1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
24 #include <linux/sched/mm.h>
25 #include <linux/sched/topology.h>
27 #include <linux/latencytop.h>
28 #include <linux/cpumask.h>
29 #include <linux/cpuidle.h>
30 #include <linux/slab.h>
31 #include <linux/profile.h>
32 #include <linux/interrupt.h>
33 #include <linux/mempolicy.h>
34 #include <linux/migrate.h>
35 #include <linux/task_work.h>
36 #include <linux/sched/isolation.h>
38 #include <trace/events/sched.h>
43 * Targeted preemption latency for CPU-bound tasks:
45 * NOTE: this latency value is not the same as the concept of
46 * 'timeslice length' - timeslices in CFS are of variable length
47 * and have no persistent notion like in traditional, time-slice
48 * based scheduling concepts.
50 * (to see the precise effective timeslice length of your workload,
51 * run vmstat and monitor the context-switches (cs) field)
53 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
55 unsigned int sysctl_sched_latency
= 6000000ULL;
56 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
59 * The initial- and re-scaling of tunables is configurable
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
69 enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG
;
72 * Minimal preemption granularity for CPU-bound tasks:
74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 unsigned int sysctl_sched_min_granularity
= 750000ULL;
77 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
80 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
82 static unsigned int sched_nr_latency
= 8;
85 * After fork, child runs first. If set to 0 (default) then
86 * parent will (try to) run first.
88 unsigned int sysctl_sched_child_runs_first __read_mostly
;
91 * SCHED_OTHER wake-up granularity.
93 * This option delays the preemption effects of decoupled workloads
94 * and reduces their over-scheduling. Synchronous workloads will still
95 * have immediate wakeup/sleep latencies.
97 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
99 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
100 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
102 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
106 * For asym packing, by default the lower numbered cpu has higher priority.
108 int __weak
arch_asym_cpu_priority(int cpu
)
114 #ifdef CONFIG_CFS_BANDWIDTH
116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117 * each time a cfs_rq requests quota.
119 * Note: in the case that the slice exceeds the runtime remaining (either due
120 * to consumption or the quota being specified to be smaller than the slice)
121 * we will always only issue the remaining available time.
123 * (default: 5 msec, units: microseconds)
125 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
129 * The margin used when comparing utilization with CPU capacity:
130 * util * margin < capacity * 1024
134 unsigned int capacity_margin
= 1280;
136 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
142 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
148 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
155 * Increase the granularity value when there are more CPUs,
156 * because with more CPUs the 'effective latency' as visible
157 * to users decreases. But the relationship is not linear,
158 * so pick a second-best guess by going with the log2 of the
161 * This idea comes from the SD scheduler of Con Kolivas:
163 static unsigned int get_update_sysctl_factor(void)
165 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
168 switch (sysctl_sched_tunable_scaling
) {
169 case SCHED_TUNABLESCALING_NONE
:
172 case SCHED_TUNABLESCALING_LINEAR
:
175 case SCHED_TUNABLESCALING_LOG
:
177 factor
= 1 + ilog2(cpus
);
184 static void update_sysctl(void)
186 unsigned int factor
= get_update_sysctl_factor();
188 #define SET_SYSCTL(name) \
189 (sysctl_##name = (factor) * normalized_sysctl_##name)
190 SET_SYSCTL(sched_min_granularity
);
191 SET_SYSCTL(sched_latency
);
192 SET_SYSCTL(sched_wakeup_granularity
);
196 void sched_init_granularity(void)
201 #define WMULT_CONST (~0U)
202 #define WMULT_SHIFT 32
204 static void __update_inv_weight(struct load_weight
*lw
)
208 if (likely(lw
->inv_weight
))
211 w
= scale_load_down(lw
->weight
);
213 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
215 else if (unlikely(!w
))
216 lw
->inv_weight
= WMULT_CONST
;
218 lw
->inv_weight
= WMULT_CONST
/ w
;
222 * delta_exec * weight / lw.weight
224 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
226 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
227 * we're guaranteed shift stays positive because inv_weight is guaranteed to
228 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
230 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
231 * weight/lw.weight <= 1, and therefore our shift will also be positive.
233 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
235 u64 fact
= scale_load_down(weight
);
236 int shift
= WMULT_SHIFT
;
238 __update_inv_weight(lw
);
240 if (unlikely(fact
>> 32)) {
247 /* hint to use a 32x32->64 mul */
248 fact
= (u64
)(u32
)fact
* lw
->inv_weight
;
255 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
259 const struct sched_class fair_sched_class
;
261 /**************************************************************
262 * CFS operations on generic schedulable entities:
265 #ifdef CONFIG_FAIR_GROUP_SCHED
267 /* cpu runqueue to which this cfs_rq is attached */
268 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
273 /* An entity is a task if it doesn't "own" a runqueue */
274 #define entity_is_task(se) (!se->my_q)
276 static inline struct task_struct
*task_of(struct sched_entity
*se
)
278 SCHED_WARN_ON(!entity_is_task(se
));
279 return container_of(se
, struct task_struct
, se
);
282 /* Walk up scheduling entities hierarchy */
283 #define for_each_sched_entity(se) \
284 for (; se; se = se->parent)
286 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
291 /* runqueue on which this entity is (to be) queued */
292 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
297 /* runqueue "owned" by this group */
298 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
303 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
305 if (!cfs_rq
->on_list
) {
306 struct rq
*rq
= rq_of(cfs_rq
);
307 int cpu
= cpu_of(rq
);
309 * Ensure we either appear before our parent (if already
310 * enqueued) or force our parent to appear after us when it is
311 * enqueued. The fact that we always enqueue bottom-up
312 * reduces this to two cases and a special case for the root
313 * cfs_rq. Furthermore, it also means that we will always reset
314 * tmp_alone_branch either when the branch is connected
315 * to a tree or when we reach the beg of the tree
317 if (cfs_rq
->tg
->parent
&&
318 cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->on_list
) {
320 * If parent is already on the list, we add the child
321 * just before. Thanks to circular linked property of
322 * the list, this means to put the child at the tail
323 * of the list that starts by parent.
325 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
326 &(cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->leaf_cfs_rq_list
));
328 * The branch is now connected to its tree so we can
329 * reset tmp_alone_branch to the beginning of the
332 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
333 } else if (!cfs_rq
->tg
->parent
) {
335 * cfs rq without parent should be put
336 * at the tail of the list.
338 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
339 &rq
->leaf_cfs_rq_list
);
341 * We have reach the beg of a tree so we can reset
342 * tmp_alone_branch to the beginning of the list.
344 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
347 * The parent has not already been added so we want to
348 * make sure that it will be put after us.
349 * tmp_alone_branch points to the beg of the branch
350 * where we will add parent.
352 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
353 rq
->tmp_alone_branch
);
355 * update tmp_alone_branch to points to the new beg
358 rq
->tmp_alone_branch
= &cfs_rq
->leaf_cfs_rq_list
;
365 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
367 if (cfs_rq
->on_list
) {
368 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
373 /* Iterate thr' all leaf cfs_rq's on a runqueue */
374 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
375 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
378 /* Do the two (enqueued) entities belong to the same group ? */
379 static inline struct cfs_rq
*
380 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
382 if (se
->cfs_rq
== pse
->cfs_rq
)
388 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
394 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
396 int se_depth
, pse_depth
;
399 * preemption test can be made between sibling entities who are in the
400 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
401 * both tasks until we find their ancestors who are siblings of common
405 /* First walk up until both entities are at same depth */
406 se_depth
= (*se
)->depth
;
407 pse_depth
= (*pse
)->depth
;
409 while (se_depth
> pse_depth
) {
411 *se
= parent_entity(*se
);
414 while (pse_depth
> se_depth
) {
416 *pse
= parent_entity(*pse
);
419 while (!is_same_group(*se
, *pse
)) {
420 *se
= parent_entity(*se
);
421 *pse
= parent_entity(*pse
);
425 #else /* !CONFIG_FAIR_GROUP_SCHED */
427 static inline struct task_struct
*task_of(struct sched_entity
*se
)
429 return container_of(se
, struct task_struct
, se
);
432 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
434 return container_of(cfs_rq
, struct rq
, cfs
);
437 #define entity_is_task(se) 1
439 #define for_each_sched_entity(se) \
440 for (; se; se = NULL)
442 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
444 return &task_rq(p
)->cfs
;
447 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
449 struct task_struct
*p
= task_of(se
);
450 struct rq
*rq
= task_rq(p
);
455 /* runqueue "owned" by this group */
456 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
461 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
465 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
469 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
470 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
472 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
478 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
482 #endif /* CONFIG_FAIR_GROUP_SCHED */
484 static __always_inline
485 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
487 /**************************************************************
488 * Scheduling class tree data structure manipulation methods:
491 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
493 s64 delta
= (s64
)(vruntime
- max_vruntime
);
495 max_vruntime
= vruntime
;
500 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
502 s64 delta
= (s64
)(vruntime
- min_vruntime
);
504 min_vruntime
= vruntime
;
509 static inline int entity_before(struct sched_entity
*a
,
510 struct sched_entity
*b
)
512 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
515 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
517 struct sched_entity
*curr
= cfs_rq
->curr
;
518 struct rb_node
*leftmost
= rb_first_cached(&cfs_rq
->tasks_timeline
);
520 u64 vruntime
= cfs_rq
->min_vruntime
;
524 vruntime
= curr
->vruntime
;
529 if (leftmost
) { /* non-empty tree */
530 struct sched_entity
*se
;
531 se
= rb_entry(leftmost
, struct sched_entity
, run_node
);
534 vruntime
= se
->vruntime
;
536 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
539 /* ensure we never gain time by being placed backwards. */
540 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
543 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
548 * Enqueue an entity into the rb-tree:
550 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
552 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_root
.rb_node
;
553 struct rb_node
*parent
= NULL
;
554 struct sched_entity
*entry
;
555 bool leftmost
= true;
558 * Find the right place in the rbtree:
562 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
564 * We dont care about collisions. Nodes with
565 * the same key stay together.
567 if (entity_before(se
, entry
)) {
568 link
= &parent
->rb_left
;
570 link
= &parent
->rb_right
;
575 rb_link_node(&se
->run_node
, parent
, link
);
576 rb_insert_color_cached(&se
->run_node
,
577 &cfs_rq
->tasks_timeline
, leftmost
);
580 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
582 rb_erase_cached(&se
->run_node
, &cfs_rq
->tasks_timeline
);
585 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
587 struct rb_node
*left
= rb_first_cached(&cfs_rq
->tasks_timeline
);
592 return rb_entry(left
, struct sched_entity
, run_node
);
595 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
597 struct rb_node
*next
= rb_next(&se
->run_node
);
602 return rb_entry(next
, struct sched_entity
, run_node
);
605 #ifdef CONFIG_SCHED_DEBUG
606 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
608 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
.rb_root
);
613 return rb_entry(last
, struct sched_entity
, run_node
);
616 /**************************************************************
617 * Scheduling class statistics methods:
620 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
621 void __user
*buffer
, size_t *lenp
,
624 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
625 unsigned int factor
= get_update_sysctl_factor();
630 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
631 sysctl_sched_min_granularity
);
633 #define WRT_SYSCTL(name) \
634 (normalized_sysctl_##name = sysctl_##name / (factor))
635 WRT_SYSCTL(sched_min_granularity
);
636 WRT_SYSCTL(sched_latency
);
637 WRT_SYSCTL(sched_wakeup_granularity
);
647 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
649 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
650 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
656 * The idea is to set a period in which each task runs once.
658 * When there are too many tasks (sched_nr_latency) we have to stretch
659 * this period because otherwise the slices get too small.
661 * p = (nr <= nl) ? l : l*nr/nl
663 static u64
__sched_period(unsigned long nr_running
)
665 if (unlikely(nr_running
> sched_nr_latency
))
666 return nr_running
* sysctl_sched_min_granularity
;
668 return sysctl_sched_latency
;
672 * We calculate the wall-time slice from the period by taking a part
673 * proportional to the weight.
677 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
679 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
681 for_each_sched_entity(se
) {
682 struct load_weight
*load
;
683 struct load_weight lw
;
685 cfs_rq
= cfs_rq_of(se
);
686 load
= &cfs_rq
->load
;
688 if (unlikely(!se
->on_rq
)) {
691 update_load_add(&lw
, se
->load
.weight
);
694 slice
= __calc_delta(slice
, se
->load
.weight
, load
);
700 * We calculate the vruntime slice of a to-be-inserted task.
704 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
706 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
711 #include "sched-pelt.h"
713 static int select_idle_sibling(struct task_struct
*p
, int prev_cpu
, int cpu
);
714 static unsigned long task_h_load(struct task_struct
*p
);
716 /* Give new sched_entity start runnable values to heavy its load in infant time */
717 void init_entity_runnable_average(struct sched_entity
*se
)
719 struct sched_avg
*sa
= &se
->avg
;
721 memset(sa
, 0, sizeof(*sa
));
724 * Tasks are intialized with full load to be seen as heavy tasks until
725 * they get a chance to stabilize to their real load level.
726 * Group entities are intialized with zero load to reflect the fact that
727 * nothing has been attached to the task group yet.
729 if (entity_is_task(se
))
730 sa
->runnable_load_avg
= sa
->load_avg
= scale_load_down(se
->load
.weight
);
732 se
->runnable_weight
= se
->load
.weight
;
734 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
737 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
);
738 static void attach_entity_cfs_rq(struct sched_entity
*se
);
741 * With new tasks being created, their initial util_avgs are extrapolated
742 * based on the cfs_rq's current util_avg:
744 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
746 * However, in many cases, the above util_avg does not give a desired
747 * value. Moreover, the sum of the util_avgs may be divergent, such
748 * as when the series is a harmonic series.
750 * To solve this problem, we also cap the util_avg of successive tasks to
751 * only 1/2 of the left utilization budget:
753 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
755 * where n denotes the nth task.
757 * For example, a simplest series from the beginning would be like:
759 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
760 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
762 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
763 * if util_avg > util_avg_cap.
765 void post_init_entity_util_avg(struct sched_entity
*se
)
767 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
768 struct sched_avg
*sa
= &se
->avg
;
769 long cap
= (long)(SCHED_CAPACITY_SCALE
- cfs_rq
->avg
.util_avg
) / 2;
772 if (cfs_rq
->avg
.util_avg
!= 0) {
773 sa
->util_avg
= cfs_rq
->avg
.util_avg
* se
->load
.weight
;
774 sa
->util_avg
/= (cfs_rq
->avg
.load_avg
+ 1);
776 if (sa
->util_avg
> cap
)
783 if (entity_is_task(se
)) {
784 struct task_struct
*p
= task_of(se
);
785 if (p
->sched_class
!= &fair_sched_class
) {
787 * For !fair tasks do:
789 update_cfs_rq_load_avg(now, cfs_rq);
790 attach_entity_load_avg(cfs_rq, se);
791 switched_from_fair(rq, p);
793 * such that the next switched_to_fair() has the
796 se
->avg
.last_update_time
= cfs_rq_clock_task(cfs_rq
);
801 attach_entity_cfs_rq(se
);
804 #else /* !CONFIG_SMP */
805 void init_entity_runnable_average(struct sched_entity
*se
)
808 void post_init_entity_util_avg(struct sched_entity
*se
)
811 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
814 #endif /* CONFIG_SMP */
817 * Update the current task's runtime statistics.
