
->dl
.dl_bw
, &rq
->dl
);
245 raw_spin_lock(&dl_b
->lock
);
246 __dl_sub(dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
247 __dl_clear_params(p
);
248 raw_spin_unlock(&dl_b
->lock
);
254 dl_se
->dl_non_contending
= 1;
256 hrtimer_start(timer
, ns_to_ktime(zerolag_time
), HRTIMER_MODE_REL
);
259 static void task_contending(struct sched_dl_entity
*dl_se
, int flags
)
261 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
264 * If this is a non-deadline task that has been boosted,
267 if (dl_se
->dl_runtime
== 0)
270 if (flags
& ENQUEUE_MIGRATED
)
271 add_rq_bw(dl_se
->dl_bw
, dl_rq
);
273 if (dl_se
->dl_non_contending
) {
274 dl_se
->dl_non_contending
= 0;
276 * If the timer handler is currently running and the
277 * timer cannot be cancelled, inactive_task_timer()
278 * will see that dl_not_contending is not set, and
279 * will not touch the rq's active utilization,
280 * so we are still safe.
282 if (hrtimer_try_to_cancel(&dl_se
->inactive_timer
) == 1)
283 put_task_struct(dl_task_of(dl_se
));
286 * Since "dl_non_contending" is not set, the
287 * task's utilization has already been removed from
288 * active utilization (either when the task blocked,
289 * when the "inactive timer" fired).
292 add_running_bw(dl_se
->dl_bw
, dl_rq
);
296 static inline int is_leftmost(struct task_struct
*p
, struct dl_rq
*dl_rq
)
298 struct sched_dl_entity
*dl_se
= &p
->dl
;
300 return dl_rq
->root
.rb_leftmost
== &dl_se
->rb_node
;
303 void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
)
305 raw_spin_lock_init(&dl_b
->dl_runtime_lock
);
306 dl_b
->dl_period
= period
;
307 dl_b
->dl_runtime
= runtime
;
310 void init_dl_bw(struct dl_bw
*dl_b
)
312 raw_spin_lock_init(&dl_b
->lock
);
313 raw_spin_lock(&def_dl_bandwidth
.dl_runtime_lock
);
314 if (global_rt_runtime() == RUNTIME_INF
)
317 dl_b
->bw
= to_ratio(global_rt_period(), global_rt_runtime());
318 raw_spin_unlock(&def_dl_bandwidth
.dl_runtime_lock
);
322 void init_dl_rq(struct dl_rq
*dl_rq
)
324 dl_rq
->root
= RB_ROOT_CACHED
;
327 /* zero means no -deadline tasks */
328 dl_rq
->earliest_dl
.curr
= dl_rq
->earliest_dl
.next
= 0;
330 dl_rq
->dl_nr_migratory
= 0;
331 dl_rq
->overloaded
= 0;
332 dl_rq
->pushable_dl_tasks_root
= RB_ROOT_CACHED
;
334 init_dl_bw(&dl_rq
->dl_bw
);
337 dl_rq
->running_bw
= 0;
339 init_dl_rq_bw_ratio(dl_rq
);
344 static inline int dl_overloaded(struct rq
*rq
)
346 return atomic_read(&rq
->rd
->dlo_count
);
349 static inline void dl_set_overload(struct rq
*rq
)
354 cpumask_set_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
356 * Must be visible before the overload count is
357 * set (as in sched_rt.c).
359 * Matched by the barrier in pull_dl_task().
362 atomic_inc(&rq
->rd
->dlo_count
);
365 static inline void dl_clear_overload(struct rq
*rq
)
370 atomic_dec(&rq
->rd
->dlo_count
);
371 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
374 static void update_dl_migration(struct dl_rq
*dl_rq
)
376 if (dl_rq
->dl_nr_migratory
&& dl_rq
->dl_nr_running
> 1) {
377 if (!dl_rq
->overloaded
) {
378 dl_set_overload(rq_of_dl_rq(dl_rq
));
379 dl_rq
->overloaded
= 1;
381 } else if (dl_rq
->overloaded
) {
382 dl_clear_overload(rq_of_dl_rq(dl_rq
));
383 dl_rq
->overloaded
= 0;
387 static void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
389 struct task_struct
*p
= dl_task_of(dl_se
);
391 if (p
->nr_cpus_allowed
> 1)
392 dl_rq
->dl_nr_migratory
++;
394 update_dl_migration(dl_rq
);
397 static void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
399 struct task_struct
*p
= dl_task_of(dl_se
);
401 if (p
->nr_cpus_allowed
> 1)
402 dl_rq
->dl_nr_migratory
--;
404 update_dl_migration(dl_rq
);
408 * The list of pushable -deadline task is not a plist, like in
409 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
411 static void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
413 struct dl_rq
*dl_rq
= &rq
->dl
;
414 struct rb_node
**link
= &dl_rq
->pushable_dl_tasks_root
.rb_root
.rb_node
;
415 struct rb_node
*parent
= NULL
;
416 struct task_struct
*entry
;
417 bool leftmost
= true;
419 BUG_ON(!RB_EMPTY_NODE(&p
->pushable_dl_tasks
));
423 entry
= rb_entry(parent
, struct task_struct
,
425 if (dl_entity_preempt(&p
->dl
, &entry
->dl
))
426 link
= &parent
->rb_left
;
428 link
= &parent
->rb_right
;
434 dl_rq
->earliest_dl
.next
= p
->dl
.deadline
;
436 rb_link_node(&p
->pushable_dl_tasks
, parent
, link
);
437 rb_insert_color_cached(&p
->pushable_dl_tasks
,
438 &dl_rq
->pushable_dl_tasks_root
, leftmost
);
441 static void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
443 struct dl_rq
*dl_rq
= &rq
->dl
;
445 if (RB_EMPTY_NODE(&p
->pushable_dl_tasks
))
448 if (dl_rq
->pushable_dl_tasks_root
.rb_leftmost
== &p
->pushable_dl_tasks
) {
449 struct rb_node
*next_node
;
451 next_node
= rb_next(&p
->pushable_dl_tasks
);
453 dl_rq
->earliest_dl
.next
= rb_entry(next_node
,
454 struct task_struct
, pushable_dl_tasks
)->dl
.deadline
;
458 rb_erase_cached(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
459 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
462 static inline int has_pushable_dl_tasks(struct rq
*rq
)
464 return !RB_EMPTY_ROOT(&rq
->dl
.pushable_dl_tasks_root
.rb_root
);
467 static int push_dl_task(struct rq
*rq
);
469 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
471 return dl_task(prev
);
474 static DEFINE_PER_CPU(struct callback_head
, dl_push_head
);
475 static DEFINE_PER_CPU(struct callback_head
, dl_pull_head
);
477 static void push_dl_tasks(struct rq
*);
478 static void pull_dl_task(struct rq
*);
480 static inline void queue_push_tasks(struct rq
*rq
)
482 if (!has_pushable_dl_tasks(rq
))
485 queue_balance_callback(rq
, &per_cpu(dl_push_head
, rq
->cpu
), push_dl_tasks
);
488 static inline void queue_pull_task(struct rq
*rq
)
490 queue_balance_callback(rq
, &per_cpu(dl_pull_head
, rq
->cpu
), pull_dl_task
);
493 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
);
495 static struct rq
*dl_task_offline_migration(struct rq
*rq
, struct task_struct
*p
)
497 struct rq
*later_rq
= NULL
;
499 later_rq
= find_lock_later_rq(p
, rq
);
504 * If we cannot preempt any rq, fall back to pick any
507 cpu
= cpumask_any_and(cpu_active_mask
, &p
->cpus_allowed
);
508 if (cpu
>= nr_cpu_ids
) {
510 * Fail to find any suitable cpu.
511 * The task will never come back!
513 BUG_ON(dl_bandwidth_enabled());
516 * If admission control is disabled we
517 * try a little harder to let the task
520 cpu
= cpumask_any(cpu_active_mask
);
522 later_rq
= cpu_rq(cpu
);
523 double_lock_balance(rq
, later_rq
);
526 set_task_cpu(p
, later_rq
->cpu
);
527 double_unlock_balance(later_rq
, rq
);
535 void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
540 void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
545 void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
550 void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
554 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
559 static inline void pull_dl_task(struct rq
*rq
)
563 static inline void queue_push_tasks(struct rq
*rq
)
567 static inline void queue_pull_task(struct rq
*rq
)
570 #endif /* CONFIG_SMP */
572 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
573 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
574 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
578 * We are being explicitly informed that a new instance is starting,
579 * and this means that:
580 * - the absolute deadline of the entity has to be placed at
581 * current time + relative deadline;
582 * - the runtime of the entity has to be set to the maximum value.