819 static void update_curr(struct cfs_rq
*cfs_rq
)
821 struct sched_entity
*curr
= cfs_rq
->curr
;
822 u64 now
= rq_clock_task(rq_of(cfs_rq
));
828 delta_exec
= now
- curr
->exec_start
;
829 if (unlikely((s64
)delta_exec
<= 0))
832 curr
->exec_start
= now
;
834 schedstat_set(curr
->statistics
.exec_max
,
835 max(delta_exec
, curr
->statistics
.exec_max
));
837 curr
->sum_exec_runtime
+= delta_exec
;
838 schedstat_add(cfs_rq
->exec_clock
, delta_exec
);
840 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
841 update_min_vruntime(cfs_rq
);
843 if (entity_is_task(curr
)) {
844 struct task_struct
*curtask
= task_of(curr
);
846 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
847 cgroup_account_cputime(curtask
, delta_exec
);
848 account_group_exec_runtime(curtask
, delta_exec
);
851 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
854 static void update_curr_fair(struct rq
*rq
)
856 update_curr(cfs_rq_of(&rq
->curr
->se
));
860 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
862 u64 wait_start
, prev_wait_start
;
864 if (!schedstat_enabled())
867 wait_start
= rq_clock(rq_of(cfs_rq
));
868 prev_wait_start
= schedstat_val(se
->statistics
.wait_start
);
870 if (entity_is_task(se
) && task_on_rq_migrating(task_of(se
)) &&
871 likely(wait_start
> prev_wait_start
))
872 wait_start
-= prev_wait_start
;
874 schedstat_set(se
->statistics
.wait_start
, wait_start
);
878 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
880 struct task_struct
*p
;
883 if (!schedstat_enabled())
886 delta
= rq_clock(rq_of(cfs_rq
)) - schedstat_val(se
->statistics
.wait_start
);
888 if (entity_is_task(se
)) {
890 if (task_on_rq_migrating(p
)) {
892 * Preserve migrating task's wait time so wait_start
893 * time stamp can be adjusted to accumulate wait time
894 * prior to migration.
896 schedstat_set(se
->statistics
.wait_start
, delta
);
899 trace_sched_stat_wait(p
, delta
);
902 schedstat_set(se
->statistics
.wait_max
,
903 max(schedstat_val(se
->statistics
.wait_max
), delta
));
904 schedstat_inc(se
->statistics
.wait_count
);
905 schedstat_add(se
->statistics
.wait_sum
, delta
);
906 schedstat_set(se
->statistics
.wait_start
, 0);
910 update_stats_enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
912 struct task_struct
*tsk
= NULL
;
913 u64 sleep_start
, block_start
;
915 if (!schedstat_enabled())
918 sleep_start
= schedstat_val(se
->statistics
.sleep_start
);
919 block_start
= schedstat_val(se
->statistics
.block_start
);
921 if (entity_is_task(se
))
925 u64 delta
= rq_clock(rq_of(cfs_rq
)) - sleep_start
;
930 if (unlikely(delta
> schedstat_val(se
->statistics
.sleep_max
)))
931 schedstat_set(se
->statistics
.sleep_max
, delta
);
933 schedstat_set(se
->statistics
.sleep_start
, 0);
934 schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
937 account_scheduler_latency(tsk
, delta
>> 10, 1);
938 trace_sched_stat_sleep(tsk
, delta
);
942 u64 delta
= rq_clock(rq_of(cfs_rq
)) - block_start
;
947 if (unlikely(delta
> schedstat_val(se
->statistics
.block_max
)))
948 schedstat_set(se
->statistics
.block_max
, delta
);
950 schedstat_set(se
->statistics
.block_start
, 0);
951 schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
954 if (tsk
->in_iowait
) {
955 schedstat_add(se
->statistics
.iowait_sum
, delta
);
956 schedstat_inc(se
->statistics
.iowait_count
);
957 trace_sched_stat_iowait(tsk
, delta
);
960 trace_sched_stat_blocked(tsk
, delta
);
963 * Blocking time is in units of nanosecs, so shift by
964 * 20 to get a milliseconds-range estimation of the
965 * amount of time that the task spent sleeping:
967 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
968 profile_hits(SLEEP_PROFILING
,
969 (void *)get_wchan(tsk
),
972 account_scheduler_latency(tsk
, delta
>> 10, 0);
978 * Task is being enqueued - update stats:
981 update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
983 if (!schedstat_enabled())
987 * Are we enqueueing a waiting task? (for current tasks
988 * a dequeue/enqueue event is a NOP)
990 if (se
!= cfs_rq
->curr
)
991 update_stats_wait_start(cfs_rq
, se
);
993 if (flags
& ENQUEUE_WAKEUP
)
994 update_stats_enqueue_sleeper(cfs_rq
, se
);
998 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1001 if (!schedstat_enabled())
1005 * Mark the end of the wait period if dequeueing a
1008 if (se
!= cfs_rq
->curr
)
1009 update_stats_wait_end(cfs_rq
, se
);
1011 if ((flags
& DEQUEUE_SLEEP
) && entity_is_task(se
)) {
1012 struct task_struct
*tsk
= task_of(se
);
1014 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1015 schedstat_set(se
->statistics
.sleep_start
,
1016 rq_clock(rq_of(cfs_rq
)));
1017 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1018 schedstat_set(se
->statistics
.block_start
,
1019 rq_clock(rq_of(cfs_rq
)));
1024 * We are picking a new current task - update its stats:
1027 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1030 * We are starting a new run period:
1032 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
1035 /**************************************************
1036 * Scheduling class queueing methods:
1039 #ifdef CONFIG_NUMA_BALANCING
1041 * Approximate time to scan a full NUMA task in ms. The task scan period is
1042 * calculated based on the tasks virtual memory size and
1043 * numa_balancing_scan_size.
1045 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
1046 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
1048 /* Portion of address space to scan in MB */
1049 unsigned int sysctl_numa_balancing_scan_size
= 256;
1051 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1052 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
1057 spinlock_t lock
; /* nr_tasks, tasks */
1062 struct rcu_head rcu
;
1063 unsigned long total_faults
;
1064 unsigned long max_faults_cpu
;
1066 * Faults_cpu is used to decide whether memory should move
1067 * towards the CPU. As a consequence, these stats are weighted
1068 * more by CPU use than by memory faults.
1070 unsigned long *faults_cpu
;
1071 unsigned long faults
[0];
1074 static inline unsigned long group_faults_priv(struct numa_group
*ng
);
1075 static inline unsigned long group_faults_shared(struct numa_group
*ng
);
1077 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
1079 unsigned long rss
= 0;
1080 unsigned long nr_scan_pages
;
1083 * Calculations based on RSS as non-present and empty pages are skipped
1084 * by the PTE scanner and NUMA hinting faults should be trapped based
1087 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
1088 rss
= get_mm_rss(p
->mm
);
1090 rss
= nr_scan_pages
;
1092 rss
= round_up(rss
, nr_scan_pages
);
1093 return rss
/ nr_scan_pages
;
1096 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1097 #define MAX_SCAN_WINDOW 2560
1099 static unsigned int task_scan_min(struct task_struct
*p
)
1101 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
1102 unsigned int scan
, floor
;
1103 unsigned int windows
= 1;
1105 if (scan_size
< MAX_SCAN_WINDOW
)
1106 windows
= MAX_SCAN_WINDOW
/ scan_size
;
1107 floor
= 1000 / windows
;
1109 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
1110 return max_t(unsigned int, floor
, scan
);
1113 static unsigned int task_scan_start(struct task_struct
*p
)
1115 unsigned long smin
= task_scan_min(p
);
1116 unsigned long period
= smin
;
1118 /* Scale the maximum scan period with the amount of shared memory. */
1119 if (p
->numa_group
) {
1120 struct numa_group
*ng
= p
->numa_group
;
1121 unsigned long shared
= group_faults_shared(ng
);
1122 unsigned long private = group_faults_priv(ng
);
1124 period
*= atomic_read(&ng
->refcount
);
1125 period
*= shared
+ 1;
1126 period
/= private + shared
+ 1;
1129 return max(smin
, period
);
1132 static unsigned int task_scan_max(struct task_struct
*p
)
1134 unsigned long smin
= task_scan_min(p
);
1137 /* Watch for min being lower than max due to floor calculations */
1138 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
1140 /* Scale the maximum scan period with the amount of shared memory. */
1141 if (p
->numa_group
) {
1142 struct numa_group
*ng
= p
->numa_group
;
1143 unsigned long shared
= group_faults_shared(ng
);
1144 unsigned long private = group_faults_priv(ng
);
1145 unsigned long period
= smax
;
1147 period
*= atomic_read(&ng
->refcount
);
1148 period
*= shared
+ 1;
1149 period
/= private + shared
+ 1;
1151 smax
= max(smax
, period
);
1154 return max(smin
, smax
);
1157 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
1159 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= -1);
1160 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
1163 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
1165 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= -1);
1166 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
1169 /* Shared or private faults. */
1170 #define NR_NUMA_HINT_FAULT_TYPES 2
1172 /* Memory and CPU locality */
1173 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1175 /* Averaged statistics, and temporary buffers. */
1176 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1178 pid_t
task_numa_group_id(struct task_struct
*p
)
1180 return p
->numa_group
? p
->numa_group
->gid
: 0;
1184 * The averaged statistics, shared & private, memory & cpu,
1185 * occupy the first half of the array. The second half of the
1186 * array is for current counters, which are averaged into the
1187 * first set by task_numa_placement.
1189 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
1191 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
1194 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
1196 if (!p
->numa_faults
)
1199 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1200 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1203 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
1208 return p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1209 p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1212 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
1214 return group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1215 group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1218 static inline unsigned long group_faults_priv(struct numa_group
*ng
)
1220 unsigned long faults
= 0;
1223 for_each_online_node(node
) {
1224 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
1230 static inline unsigned long group_faults_shared(struct numa_group
*ng
)
1232 unsigned long faults
= 0;
1235 for_each_online_node(node
) {
1236 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
1243 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1244 * considered part of a numa group's pseudo-interleaving set. Migrations
1245 * between these nodes are slowed down, to allow things to settle down.
1247 #define ACTIVE_NODE_FRACTION 3
1249 static bool numa_is_active_node(int nid
, struct numa_group
*ng
)
1251 return group_faults_cpu(ng
, nid
) * ACTIVE_NODE_FRACTION
> ng
->max_faults_cpu
;
1254 /* Handle placement on systems where not all nodes are directly connected. */
1255 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
1256 int maxdist
, bool task
)
1258 unsigned long score
= 0;
1262 * All nodes are directly connected, and the same distance
1263 * from each other. No need for fancy placement algorithms.
1265 if (sched_numa_topology_type
== NUMA_DIRECT
)
1269 * This code is called for each node, introducing N^2 complexity,
1270 * which should be ok given the number of nodes rarely exceeds 8.
1272 for_each_online_node(node
) {
1273 unsigned long faults
;
1274 int dist
= node_distance(nid
, node
);
1277 * The furthest away nodes in the system are not interesting
1278 * for placement; nid was already counted.
1280 if (dist
== sched_max_numa_distance
|| node
== nid
)
1284 * On systems with a backplane NUMA topology, compare groups
1285 * of nodes, and move tasks towards the group with the most
1286 * memory accesses. When comparing two nodes at distance
1287 * "hoplimit", only nodes closer by than "hoplimit" are part
1288 * of each group. Skip other nodes.
1290 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1294 /* Add up the faults from nearby nodes. */
1296 faults
= task_faults(p
, node
);
1298 faults
= group_faults(p
, node
);
1301 * On systems with a glueless mesh NUMA topology, there are
1302 * no fixed "groups of nodes". Instead, nodes that are not
1303 * directly connected bounce traffic through intermediate
1304 * nodes; a numa_group can occupy any set of nodes.
1305 * The further away a node is, the less the faults count.
1306 * This seems to result in good task placement.
1308 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1309 faults
*= (sched_max_numa_distance
- dist
);
1310 faults
/= (sched_max_numa_distance
- LOCAL_DISTANCE
);
1320 * These return the fraction of accesses done by a particular task, or
1321 * task group, on a particular numa node. The group weight is given a
1322 * larger multiplier, in order to group tasks together that are almost
1323 * evenly spread out between numa nodes.
1325 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1328 unsigned long faults
, total_faults
;
1330 if (!p
->numa_faults
)
1333 total_faults
= p
->total_numa_faults
;
1338 faults
= task_faults(p
, nid
);
1339 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1341 return 1000 * faults
/ total_faults
;
1344 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1347 unsigned long faults
, total_faults
;
1352 total_faults
= p
->numa_group
->total_faults
;
1357 faults
= group_faults(p
, nid
);
1358 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1360 return 1000 * faults
/ total_faults
;
1363 bool should_numa_migrate_memory(struct task_struct
*p
, struct page
* page
,
1364 int src_nid
, int dst_cpu
)
1366 struct numa_group
*ng
= p
->numa_group
;
1367 int dst_nid
= cpu_to_node(dst_cpu
);
1368 int last_cpupid
, this_cpupid
;
1370 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1373 * Multi-stage node selection is used in conjunction with a periodic
1374 * migration fault to build a temporal task<->page relation. By using
1375 * a two-stage filter we remove short/unlikely relations.
1377 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1378 * a task's usage of a particular page (n_p) per total usage of this
1379 * page (n_t) (in a given time-span) to a probability.
1381 * Our periodic faults will sample this probability and getting the
1382 * same result twice in a row, given these samples are fully
1383 * independent, is then given by P(n)^2, provided our sample period
1384 * is sufficiently short compared to the usage pattern.
1386 * This quadric squishes small probabilities, making it less likely we
1387 * act on an unlikely task<->page relation.
1389 last_cpupid
= page_cpupid_xchg_last(page
, this_cpupid
);
1390 if (!cpupid_pid_unset(last_cpupid
) &&
1391 cpupid_to_nid(last_cpupid
) != dst_nid
)
1394 /* Always allow migrate on private faults */
1395 if (cpupid_match_pid(p
, last_cpupid
))
1398 /* A shared fault, but p->numa_group has not been set up yet. */
1403 * Destination node is much more heavily used than the source
1404 * node? Allow migration.
1406 if (group_faults_cpu(ng
, dst_nid
) > group_faults_cpu(ng
, src_nid
) *
1407 ACTIVE_NODE_FRACTION
)
1411 * Distribute memory according to CPU & memory use on each node,
1412 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1414 * faults_cpu(dst) 3 faults_cpu(src)
1415 * --------------- * - > ---------------
1416 * faults_mem(dst) 4 faults_mem(src)
1418 return group_faults_cpu(ng
, dst_nid
) * group_faults(p
, src_nid
) * 3 >
1419 group_faults_cpu(ng
, src_nid
) * group_faults(p
, dst_nid
) * 4;
1422 static unsigned long weighted_cpuload(struct rq
*rq
);
1423 static unsigned long source_load(int cpu
, int type
);
1424 static unsigned long target_load(int cpu
, int type
);
1425 static unsigned long capacity_of(int cpu
);
1427 /* Cached statistics for all CPUs within a node */
1429 unsigned long nr_running
;
1432 /* Total compute capacity of CPUs on a node */
1433 unsigned long compute_capacity
;
1435 /* Approximate capacity in terms of runnable tasks on a node */
1436 unsigned long task_capacity
;
1437 int has_free_capacity
;
1441 * XXX borrowed from update_sg_lb_stats
1443 static void update_numa_stats(struct numa_stats
*ns
, int nid
)
1445 int smt
, cpu
, cpus
= 0;
1446 unsigned long capacity
;
1448 memset(ns
, 0, sizeof(*ns
));
1449 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
1450 struct rq
*rq
= cpu_rq(cpu
);
1452 ns
->nr_running
+= rq
->nr_running
;
1453 ns
->load
+= weighted_cpuload(rq
);
1454 ns
->compute_capacity
+= capacity_of(cpu
);
1460 * If we raced with hotplug and there are no CPUs left in our mask
1461 * the @ns structure is NULL'ed and task_numa_compare() will
1462 * not find this node attractive.
1464 * We'll either bail at !has_free_capacity, or we'll detect a huge
1465 * imbalance and bail there.
1470 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1471 smt
= DIV_ROUND_UP(SCHED_CAPACITY_SCALE
* cpus
, ns
->compute_capacity
);
1472 capacity
= cpus
/ smt
; /* cores */
1474 ns
->task_capacity
= min_t(unsigned, capacity
,
1475 DIV_ROUND_CLOSEST(ns
->compute_capacity
, SCHED_CAPACITY_SCALE
));
1476 ns
->has_free_capacity
= (ns
->nr_running
< ns
->task_capacity
);
1479 struct task_numa_env
{
1480 struct task_struct
*p
;
1482 int src_cpu
, src_nid
;
1483 int dst_cpu
, dst_nid
;
1485 struct numa_stats src_stats
, dst_stats
;
1490 struct task_struct
*best_task
;
1495 static void task_numa_assign(struct task_numa_env
*env
,
1496 struct task_struct
*p
, long imp
)
1499 put_task_struct(env
->best_task
);
1504 env
->best_imp
= imp
;
1505 env
->best_cpu
= env
->dst_cpu
;
1508 static bool load_too_imbalanced(long src_load
, long dst_load
,
1509 struct task_numa_env
*env
)
1512 long orig_src_load
, orig_dst_load
;
1513 long src_capacity
, dst_capacity
;
1516 * The load is corrected for the CPU capacity available on each node.
1519 * ------------ vs ---------
1520 * src_capacity dst_capacity
1522 src_capacity
= env
->src_stats
.compute_capacity
;
1523 dst_capacity
= env
->dst_stats
.compute_capacity
;
1525 /* We care about the slope of the imbalance, not the direction. */
1526 if (dst_load
< src_load
)
1527 swap(dst_load
, src_load
);
1529 /* Is the difference below the threshold? */
1530 imb
= dst_load
* src_capacity
* 100 -
1531 src_load
* dst_capacity
* env
->imbalance_pct
;
1536 * The imbalance is above the allowed threshold.
1537 * Compare it with the old imbalance.
1539 orig_src_load
= env
->src_stats
.load
;
1540 orig_dst_load
= env
->dst_stats
.load
;
1542 if (orig_dst_load
< orig_src_load
)
1543 swap(orig_dst_load
, orig_src_load
);
1545 old_imb
= orig_dst_load
* src_capacity
* 100 -
1546 orig_src_load
* dst_capacity
* env
->imbalance_pct
;
1548 /* Would this change make things worse? */
1549 return (imb
> old_imb
);
1553 * This checks if the overall compute and NUMA accesses of the system would
1554 * be improved if the source tasks was migrated to the target dst_cpu taking
1555 * into account that it might be best if task running on the dst_cpu should
1556 * be exchanged with the source task
1558 static void task_numa_compare(struct task_numa_env
*env
,
1559 long taskimp
, long groupimp
)
1561 struct rq
*src_rq
= cpu_rq(env
->src_cpu
);
1562 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
1563 struct task_struct
*cur
;
1564 long src_load
, dst_load
;
1566 long imp
= env
->p
->numa_group
? groupimp
: taskimp
;
1568 int dist
= env
->dist
;
1571 cur
= task_rcu_dereference(&dst_rq
->curr
);
1572 if (cur
&& ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
)))
1576 * Because we have preemption enabled we can get migrated around and
1577 * end try selecting ourselves (current == env->p) as a swap candidate.
1583 * "imp" is the fault differential for the source task between the
1584 * source and destination node. Calculate the total differential for
1585 * the source task and potential destination task. The more negative
1586 * the value is, the more rmeote accesses that would be expected to
1587 * be incurred if the tasks were swapped.
1590 /* Skip this swap candidate if cannot move to the source cpu */
1591 if (!cpumask_test_cpu(env
->src_cpu
, &cur
->cpus_allowed
))
1595 * If dst and source tasks are in the same NUMA group, or not
1596 * in any group then look only at task weights.
1598 if (cur
->numa_group
== env
->p
->numa_group
) {
1599 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
1600 task_weight(cur
, env
->dst_nid
, dist
);
1602 * Add some hysteresis to prevent swapping the
1603 * tasks within a group over tiny differences.
1605 if (cur
->numa_group
)
1609 * Compare the group weights. If a task is all by
1610 * itself (not part of a group), use the task weight
1613 if (cur
->numa_group
)
1614 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
1615 group_weight(cur
, env
->dst_nid
, dist
);
1617 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
1618 task_weight(cur
, env
->dst_nid
, dist
);
1622 if (imp
<= env
->best_imp
&& moveimp
<= env
->best_imp
)
1626 /* Is there capacity at our destination? */
1627 if (env
->src_stats
.nr_running
<= env
->src_stats
.task_capacity
&&
1628 !env
->dst_stats
.has_free_capacity
)
1634 /* Balance doesn't matter much if we're running a task per cpu */
1635 if (imp
> env
->best_imp
&& src_rq
->nr_running
== 1 &&
1636 dst_rq
->nr_running
== 1)
1640 * In the overloaded case, try and keep the load balanced.
1643 load
= task_h_load(env
->p
);
1644 dst_load
= env
->dst_stats
.load
+ load
;
1645 src_load
= env
->src_stats
.load
- load
;
1647 if (moveimp
> imp
&& moveimp
> env
->best_imp
) {
1649 * If the improvement from just moving env->p direction is
1650 * better than swapping tasks around, check if a move is
1651 * possible. Store a slightly smaller score than moveimp,
1652 * so an actually idle CPU will win.
1654 if (!load_too_imbalanced(src_load
, dst_load
, env
)) {
1661 if (imp
<= env
->best_imp
)
1665 load
= task_h_load(cur
);
1670 if (load_too_imbalanced(src_load
, dst_load
, env
))
1674 * One idle CPU per node is evaluated for a task numa move.
1675 * Call select_idle_sibling to maybe find a better one.
1679 * select_idle_siblings() uses an per-cpu cpumask that
1680 * can be used from IRQ context.
1682 local_irq_disable();
1683 env
->dst_cpu
= select_idle_sibling(env
->p
, env
->src_cpu
,
1689 task_numa_assign(env
, cur
, imp
);
1694 static void task_numa_find_cpu(struct task_numa_env
*env
,
1695 long taskimp
, long groupimp
)
1699 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
1700 /* Skip this CPU if the source task cannot migrate */
1701 if (!cpumask_test_cpu(cpu
, &env
->p
->cpus_allowed
))
1705 task_numa_compare(env
, taskimp
, groupimp
);
1709 /* Only move tasks to a NUMA node less busy than the current node. */
1710 static bool numa_has_capacity(struct task_numa_env
*env
)
1712 struct numa_stats
*src
= &env
->src_stats
;
1713 struct numa_stats
*dst
= &env
->dst_stats
;
1715 if (src
->has_free_capacity
&& !dst
->has_free_capacity
)
1719 * Only consider a task move if the source has a higher load
1720 * than the destination, corrected for CPU capacity on each node.
1722 * src->load dst->load
1723 * --------------------- vs ---------------------
1724 * src->compute_capacity dst->compute_capacity
1726 if (src
->load
* dst
->compute_capacity
* env
->imbalance_pct
>
1728 dst
->load
* src
->compute_capacity
* 100)
1734 static int task_numa_migrate(struct task_struct
*p
)
1736 struct task_numa_env env
= {
1739 .src_cpu
= task_cpu(p
),
1740 .src_nid
= task_node(p
),
1742 .imbalance_pct
= 112,
1748 struct sched_domain
*sd
;
1749 unsigned long taskweight
, groupweight
;
1751 long taskimp
, groupimp
;
1754 * Pick the lowest SD_NUMA domain, as that would have the smallest
1755 * imbalance and would be the first to start moving tasks about.
1757 * And we want to avoid any moving of tasks about, as that would create
1758 * random movement of tasks -- counter the numa conditions we're trying
1762 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
1764 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
1768 * Cpusets can break the scheduler domain tree into smaller
1769 * balance domains, some of which do not cross NUMA boundaries.
1770 * Tasks that are "trapped" in such domains cannot be migrated
1771 * elsewhere, so there is no point in (re)trying.
1773 if (unlikely(!sd
)) {
1774 p
->numa_preferred_nid
= task_node(p
);
1778 env
.dst_nid
= p
->numa_preferred_nid
;
1779 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1780 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1781 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1782 update_numa_stats(&env
.src_stats
, env
.src_nid
);
1783 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
1784 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
1785 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1787 /* Try to find a spot on the preferred nid. */
1788 if (numa_has_capacity(&env
))
1789 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1792 * Look at other nodes in these cases:
1793 * - there is no space available on the preferred_nid
1794 * - the task is part of a numa_group that is interleaved across
1795 * multiple NUMA nodes; in order to better consolidate the group,
1796 * we need to check other locations.
1798 if (env
.best_cpu
== -1 || (p
->numa_group
&& p
->numa_group
->active_nodes
> 1)) {
1799 for_each_online_node(nid
) {
1800 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
1803 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1804 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1806 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1807 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1810 /* Only consider nodes where both task and groups benefit */
1811 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
1812 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
1813 if (taskimp
< 0 && groupimp
< 0)
1818 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1819 if (numa_has_capacity(&env
))
1820 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1825 * If the task is part of a workload that spans multiple NUMA nodes,
1826 * and is migrating into one of the workload's active nodes, remember
1827 * this node as the task's preferred numa node, so the workload can
1829 * A task that migrated to a second choice node will be better off
1830 * trying for a better one later. Do not set the preferred node here.
1832 if (p
->numa_group
) {
1833 struct numa_group
*ng
= p
->numa_group
;
1835 if (env
.best_cpu
== -1)
1840 if (ng
->active_nodes
> 1 && numa_is_active_node(env
.dst_nid
, ng
))
1841 sched_setnuma(p
, env
.dst_nid
);
1844 /* No better CPU than the current one was found. */
1845 if (env
.best_cpu
== -1)
1849 * Reset the scan period if the task is being rescheduled on an
1850 * alternative node to recheck if the tasks is now properly placed.
1852 p
->numa_scan_period
= task_scan_start(p
);
1854 if (env
.best_task
== NULL
) {
1855 ret
= migrate_task_to(p
, env
.best_cpu
);
1857 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_cpu
);
1861 ret
= migrate_swap(p
, env
.best_task
);
1863 trace_sched_stick_numa(p
, env
.src_cpu
, task_cpu(env
.best_task
));
1864 put_task_struct(env
.best_task
);
1868 /* Attempt to migrate a task to a CPU on the preferred node. */
1869 static void numa_migrate_preferred(struct task_struct
*p
)
1871 unsigned long interval
= HZ
;
1873 /* This task has no NUMA fault statistics yet */
1874 if (unlikely(p
->numa_preferred_nid
== -1 || !p
->numa_faults
))
1877 /* Periodically retry migrating the task to the preferred node */
1878 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
1879 p
->numa_migrate_retry
= jiffies
+ interval
;
1881 /* Success if task is already running on preferred CPU */
1882 if (task_node(p
) == p
->numa_preferred_nid
)
1885 /* Otherwise, try migrate to a CPU on the preferred node */
1886 task_numa_migrate(p
);
1890 * Find out how many nodes on the workload is actively running on. Do this by
1891 * tracking the nodes from which NUMA hinting faults are triggered. This can
1892 * be different from the set of nodes where the workload's memory is currently
1895 static void numa_group_count_active_nodes(struct numa_group
*numa_group
)
1897 unsigned long faults
, max_faults
= 0;
1898 int nid
, active_nodes
= 0;
1900 for_each_online_node(nid
) {
1901 faults
= group_faults_cpu(numa_group
, nid
);
1902 if (faults
> max_faults
)
1903 max_faults
= faults
;
1906 for_each_online_node(nid
) {
1907 faults
= group_faults_cpu(numa_group
, nid
);
1908 if (faults
* ACTIVE_NODE_FRACTION
> max_faults
)
1912 numa_group
->max_faults_cpu
= max_faults
;
1913 numa_group
->active_nodes
= active_nodes
;
1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918 * increments. The more local the fault statistics are, the higher the scan
1919 * period will be for the next scan window. If local/(local+remote) ratio is
1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921 * the scan period will decrease. Aim for 70% local accesses.
1923 #define NUMA_PERIOD_SLOTS 10
1924 #define NUMA_PERIOD_THRESHOLD 7
1927 * Increase the scan period (slow down scanning) if the majority of
1928 * our memory is already on our local node, or if the majority of
1929 * the page accesses are shared with other processes.
1930 * Otherwise, decrease the scan period.
1932 static void update_task_scan_period(struct task_struct
*p
,
1933 unsigned long shared
, unsigned long private)
1935 unsigned int period_slot
;
1936 int lr_ratio
, ps_ratio
;
1939 unsigned long remote
= p
->numa_faults_locality
[0];
1940 unsigned long local
= p
->numa_faults_locality
[1];
1943 * If there were no record hinting faults then either the task is
1944 * completely idle or all activity is areas that are not of interest
1945 * to automatic numa balancing. Related to that, if there were failed
1946 * migration then it implies we are migrating too quickly or the local
1947 * node is overloaded. In either case, scan slower
1949 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
1950 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
1951 p
->numa_scan_period
<< 1);
1953 p
->mm
->numa_next_scan
= jiffies
+
1954 msecs_to_jiffies(p
->numa_scan_period
);
1960 * Prepare to scale scan period relative to the current period.