584 * The capability of specifying such event is useful whenever a -deadline
585 * entity wants to (try to!) synchronize its behaviour with the scheduler's
586 * one, and to (try to!) reconcile itself with its own scheduling
589 static inline void setup_new_dl_entity(struct sched_dl_entity
*dl_se
)
591 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
592 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
594 WARN_ON(dl_se
->dl_boosted
);
595 WARN_ON(dl_time_before(rq_clock(rq
), dl_se
->deadline
));
598 * We are racing with the deadline timer. So, do nothing because
599 * the deadline timer handler will take care of properly recharging
600 * the runtime and postponing the deadline
602 if (dl_se
->dl_throttled
)
606 * We use the regular wall clock time to set deadlines in the
607 * future; in fact, we must consider execution overheads (time
608 * spent on hardirq context, etc.).
610 dl_se
->deadline
= rq_clock(rq
) + dl_se
->dl_deadline
;
611 dl_se
->runtime
= dl_se
->dl_runtime
;
615 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
616 * possibility of a entity lasting more than what it declared, and thus
617 * exhausting its runtime.
619 * Here we are interested in making runtime overrun possible, but we do
620 * not want a entity which is misbehaving to affect the scheduling of all
622 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
623 * is used, in order to confine each entity within its own bandwidth.
625 * This function deals exactly with that, and ensures that when the runtime
626 * of a entity is replenished, its deadline is also postponed. That ensures
627 * the overrunning entity can't interfere with other entity in the system and
628 * can't make them miss their deadlines. Reasons why this kind of overruns
629 * could happen are, typically, a entity voluntarily trying to overcome its
630 * runtime, or it just underestimated it during sched_setattr().
632 static void replenish_dl_entity(struct sched_dl_entity
*dl_se
,
633 struct sched_dl_entity
*pi_se
)
635 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
636 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
638 BUG_ON(pi_se
->dl_runtime
<= 0);
641 * This could be the case for a !-dl task that is boosted.
642 * Just go with full inherited parameters.
644 if (dl_se
->dl_deadline
== 0) {
645 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
646 dl_se
->runtime
= pi_se
->dl_runtime
;
649 if (dl_se
->dl_yielded
&& dl_se
->runtime
> 0)
653 * We keep moving the deadline away until we get some
654 * available runtime for the entity. This ensures correct
655 * handling of situations where the runtime overrun is
658 while (dl_se
->runtime
<= 0) {
659 dl_se
->deadline
+= pi_se
->dl_period
;
660 dl_se
->runtime
+= pi_se
->dl_runtime
;
664 * At this point, the deadline really should be "in
665 * the future" with respect to rq->clock. If it's
666 * not, we are, for some reason, lagging too much!
667 * Anyway, after having warn userspace abut that,
668 * we still try to keep the things running by
669 * resetting the deadline and the budget of the
672 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
))) {
673 printk_deferred_once("sched: DL replenish lagged too much\n");
674 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
675 dl_se
->runtime
= pi_se
->dl_runtime
;
678 if (dl_se
->dl_yielded
)
679 dl_se
->dl_yielded
= 0;
680 if (dl_se
->dl_throttled
)
681 dl_se
->dl_throttled
= 0;
685 * Here we check if --at time t-- an entity (which is probably being
686 * [re]activated or, in general, enqueued) can use its remaining runtime
687 * and its current deadline _without_ exceeding the bandwidth it is
688 * assigned (function returns true if it can't). We are in fact applying
689 * one of the CBS rules: when a task wakes up, if the residual runtime
690 * over residual deadline fits within the allocated bandwidth, then we
691 * can keep the current (absolute) deadline and residual budget without
692 * disrupting the schedulability of the system. Otherwise, we should
693 * refill the runtime and set the deadline a period in the future,
694 * because keeping the current (absolute) deadline of the task would
695 * result in breaking guarantees promised to other tasks (refer to
696 * Documentation/scheduler/sched-deadline.txt for more informations).
698 * This function returns true if:
700 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
702 * IOW we can't recycle current parameters.
704 * Notice that the bandwidth check is done against the deadline. For
705 * task with deadline equal to period this is the same of using
706 * dl_period instead of dl_deadline in the equation above.
708 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
,
709 struct sched_dl_entity
*pi_se
, u64 t
)
714 * left and right are the two sides of the equation above,
715 * after a bit of shuffling to use multiplications instead
718 * Note that none of the time values involved in the two
719 * multiplications are absolute: dl_deadline and dl_runtime
720 * are the relative deadline and the maximum runtime of each
721 * instance, runtime is the runtime left for the last instance
722 * and (deadline - t), since t is rq->clock, is the time left
723 * to the (absolute) deadline. Even if overflowing the u64 type
724 * is very unlikely to occur in both cases, here we scale down
725 * as we want to avoid that risk at all. Scaling down by 10
726 * means that we reduce granularity to 1us. We are fine with it,
727 * since this is only a true/false check and, anyway, thinking
728 * of anything below microseconds resolution is actually fiction
729 * (but still we want to give the user that illusion >;).
731 left
= (pi_se
->dl_deadline
>> DL_SCALE
) * (dl_se
->runtime
>> DL_SCALE
);
732 right
= ((dl_se
->deadline
- t
) >> DL_SCALE
) *
733 (pi_se
->dl_runtime
>> DL_SCALE
);
735 return dl_time_before(right
, left
);
739 * Revised wakeup rule [1]: For self-suspending tasks, rather then
740 * re-initializing task's runtime and deadline, the revised wakeup
741 * rule adjusts the task's runtime to avoid the task to overrun its
744 * Reasoning: a task may overrun the density if:
745 * runtime / (deadline - t) > dl_runtime / dl_deadline
747 * Therefore, runtime can be adjusted to:
748 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
750 * In such way that runtime will be equal to the maximum density
751 * the task can use without breaking any rule.
753 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
754 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
757 update_dl_revised_wakeup(struct sched_dl_entity
*dl_se
, struct rq
*rq
)
759 u64 laxity
= dl_se
->deadline
- rq_clock(rq
);
762 * If the task has deadline < period, and the deadline is in the past,
763 * it should already be throttled before this check.
765 * See update_dl_entity() comments for further details.
767 WARN_ON(dl_time_before(dl_se
->deadline
, rq_clock(rq
)));
769 dl_se
->runtime
= (dl_se
->dl_density
* laxity
) >> BW_SHIFT
;
773 * Regarding the deadline, a task with implicit deadline has a relative
774 * deadline == relative period. A task with constrained deadline has a
775 * relative deadline <= relative period.
777 * We support constrained deadline tasks. However, there are some restrictions
778 * applied only for tasks which do not have an implicit deadline. See
779 * update_dl_entity() to know more about such restrictions.
781 * The dl_is_implicit() returns true if the task has an implicit deadline.
783 static inline bool dl_is_implicit(struct sched_dl_entity
*dl_se
)
785 return dl_se
->dl_deadline
== dl_se
->dl_period
;
789 * When a deadline entity is placed in the runqueue, its runtime and deadline
790 * might need to be updated. This is done by a CBS wake up rule. There are two
791 * different rules: 1) the original CBS; and 2) the Revisited CBS.
793 * When the task is starting a new period, the Original CBS is used. In this
794 * case, the runtime is replenished and a new absolute deadline is set.
796 * When a task is queued before the begin of the next period, using the
797 * remaining runtime and deadline could make the entity to overflow, see
798 * dl_entity_overflow() to find more about runtime overflow. When such case
799 * is detected, the runtime and deadline need to be updated.
801 * If the task has an implicit deadline, i.e., deadline == period, the Original
802 * CBS is applied. the runtime is replenished and a new absolute deadline is
803 * set, as in the previous cases.
805 * However, the Original CBS does not work properly for tasks with
806 * deadline < period, which are said to have a constrained deadline. By
807 * applying the Original CBS, a constrained deadline task would be able to run
808 * runtime/deadline in a period. With deadline < period, the task would
809 * overrun the runtime/period allowed bandwidth, breaking the admission test.
811 * In order to prevent this misbehave, the Revisited CBS is used for
812 * constrained deadline tasks when a runtime overflow is detected. In the
813 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
814 * the remaining runtime of the task is reduced to avoid runtime overflow.
815 * Please refer to the comments update_dl_revised_wakeup() function to find
816 * more about the Revised CBS rule.
818 static void update_dl_entity(struct sched_dl_entity
*dl_se
,
819 struct sched_dl_entity
*pi_se
)
821 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
822 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
824 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) ||
825 dl_entity_overflow(dl_se
, pi_se
, rq_clock(rq
))) {
827 if (unlikely(!dl_is_implicit(dl_se
) &&
828 !dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
829 !dl_se
->dl_boosted
)){
830 update_dl_revised_wakeup(dl_se
, rq
);
834 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
835 dl_se
->runtime
= pi_se
->dl_runtime
;
839 static inline u64
dl_next_period(struct sched_dl_entity
*dl_se
)
841 return dl_se
->deadline
- dl_se
->dl_deadline
+ dl_se
->dl_period
;
845 * If the entity depleted all its runtime, and if we want it to sleep
846 * while waiting for some new execution time to become available, we
847 * set the bandwidth replenishment timer to the replenishment instant
848 * and try to activate it.
850 * Notice that it is important for the caller to know if the timer
851 * actually started or not (i.e., the replenishment instant is in
852 * the future or in the past).
854 static int start_dl_timer(struct task_struct
*p
)
856 struct sched_dl_entity
*dl_se
= &p
->dl
;
857 struct hrtimer
*timer
= &dl_se
->dl_timer
;
858 struct rq
*rq
= task_rq(p
);
862 lockdep_assert_held(&rq
->lock
);
865 * We want the timer to fire at the deadline, but considering
866 * that it is actually coming from rq->clock and not from
867 * hrtimer's time base reading.
869 act
= ns_to_ktime(dl_next_period(dl_se
));
870 now
= hrtimer_cb_get_time(timer
);
871 delta
= ktime_to_ns(now
) - rq_clock(rq
);
872 act
= ktime_add_ns(act
, delta
);
875 * If the expiry time already passed, e.g., because the value
876 * chosen as the deadline is too small, don't even try to
877 * start the timer in the past!
879 if (ktime_us_delta(act
, now
) < 0)
883 * !enqueued will guarantee another callback; even if one is already in
884 * progress. This ensures a balanced {get,put}_task_struct().
886 * The race against __run_timer() clearing the enqueued state is
887 * harmless because we're holding task_rq()->lock, therefore the timer
888 * expiring after we've done the check will wait on its task_rq_lock()
889 * and observe our state.
891 if (!hrtimer_is_queued(timer
)) {
893 hrtimer_start(timer
, act
, HRTIMER_MODE_ABS
);
900 * This is the bandwidth enforcement timer callback. If here, we know
901 * a task is not on its dl_rq, since the fact that the timer was running
902 * means the task is throttled and needs a runtime replenishment.
904 * However, what we actually do depends on the fact the task is active,
905 * (it is on its rq) or has been removed from there by a call to
906 * dequeue_task_dl(). In the former case we must issue the runtime
907 * replenishment and add the task back to the dl_rq; in the latter, we just
908 * do nothing but clearing dl_throttled, so that runtime and deadline
909 * updating (and the queueing back to dl_rq) will be done by the
910 * next call to enqueue_task_dl().
912 static enum hrtimer_restart
dl_task_timer(struct hrtimer
*timer
)
914 struct sched_dl_entity
*dl_se
= container_of(timer
,
915 struct sched_dl_entity
,
917 struct task_struct
*p
= dl_task_of(dl_se
);
921 rq
= task_rq_lock(p
, &rf
);
924 * The task might have changed its scheduling policy to something
925 * different than SCHED_DEADLINE (through switched_from_dl()).
931 * The task might have been boosted by someone else and might be in the
932 * boosting/deboosting path, its not throttled.
934 if (dl_se
->dl_boosted
)
938 * Spurious timer due to start_dl_timer() race; or we already received
939 * a replenishment from rt_mutex_setprio().
941 if (!dl_se
->dl_throttled
)
948 * If the throttle happened during sched-out; like:
955 * __dequeue_task_dl()
958 * We can be both throttled and !queued. Replenish the counter
959 * but do not enqueue -- wait for our wakeup to do that.
961 if (!task_on_rq_queued(p
)) {
962 replenish_dl_entity(dl_se
, dl_se
);
967 if (unlikely(!rq
->online
)) {
969 * If the runqueue is no longer available, migrate the
970 * task elsewhere. This necessarily changes rq.
972 lockdep_unpin_lock(&rq
->lock
, rf
.cookie
);
973 rq
= dl_task_offline_migration(rq
, p
);
974 rf
.cookie
= lockdep_pin_lock(&rq
->lock
);
978 * Now that the task has been migrated to the new RQ and we
979 * have that locked, proceed as normal and enqueue the task
985 enqueue_task_dl(rq
, p
, ENQUEUE_REPLENISH
);
986 if (dl_task(rq
->curr
))
987 check_preempt_curr_dl(rq
, p
, 0);
993 * Queueing this task back might have overloaded rq, check if we need
994 * to kick someone away.
996 if (has_pushable_dl_tasks(rq
)) {
998 * Nothing relies on rq->lock after this, so its safe to drop
1001 rq_unpin_lock(rq
, &rf
);
1003 rq_repin_lock(rq
, &rf
);
1008 task_rq_unlock(rq
, p
, &rf
);
1011 * This can free the task_struct, including this hrtimer, do not touch
1012 * anything related to that after this.
1016 return HRTIMER_NORESTART
;
1019 void init_dl_task_timer(struct sched_dl_entity
*dl_se
)
1021 struct hrtimer
*timer
= &dl_se
->dl_timer
;
1023 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1024 timer
->function
= dl_task_timer
;
1028 * During the activation, CBS checks if it can reuse the current task's
1029 * runtime and period. If the deadline of the task is in the past, CBS
1030 * cannot use the runtime, and so it replenishes the task. This rule
1031 * works fine for implicit deadline tasks (deadline == period), and the
1032 * CBS was designed for implicit deadline tasks. However, a task with
1033 * constrained deadline (deadine < period) might be awakened after the
1034 * deadline, but before the next period. In this case, replenishing the
1035 * task would allow it to run for runtime / deadline. As in this case
1036 * deadline < period, CBS enables a task to run for more than the
1037 * runtime / period. In a very loaded system, this can cause a domino
1038 * effect, making other tasks miss their deadlines.
1040 * To avoid this problem, in the activation of a constrained deadline
1041 * task after the deadline but before the next period, throttle the
1042 * task and set the replenishing timer to the begin of the next period,
1043 * unless it is boosted.
1045 static inline void dl_check_constrained_dl(struct sched_dl_entity
*dl_se
)
1047 struct task_struct
*p
= dl_task_of(dl_se
);
1048 struct rq
*rq
= rq_of_dl_rq(dl_rq_of_se(dl_se
));
1050 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
1051 dl_time_before(rq_clock(rq
), dl_next_period(dl_se
))) {
1052 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(p
)))
1054 dl_se
->dl_throttled
= 1;
1055 if (dl_se
->runtime
> 0)
1061 int dl_runtime_exceeded(struct sched_dl_entity
*dl_se
)
1063 return (dl_se
->runtime
<= 0);
1066 extern bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
);
1069 * This function implements the GRUB accounting rule:
1070 * according to the GRUB reclaiming algorithm, the runtime is
1071 * not decreased as "dq = -dt", but as
1072 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1073 * where u is the utilization of the task, Umax is the maximum reclaimable
1074 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1075 * as the difference between the "total runqueue utilization" and the
1076 * runqueue active utilization, and Uextra is the (per runqueue) extra
1077 * reclaimable utilization.
1078 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1079 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1081 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1082 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1083 * Since delta is a 64 bit variable, to have an overflow its value
1084 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1085 * So, overflow is not an issue here.
1087 u64
grub_reclaim(u64 delta
, struct rq
*rq
, struct sched_dl_entity
*dl_se
)
1089 u64 u_inact
= rq
->dl
.this_bw
- rq
->dl
.running_bw
; /* Utot - Uact */
1091 u64 u_act_min
= (dl_se
->dl_bw
* rq
->dl
.bw_ratio
) >> RATIO_SHIFT
;
1094 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1095 * we compare u_inact + rq->dl.extra_bw with
1096 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1097 * u_inact + rq->dl.extra_bw can be larger than
1098 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1099 * leading to wrong results)
1101 if (u_inact
+ rq
->dl
.extra_bw
> BW_UNIT
- u_act_min
)
1104 u_act
= BW_UNIT
- u_inact
- rq
->dl
.extra_bw
;
1106 return (delta
* u_act
) >> BW_SHIFT
;
1110 * Update the current task's runtime statistics (provided it is still
1111 * a -deadline task and has not been removed from the dl_rq).
1113 static void update_curr_dl(struct rq
*rq
)
1115 struct task_struct
*curr
= rq
->curr
;
1116 struct sched_dl_entity
*dl_se
= &curr
->dl
;
1119 if (!dl_task(curr
) || !on_dl_rq(dl_se
))
1123 * Consumed budget is computed considering the time as
1124 * observed by schedulable tasks (excluding time spent
1125 * in hardirq context, etc.). Deadlines are instead
1126 * computed using hard walltime. This seems to be the more
1127 * natural solution, but the full ramifications of this
1128 * approach need further study.