1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1965 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
1966 lr_ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
1967 ps_ratio
= (private * NUMA_PERIOD_SLOTS
) / (private + shared
);
1969 if (ps_ratio
>= NUMA_PERIOD_THRESHOLD
) {
1971 * Most memory accesses are local. There is no need to
1972 * do fast NUMA scanning, since memory is already local.
1974 int slot
= ps_ratio
- NUMA_PERIOD_THRESHOLD
;
1977 diff
= slot
* period_slot
;
1978 } else if (lr_ratio
>= NUMA_PERIOD_THRESHOLD
) {
1980 * Most memory accesses are shared with other tasks.
1981 * There is no point in continuing fast NUMA scanning,
1982 * since other tasks may just move the memory elsewhere.
1984 int slot
= lr_ratio
- NUMA_PERIOD_THRESHOLD
;
1987 diff
= slot
* period_slot
;
1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991 * yet they are not on the local NUMA node. Speed up
1992 * NUMA scanning to get the memory moved over.
1994 int ratio
= max(lr_ratio
, ps_ratio
);
1995 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
1998 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
1999 task_scan_min(p
), task_scan_max(p
));
2000 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2004 * Get the fraction of time the task has been running since the last
2005 * NUMA placement cycle. The scheduler keeps similar statistics, but
2006 * decays those on a 32ms period, which is orders of magnitude off
2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008 * stats only if the task is so new there are no NUMA statistics yet.
2010 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
2012 u64 runtime
, delta
, now
;
2013 /* Use the start of this time slice to avoid calculations. */
2014 now
= p
->se
.exec_start
;
2015 runtime
= p
->se
.sum_exec_runtime
;
2017 if (p
->last_task_numa_placement
) {
2018 delta
= runtime
- p
->last_sum_exec_runtime
;
2019 *period
= now
- p
->last_task_numa_placement
;
2021 delta
= p
->se
.avg
.load_sum
;
2022 *period
= LOAD_AVG_MAX
;
2025 p
->last_sum_exec_runtime
= runtime
;
2026 p
->last_task_numa_placement
= now
;
2032 * Determine the preferred nid for a task in a numa_group. This needs to
2033 * be done in a way that produces consistent results with group_weight,
2034 * otherwise workloads might not converge.
2036 static int preferred_group_nid(struct task_struct
*p
, int nid
)
2041 /* Direct connections between all NUMA nodes. */
2042 if (sched_numa_topology_type
== NUMA_DIRECT
)
2046 * On a system with glueless mesh NUMA topology, group_weight
2047 * scores nodes according to the number of NUMA hinting faults on
2048 * both the node itself, and on nearby nodes.
2050 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
2051 unsigned long score
, max_score
= 0;
2052 int node
, max_node
= nid
;
2054 dist
= sched_max_numa_distance
;
2056 for_each_online_node(node
) {
2057 score
= group_weight(p
, node
, dist
);
2058 if (score
> max_score
) {
2067 * Finding the preferred nid in a system with NUMA backplane
2068 * interconnect topology is more involved. The goal is to locate
2069 * tasks from numa_groups near each other in the system, and
2070 * untangle workloads from different sides of the system. This requires
2071 * searching down the hierarchy of node groups, recursively searching
2072 * inside the highest scoring group of nodes. The nodemask tricks
2073 * keep the complexity of the search down.
2075 nodes
= node_online_map
;
2076 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
2077 unsigned long max_faults
= 0;
2078 nodemask_t max_group
= NODE_MASK_NONE
;
2081 /* Are there nodes at this distance from each other? */
2082 if (!find_numa_distance(dist
))
2085 for_each_node_mask(a
, nodes
) {
2086 unsigned long faults
= 0;
2087 nodemask_t this_group
;
2088 nodes_clear(this_group
);
2090 /* Sum group's NUMA faults; includes a==b case. */
2091 for_each_node_mask(b
, nodes
) {
2092 if (node_distance(a
, b
) < dist
) {
2093 faults
+= group_faults(p
, b
);
2094 node_set(b
, this_group
);
2095 node_clear(b
, nodes
);
2099 /* Remember the top group. */
2100 if (faults
> max_faults
) {
2101 max_faults
= faults
;
2102 max_group
= this_group
;
2104 * subtle: at the smallest distance there is
2105 * just one node left in each "group", the
2106 * winner is the preferred nid.
2111 /* Next round, evaluate the nodes within max_group. */
2119 static void task_numa_placement(struct task_struct
*p
)
2121 int seq
, nid
, max_nid
= -1, max_group_nid
= -1;
2122 unsigned long max_faults
= 0, max_group_faults
= 0;
2123 unsigned long fault_types
[2] = { 0, 0 };
2124 unsigned long total_faults
;
2125 u64 runtime
, period
;
2126 spinlock_t
*group_lock
= NULL
;
2129 * The p->mm->numa_scan_seq field gets updated without
2130 * exclusive access. Use READ_ONCE() here to ensure
2131 * that the field is read in a single access:
2133 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
2134 if (p
->numa_scan_seq
== seq
)
2136 p
->numa_scan_seq
= seq
;
2137 p
->numa_scan_period_max
= task_scan_max(p
);
2139 total_faults
= p
->numa_faults_locality
[0] +
2140 p
->numa_faults_locality
[1];
2141 runtime
= numa_get_avg_runtime(p
, &period
);
2143 /* If the task is part of a group prevent parallel updates to group stats */
2144 if (p
->numa_group
) {
2145 group_lock
= &p
->numa_group
->lock
;
2146 spin_lock_irq(group_lock
);
2149 /* Find the node with the highest number of faults */
2150 for_each_online_node(nid
) {
2151 /* Keep track of the offsets in numa_faults array */
2152 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
2153 unsigned long faults
= 0, group_faults
= 0;
2156 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
2157 long diff
, f_diff
, f_weight
;
2159 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
2160 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
2161 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
2162 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
2164 /* Decay existing window, copy faults since last scan */
2165 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
2166 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
2167 p
->numa_faults
[membuf_idx
] = 0;
2170 * Normalize the faults_from, so all tasks in a group
2171 * count according to CPU use, instead of by the raw
2172 * number of faults. Tasks with little runtime have
2173 * little over-all impact on throughput, and thus their
2174 * faults are less important.
2176 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
2177 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
2179 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
2180 p
->numa_faults
[cpubuf_idx
] = 0;
2182 p
->numa_faults
[mem_idx
] += diff
;
2183 p
->numa_faults
[cpu_idx
] += f_diff
;
2184 faults
+= p
->numa_faults
[mem_idx
];
2185 p
->total_numa_faults
+= diff
;
2186 if (p
->numa_group
) {
2188 * safe because we can only change our own group
2190 * mem_idx represents the offset for a given
2191 * nid and priv in a specific region because it
2192 * is at the beginning of the numa_faults array.
2194 p
->numa_group
->faults
[mem_idx
] += diff
;
2195 p
->numa_group
->faults_cpu
[mem_idx
] += f_diff
;
2196 p
->numa_group
->total_faults
+= diff
;
2197 group_faults
+= p
->numa_group
->faults
[mem_idx
];
2201 if (faults
> max_faults
) {
2202 max_faults
= faults
;
2206 if (group_faults
> max_group_faults
) {
2207 max_group_faults
= group_faults
;
2208 max_group_nid
= nid
;
2212 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
2214 if (p
->numa_group
) {
2215 numa_group_count_active_nodes(p
->numa_group
);
2216 spin_unlock_irq(group_lock
);
2217 max_nid
= preferred_group_nid(p
, max_group_nid
);
2221 /* Set the new preferred node */
2222 if (max_nid
!= p
->numa_preferred_nid
)
2223 sched_setnuma(p
, max_nid
);
2225 if (task_node(p
) != p
->numa_preferred_nid
)
2226 numa_migrate_preferred(p
);
2230 static inline int get_numa_group(struct numa_group
*grp
)
2232 return atomic_inc_not_zero(&grp
->refcount
);
2235 static inline void put_numa_group(struct numa_group
*grp
)
2237 if (atomic_dec_and_test(&grp
->refcount
))
2238 kfree_rcu(grp
, rcu
);
2241 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
2244 struct numa_group
*grp
, *my_grp
;
2245 struct task_struct
*tsk
;
2247 int cpu
= cpupid_to_cpu(cpupid
);
2250 if (unlikely(!p
->numa_group
)) {
2251 unsigned int size
= sizeof(struct numa_group
) +
2252 4*nr_node_ids
*sizeof(unsigned long);
2254 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
2258 atomic_set(&grp
->refcount
, 1);
2259 grp
->active_nodes
= 1;
2260 grp
->max_faults_cpu
= 0;
2261 spin_lock_init(&grp
->lock
);
2263 /* Second half of the array tracks nids where faults happen */
2264 grp
->faults_cpu
= grp
->faults
+ NR_NUMA_HINT_FAULT_TYPES
*
2267 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2268 grp
->faults
[i
] = p
->numa_faults
[i
];
2270 grp
->total_faults
= p
->total_numa_faults
;
2273 rcu_assign_pointer(p
->numa_group
, grp
);
2277 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
2279 if (!cpupid_match_pid(tsk
, cpupid
))
2282 grp
= rcu_dereference(tsk
->numa_group
);
2286 my_grp
= p
->numa_group
;
2291 * Only join the other group if its bigger; if we're the bigger group,
2292 * the other task will join us.
2294 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
2298 * Tie-break on the grp address.
2300 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
2303 /* Always join threads in the same process. */
2304 if (tsk
->mm
== current
->mm
)
2307 /* Simple filter to avoid false positives due to PID collisions */
2308 if (flags
& TNF_SHARED
)
2311 /* Update priv based on whether false sharing was detected */
2314 if (join
&& !get_numa_group(grp
))
2322 BUG_ON(irqs_disabled());
2323 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
2325 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
2326 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
2327 grp
->faults
[i
] += p
->numa_faults
[i
];
2329 my_grp
->total_faults
-= p
->total_numa_faults
;
2330 grp
->total_faults
+= p
->total_numa_faults
;
2335 spin_unlock(&my_grp
->lock
);
2336 spin_unlock_irq(&grp
->lock
);
2338 rcu_assign_pointer(p
->numa_group
, grp
);
2340 put_numa_group(my_grp
);
2348 void task_numa_free(struct task_struct
*p
)
2350 struct numa_group
*grp
= p
->numa_group
;
2351 void *numa_faults
= p
->numa_faults
;
2352 unsigned long flags
;
2356 spin_lock_irqsave(&grp
->lock
, flags
);
2357 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2358 grp
->faults
[i
] -= p
->numa_faults
[i
];
2359 grp
->total_faults
-= p
->total_numa_faults
;
2362 spin_unlock_irqrestore(&grp
->lock
, flags
);
2363 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2364 put_numa_group(grp
);
2367 p
->numa_faults
= NULL
;
2372 * Got a PROT_NONE fault for a page on @node.
2374 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
2376 struct task_struct
*p
= current
;
2377 bool migrated
= flags
& TNF_MIGRATED
;
2378 int cpu_node
= task_node(current
);
2379 int local
= !!(flags
& TNF_FAULT_LOCAL
);
2380 struct numa_group
*ng
;
2383 if (!static_branch_likely(&sched_numa_balancing
))
2386 /* for example, ksmd faulting in a user's mm */
2390 /* Allocate buffer to track faults on a per-node basis */
2391 if (unlikely(!p
->numa_faults
)) {
2392 int size
= sizeof(*p
->numa_faults
) *
2393 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
2395 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
2396 if (!p
->numa_faults
)
2399 p
->total_numa_faults
= 0;
2400 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2404 * First accesses are treated as private, otherwise consider accesses
2405 * to be private if the accessing pid has not changed
2407 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
2410 priv
= cpupid_match_pid(p
, last_cpupid
);
2411 if (!priv
&& !(flags
& TNF_NO_GROUP
))
2412 task_numa_group(p
, last_cpupid
, flags
, &priv
);
2416 * If a workload spans multiple NUMA nodes, a shared fault that
2417 * occurs wholly within the set of nodes that the workload is
2418 * actively using should be counted as local. This allows the
2419 * scan rate to slow down when a workload has settled down.
2422 if (!priv
&& !local
&& ng
&& ng
->active_nodes
> 1 &&
2423 numa_is_active_node(cpu_node
, ng
) &&
2424 numa_is_active_node(mem_node
, ng
))
2427 task_numa_placement(p
);
2430 * Retry task to preferred node migration periodically, in case it
2431 * case it previously failed, or the scheduler moved us.
2433 if (time_after(jiffies
, p
->numa_migrate_retry
))
2434 numa_migrate_preferred(p
);
2437 p
->numa_pages_migrated
+= pages
;
2438 if (flags
& TNF_MIGRATE_FAIL
)
2439 p
->numa_faults_locality
[2] += pages
;
2441 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
2442 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
2443 p
->numa_faults_locality
[local
] += pages
;
2446 static void reset_ptenuma_scan(struct task_struct
*p
)
2449 * We only did a read acquisition of the mmap sem, so
2450 * p->mm->numa_scan_seq is written to without exclusive access
2451 * and the update is not guaranteed to be atomic. That's not
2452 * much of an issue though, since this is just used for
2453 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2454 * expensive, to avoid any form of compiler optimizations:
2456 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
2457 p
->mm
->numa_scan_offset
= 0;
2461 * The expensive part of numa migration is done from task_work context.
2462 * Triggered from task_tick_numa().
2464 void task_numa_work(struct callback_head
*work
)
2466 unsigned long migrate
, next_scan
, now
= jiffies
;
2467 struct task_struct
*p
= current
;
2468 struct mm_struct
*mm
= p
->mm
;
2469 u64 runtime
= p
->se
.sum_exec_runtime
;
2470 struct vm_area_struct
*vma
;
2471 unsigned long start
, end
;
2472 unsigned long nr_pte_updates
= 0;
2473 long pages
, virtpages
;
2475 SCHED_WARN_ON(p
!= container_of(work
, struct task_struct
, numa_work
));
2477 work
->next
= work
; /* protect against double add */
2479 * Who cares about NUMA placement when they're dying.
2481 * NOTE: make sure not to dereference p->mm before this check,
2482 * exit_task_work() happens _after_ exit_mm() so we could be called
2483 * without p->mm even though we still had it when we enqueued this
2486 if (p
->flags
& PF_EXITING
)
2489 if (!mm
->numa_next_scan
) {
2490 mm
->numa_next_scan
= now
+
2491 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2495 * Enforce maximal scan/migration frequency..
2497 migrate
= mm
->numa_next_scan
;
2498 if (time_before(now
, migrate
))
2501 if (p
->numa_scan_period
== 0) {
2502 p
->numa_scan_period_max
= task_scan_max(p
);
2503 p
->numa_scan_period
= task_scan_start(p
);
2506 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
2507 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
2511 * Delay this task enough that another task of this mm will likely win
2512 * the next time around.