1130 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
1131 if (unlikely((s64
)delta_exec
<= 0)) {
1132 if (unlikely(dl_se
->dl_yielded
))
1137 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
1138 cpufreq_update_util(rq
, SCHED_CPUFREQ_DL
);
1140 schedstat_set(curr
->se
.statistics
.exec_max
,
1141 max(curr
->se
.statistics
.exec_max
, delta_exec
));
1143 curr
->se
.sum_exec_runtime
+= delta_exec
;
1144 account_group_exec_runtime(curr
, delta_exec
);
1146 curr
->se
.exec_start
= rq_clock_task(rq
);
1147 cgroup_account_cputime(curr
, delta_exec
);
1149 sched_rt_avg_update(rq
, delta_exec
);
1151 if (unlikely(dl_se
->flags
& SCHED_FLAG_RECLAIM
))
1152 delta_exec
= grub_reclaim(delta_exec
, rq
, &curr
->dl
);
1153 dl_se
->runtime
-= delta_exec
;
1156 if (dl_runtime_exceeded(dl_se
) || dl_se
->dl_yielded
) {
1157 dl_se
->dl_throttled
= 1;
1158 __dequeue_task_dl(rq
, curr
, 0);
1159 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(curr
)))
1160 enqueue_task_dl(rq
, curr
, ENQUEUE_REPLENISH
);
1162 if (!is_leftmost(curr
, &rq
->dl
))
1167 * Because -- for now -- we share the rt bandwidth, we need to
1168 * account our runtime there too, otherwise actual rt tasks
1169 * would be able to exceed the shared quota.
1171 * Account to the root rt group for now.
1173 * The solution we're working towards is having the RT groups scheduled
1174 * using deadline servers -- however there's a few nasties to figure
1175 * out before that can happen.
1177 if (rt_bandwidth_enabled()) {
1178 struct rt_rq
*rt_rq
= &rq
->rt
;
1180 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
1182 * We'll let actual RT tasks worry about the overflow here, we
1183 * have our own CBS to keep us inline; only account when RT
1184 * bandwidth is relevant.
1186 if (sched_rt_bandwidth_account(rt_rq
))
1187 rt_rq
->rt_time
+= delta_exec
;
1188 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
1192 static enum hrtimer_restart
inactive_task_timer(struct hrtimer
*timer
)
1194 struct sched_dl_entity
*dl_se
= container_of(timer
,
1195 struct sched_dl_entity
,
1197 struct task_struct
*p
= dl_task_of(dl_se
);
1201 rq
= task_rq_lock(p
, &rf
);
1203 if (!dl_task(p
) || p
->state
== TASK_DEAD
) {
1204 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1206 if (p
->state
== TASK_DEAD
&& dl_se
->dl_non_contending
) {
1207 sub_running_bw(p
->dl
.dl_bw
, dl_rq_of_se(&p
->dl
));
1208 sub_rq_bw(p
->dl
.dl_bw
, dl_rq_of_se(&p
->dl
));
1209 dl_se
->dl_non_contending
= 0;
1212 raw_spin_lock(&dl_b
->lock
);
1213 __dl_sub(dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
1214 raw_spin_unlock(&dl_b
->lock
);
1215 __dl_clear_params(p
);
1219 if (dl_se
->dl_non_contending
== 0)
1223 update_rq_clock(rq
);
1225 sub_running_bw(dl_se
->dl_bw
, &rq
->dl
);
1226 dl_se
->dl_non_contending
= 0;
1228 task_rq_unlock(rq
, p
, &rf
);
1231 return HRTIMER_NORESTART
;
1234 void init_dl_inactive_task_timer(struct sched_dl_entity
*dl_se
)
1236 struct hrtimer
*timer
= &dl_se
->inactive_timer
;
1238 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1239 timer
->function
= inactive_task_timer
;
1244 static void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
1246 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
1248 if (dl_rq
->earliest_dl
.curr
== 0 ||
1249 dl_time_before(deadline
, dl_rq
->earliest_dl
.curr
)) {
1250 dl_rq
->earliest_dl
.curr
= deadline
;
1251 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, deadline
);
1255 static void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
1257 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
1260 * Since we may have removed our earliest (and/or next earliest)
1261 * task we must recompute them.
1263 if (!dl_rq
->dl_nr_running
) {
1264 dl_rq
->earliest_dl
.curr
= 0;
1265 dl_rq
->earliest_dl
.next
= 0;
1266 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
1268 struct rb_node
*leftmost
= dl_rq
->root
.rb_leftmost
;
1269 struct sched_dl_entity
*entry
;
1271 entry
= rb_entry(leftmost
, struct sched_dl_entity
, rb_node
);
1272 dl_rq
->earliest_dl
.curr
= entry
->deadline
;
1273 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, entry
->deadline
);
1279 static inline void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
1280 static inline void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
1282 #endif /* CONFIG_SMP */
1285 void inc_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
1287 int prio
= dl_task_of(dl_se
)->prio
;
1288 u64 deadline
= dl_se
->deadline
;
1290 WARN_ON(!dl_prio(prio
));
1291 dl_rq
->dl_nr_running
++;
1292 add_nr_running(rq_of_dl_rq(dl_rq
), 1);
1294 inc_dl_deadline(dl_rq
, deadline
);
1295 inc_dl_migration(dl_se
, dl_rq
);
1299 void dec_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
1301 int prio
= dl_task_of(dl_se
)->prio
;
1303 WARN_ON(!dl_prio(prio
));
1304 WARN_ON(!dl_rq
->dl_nr_running
);
1305 dl_rq
->dl_nr_running
--;
1306 sub_nr_running(rq_of_dl_rq(dl_rq
), 1);
1308 dec_dl_deadline(dl_rq
, dl_se
->deadline
);
1309 dec_dl_migration(dl_se
, dl_rq
);
1312 static void __enqueue_dl_entity(struct sched_dl_entity
*dl_se
)
1314 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1315 struct rb_node
**link
= &dl_rq
->root
.rb_root
.rb_node
;
1316 struct rb_node
*parent
= NULL
;
1317 struct sched_dl_entity
*entry
;
1320 BUG_ON(!RB_EMPTY_NODE(&dl_se
->rb_node
));
1324 entry
= rb_entry(parent
, struct sched_dl_entity
, rb_node
);
1325 if (dl_time_before(dl_se
->deadline
, entry
->deadline
))
1326 link
= &parent
->rb_left
;
1328 link
= &parent
->rb_right
;
1333 rb_link_node(&dl_se
->rb_node
, parent
, link
);
1334 rb_insert_color_cached(&dl_se
->rb_node
, &dl_rq
->root
, leftmost
);
1336 inc_dl_tasks(dl_se
, dl_rq
);
1339 static void __dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1341 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1343 if (RB_EMPTY_NODE(&dl_se
->rb_node
))
1346 rb_erase_cached(&dl_se
->rb_node
, &dl_rq
->root
);
1347 RB_CLEAR_NODE(&dl_se
->rb_node
);
1349 dec_dl_tasks(dl_se
, dl_rq
);
1353 enqueue_dl_entity(struct sched_dl_entity
*dl_se
,
1354 struct sched_dl_entity
*pi_se
, int flags
)
1356 BUG_ON(on_dl_rq(dl_se
));
1359 * If this is a wakeup or a new instance, the scheduling
1360 * parameters of the task might need updating. Otherwise,
1361 * we want a replenishment of its runtime.
1363 if (flags
& ENQUEUE_WAKEUP
) {
1364 task_contending(dl_se
, flags
);
1365 update_dl_entity(dl_se
, pi_se
);
1366 } else if (flags
& ENQUEUE_REPLENISH
) {
1367 replenish_dl_entity(dl_se
, pi_se
);
1368 } else if ((flags
& ENQUEUE_RESTORE
) &&
1369 dl_time_before(dl_se
->deadline
,
1370 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se
))))) {
1371 setup_new_dl_entity(dl_se
);
1374 __enqueue_dl_entity(dl_se
);
1377 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1379 __dequeue_dl_entity(dl_se
);
1382 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1384 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
1385 struct sched_dl_entity
*pi_se
= &p
->dl
;
1388 * Use the scheduling parameters of the top pi-waiter task if:
1389 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1390 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1391 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1392 * boosted due to a SCHED_DEADLINE pi-waiter).
1393 * Otherwise we keep our runtime and deadline.
1395 if (pi_task
&& dl_prio(pi_task
->normal_prio
) && p
->dl
.dl_boosted
) {
1396 pi_se
= &pi_task
->dl
;
1397 } else if (!dl_prio(p
->normal_prio
)) {
1399 * Special case in which we have a !SCHED_DEADLINE task
1400 * that is going to be deboosted, but exceeds its
1401 * runtime while doing so. No point in replenishing
1402 * it, as it's going to return back to its original
1403 * scheduling class after this.
1405 BUG_ON(!p
->dl
.dl_boosted
|| flags
!= ENQUEUE_REPLENISH
);
1410 * Check if a constrained deadline task was activated
1411 * after the deadline but before the next period.
1412 * If that is the case, the task will be throttled and
1413 * the replenishment timer will be set to the next period.
1415 if (!p
->dl
.dl_throttled
&& !dl_is_implicit(&p
->dl
))
1416 dl_check_constrained_dl(&p
->dl
);
1418 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
|| flags
& ENQUEUE_RESTORE
) {
1419 add_rq_bw(p
->dl
.dl_bw
, &rq
->dl
);
1420 add_running_bw(p
->dl
.dl_bw
, &rq
->dl
);
1424 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1425 * its budget it needs a replenishment and, since it now is on
1426 * its rq, the bandwidth timer callback (which clearly has not
1427 * run yet) will take care of this.
1428 * However, the active utilization does not depend on the fact
1429 * that the task is on the runqueue or not (but depends on the
1430 * task's state - in GRUB parlance, "inactive" vs "active contending").
1431 * In other words, even if a task is throttled its utilization must
1432 * be counted in the active utilization; hence, we need to call
1435 if (p
->dl
.dl_throttled
&& !(flags
& ENQUEUE_REPLENISH
)) {
1436 if (flags
& ENQUEUE_WAKEUP
)
1437 task_contending(&p
->dl
, flags
);
1442 enqueue_dl_entity(&p
->dl
, pi_se
, flags
);
1444 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1445 enqueue_pushable_dl_task(rq
, p
);
1448 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1450 dequeue_dl_entity(&p
->dl
);
1451 dequeue_pushable_dl_task(rq
, p
);
1454 static void dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1457 __dequeue_task_dl(rq
, p
, flags
);
1459 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
|| flags
& DEQUEUE_SAVE
) {
1460 sub_running_bw(p
->dl
.dl_bw
, &rq
->dl
);
1461 sub_rq_bw(p
->dl
.dl_bw
, &rq
->dl
);
1465 * This check allows to start the inactive timer (or to immediately
1466 * decrease the active utilization, if needed) in two cases:
1467 * when the task blocks and when it is terminating
1468 * (p->state == TASK_DEAD). We can handle the two cases in the same
1469 * way, because from GRUB's point of view the same thing is happening
1470 * (the task moves from "active contending" to "active non contending"
1473 if (flags
& DEQUEUE_SLEEP
)
1474 task_non_contending(p
);
1478 * Yield task semantic for -deadline tasks is:
1480 * get off from the CPU until our next instance, with
1481 * a new runtime. This is of little use now, since we
1482 * don't have a bandwidth reclaiming mechanism. Anyway,
1483 * bandwidth reclaiming is planned for the future, and
1484 * yield_task_dl will indicate that some spare budget
1485 * is available for other task instances to use it.
1487 static void yield_task_dl(struct rq
*rq
)
1490 * We make the task go to sleep until its current deadline by
1491 * forcing its runtime to zero. This way, update_curr_dl() stops
1492 * it and the bandwidth timer will wake it up and will give it
1493 * new scheduling parameters (thanks to dl_yielded=1).
1495 rq
->curr
->dl
.dl_yielded
= 1;
1497 update_rq_clock(rq
);
1500 * Tell update_rq_clock() that we've just updated,
1501 * so we don't do microscopic update in schedule()
1502 * and double the fastpath cost.
1504 rq_clock_skip_update(rq
, true);
1509 static int find_later_rq(struct task_struct
*task
);
1512 select_task_rq_dl(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1514 struct task_struct
*curr
;
1517 if (sd_flag
!= SD_BALANCE_WAKE
)
1523 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1526 * If we are dealing with a -deadline task, we must
1527 * decide where to wake it up.
1528 * If it has a later deadline and the current task
1529 * on this rq can't move (provided the waking task
1530 * can!) we prefer to send it somewhere else. On the
1531 * other hand, if it has a shorter deadline, we
1532 * try to make it stay here, it might be important.
1534 if (unlikely(dl_task(curr
)) &&
1535 (curr
->nr_cpus_allowed
< 2 ||
1536 !dl_entity_preempt(&p
->dl
, &curr
->dl
)) &&
1537 (p
->nr_cpus_allowed
> 1)) {
1538 int target
= find_later_rq(p
);
1541 (dl_time_before(p
->dl
.deadline
,
1542 cpu_rq(target
)->dl
.earliest_dl
.curr
) ||
1543 (cpu_rq(target
)->dl
.dl_nr_running
== 0)))
1552 static void migrate_task_rq_dl(struct task_struct
*p
)
1556 if (p
->state
!= TASK_WAKING
)
1561 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1562 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1563 * rq->lock is not... So, lock it
1565 raw_spin_lock(&rq
->lock
);
1566 if (p
->dl
.dl_non_contending
) {
1567 sub_running_bw(p
->dl
.dl_bw
, &rq
->dl
);
1568 p
->dl
.dl_non_contending
= 0;
1570 * If the timer handler is currently running and the
1571 * timer cannot be cancelled, inactive_task_timer()
1572 * will see that dl_not_contending is not set, and
1573 * will not touch the rq's active utilization,
1574 * so we are still safe.
1576 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
1579 sub_rq_bw(p
->dl
.dl_bw
, &rq
->dl
);
1580 raw_spin_unlock(&rq
->lock
);
1583 static void check_preempt_equal_dl(struct rq
*rq
, struct task_struct
*p
)
1586 * Current can't be migrated, useless to reschedule,
1587 * let's hope p can move out.
1589 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1590 !cpudl_find(&rq
->rd
->cpudl
, rq
->curr
, NULL
))
1594 * p is migratable, so let's not schedule it and
1595 * see if it is pushed or pulled somewhere else.
1597 if (p
->nr_cpus_allowed
!= 1 &&
1598 cpudl_find(&rq
->rd
->cpudl
, p
, NULL
))
1604 #endif /* CONFIG_SMP */
1607 * Only called when both the current and waking task are -deadline
1610 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
1613 if (dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
)) {
1620 * In the unlikely case current and p have the same deadline
1621 * let us try to decide what's the best thing to do...
1623 if ((p
->dl
.deadline
== rq
->curr
->dl
.deadline
) &&
1624 !test_tsk_need_resched(rq
->curr
))
1625 check_preempt_equal_dl(rq
, p
);
1626 #endif /* CONFIG_SMP */
1629 #ifdef CONFIG_SCHED_HRTICK
1630 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1632 hrtick_start(rq
, p
->dl
.runtime
);
1634 #else /* !CONFIG_SCHED_HRTICK */
1635 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1640 static struct sched_dl_entity
*pick_next_dl_entity(struct rq
*rq
,
1641 struct dl_rq
*dl_rq
)
1643 struct rb_node
*left
= rb_first_cached(&dl_rq
->root
);
1648 return rb_entry(left
, struct sched_dl_entity
, rb_node
);
1651 static struct task_struct
*
1652 pick_next_task_dl(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
1654 struct sched_dl_entity
*dl_se
;
1655 struct task_struct
*p
;
1656 struct dl_rq
*dl_rq
;
1660 if (need_pull_dl_task(rq
, prev
)) {
1662 * This is OK, because current is on_cpu, which avoids it being
1663 * picked for load-balance and preemption/IRQs are still
1664 * disabled avoiding further scheduler activity on it and we're
1665 * being very careful to re-start the picking loop.
1667 rq_unpin_lock(rq
, rf
);
1669 rq_repin_lock(rq
, rf
);
1671 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1672 * means a stop task can slip in, in which case we need to
1673 * re-start task selection.
1675 if (rq
->stop
&& task_on_rq_queued(rq
->stop
))
1680 * When prev is DL, we may throttle it in put_prev_task().
1681 * So, we update time before we check for dl_nr_running.
1683 if (prev
->sched_class
== &dl_sched_class
)
1686 if (unlikely(!dl_rq
->dl_nr_running
))
1689 put_prev_task(rq
, prev
);
1691 dl_se
= pick_next_dl_entity(rq
, dl_rq
);
1694 p
= dl_task_of(dl_se
);
1695 p
->se
.exec_start
= rq_clock_task(rq
);
1697 /* Running task will never be pushed. */
1698 dequeue_pushable_dl_task(rq
, p
);
1700 if (hrtick_enabled(rq
))
1701 start_hrtick_dl(rq
, p
);
1703 queue_push_tasks(rq
);
1708 static void put_prev_task_dl(struct rq
*rq
, struct task_struct
*p
)
1712 if (on_dl_rq(&p
->dl
) && p
->nr_cpus_allowed
> 1)
1713 enqueue_pushable_dl_task(rq
, p
);
1716 static void task_tick_dl(struct rq
*rq
, struct task_struct
*p
, int queued
)
1721 * Even when we have runtime, update_curr_dl() might have resulted in us
1722 * not being the leftmost task anymore. In that case NEED_RESCHED will
1723 * be set and schedule() will start a new hrtick for the next task.