2514 p
->node_stamp
+= 2 * TICK_NSEC
;
2516 start
= mm
->numa_scan_offset
;
2517 pages
= sysctl_numa_balancing_scan_size
;
2518 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
2519 virtpages
= pages
* 8; /* Scan up to this much virtual space */
2524 if (!down_read_trylock(&mm
->mmap_sem
))
2526 vma
= find_vma(mm
, start
);
2528 reset_ptenuma_scan(p
);
2532 for (; vma
; vma
= vma
->vm_next
) {
2533 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
2534 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
2539 * Shared library pages mapped by multiple processes are not
2540 * migrated as it is expected they are cache replicated. Avoid
2541 * hinting faults in read-only file-backed mappings or the vdso
2542 * as migrating the pages will be of marginal benefit.
2545 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
)))
2549 * Skip inaccessible VMAs to avoid any confusion between
2550 * PROT_NONE and NUMA hinting ptes
2552 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
2556 start
= max(start
, vma
->vm_start
);
2557 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
2558 end
= min(end
, vma
->vm_end
);
2559 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
2562 * Try to scan sysctl_numa_balancing_size worth of
2563 * hpages that have at least one present PTE that
2564 * is not already pte-numa. If the VMA contains
2565 * areas that are unused or already full of prot_numa
2566 * PTEs, scan up to virtpages, to skip through those
2570 pages
-= (end
- start
) >> PAGE_SHIFT
;
2571 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
2574 if (pages
<= 0 || virtpages
<= 0)
2578 } while (end
!= vma
->vm_end
);
2583 * It is possible to reach the end of the VMA list but the last few
2584 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2585 * would find the !migratable VMA on the next scan but not reset the
2586 * scanner to the start so check it now.
2589 mm
->numa_scan_offset
= start
;
2591 reset_ptenuma_scan(p
);
2592 up_read(&mm
->mmap_sem
);
2595 * Make sure tasks use at least 32x as much time to run other code
2596 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2597 * Usually update_task_scan_period slows down scanning enough; on an
2598 * overloaded system we need to limit overhead on a per task basis.
2600 if (unlikely(p
->se
.sum_exec_runtime
!= runtime
)) {
2601 u64 diff
= p
->se
.sum_exec_runtime
- runtime
;
2602 p
->node_stamp
+= 32 * diff
;
2607 * Drive the periodic memory faults..
2609 void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2611 struct callback_head
*work
= &curr
->numa_work
;
2615 * We don't care about NUMA placement if we don't have memory.
2617 if (!curr
->mm
|| (curr
->flags
& PF_EXITING
) || work
->next
!= work
)
2621 * Using runtime rather than walltime has the dual advantage that
2622 * we (mostly) drive the selection from busy threads and that the
2623 * task needs to have done some actual work before we bother with
2626 now
= curr
->se
.sum_exec_runtime
;
2627 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
2629 if (now
> curr
->node_stamp
+ period
) {
2630 if (!curr
->node_stamp
)
2631 curr
->numa_scan_period
= task_scan_start(curr
);
2632 curr
->node_stamp
+= period
;
2634 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
)) {
2635 init_task_work(work
, task_numa_work
); /* TODO: move this into sched_fork() */
2636 task_work_add(curr
, work
, true);
2642 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2646 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
2650 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
2654 #endif /* CONFIG_NUMA_BALANCING */
2657 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2659 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
2660 if (!parent_entity(se
))
2661 update_load_add(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2663 if (entity_is_task(se
)) {
2664 struct rq
*rq
= rq_of(cfs_rq
);
2666 account_numa_enqueue(rq
, task_of(se
));
2667 list_add(&se
->group_node
, &rq
->cfs_tasks
);
2670 cfs_rq
->nr_running
++;
2674 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2676 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
2677 if (!parent_entity(se
))
2678 update_load_sub(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2680 if (entity_is_task(se
)) {
2681 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
2682 list_del_init(&se
->group_node
);
2685 cfs_rq
->nr_running
--;
2689 * Signed add and clamp on underflow.
2691 * Explicitly do a load-store to ensure the intermediate value never hits
2692 * memory. This allows lockless observations without ever seeing the negative
2695 #define add_positive(_ptr, _val) do { \
2696 typeof(_ptr) ptr = (_ptr); \
2697 typeof(_val) val = (_val); \
2698 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2702 if (val < 0 && res > var) \
2705 WRITE_ONCE(*ptr, res); \
2709 * Unsigned subtract and clamp on underflow.
2711 * Explicitly do a load-store to ensure the intermediate value never hits
2712 * memory. This allows lockless observations without ever seeing the negative
2715 #define sub_positive(_ptr, _val) do { \
2716 typeof(_ptr) ptr = (_ptr); \
2717 typeof(*ptr) val = (_val); \
2718 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2722 WRITE_ONCE(*ptr, res); \
2727 * XXX we want to get rid of these helpers and use the full load resolution.
2729 static inline long se_weight(struct sched_entity
*se
)
2731 return scale_load_down(se
->load
.weight
);
2734 static inline long se_runnable(struct sched_entity
*se
)
2736 return scale_load_down(se
->runnable_weight
);
2740 enqueue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2742 cfs_rq
->runnable_weight
+= se
->runnable_weight
;
2744 cfs_rq
->avg
.runnable_load_avg
+= se
->avg
.runnable_load_avg
;
2745 cfs_rq
->avg
.runnable_load_sum
+= se_runnable(se
) * se
->avg
.runnable_load_sum
;
2749 dequeue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2751 cfs_rq
->runnable_weight
-= se
->runnable_weight
;
2753 sub_positive(&cfs_rq
->avg
.runnable_load_avg
, se
->avg
.runnable_load_avg
);
2754 sub_positive(&cfs_rq
->avg
.runnable_load_sum
,
2755 se_runnable(se
) * se
->avg
.runnable_load_sum
);
2759 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2761 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
2762 cfs_rq
->avg
.load_sum
+= se_weight(se
) * se
->avg
.load_sum
;
2766 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2768 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
2769 sub_positive(&cfs_rq
->avg
.load_sum
, se_weight(se
) * se
->avg
.load_sum
);
2773 enqueue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2775 dequeue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2777 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2779 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2782 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
2783 unsigned long weight
, unsigned long runnable
)
2786 /* commit outstanding execution time */
2787 if (cfs_rq
->curr
== se
)
2788 update_curr(cfs_rq
);
2789 account_entity_dequeue(cfs_rq
, se
);
2790 dequeue_runnable_load_avg(cfs_rq
, se
);
2792 dequeue_load_avg(cfs_rq
, se
);
2794 se
->runnable_weight
= runnable
;
2795 update_load_set(&se
->load
, weight
);
2799 u32 divider
= LOAD_AVG_MAX
- 1024 + se
->avg
.period_contrib
;
2801 se
->avg
.load_avg
= div_u64(se_weight(se
) * se
->avg
.load_sum
, divider
);
2802 se
->avg
.runnable_load_avg
=
2803 div_u64(se_runnable(se
) * se
->avg
.runnable_load_sum
, divider
);
2807 enqueue_load_avg(cfs_rq
, se
);
2809 account_entity_enqueue(cfs_rq
, se
);
2810 enqueue_runnable_load_avg(cfs_rq
, se
);
2814 void reweight_task(struct task_struct
*p
, int prio
)
2816 struct sched_entity
*se
= &p
->se
;
2817 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
2818 struct load_weight
*load
= &se
->load
;
2819 unsigned long weight
= scale_load(sched_prio_to_weight
[prio
]);
2821 reweight_entity(cfs_rq
, se
, weight
, weight
);
2822 load
->inv_weight
= sched_prio_to_wmult
[prio
];
2825 #ifdef CONFIG_FAIR_GROUP_SCHED
2828 * All this does is approximate the hierarchical proportion which includes that
2829 * global sum we all love to hate.
2831 * That is, the weight of a group entity, is the proportional share of the
2832 * group weight based on the group runqueue weights. That is:
2834 * tg->weight * grq->load.weight
2835 * ge->load.weight = ----------------------------- (1)
2836 * \Sum grq->load.weight
2838 * Now, because computing that sum is prohibitively expensive to compute (been
2839 * there, done that) we approximate it with this average stuff. The average
2840 * moves slower and therefore the approximation is cheaper and more stable.
2842 * So instead of the above, we substitute:
2844 * grq->load.weight -> grq->avg.load_avg (2)
2846 * which yields the following:
2848 * tg->weight * grq->avg.load_avg
2849 * ge->load.weight = ------------------------------ (3)
2852 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2854 * That is shares_avg, and it is right (given the approximation (2)).
2856 * The problem with it is that because the average is slow -- it was designed
2857 * to be exactly that of course -- this leads to transients in boundary
2858 * conditions. In specific, the case where the group was idle and we start the
2859 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2860 * yielding bad latency etc..
2862 * Now, in that special case (1) reduces to:
2864 * tg->weight * grq->load.weight
2865 * ge->load.weight = ----------------------------- = tg->weight (4)
2868 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2870 * So what we do is modify our approximation (3) to approach (4) in the (near)
2875 * tg->weight * grq->load.weight
2876 * --------------------------------------------------- (5)
2877 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2879 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2880 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2883 * tg->weight * grq->load.weight
2884 * ge->load.weight = ----------------------------- (6)
2889 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2890 * max(grq->load.weight, grq->avg.load_avg)
2892 * And that is shares_weight and is icky. In the (near) UP case it approaches
2893 * (4) while in the normal case it approaches (3). It consistently
2894 * overestimates the ge->load.weight and therefore:
2896 * \Sum ge->load.weight >= tg->weight
2900 static long calc_group_shares(struct cfs_rq
*cfs_rq
)
2902 long tg_weight
, tg_shares
, load
, shares
;
2903 struct task_group
*tg
= cfs_rq
->tg
;
2905 tg_shares
= READ_ONCE(tg
->shares
);
2907 load
= max(scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->avg
.load_avg
);
2909 tg_weight
= atomic_long_read(&tg
->load_avg
);
2911 /* Ensure tg_weight >= load */
2912 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
2915 shares
= (tg_shares
* load
);
2917 shares
/= tg_weight
;
2920 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2921 * of a group with small tg->shares value. It is a floor value which is
2922 * assigned as a minimum load.weight to the sched_entity representing
2923 * the group on a CPU.
2925 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2926 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2927 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2928 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2931 return clamp_t(long, shares
, MIN_SHARES
, tg_shares
);
2935 * This calculates the effective runnable weight for a group entity based on
2936 * the group entity weight calculated above.
2938 * Because of the above approximation (2), our group entity weight is
2939 * an load_avg based ratio (3). This means that it includes blocked load and
2940 * does not represent the runnable weight.
2942 * Approximate the group entity's runnable weight per ratio from the group
2945 * grq->avg.runnable_load_avg
2946 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2949 * However, analogous to above, since the avg numbers are slow, this leads to
2950 * transients in the from-idle case. Instead we use:
2952 * ge->runnable_weight = ge->load.weight *
2954 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2955 * ----------------------------------------------------- (8)
2956 * max(grq->avg.load_avg, grq->load.weight)
2958 * Where these max() serve both to use the 'instant' values to fix the slow
2959 * from-idle and avoid the /0 on to-idle, similar to (6).
2961 static long calc_group_runnable(struct cfs_rq
*cfs_rq
, long shares
)
2963 long runnable
, load_avg
;
2965 load_avg
= max(cfs_rq
->avg
.load_avg
,
2966 scale_load_down(cfs_rq
->load
.weight
));
2968 runnable
= max(cfs_rq
->avg
.runnable_load_avg
,
2969 scale_load_down(cfs_rq
->runnable_weight
));
2973 runnable
/= load_avg
;
2975 return clamp_t(long, runnable
, MIN_SHARES
, shares
);
2977 # endif /* CONFIG_SMP */
2979 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
2982 * Recomputes the group entity based on the current state of its group
2985 static void update_cfs_group(struct sched_entity
*se
)
2987 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
2988 long shares
, runnable
;
2993 if (throttled_hierarchy(gcfs_rq
))
2997 runnable
= shares
= READ_ONCE(gcfs_rq
->tg
->shares
);
2999 if (likely(se
->load
.weight
== shares
))
3002 shares
= calc_group_shares(gcfs_rq
);
3003 runnable
= calc_group_runnable(gcfs_rq
, shares
);
3006 reweight_entity(cfs_rq_of(se
), se
, shares
, runnable
);
3009 #else /* CONFIG_FAIR_GROUP_SCHED */
3010 static inline void update_cfs_group(struct sched_entity
*se
)
3013 #endif /* CONFIG_FAIR_GROUP_SCHED */
3015 static inline void cfs_rq_util_change(struct cfs_rq
*cfs_rq
)
3017 struct rq
*rq
= rq_of(cfs_rq
);
3019 if (&rq
->cfs
== cfs_rq
) {
3021 * There are a few boundary cases this might miss but it should
3022 * get called often enough that that should (hopefully) not be
3023 * a real problem -- added to that it only calls on the local
3024 * CPU, so if we enqueue remotely we'll miss an update, but
3025 * the next tick/schedule should update.
3027 * It will not get called when we go idle, because the idle
3028 * thread is a different class (!fair), nor will the utilization
3029 * number include things like RT tasks.
3031 * As is, the util number is not freq-invariant (we'd have to
3032 * implement arch_scale_freq_capacity() for that).
3036 cpufreq_update_util(rq
, 0);
3043 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
3045 static u64
decay_load(u64 val
, u64 n
)
3047 unsigned int local_n
;
3049 if (unlikely(n
> LOAD_AVG_PERIOD
* 63))
3052 /* after bounds checking we can collapse to 32-bit */
3056 * As y^PERIOD = 1/2, we can combine
3057 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
3058 * With a look-up table which covers y^n (n<PERIOD)
3060 * To achieve constant time decay_load.
3062 if (unlikely(local_n
>= LOAD_AVG_PERIOD
)) {
3063 val
>>= local_n
/ LOAD_AVG_PERIOD
;
3064 local_n
%= LOAD_AVG_PERIOD
;
3067 val
= mul_u64_u32_shr(val
, runnable_avg_yN_inv
[local_n
], 32);
3071 static u32
__accumulate_pelt_segments(u64 periods
, u32 d1
, u32 d3
)
3073 u32 c1
, c2
, c3
= d3
; /* y^0 == 1 */
3078 c1
= decay_load((u64
)d1
, periods
);
3082 * c2 = 1024 \Sum y^n
3086 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3089 c2
= LOAD_AVG_MAX
- decay_load(LOAD_AVG_MAX
, periods
) - 1024;
3091 return c1
+ c2
+ c3
;
3094 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
3097 * Accumulate the three separate parts of the sum; d1 the remainder
3098 * of the last (incomplete) period, d2 the span of full periods and d3
3099 * the remainder of the (incomplete) current period.
3104 * |<->|<----------------->|<--->|
3105 * ... |---x---|------| ... |------|-----x (now)
3108 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3111 * = u y^p + (Step 1)
3114 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
3117 static __always_inline u32
3118 accumulate_sum(u64 delta
, int cpu
, struct sched_avg
*sa
,
3119 unsigned long load
, unsigned long runnable
, int running
)
3121 unsigned long scale_freq
, scale_cpu
;
3122 u32 contrib
= (u32
)delta
; /* p == 0 -> delta < 1024 */
3125 scale_freq
= arch_scale_freq_capacity(NULL
, cpu
);
3126 scale_cpu
= arch_scale_cpu_capacity(NULL
, cpu
);
3128 delta
+= sa
->period_contrib
;
3129 periods
= delta
/ 1024; /* A period is 1024us (~1ms) */
3132 * Step 1: decay old *_sum if we crossed period boundaries.