1725 if (hrtick_enabled(rq
) && queued
&& p
->dl
.runtime
> 0 &&
1726 is_leftmost(p
, &rq
->dl
))
1727 start_hrtick_dl(rq
, p
);
1730 static void task_fork_dl(struct task_struct
*p
)
1733 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1738 static void set_curr_task_dl(struct rq
*rq
)
1740 struct task_struct
*p
= rq
->curr
;
1742 p
->se
.exec_start
= rq_clock_task(rq
);
1744 /* You can't push away the running task */
1745 dequeue_pushable_dl_task(rq
, p
);
1750 /* Only try algorithms three times */
1751 #define DL_MAX_TRIES 3
1753 static int pick_dl_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1755 if (!task_running(rq
, p
) &&
1756 cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1762 * Return the earliest pushable rq's task, which is suitable to be executed
1763 * on the CPU, NULL otherwise:
1765 static struct task_struct
*pick_earliest_pushable_dl_task(struct rq
*rq
, int cpu
)
1767 struct rb_node
*next_node
= rq
->dl
.pushable_dl_tasks_root
.rb_leftmost
;
1768 struct task_struct
*p
= NULL
;
1770 if (!has_pushable_dl_tasks(rq
))
1775 p
= rb_entry(next_node
, struct task_struct
, pushable_dl_tasks
);
1777 if (pick_dl_task(rq
, p
, cpu
))
1780 next_node
= rb_next(next_node
);
1787 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask_dl
);
1789 static int find_later_rq(struct task_struct
*task
)
1791 struct sched_domain
*sd
;
1792 struct cpumask
*later_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask_dl
);
1793 int this_cpu
= smp_processor_id();
1794 int cpu
= task_cpu(task
);
1796 /* Make sure the mask is initialized first */
1797 if (unlikely(!later_mask
))
1800 if (task
->nr_cpus_allowed
== 1)
1804 * We have to consider system topology and task affinity
1805 * first, then we can look for a suitable cpu.
1807 if (!cpudl_find(&task_rq(task
)->rd
->cpudl
, task
, later_mask
))
1811 * If we are here, some targets have been found, including
1812 * the most suitable which is, among the runqueues where the
1813 * current tasks have later deadlines than the task's one, the
1814 * rq with the latest possible one.
1816 * Now we check how well this matches with task's
1817 * affinity and system topology.
1819 * The last cpu where the task run is our first
1820 * guess, since it is most likely cache-hot there.
1822 if (cpumask_test_cpu(cpu
, later_mask
))
1825 * Check if this_cpu is to be skipped (i.e., it is
1826 * not in the mask) or not.
1828 if (!cpumask_test_cpu(this_cpu
, later_mask
))
1832 for_each_domain(cpu
, sd
) {
1833 if (sd
->flags
& SD_WAKE_AFFINE
) {
1837 * If possible, preempting this_cpu is
1838 * cheaper than migrating.
1840 if (this_cpu
!= -1 &&
1841 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1846 best_cpu
= cpumask_first_and(later_mask
,
1847 sched_domain_span(sd
));
1849 * Last chance: if a cpu being in both later_mask
1850 * and current sd span is valid, that becomes our
1851 * choice. Of course, the latest possible cpu is
1852 * already under consideration through later_mask.
1854 if (best_cpu
< nr_cpu_ids
) {
1863 * At this point, all our guesses failed, we just return
1864 * 'something', and let the caller sort the things out.
1869 cpu
= cpumask_any(later_mask
);
1870 if (cpu
< nr_cpu_ids
)
1876 /* Locks the rq it finds */
1877 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
)
1879 struct rq
*later_rq
= NULL
;
1883 for (tries
= 0; tries
< DL_MAX_TRIES
; tries
++) {
1884 cpu
= find_later_rq(task
);
1886 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1889 later_rq
= cpu_rq(cpu
);
1891 if (later_rq
->dl
.dl_nr_running
&&
1892 !dl_time_before(task
->dl
.deadline
,
1893 later_rq
->dl
.earliest_dl
.curr
)) {
1895 * Target rq has tasks of equal or earlier deadline,
1896 * retrying does not release any lock and is unlikely
1897 * to yield a different result.
1903 /* Retry if something changed. */
1904 if (double_lock_balance(rq
, later_rq
)) {
1905 if (unlikely(task_rq(task
) != rq
||
1906 !cpumask_test_cpu(later_rq
->cpu
, &task
->cpus_allowed
) ||
1907 task_running(rq
, task
) ||
1909 !task_on_rq_queued(task
))) {
1910 double_unlock_balance(rq
, later_rq
);
1917 * If the rq we found has no -deadline task, or
1918 * its earliest one has a later deadline than our
1919 * task, the rq is a good one.
1921 if (!later_rq
->dl
.dl_nr_running
||
1922 dl_time_before(task
->dl
.deadline
,
1923 later_rq
->dl
.earliest_dl
.curr
))
1926 /* Otherwise we try again. */
1927 double_unlock_balance(rq
, later_rq
);
1934 static struct task_struct
*pick_next_pushable_dl_task(struct rq
*rq
)
1936 struct task_struct
*p
;
1938 if (!has_pushable_dl_tasks(rq
))
1941 p
= rb_entry(rq
->dl
.pushable_dl_tasks_root
.rb_leftmost
,
1942 struct task_struct
, pushable_dl_tasks
);
1944 BUG_ON(rq
->cpu
!= task_cpu(p
));
1945 BUG_ON(task_current(rq
, p
));
1946 BUG_ON(p
->nr_cpus_allowed
<= 1);
1948 BUG_ON(!task_on_rq_queued(p
));
1949 BUG_ON(!dl_task(p
));
1955 * See if the non running -deadline tasks on this rq
1956 * can be sent to some other CPU where they can preempt
1957 * and start executing.
1959 static int push_dl_task(struct rq
*rq
)
1961 struct task_struct
*next_task
;
1962 struct rq
*later_rq
;
1965 if (!rq
->dl
.overloaded
)
1968 next_task
= pick_next_pushable_dl_task(rq
);
1973 if (unlikely(next_task
== rq
->curr
)) {
1979 * If next_task preempts rq->curr, and rq->curr
1980 * can move away, it makes sense to just reschedule
1981 * without going further in pushing next_task.
1983 if (dl_task(rq
->curr
) &&
1984 dl_time_before(next_task
->dl
.deadline
, rq
->curr
->dl
.deadline
) &&
1985 rq
->curr
->nr_cpus_allowed
> 1) {
1990 /* We might release rq lock */
1991 get_task_struct(next_task
);
1993 /* Will lock the rq it'll find */
1994 later_rq
= find_lock_later_rq(next_task
, rq
);
1996 struct task_struct
*task
;
1999 * We must check all this again, since
2000 * find_lock_later_rq releases rq->lock and it is
2001 * then possible that next_task has migrated.
2003 task
= pick_next_pushable_dl_task(rq
);
2004 if (task
== next_task
) {
2006 * The task is still there. We don't try
2007 * again, some other cpu will pull it when ready.
2016 put_task_struct(next_task
);
2021 deactivate_task(rq
, next_task
, 0);
2022 sub_running_bw(next_task
->dl
.dl_bw
, &rq
->dl
);
2023 sub_rq_bw(next_task
->dl
.dl_bw
, &rq
->dl
);
2024 set_task_cpu(next_task
, later_rq
->cpu
);
2025 add_rq_bw(next_task
->dl
.dl_bw
, &later_rq
->dl
);
2026 add_running_bw(next_task
->dl
.dl_bw
, &later_rq
->dl
);
2027 activate_task(later_rq
, next_task
, 0);
2030 resched_curr(later_rq
);
2032 double_unlock_balance(rq
, later_rq
);
2035 put_task_struct(next_task
);
2040 static void push_dl_tasks(struct rq
*rq
)
2042 /* push_dl_task() will return true if it moved a -deadline task */
2043 while (push_dl_task(rq
))
2047 static void pull_dl_task(struct rq
*this_rq
)
2049 int this_cpu
= this_rq
->cpu
, cpu
;
2050 struct task_struct
*p
;
2051 bool resched
= false;
2053 u64 dmin
= LONG_MAX
;
2055 if (likely(!dl_overloaded(this_rq
)))
2059 * Match the barrier from dl_set_overloaded; this guarantees that if we
2060 * see overloaded we must also see the dlo_mask bit.
2064 for_each_cpu(cpu
, this_rq
->rd
->dlo_mask
) {
2065 if (this_cpu
== cpu
)
2068 src_rq
= cpu_rq(cpu
);
2071 * It looks racy, abd it is! However, as in sched_rt.c,
2072 * we are fine with this.
2074 if (this_rq
->dl
.dl_nr_running
&&
2075 dl_time_before(this_rq
->dl
.earliest_dl
.curr
,
2076 src_rq
->dl
.earliest_dl
.next
))
2079 /* Might drop this_rq->lock */
2080 double_lock_balance(this_rq
, src_rq
);
2083 * If there are no more pullable tasks on the
2084 * rq, we're done with it.
2086 if (src_rq
->dl
.dl_nr_running
<= 1)
2089 p
= pick_earliest_pushable_dl_task(src_rq
, this_cpu
);
2092 * We found a task to be pulled if:
2093 * - it preempts our current (if there's one),
2094 * - it will preempt the last one we pulled (if any).
2096 if (p
&& dl_time_before(p
->dl
.deadline
, dmin
) &&
2097 (!this_rq
->dl
.dl_nr_running
||
2098 dl_time_before(p
->dl
.deadline
,
2099 this_rq
->dl
.earliest_dl
.curr
))) {
2100 WARN_ON(p
== src_rq
->curr
);
2101 WARN_ON(!task_on_rq_queued(p
));
2104 * Then we pull iff p has actually an earlier
2105 * deadline than the current task of its runqueue.
2107 if (dl_time_before(p
->dl
.deadline
,
2108 src_rq
->curr
->dl
.deadline
))
2113 deactivate_task(src_rq
, p
, 0);
2114 sub_running_bw(p
->dl
.dl_bw
, &src_rq
->dl
);
2115 sub_rq_bw(p
->dl
.dl_bw
, &src_rq
->dl
);
2116 set_task_cpu(p
, this_cpu
);
2117 add_rq_bw(p
->dl
.dl_bw
, &this_rq
->dl
);
2118 add_running_bw(p
->dl
.dl_bw
, &this_rq
->dl
);
2119 activate_task(this_rq
, p
, 0);
2120 dmin
= p
->dl
.deadline
;
2122 /* Is there any other task even earlier? */
2125 double_unlock_balance(this_rq
, src_rq
);
2129 resched_curr(this_rq
);
2133 * Since the task is not running and a reschedule is not going to happen
2134 * anytime soon on its runqueue, we try pushing it away now.
2136 static void task_woken_dl(struct rq
*rq
, struct task_struct
*p
)
2138 if (!task_running(rq
, p
) &&
2139 !test_tsk_need_resched(rq
->curr
) &&
2140 p
->nr_cpus_allowed
> 1 &&
2141 dl_task(rq
->curr
) &&
2142 (rq
->curr
->nr_cpus_allowed
< 2 ||
2143 !dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
))) {
2148 static void set_cpus_allowed_dl(struct task_struct
*p
,
2149 const struct cpumask
*new_mask
)
2151 struct root_domain
*src_rd
;
2154 BUG_ON(!dl_task(p
));
2159 * Migrating a SCHED_DEADLINE task between exclusive
2160 * cpusets (different root_domains) entails a bandwidth
2161 * update. We already made space for us in the destination
2162 * domain (see cpuset_can_attach()).
2164 if (!cpumask_intersects(src_rd
->span
, new_mask
)) {
2165 struct dl_bw
*src_dl_b
;
2167 src_dl_b
= dl_bw_of(cpu_of(rq
));
2169 * We now free resources of the root_domain we are migrating
2170 * off. In the worst case, sched_setattr() may temporary fail
2171 * until we complete the update.
2173 raw_spin_lock(&src_dl_b
->lock
);
2174 __dl_sub(src_dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
2175 raw_spin_unlock(&src_dl_b
->lock
);
2178 set_cpus_allowed_common(p
, new_mask
);
2181 /* Assumes rq->lock is held */
2182 static void rq_online_dl(struct rq
*rq
)
2184 if (rq
->dl
.overloaded
)
2185 dl_set_overload(rq
);
2187 cpudl_set_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
2188 if (rq
->dl
.dl_nr_running
> 0)
2189 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, rq
->dl
.earliest_dl
.curr
);
2192 /* Assumes rq->lock is held */
2193 static void rq_offline_dl(struct rq
*rq
)
2195 if (rq
->dl
.overloaded
)
2196 dl_clear_overload(rq
);
2198 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
2199 cpudl_clear_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
2202 void __init
init_sched_dl_class(void)
2206 for_each_possible_cpu(i
)
2207 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl
, i
),
2208 GFP_KERNEL
, cpu_to_node(i
));
2211 #endif /* CONFIG_SMP */
2213 static void switched_from_dl(struct rq
*rq
, struct task_struct
*p
)
2216 * task_non_contending() can start the "inactive timer" (if the 0-lag
2217 * time is in the future). If the task switches back to dl before
2218 * the "inactive timer" fires, it can continue to consume its current
2219 * runtime using its current deadline. If it stays outside of
2220 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2221 * will reset the task parameters.
2223 if (task_on_rq_queued(p
) && p
->dl
.dl_runtime
)
2224 task_non_contending(p
);
2226 if (!task_on_rq_queued(p
))
2227 sub_rq_bw(p
->dl
.dl_bw
, &rq
->dl
);
2230 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2231 * at the 0-lag time, because the task could have been migrated
2232 * while SCHED_OTHER in the meanwhile.
2234 if (p
->dl
.dl_non_contending
)
2235 p
->dl
.dl_non_contending
= 0;
2238 * Since this might be the only -deadline task on the rq,
2239 * this is the right place to try to pull some other one
2240 * from an overloaded cpu, if any.
2242 if (!task_on_rq_queued(p
) || rq
->dl
.dl_nr_running
)
2245 queue_pull_task(rq
);
2249 * When switching to -deadline, we may overload the rq, then
2250 * we try to push someone off, if possible.
2252 static void switched_to_dl(struct rq
*rq
, struct task_struct
*p
)
2254 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
2257 /* If p is not queued we will update its parameters at next wakeup. */
2258 if (!task_on_rq_queued(p
)) {
2259 add_rq_bw(p
->dl
.dl_bw
, &rq
->dl
);
2264 if (rq
->curr
!= p
) {
2266 if (p
->nr_cpus_allowed
> 1 && rq
->dl
.overloaded
)
2267 queue_push_tasks(rq
);
2269 if (dl_task(rq
->curr
))
2270 check_preempt_curr_dl(rq
, p
, 0);
2277 * If the scheduling parameters of a -deadline task changed,
2278 * a push or pull operation might be needed.
2280 static void prio_changed_dl(struct rq
*rq
, struct task_struct
*p
,
2283 if (task_on_rq_queued(p
) || rq
->curr
== p
) {
2286 * This might be too much, but unfortunately
2287 * we don't have the old deadline value, and
2288 * we can't argue if the task is increasing
2289 * or lowering its prio, so...
2291 if (!rq
->dl
.overloaded
)
2292 queue_pull_task(rq
);
2295 * If we now have a earlier deadline task than p,
2296 * then reschedule, provided p is still on this
2299 if (dl_time_before(rq
->dl
.earliest_dl
.curr
, p
->dl
.deadline
))
2303 * Again, we don't know if p has a earlier
2304 * or later deadline, so let's blindly set a
2305 * (maybe not needed) rescheduling point.
2308 #endif /* CONFIG_SMP */
2312 const struct sched_class dl_sched_class
= {
2313 .next
= &rt_sched_class
,
2314 .enqueue_task
= enqueue_task_dl
,
2315 .dequeue_task
= dequeue_task_dl
,
2316 .yield_task
= yield_task_dl
,
2318 .check_preempt_curr
= check_preempt_curr_dl
,
2320 .pick_next_task
= pick_next_task_dl
,
2321 .put_prev_task
= put_prev_task_dl
,
2324 .select_task_rq
= select_task_rq_dl
,
2325 .migrate_task_rq
= migrate_task_rq_dl
,
2326 .set_cpus_allowed
= set_cpus_allowed_dl
,
2327 .rq_online
= rq_online_dl
,
2328 .rq_offline
= rq_offline_dl
,
2329 .task_woken
= task_woken_dl
,
2332 .set_curr_task
= set_curr_task_dl
,
2333 .task_tick
= task_tick_dl
,
2334 .task_fork
= task_fork_dl
,
2336 .prio_changed
= prio_changed_dl
,
2337 .switched_from
= switched_from_dl
,
2338 .switched_to
= switched_to_dl
,
2340 .update_curr
= update_curr_dl
,
2343 int sched_dl_global_validate(void)
2345 u64 runtime
= global_rt_runtime();
2346 u64 period
= global_rt_period();
2347 u64 new_bw
= to_ratio(period
, runtime
);
2350 unsigned long flags
;
2353 * Here we want to check the bandwidth not being set to some
2354 * value smaller than the currently allocated bandwidth in
2355 * any of the root_domains.
2357 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2358 * cycling on root_domains... Discussion on different/better
2359 * solutions is welcome!