3135 sa
->load_sum
= decay_load(sa
->load_sum
, periods
);
3136 sa
->runnable_load_sum
=
3137 decay_load(sa
->runnable_load_sum
, periods
);
3138 sa
->util_sum
= decay_load((u64
)(sa
->util_sum
), periods
);
3144 contrib
= __accumulate_pelt_segments(periods
,
3145 1024 - sa
->period_contrib
, delta
);
3147 sa
->period_contrib
= delta
;
3149 contrib
= cap_scale(contrib
, scale_freq
);
3151 sa
->load_sum
+= load
* contrib
;
3153 sa
->runnable_load_sum
+= runnable
* contrib
;
3155 sa
->util_sum
+= contrib
* scale_cpu
;
3161 * We can represent the historical contribution to runnable average as the
3162 * coefficients of a geometric series. To do this we sub-divide our runnable
3163 * history into segments of approximately 1ms (1024us); label the segment that
3164 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3166 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3168 * (now) (~1ms ago) (~2ms ago)
3170 * Let u_i denote the fraction of p_i that the entity was runnable.
3172 * We then designate the fractions u_i as our co-efficients, yielding the
3173 * following representation of historical load:
3174 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3176 * We choose y based on the with of a reasonably scheduling period, fixing:
3179 * This means that the contribution to load ~32ms ago (u_32) will be weighted
3180 * approximately half as much as the contribution to load within the last ms
3183 * When a period "rolls over" and we have new u_0`, multiplying the previous
3184 * sum again by y is sufficient to update:
3185 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3186 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3188 static __always_inline
int
3189 ___update_load_sum(u64 now
, int cpu
, struct sched_avg
*sa
,
3190 unsigned long load
, unsigned long runnable
, int running
)
3194 delta
= now
- sa
->last_update_time
;
3196 * This should only happen when time goes backwards, which it
3197 * unfortunately does during sched clock init when we swap over to TSC.
3199 if ((s64
)delta
< 0) {
3200 sa
->last_update_time
= now
;
3205 * Use 1024ns as the unit of measurement since it's a reasonable
3206 * approximation of 1us and fast to compute.
3212 sa
->last_update_time
+= delta
<< 10;
3215 * running is a subset of runnable (weight) so running can't be set if
3216 * runnable is clear. But there are some corner cases where the current
3217 * se has been already dequeued but cfs_rq->curr still points to it.
3218 * This means that weight will be 0 but not running for a sched_entity
3219 * but also for a cfs_rq if the latter becomes idle. As an example,
3220 * this happens during idle_balance() which calls
3221 * update_blocked_averages()
3224 runnable
= running
= 0;
3227 * Now we know we crossed measurement unit boundaries. The *_avg
3228 * accrues by two steps:
3230 * Step 1: accumulate *_sum since last_update_time. If we haven't
3231 * crossed period boundaries, finish.
3233 if (!accumulate_sum(delta
, cpu
, sa
, load
, runnable
, running
))
3239 static __always_inline
void
3240 ___update_load_avg(struct sched_avg
*sa
, unsigned long load
, unsigned long runnable
)
3242 u32 divider
= LOAD_AVG_MAX
- 1024 + sa
->period_contrib
;
3245 * Step 2: update *_avg.
3247 sa
->load_avg
= div_u64(load
* sa
->load_sum
, divider
);
3248 sa
->runnable_load_avg
= div_u64(runnable
* sa
->runnable_load_sum
, divider
);
3249 sa
->util_avg
= sa
->util_sum
/ divider
;
3256 * se_runnable() == se_weight()
3258 * group: [ see update_cfs_group() ]
3259 * se_weight() = tg->weight * grq->load_avg / tg->load_avg
3260 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
3262 * load_sum := runnable_sum
3263 * load_avg = se_weight(se) * runnable_avg
3265 * runnable_load_sum := runnable_sum
3266 * runnable_load_avg = se_runnable(se) * runnable_avg
3268 * XXX collapse load_sum and runnable_load_sum
3272 * load_sum = \Sum se_weight(se) * se->avg.load_sum
3273 * load_avg = \Sum se->avg.load_avg
3275 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
3276 * runnable_load_avg = \Sum se->avg.runable_load_avg
3280 __update_load_avg_blocked_se(u64 now
, int cpu
, struct sched_entity
*se
)
3282 if (entity_is_task(se
))
3283 se
->runnable_weight
= se
->load
.weight
;
3285 if (___update_load_sum(now
, cpu
, &se
->avg
, 0, 0, 0)) {
3286 ___update_load_avg(&se
->avg
, se_weight(se
), se_runnable(se
));
3294 __update_load_avg_se(u64 now
, int cpu
, struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3296 if (entity_is_task(se
))
3297 se
->runnable_weight
= se
->load
.weight
;
3299 if (___update_load_sum(now
, cpu
, &se
->avg
, !!se
->on_rq
, !!se
->on_rq
,
3300 cfs_rq
->curr
== se
)) {
3302 ___update_load_avg(&se
->avg
, se_weight(se
), se_runnable(se
));
3310 __update_load_avg_cfs_rq(u64 now
, int cpu
, struct cfs_rq
*cfs_rq
)
3312 if (___update_load_sum(now
, cpu
, &cfs_rq
->avg
,
3313 scale_load_down(cfs_rq
->load
.weight
),
3314 scale_load_down(cfs_rq
->runnable_weight
),
3315 cfs_rq
->curr
!= NULL
)) {
3317 ___update_load_avg(&cfs_rq
->avg
, 1, 1);
3324 #ifdef CONFIG_FAIR_GROUP_SCHED
3326 * update_tg_load_avg - update the tg's load avg
3327 * @cfs_rq: the cfs_rq whose avg changed
3328 * @force: update regardless of how small the difference
3330 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3331 * However, because tg->load_avg is a global value there are performance
3334 * In order to avoid having to look at the other cfs_rq's, we use a
3335 * differential update where we store the last value we propagated. This in
3336 * turn allows skipping updates if the differential is 'small'.
3338 * Updating tg's load_avg is necessary before update_cfs_share().
3340 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
3342 long delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
3345 * No need to update load_avg for root_task_group as it is not used.
3347 if (cfs_rq
->tg
== &root_task_group
)
3350 if (force
|| abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
3351 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
3352 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
3357 * Called within set_task_rq() right before setting a task's cpu. The
3358 * caller only guarantees p->pi_lock is held; no other assumptions,
3359 * including the state of rq->lock, should be made.
3361 void set_task_rq_fair(struct sched_entity
*se
,
3362 struct cfs_rq
*prev
, struct cfs_rq
*next
)
3364 u64 p_last_update_time
;
3365 u64 n_last_update_time
;
3367 if (!sched_feat(ATTACH_AGE_LOAD
))
3371 * We are supposed to update the task to "current" time, then its up to
3372 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3373 * getting what current time is, so simply throw away the out-of-date
3374 * time. This will result in the wakee task is less decayed, but giving
3375 * the wakee more load sounds not bad.
3377 if (!(se
->avg
.last_update_time
&& prev
))
3380 #ifndef CONFIG_64BIT
3382 u64 p_last_update_time_copy
;
3383 u64 n_last_update_time_copy
;
3386 p_last_update_time_copy
= prev
->load_last_update_time_copy
;
3387 n_last_update_time_copy
= next
->load_last_update_time_copy
;
3391 p_last_update_time
= prev
->avg
.last_update_time
;
3392 n_last_update_time
= next
->avg
.last_update_time
;
3394 } while (p_last_update_time
!= p_last_update_time_copy
||
3395 n_last_update_time
!= n_last_update_time_copy
);
3398 p_last_update_time
= prev
->avg
.last_update_time
;
3399 n_last_update_time
= next
->avg
.last_update_time
;
3401 __update_load_avg_blocked_se(p_last_update_time
, cpu_of(rq_of(prev
)), se
);
3402 se
->avg
.last_update_time
= n_last_update_time
;
3407 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3408 * propagate its contribution. The key to this propagation is the invariant
3409 * that for each group:
3411 * ge->avg == grq->avg (1)
3413 * _IFF_ we look at the pure running and runnable sums. Because they
3414 * represent the very same entity, just at different points in the hierarchy.
3416 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3417 * sum over (but still wrong, because the group entity and group rq do not have
3418 * their PELT windows aligned).
3420 * However, update_tg_cfs_runnable() is more complex. So we have:
3422 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3424 * And since, like util, the runnable part should be directly transferable,
3425 * the following would _appear_ to be the straight forward approach:
3427 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3429 * And per (1) we have:
3431 * ge->avg.runnable_avg == grq->avg.runnable_avg
3435 * ge->load.weight * grq->avg.load_avg
3436 * ge->avg.load_avg = ----------------------------------- (4)
3439 * Except that is wrong!
3441 * Because while for entities historical weight is not important and we
3442 * really only care about our future and therefore can consider a pure
3443 * runnable sum, runqueues can NOT do this.
3445 * We specifically want runqueues to have a load_avg that includes
3446 * historical weights. Those represent the blocked load, the load we expect
3447 * to (shortly) return to us. This only works by keeping the weights as
3448 * integral part of the sum. We therefore cannot decompose as per (3).
3450 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3451 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3452 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3453 * runnable section of these tasks overlap (or not). If they were to perfectly
3454 * align the rq as a whole would be runnable 2/3 of the time. If however we
3455 * always have at least 1 runnable task, the rq as a whole is always runnable.
3457 * So we'll have to approximate.. :/
3459 * Given the constraint:
3461 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3463 * We can construct a rule that adds runnable to a rq by assuming minimal
3466 * On removal, we'll assume each task is equally runnable; which yields:
3468 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3470 * XXX: only do this for the part of runnable > running ?
3475 update_tg_cfs_util(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3477 long delta
= gcfs_rq
->avg
.util_avg
- se
->avg
.util_avg
;
3479 /* Nothing to update */
3484 * The relation between sum and avg is:
3486 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3488 * however, the PELT windows are not aligned between grq and gse.
3491 /* Set new sched_entity's utilization */
3492 se
->avg
.util_avg
= gcfs_rq
->avg
.util_avg
;
3493 se
->avg
.util_sum
= se
->avg
.util_avg
* LOAD_AVG_MAX
;
3495 /* Update parent cfs_rq utilization */
3496 add_positive(&cfs_rq
->avg
.util_avg
, delta
);
3497 cfs_rq
->avg
.util_sum
= cfs_rq
->avg
.util_avg
* LOAD_AVG_MAX
;
3501 update_tg_cfs_runnable(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3503 long delta_avg
, running_sum
, runnable_sum
= gcfs_rq
->prop_runnable_sum
;
3504 unsigned long runnable_load_avg
, load_avg
;
3505 u64 runnable_load_sum
, load_sum
= 0;
3511 gcfs_rq
->prop_runnable_sum
= 0;
3513 if (runnable_sum
>= 0) {
3515 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3516 * the CPU is saturated running == runnable.
3518 runnable_sum
+= se
->avg
.load_sum
;
3519 runnable_sum
= min(runnable_sum
, (long)LOAD_AVG_MAX
);
3522 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3523 * assuming all tasks are equally runnable.
3525 if (scale_load_down(gcfs_rq
->load
.weight
)) {
3526 load_sum
= div_s64(gcfs_rq
->avg
.load_sum
,
3527 scale_load_down(gcfs_rq
->load
.weight
));
3530 /* But make sure to not inflate se's runnable */
3531 runnable_sum
= min(se
->avg
.load_sum
, load_sum
);
3535 * runnable_sum can't be lower than running_sum
3536 * As running sum is scale with cpu capacity wehreas the runnable sum
3537 * is not we rescale running_sum 1st
3539 running_sum
= se
->avg
.util_sum
/
3540 arch_scale_cpu_capacity(NULL
, cpu_of(rq_of(cfs_rq
)));
3541 runnable_sum
= max(runnable_sum
, running_sum
);
3543 load_sum
= (s64
)se_weight(se
) * runnable_sum
;
3544 load_avg
= div_s64(load_sum
, LOAD_AVG_MAX
);
3546 delta_sum
= load_sum
- (s64
)se_weight(se
) * se
->avg
.load_sum
;
3547 delta_avg
= load_avg
- se
->avg
.load_avg
;
3549 se
->avg
.load_sum
= runnable_sum
;
3550 se
->avg
.load_avg
= load_avg
;
3551 add_positive(&cfs_rq
->avg
.load_avg
, delta_avg
);
3552 add_positive(&cfs_rq
->avg
.load_sum
, delta_sum
);
3554 runnable_load_sum
= (s64
)se_runnable(se
) * runnable_sum
;
3555 runnable_load_avg
= div_s64(runnable_load_sum
, LOAD_AVG_MAX
);
3556 delta_sum
= runnable_load_sum
- se_weight(se
) * se
->avg
.runnable_load_sum
;
3557 delta_avg
= runnable_load_avg
- se
->avg
.runnable_load_avg
;
3559 se
->avg
.runnable_load_sum
= runnable_sum
;
3560 se
->avg
.runnable_load_avg
= runnable_load_avg
;
3563 add_positive(&cfs_rq
->avg
.runnable_load_avg
, delta_avg
);
3564 add_positive(&cfs_rq
->avg
.runnable_load_sum
, delta_sum
);
3568 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
)
3570 cfs_rq
->propagate
= 1;
3571 cfs_rq
->prop_runnable_sum
+= runnable_sum
;
3574 /* Update task and its cfs_rq load average */
3575 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3577 struct cfs_rq
*cfs_rq
, *gcfs_rq
;
3579 if (entity_is_task(se
))
3582 gcfs_rq
= group_cfs_rq(se
);
3583 if (!gcfs_rq
->propagate
)
3586 gcfs_rq
->propagate
= 0;
3588 cfs_rq
= cfs_rq_of(se
);
3590 add_tg_cfs_propagate(cfs_rq
, gcfs_rq
->prop_runnable_sum
);
3592 update_tg_cfs_util(cfs_rq
, se
, gcfs_rq
);
3593 update_tg_cfs_runnable(cfs_rq
, se
, gcfs_rq
);
3599 * Check if we need to update the load and the utilization of a blocked
3602 static inline bool skip_blocked_update(struct sched_entity
*se
)
3604 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3607 * If sched_entity still have not zero load or utilization, we have to
3610 if (se
->avg
.load_avg
|| se
->avg
.util_avg
)
3614 * If there is a pending propagation, we have to update the load and
3615 * the utilization of the sched_entity:
3617 if (gcfs_rq
->propagate
)
3621 * Otherwise, the load and the utilization of the sched_entity is
3622 * already zero and there is no pending propagation, so it will be a
3623 * waste of time to try to decay it:
3628 #else /* CONFIG_FAIR_GROUP_SCHED */
3630 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
) {}
3632 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3637 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
) {}
3639 #endif /* CONFIG_FAIR_GROUP_SCHED */
3642 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3643 * @now: current time, as per cfs_rq_clock_task()
3644 * @cfs_rq: cfs_rq to update
3646 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3647 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3648 * post_init_entity_util_avg().
3650 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3652 * Returns true if the load decayed or we removed load.
3654 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3655 * call update_tg_load_avg() when this function returns true.
3658 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
3660 unsigned long removed_load
= 0, removed_util
= 0, removed_runnable_sum
= 0;
3661 struct sched_avg
*sa
= &cfs_rq
->avg
;
3664 if (cfs_rq
->removed
.nr
) {
3666 u32 divider
= LOAD_AVG_MAX
- 1024 + sa
->period_contrib
;
3668 raw_spin_lock(&cfs_rq
->removed
.lock
);
3669 swap(cfs_rq
->removed
.util_avg
, removed_util
);
3670 swap(cfs_rq
->removed
.load_avg
, removed_load
);
3671 swap(cfs_rq
->removed
.runnable_sum
, removed_runnable_sum
);
3672 cfs_rq
->removed
.nr
= 0;
3673 raw_spin_unlock(&cfs_rq
->removed
.lock
);
3676 sub_positive(&sa
->load_avg
, r
);
3677 sub_positive(&sa
->load_sum
, r
* divider
);
3680 sub_positive(&sa
->util_avg
, r
);
3681 sub_positive(&sa
->util_sum
, r
* divider
);
3683 add_tg_cfs_propagate(cfs_rq
, -(long)removed_runnable_sum
);
3688 decayed
|= __update_load_avg_cfs_rq(now
, cpu_of(rq_of(cfs_rq
)), cfs_rq
);
3690 #ifndef CONFIG_64BIT
3692 cfs_rq
->load_last_update_time_copy
= sa
->last_update_time
;
3696 cfs_rq_util_change(cfs_rq
);
3702 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3703 * @cfs_rq: cfs_rq to attach to
3704 * @se: sched_entity to attach
3706 * Must call update_cfs_rq_load_avg() before this, since we rely on
3707 * cfs_rq->avg.last_update_time being current.
3709 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3711 u32 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3714 * When we attach the @se to the @cfs_rq, we must align the decay
3715 * window because without that, really weird and wonderful things can
3720 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
3721 se
->avg
.period_contrib
= cfs_rq
->avg
.period_contrib
;
3724 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3725 * period_contrib. This isn't strictly correct, but since we're
3726 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3729 se
->avg
.util_sum
= se
->avg
.util_avg
* divider
;
3731 se
->avg
.load_sum
= divider
;
3732 if (se_weight(se
)) {
3734 div_u64(se
->avg
.load_avg
* se
->avg
.load_sum
, se_weight(se
));
3737 se
->avg
.runnable_load_sum
= se
->avg
.load_sum
;
3739 enqueue_load_avg(cfs_rq
, se
);
3740 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
3741 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
3743 add_tg_cfs_propagate(cfs_rq
, se
->avg
.load_sum
);
3745 cfs_rq_util_change(cfs_rq
);
3749 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3750 * @cfs_rq: cfs_rq to detach from
3751 * @se: sched_entity to detach
3753 * Must call update_cfs_rq_load_avg() before this, since we rely on
3754 * cfs_rq->avg.last_update_time being current.
3756 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3758 dequeue_load_avg(cfs_rq
, se
);
3759 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
3760 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
3762 add_tg_cfs_propagate(cfs_rq
, -se
->avg
.load_sum
);
3764 cfs_rq_util_change(cfs_rq
);
3768 * Optional action to be done while updating the load average
3770 #define UPDATE_TG 0x1
3771 #define SKIP_AGE_LOAD 0x2
3772 #define DO_ATTACH 0x4
3774 /* Update task and its cfs_rq load average */
3775 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3777 u64 now
= cfs_rq_clock_task(cfs_rq
);
3778 struct rq
*rq
= rq_of(cfs_rq
);
3779 int cpu
= cpu_of(rq
);
3783 * Track task load average for carrying it to new CPU after migrated, and
3784 * track group sched_entity load average for task_h_load calc in migration
3786 if (se
->avg
.last_update_time
&& !(flags
& SKIP_AGE_LOAD
))
3787 __update_load_avg_se(now
, cpu
, cfs_rq
, se
);
3789 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
);
3790 decayed
|= propagate_entity_load_avg(se
);
3792 if (!se
->avg
.last_update_time
&& (flags
& DO_ATTACH
)) {
3794 attach_entity_load_avg(cfs_rq
, se
);
3795 update_tg_load_avg(cfs_rq
, 0);
3797 } else if (decayed
&& (flags
& UPDATE_TG
))
3798 update_tg_load_avg(cfs_rq
, 0);
3801 #ifndef CONFIG_64BIT
3802 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3804 u64 last_update_time_copy
;
3805 u64 last_update_time
;
3808 last_update_time_copy
= cfs_rq
->load_last_update_time_copy
;
3810 last_update_time
= cfs_rq
->avg
.last_update_time
;
3811 } while (last_update_time
!= last_update_time_copy
);
3813 return last_update_time
;
3816 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3818 return cfs_rq
->avg
.last_update_time
;
3823 * Synchronize entity load avg of dequeued entity without locking
3826 void sync_entity_load_avg(struct sched_entity
*se
)
3828 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3829 u64 last_update_time
;
3831 last_update_time
= cfs_rq_last_update_time(cfs_rq
);
3832 __update_load_avg_blocked_se(last_update_time
, cpu_of(rq_of(cfs_rq
)), se
);
3836 * Task first catches up with cfs_rq, and then subtract
3837 * itself from the cfs_rq (task must be off the queue now).
3839 void remove_entity_load_avg(struct sched_entity
*se
)
3841 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3842 unsigned long flags
;
3845 * tasks cannot exit without having gone through wake_up_new_task() ->
3846 * post_init_entity_util_avg() which will have added things to the
3847 * cfs_rq, so we can remove unconditionally.
3849 * Similarly for groups, they will have passed through
3850 * post_init_entity_util_avg() before unregister_sched_fair_group()
3854 sync_entity_load_avg(se
);
3856 raw_spin_lock_irqsave(&cfs_rq
->removed
.lock
, flags
);
3857 ++cfs_rq
->removed
.nr
;
3858 cfs_rq
->removed
.util_avg
+= se
->avg
.util_avg
;
3859 cfs_rq
->removed
.load_avg
+= se
->avg
.load_avg
;
3860 cfs_rq
->removed
.runnable_sum
+= se
->avg
.load_sum
; /* == runnable_sum */
3861 raw_spin_unlock_irqrestore(&cfs_rq
->removed
.lock
, flags
);
3864 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq
*cfs_rq
)
3866 return cfs_rq
->avg
.runnable_load_avg
;
3869 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
3871 return cfs_rq
->avg
.load_avg
;
3874 static int idle_balance(struct rq
*this_rq
, struct rq_flags
*rf
);
3876 #else /* CONFIG_SMP */
3879 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
3884 #define UPDATE_TG 0x0
3885 #define SKIP_AGE_LOAD 0x0
3886 #define DO_ATTACH 0x0
3888 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int not_used1
)
3890 cfs_rq_util_change(cfs_rq
);
3893 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
3896 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3898 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3900 static inline int idle_balance(struct rq
*rq
, struct rq_flags
*rf
)
3905 #endif /* CONFIG_SMP */
3907 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3909 #ifdef CONFIG_SCHED_DEBUG
3910 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
3915 if (d
> 3*sysctl_sched_latency
)
3916 schedstat_inc(cfs_rq
->nr_spread_over
);
3921 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
3923 u64 vruntime
= cfs_rq
->min_vruntime
;
3926 * The 'current' period is already promised to the current tasks,
3927 * however the extra weight of the new task will slow them down a
3928 * little, place the new task so that it fits in the slot that
3929 * stays open at the end.
3931 if (initial
&& sched_feat(START_DEBIT
))
3932 vruntime
+= sched_vslice(cfs_rq
, se
);
3934 /* sleeps up to a single latency don't count. */
3936 unsigned long thresh
= sysctl_sched_latency
;
3939 * Halve their sleep time's effect, to allow
3940 * for a gentler effect of sleepers:
3942 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
3948 /* ensure we never gain time by being placed backwards. */
3949 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
3952 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
3954 static inline void check_schedstat_required(void)
3956 #ifdef CONFIG_SCHEDSTATS
3957 if (schedstat_enabled())
3960 /* Force schedstat enabled if a dependent tracepoint is active */
3961 if (trace_sched_stat_wait_enabled() ||
3962 trace_sched_stat_sleep_enabled() ||
3963 trace_sched_stat_iowait_enabled() ||
3964 trace_sched_stat_blocked_enabled() ||
3965 trace_sched_stat_runtime_enabled()) {
3966 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3967 "stat_blocked and stat_runtime require the "
3968 "kernel parameter schedstats=enable or "
3969 "kernel.sched_schedstats=1\n");
3980 * update_min_vruntime()
3981 * vruntime -= min_vruntime
3985 * update_min_vruntime()
3986 * vruntime += min_vruntime
3988 * this way the vruntime transition between RQs is done when both
3989 * min_vruntime are up-to-date.
3993 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3994 * vruntime -= min_vruntime
3998 * update_min_vruntime()
3999 * vruntime += min_vruntime
4001 * this way we don't have the most up-to-date min_vruntime on the originating
4002 * CPU and an up-to-date min_vruntime on the destination CPU.
4006 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4008 bool renorm
= !(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATED
);
4009 bool curr
= cfs_rq
->curr
== se
;
4012 * If we're the current task, we must renormalise before calling
4016 se
->vruntime
+= cfs_rq
->min_vruntime
;
4018 update_curr(cfs_rq
);
4021 * Otherwise, renormalise after, such that we're placed at the current
4022 * moment in time, instead of some random moment in the past. Being
4023 * placed in the past could significantly boost this task to the
4024 * fairness detriment of existing tasks.
4026 if (renorm
&& !curr
)
4027 se
->vruntime
+= cfs_rq
->min_vruntime
;
4030 * When enqueuing a sched_entity, we must:
4031 * - Update loads to have both entity and cfs_rq synced with now.
4032 * - Add its load to cfs_rq->runnable_avg
4033 * - For group_entity, update its weight to reflect the new share of
4035 * - Add its new weight to cfs_rq->load.weight
4037 update_load_avg(cfs_rq
, se
, UPDATE_TG
| DO_ATTACH
);
4038 update_cfs_group(se
);
4039 enqueue_runnable_load_avg(cfs_rq
, se
);
4040 account_entity_enqueue(cfs_rq
, se
);
4042 if (flags
& ENQUEUE_WAKEUP
)
4043 place_entity(cfs_rq
, se
, 0);
4045 check_schedstat_required();
4046 update_stats_enqueue(cfs_rq
, se
, flags
);
4047 check_spread(cfs_rq
, se
);
4049 __enqueue_entity(cfs_rq
, se
);
4052 if (cfs_rq
->nr_running
== 1) {
4053 list_add_leaf_cfs_rq(cfs_rq
);
4054 check_enqueue_throttle(cfs_rq
);
4058 static void __clear_buddies_last(struct sched_entity
*se
)
4060 for_each_sched_entity(se
) {
4061 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4062 if (cfs_rq
->last
!= se
)
4065 cfs_rq
->last
= NULL
;
4069 static void __clear_buddies_next(struct sched_entity
*se
)
4071 for_each_sched_entity(se
) {
4072 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4073 if (cfs_rq
->next
!= se
)
4076 cfs_rq
->next
= NULL
;
4080 static void __clear_buddies_skip(struct sched_entity
*se
)
4082 for_each_sched_entity(se
) {
4083 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4084 if (cfs_rq
->skip
!= se
)
4087 cfs_rq
->skip
= NULL
;
4091 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4093 if (cfs_rq
->last
== se
)
4094 __clear_buddies_last(se
);
4096 if (cfs_rq
->next
== se
)
4097 __clear_buddies_next(se
);
4099 if (cfs_rq
->skip
== se
)
4100 __clear_buddies_skip(se
);
4103 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4106 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4109 * Update run-time statistics of the 'current'.
4111 update_curr(cfs_rq
);
4114 * When dequeuing a sched_entity, we must:
4115 * - Update loads to have both entity and cfs_rq synced with now.
4116 * - Substract its load from the cfs_rq->runnable_avg.
4117 * - Substract its previous weight from cfs_rq->load.weight.
4118 * - For group entity, update its weight to reflect the new share
4119 * of its group cfs_rq.
4121 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4122 dequeue_runnable_load_avg(cfs_rq
, se
);
4124 update_stats_dequeue(cfs_rq
, se
, flags
);
4126 clear_buddies(cfs_rq
, se
);
4128 if (se
!= cfs_rq
->curr
)
4129 __dequeue_entity(cfs_rq
, se
);
4131 account_entity_dequeue(cfs_rq
, se
);
4134 * Normalize after update_curr(); which will also have moved
4135 * min_vruntime if @se is the one holding it back. But before doing
4136 * update_min_vruntime() again, which will discount @se's position and
4137 * can move min_vruntime forward still more.
4139 if (!(flags
& DEQUEUE_SLEEP
))
4140 se
->vruntime
-= cfs_rq
->min_vruntime
;
4142 /* return excess runtime on last dequeue */
4143 return_cfs_rq_runtime(cfs_rq
);
4145 update_cfs_group(se
);
4148 * Now advance min_vruntime if @se was the entity holding it back,
4149 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4150 * put back on, and if we advance min_vruntime, we'll be placed back
4151 * further than we started -- ie. we'll be penalized.
4153 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) == DEQUEUE_SAVE
)
4154 update_min_vruntime(cfs_rq
);
4158 * Preempt the current task with a newly woken task if needed:
4161 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4163 unsigned long ideal_runtime
, delta_exec
;
4164 struct sched_entity
*se
;
4167 ideal_runtime
= sched_slice(cfs_rq
, curr
);
4168 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
4169 if (delta_exec
> ideal_runtime
) {
4170 resched_curr(rq_of(cfs_rq
));
4172 * The current task ran long enough, ensure it doesn't get
4173 * re-elected due to buddy favours.
4175 clear_buddies(cfs_rq
, curr
);
4180 * Ensure that a task that missed wakeup preemption by a
4181 * narrow margin doesn't have to wait for a full slice.
4182 * This also mitigates buddy induced latencies under load.