2361 for_each_possible_cpu(cpu
) {
2362 rcu_read_lock_sched();
2363 dl_b
= dl_bw_of(cpu
);
2365 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2366 if (new_bw
< dl_b
->total_bw
)
2368 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2370 rcu_read_unlock_sched();
2379 void init_dl_rq_bw_ratio(struct dl_rq
*dl_rq
)
2381 if (global_rt_runtime() == RUNTIME_INF
) {
2382 dl_rq
->bw_ratio
= 1 << RATIO_SHIFT
;
2383 dl_rq
->extra_bw
= 1 << BW_SHIFT
;
2385 dl_rq
->bw_ratio
= to_ratio(global_rt_runtime(),
2386 global_rt_period()) >> (BW_SHIFT
- RATIO_SHIFT
);
2387 dl_rq
->extra_bw
= to_ratio(global_rt_period(),
2388 global_rt_runtime());
2392 void sched_dl_do_global(void)
2397 unsigned long flags
;
2399 def_dl_bandwidth
.dl_period
= global_rt_period();
2400 def_dl_bandwidth
.dl_runtime
= global_rt_runtime();
2402 if (global_rt_runtime() != RUNTIME_INF
)
2403 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
2406 * FIXME: As above...
2408 for_each_possible_cpu(cpu
) {
2409 rcu_read_lock_sched();
2410 dl_b
= dl_bw_of(cpu
);
2412 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2414 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2416 rcu_read_unlock_sched();
2417 init_dl_rq_bw_ratio(&cpu_rq(cpu
)->dl
);
2422 * We must be sure that accepting a new task (or allowing changing the
2423 * parameters of an existing one) is consistent with the bandwidth
2424 * constraints. If yes, this function also accordingly updates the currently
2425 * allocated bandwidth to reflect the new situation.
2427 * This function is called while holding p's rq->lock.
2429 int sched_dl_overflow(struct task_struct
*p
, int policy
,
2430 const struct sched_attr
*attr
)
2432 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
2433 u64 period
= attr
->sched_period
?: attr
->sched_deadline
;
2434 u64 runtime
= attr
->sched_runtime
;
2435 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
2438 /* !deadline task may carry old deadline bandwidth */
2439 if (new_bw
== p
->dl
.dl_bw
&& task_has_dl_policy(p
))
2443 * Either if a task, enters, leave, or stays -deadline but changes
2444 * its parameters, we may need to update accordingly the total
2445 * allocated bandwidth of the container.
2447 raw_spin_lock(&dl_b
->lock
);
2448 cpus
= dl_bw_cpus(task_cpu(p
));
2449 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
2450 !__dl_overflow(dl_b
, cpus
, 0, new_bw
)) {
2451 if (hrtimer_active(&p
->dl
.inactive_timer
))
2452 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpus
);
2453 __dl_add(dl_b
, new_bw
, cpus
);
2455 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
2456 !__dl_overflow(dl_b
, cpus
, p
->dl
.dl_bw
, new_bw
)) {
2458 * XXX this is slightly incorrect: when the task
2459 * utilization decreases, we should delay the total
2460 * utilization change until the task's 0-lag point.
2461 * But this would require to set the task's "inactive
2462 * timer" when the task is not inactive.
2464 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpus
);
2465 __dl_add(dl_b
, new_bw
, cpus
);
2466 dl_change_utilization(p
, new_bw
);
2468 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
2470 * Do not decrease the total deadline utilization here,
2471 * switched_from_dl() will take care to do it at the correct
2476 raw_spin_unlock(&dl_b
->lock
);
2482 * This function initializes the sched_dl_entity of a newly becoming
2483 * SCHED_DEADLINE task.
2485 * Only the static values are considered here, the actual runtime and the
2486 * absolute deadline will be properly calculated when the task is enqueued
2487 * for the first time with its new policy.
2489 void __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
2491 struct sched_dl_entity
*dl_se
= &p
->dl
;
2493 dl_se
->dl_runtime
= attr
->sched_runtime
;
2494 dl_se
->dl_deadline
= attr
->sched_deadline
;
2495 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
2496 dl_se
->flags
= attr
->sched_flags
;
2497 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
2498 dl_se
->dl_density
= to_ratio(dl_se
->dl_deadline
, dl_se
->dl_runtime
);
2501 void __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
2503 struct sched_dl_entity
*dl_se
= &p
->dl
;
2505 attr
->sched_priority
= p
->rt_priority
;
2506 attr
->sched_runtime
= dl_se
->dl_runtime
;
2507 attr
->sched_deadline
= dl_se
->dl_deadline
;
2508 attr
->sched_period
= dl_se
->dl_period
;
2509 attr
->sched_flags
= dl_se
->flags
;
2513 * This function validates the new parameters of a -deadline task.
2514 * We ask for the deadline not being zero, and greater or equal
2515 * than the runtime, as well as the period of being zero or
2516 * greater than deadline. Furthermore, we have to be sure that
2517 * user parameters are above the internal resolution of 1us (we
2518 * check sched_runtime only since it is always the smaller one) and
2519 * below 2^63 ns (we have to check both sched_deadline and
2520 * sched_period, as the latter can be zero).
2522 bool __checkparam_dl(const struct sched_attr
*attr
)
2525 if (attr
->sched_deadline
== 0)
2529 * Since we truncate DL_SCALE bits, make sure we're at least
2532 if (attr
->sched_runtime
< (1ULL << DL_SCALE
))
2536 * Since we use the MSB for wrap-around and sign issues, make
2537 * sure it's not set (mind that period can be equal to zero).
2539 if (attr
->sched_deadline
& (1ULL << 63) ||
2540 attr
->sched_period
& (1ULL << 63))
2543 /* runtime <= deadline <= period (if period != 0) */
2544 if ((attr
->sched_period
!= 0 &&
2545 attr
->sched_period
< attr
->sched_deadline
) ||
2546 attr
->sched_deadline
< attr
->sched_runtime
)
2553 * This function clears the sched_dl_entity static params.
2555 void __dl_clear_params(struct task_struct
*p
)
2557 struct sched_dl_entity
*dl_se
= &p
->dl
;
2559 dl_se
->dl_runtime
= 0;
2560 dl_se
->dl_deadline
= 0;
2561 dl_se
->dl_period
= 0;
2564 dl_se
->dl_density
= 0;
2566 dl_se
->dl_throttled
= 0;
2567 dl_se
->dl_yielded
= 0;
2568 dl_se
->dl_non_contending
= 0;
2571 bool dl_param_changed(struct task_struct
*p
, const struct sched_attr
*attr
)
2573 struct sched_dl_entity
*dl_se
= &p
->dl
;
2575 if (dl_se
->dl_runtime
!= attr
->sched_runtime
||
2576 dl_se
->dl_deadline
!= attr
->sched_deadline
||
2577 dl_se
->dl_period
!= attr
->sched_period
||
2578 dl_se
->flags
!= attr
->sched_flags
)
2585 int dl_task_can_attach(struct task_struct
*p
, const struct cpumask
*cs_cpus_allowed
)
2587 unsigned int dest_cpu
= cpumask_any_and(cpu_active_mask
,
2592 unsigned long flags
;
2594 rcu_read_lock_sched();
2595 dl_b
= dl_bw_of(dest_cpu
);
2596 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2597 cpus
= dl_bw_cpus(dest_cpu
);
2598 overflow
= __dl_overflow(dl_b
, cpus
, 0, p
->dl
.dl_bw
);
2603 * We reserve space for this task in the destination
2604 * root_domain, as we can't fail after this point.
2605 * We will free resources in the source root_domain
2606 * later on (see set_cpus_allowed_dl()).
2608 __dl_add(dl_b
, p
->dl
.dl_bw
, cpus
);
2611 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2612 rcu_read_unlock_sched();
2616 int dl_cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
2617 const struct cpumask
*trial
)
2619 int ret
= 1, trial_cpus
;
2620 struct dl_bw
*cur_dl_b
;
2621 unsigned long flags
;
2623 rcu_read_lock_sched();
2624 cur_dl_b
= dl_bw_of(cpumask_any(cur
));
2625 trial_cpus
= cpumask_weight(trial
);
2627 raw_spin_lock_irqsave(&cur_dl_b
->lock
, flags
);
2628 if (cur_dl_b
->bw
!= -1 &&
2629 cur_dl_b
->bw
* trial_cpus
< cur_dl_b
->total_bw
)
2631 raw_spin_unlock_irqrestore(&cur_dl_b
->lock
, flags
);
2632 rcu_read_unlock_sched();
2636 bool dl_cpu_busy(unsigned int cpu
)
2638 unsigned long flags
;
2643 rcu_read_lock_sched();
2644 dl_b
= dl_bw_of(cpu
);
2645 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2646 cpus
= dl_bw_cpus(cpu
);
2647 overflow
= __dl_overflow(dl_b
, cpus
, 0, 0);
2648 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2649 rcu_read_unlock_sched();
2654 #ifdef CONFIG_SCHED_DEBUG
2655 extern void print_dl_rq(struct seq_file
*m
, int cpu
, struct dl_rq
*dl_rq
);
2657 void print_dl_stats(struct seq_file
*m
, int cpu
)
2659 print_dl_rq(m
, cpu
, &cpu_rq(cpu
)->dl
);
2661 #endif /* CONFIG_SCHED_DEBUG */