4184 if (delta_exec
< sysctl_sched_min_granularity
)
4187 se
= __pick_first_entity(cfs_rq
);
4188 delta
= curr
->vruntime
- se
->vruntime
;
4193 if (delta
> ideal_runtime
)
4194 resched_curr(rq_of(cfs_rq
));
4198 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4200 /* 'current' is not kept within the tree. */
4203 * Any task has to be enqueued before it get to execute on
4204 * a CPU. So account for the time it spent waiting on the
4207 update_stats_wait_end(cfs_rq
, se
);
4208 __dequeue_entity(cfs_rq
, se
);
4209 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4212 update_stats_curr_start(cfs_rq
, se
);
4216 * Track our maximum slice length, if the CPU's load is at
4217 * least twice that of our own weight (i.e. dont track it
4218 * when there are only lesser-weight tasks around):
4220 if (schedstat_enabled() && rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
4221 schedstat_set(se
->statistics
.slice_max
,
4222 max((u64
)schedstat_val(se
->statistics
.slice_max
),
4223 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
));
4226 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
4230 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
4233 * Pick the next process, keeping these things in mind, in this order:
4234 * 1) keep things fair between processes/task groups
4235 * 2) pick the "next" process, since someone really wants that to run
4236 * 3) pick the "last" process, for cache locality
4237 * 4) do not run the "skip" process, if something else is available
4239 static struct sched_entity
*
4240 pick_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4242 struct sched_entity
*left
= __pick_first_entity(cfs_rq
);
4243 struct sched_entity
*se
;
4246 * If curr is set we have to see if its left of the leftmost entity
4247 * still in the tree, provided there was anything in the tree at all.
4249 if (!left
|| (curr
&& entity_before(curr
, left
)))
4252 se
= left
; /* ideally we run the leftmost entity */
4255 * Avoid running the skip buddy, if running something else can
4256 * be done without getting too unfair.
4258 if (cfs_rq
->skip
== se
) {
4259 struct sched_entity
*second
;
4262 second
= __pick_first_entity(cfs_rq
);
4264 second
= __pick_next_entity(se
);
4265 if (!second
|| (curr
&& entity_before(curr
, second
)))
4269 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
4274 * Prefer last buddy, try to return the CPU to a preempted task.
4276 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
4280 * Someone really wants this to run. If it's not unfair, run it.
4282 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
4285 clear_buddies(cfs_rq
, se
);
4290 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4292 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
4295 * If still on the runqueue then deactivate_task()
4296 * was not called and update_curr() has to be done:
4299 update_curr(cfs_rq
);
4301 /* throttle cfs_rqs exceeding runtime */
4302 check_cfs_rq_runtime(cfs_rq
);
4304 check_spread(cfs_rq
, prev
);
4307 update_stats_wait_start(cfs_rq
, prev
);
4308 /* Put 'current' back into the tree. */
4309 __enqueue_entity(cfs_rq
, prev
);
4310 /* in !on_rq case, update occurred at dequeue */
4311 update_load_avg(cfs_rq
, prev
, 0);
4313 cfs_rq
->curr
= NULL
;
4317 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
4320 * Update run-time statistics of the 'current'.
4322 update_curr(cfs_rq
);
4325 * Ensure that runnable average is periodically updated.
4327 update_load_avg(cfs_rq
, curr
, UPDATE_TG
);
4328 update_cfs_group(curr
);
4330 #ifdef CONFIG_SCHED_HRTICK
4332 * queued ticks are scheduled to match the slice, so don't bother
4333 * validating it and just reschedule.
4336 resched_curr(rq_of(cfs_rq
));
4340 * don't let the period tick interfere with the hrtick preemption
4342 if (!sched_feat(DOUBLE_TICK
) &&
4343 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
4347 if (cfs_rq
->nr_running
> 1)
4348 check_preempt_tick(cfs_rq
, curr
);
4352 /**************************************************
4353 * CFS bandwidth control machinery
4356 #ifdef CONFIG_CFS_BANDWIDTH
4358 #ifdef HAVE_JUMP_LABEL
4359 static struct static_key __cfs_bandwidth_used
;
4361 static inline bool cfs_bandwidth_used(void)
4363 return static_key_false(&__cfs_bandwidth_used
);
4366 void cfs_bandwidth_usage_inc(void)
4368 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used
);
4371 void cfs_bandwidth_usage_dec(void)
4373 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used
);
4375 #else /* HAVE_JUMP_LABEL */
4376 static bool cfs_bandwidth_used(void)
4381 void cfs_bandwidth_usage_inc(void) {}
4382 void cfs_bandwidth_usage_dec(void) {}
4383 #endif /* HAVE_JUMP_LABEL */
4386 * default period for cfs group bandwidth.
4387 * default: 0.1s, units: nanoseconds
4389 static inline u64
default_cfs_period(void)
4391 return 100000000ULL;
4394 static inline u64
sched_cfs_bandwidth_slice(void)
4396 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
4400 * Replenish runtime according to assigned quota and update expiration time.
4401 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4402 * additional synchronization around rq->lock.
4404 * requires cfs_b->lock
4406 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
4410 if (cfs_b
->quota
== RUNTIME_INF
)
4413 now
= sched_clock_cpu(smp_processor_id());
4414 cfs_b
->runtime
= cfs_b
->quota
;
4415 cfs_b
->runtime_expires
= now
+ ktime_to_ns(cfs_b
->period
);
4418 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
4420 return &tg
->cfs_bandwidth
;
4423 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4424 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
4426 if (unlikely(cfs_rq
->throttle_count
))
4427 return cfs_rq
->throttled_clock_task
- cfs_rq
->throttled_clock_task_time
;
4429 return rq_clock_task(rq_of(cfs_rq
)) - cfs_rq
->throttled_clock_task_time
;
4432 /* returns 0 on failure to allocate runtime */
4433 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4435 struct task_group
*tg
= cfs_rq
->tg
;
4436 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
4437 u64 amount
= 0, min_amount
, expires
;
4439 /* note: this is a positive sum as runtime_remaining <= 0 */
4440 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
4442 raw_spin_lock(&cfs_b
->lock
);
4443 if (cfs_b
->quota
== RUNTIME_INF
)
4444 amount
= min_amount
;
4446 start_cfs_bandwidth(cfs_b
);
4448 if (cfs_b
->runtime
> 0) {
4449 amount
= min(cfs_b
->runtime
, min_amount
);
4450 cfs_b
->runtime
-= amount
;
4454 expires
= cfs_b
->runtime_expires
;
4455 raw_spin_unlock(&cfs_b
->lock
);
4457 cfs_rq
->runtime_remaining
+= amount
;
4459 * we may have advanced our local expiration to account for allowed
4460 * spread between our sched_clock and the one on which runtime was
4463 if ((s64
)(expires
- cfs_rq
->runtime_expires
) > 0)
4464 cfs_rq
->runtime_expires
= expires
;
4466 return cfs_rq
->runtime_remaining
> 0;
4470 * Note: This depends on the synchronization provided by sched_clock and the
4471 * fact that rq->clock snapshots this value.
4473 static void expire_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4475 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4477 /* if the deadline is ahead of our clock, nothing to do */
4478 if (likely((s64
)(rq_clock(rq_of(cfs_rq
)) - cfs_rq
->runtime_expires
) < 0))
4481 if (cfs_rq
->runtime_remaining
< 0)
4485 * If the local deadline has passed we have to consider the
4486 * possibility that our sched_clock is 'fast' and the global deadline
4487 * has not truly expired.
4489 * Fortunately we can check determine whether this the case by checking
4490 * whether the global deadline has advanced. It is valid to compare
4491 * cfs_b->runtime_expires without any locks since we only care about
4492 * exact equality, so a partial write will still work.
4495 if (cfs_rq
->runtime_expires
!= cfs_b
->runtime_expires
) {
4496 /* extend local deadline, drift is bounded above by 2 ticks */
4497 cfs_rq
->runtime_expires
+= TICK_NSEC
;
4499 /* global deadline is ahead, expiration has passed */
4500 cfs_rq
->runtime_remaining
= 0;
4504 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4506 /* dock delta_exec before expiring quota (as it could span periods) */
4507 cfs_rq
->runtime_remaining
-= delta_exec
;
4508 expire_cfs_rq_runtime(cfs_rq
);
4510 if (likely(cfs_rq
->runtime_remaining
> 0))
4514 * if we're unable to extend our runtime we resched so that the active
4515 * hierarchy can be throttled
4517 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
4518 resched_curr(rq_of(cfs_rq
));
4521 static __always_inline
4522 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4524 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
4527 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
4530 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4532 return cfs_bandwidth_used() && cfs_rq
->throttled
;
4535 /* check whether cfs_rq, or any parent, is throttled */
4536 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4538 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
4542 * Ensure that neither of the group entities corresponding to src_cpu or
4543 * dest_cpu are members of a throttled hierarchy when performing group
4544 * load-balance operations.
4546 static inline int throttled_lb_pair(struct task_group
*tg
,
4547 int src_cpu
, int dest_cpu
)
4549 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
4551 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
4552 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
4554 return throttled_hierarchy(src_cfs_rq
) ||
4555 throttled_hierarchy(dest_cfs_rq
);
4558 /* updated child weight may affect parent so we have to do this bottom up */
4559 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
4561 struct rq
*rq
= data
;
4562 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4564 cfs_rq
->throttle_count
--;
4565 if (!cfs_rq
->throttle_count
) {
4566 /* adjust cfs_rq_clock_task() */
4567 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
4568 cfs_rq
->throttled_clock_task
;
4574 static int tg_throttle_down(struct task_group
*tg
, void *data
)
4576 struct rq
*rq
= data
;
4577 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4579 /* group is entering throttled state, stop time */
4580 if (!cfs_rq
->throttle_count
)
4581 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
4582 cfs_rq
->throttle_count
++;
4587 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
4589 struct rq
*rq
= rq_of(cfs_rq
);
4590 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4591 struct sched_entity
*se
;
4592 long task_delta
, dequeue
= 1;
4595 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
4597 /* freeze hierarchy runnable averages while throttled */
4599 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
4602 task_delta
= cfs_rq
->h_nr_running
;
4603 for_each_sched_entity(se
) {
4604 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
4605 /* throttled entity or throttle-on-deactivate */
4610 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
4611 qcfs_rq
->h_nr_running
-= task_delta
;
4613 if (qcfs_rq
->load
.weight
)
4618 sub_nr_running(rq
, task_delta
);
4620 cfs_rq
->throttled
= 1;
4621 cfs_rq
->throttled_clock
= rq_clock(rq
);
4622 raw_spin_lock(&cfs_b
->lock
);
4623 empty
= list_empty(&cfs_b
->throttled_cfs_rq
);
4626 * Add to the _head_ of the list, so that an already-started
4627 * distribute_cfs_runtime will not see us
4629 list_add_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
4632 * If we're the first throttled task, make sure the bandwidth
4636 start_cfs_bandwidth(cfs_b
);
4638 raw_spin_unlock(&cfs_b
->lock
);
4641 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
4643 struct rq
*rq
= rq_of(cfs_rq
);
4644 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4645 struct sched_entity
*se
;
4649 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
4651 cfs_rq
->throttled
= 0;
4653 update_rq_clock(rq
);
4655 raw_spin_lock(&cfs_b
->lock
);
4656 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
4657 list_del_rcu(&cfs_rq
->throttled_list
);
4658 raw_spin_unlock(&cfs_b
->lock
);
4660 /* update hierarchical throttle state */
4661 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
4663 if (!cfs_rq
->load
.weight
)
4666 task_delta
= cfs_rq
->h_nr_running
;
4667 for_each_sched_entity(se
) {
4671 cfs_rq
= cfs_rq_of(se
);
4673 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
4674 cfs_rq
->h_nr_running
+= task_delta
;
4676 if (cfs_rq_throttled(cfs_rq
))
4681 add_nr_running(rq
, task_delta
);
4683 /* determine whether we need to wake up potentially idle cpu */
4684 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
4688 static u64
distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
,
4689 u64 remaining
, u64 expires
)
4691 struct cfs_rq
*cfs_rq
;
4693 u64 starting_runtime
= remaining
;
4696 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
4698 struct rq
*rq
= rq_of(cfs_rq
);
4702 if (!cfs_rq_throttled(cfs_rq
))
4705 runtime
= -cfs_rq
->runtime_remaining
+ 1;
4706 if (runtime
> remaining
)
4707 runtime
= remaining
;
4708 remaining
-= runtime
;
4710 cfs_rq
->runtime_remaining
+= runtime
;
4711 cfs_rq
->runtime_expires
= expires
;
4713 /* we check whether we're throttled above */
4714 if (cfs_rq
->runtime_remaining
> 0)
4715 unthrottle_cfs_rq(cfs_rq
);
4725 return starting_runtime
- remaining
;
4729 * Responsible for refilling a task_group's bandwidth and unthrottling its
4730 * cfs_rqs as appropriate. If there has been no activity within the last
4731 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4732 * used to track this state.
4734 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
)
4736 u64 runtime
, runtime_expires
;
4739 /* no need to continue the timer with no bandwidth constraint */
4740 if (cfs_b
->quota
== RUNTIME_INF
)
4741 goto out_deactivate
;
4743 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4744 cfs_b
->nr_periods
+= overrun
;
4747 * idle depends on !throttled (for the case of a large deficit), and if
4748 * we're going inactive then everything else can be deferred
4750 if (cfs_b
->idle
&& !throttled
)
4751 goto out_deactivate
;
4753 __refill_cfs_bandwidth_runtime(cfs_b
);
4756 /* mark as potentially idle for the upcoming period */
4761 /* account preceding periods in which throttling occurred */
4762 cfs_b
->nr_throttled
+= overrun
;
4764 runtime_expires
= cfs_b
->runtime_expires
;
4767 * This check is repeated as we are holding onto the new bandwidth while
4768 * we unthrottle. This can potentially race with an unthrottled group
4769 * trying to acquire new bandwidth from the global pool. This can result
4770 * in us over-using our runtime if it is all used during this loop, but
4771 * only by limited amounts in that extreme case.
4773 while (throttled
&& cfs_b
->runtime
> 0) {
4774 runtime
= cfs_b
->runtime
;
4775 raw_spin_unlock(&cfs_b
->lock
);
4776 /* we can't nest cfs_b->lock while distributing bandwidth */
4777 runtime
= distribute_cfs_runtime(cfs_b
, runtime
,
4779 raw_spin_lock(&cfs_b
->lock
);
4781 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4783 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
4787 * While we are ensured activity in the period following an
4788 * unthrottle, this also covers the case in which the new bandwidth is
4789 * insufficient to cover the existing bandwidth deficit. (Forcing the
4790 * timer to remain active while there are any throttled entities.)
4800 /* a cfs_rq won't donate quota below this amount */
4801 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
4802 /* minimum remaining period time to redistribute slack quota */
4803 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
4804 /* how long we wait to gather additional slack before distributing */
4805 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
4808 * Are we near the end of the current quota period?
4810 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4811 * hrtimer base being cleared by hrtimer_start. In the case of
4812 * migrate_hrtimers, base is never cleared, so we are fine.
4814 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
4816 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
4819 /* if the call-back is running a quota refresh is already occurring */
4820 if (hrtimer_callback_running(refresh_timer
))
4823 /* is a quota refresh about to occur? */
4824 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
4825 if (remaining
< min_expire
)
4831 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
4833 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
4835 /* if there's a quota refresh soon don't bother with slack */
4836 if (runtime_refresh_within(cfs_b
, min_left
))
4839 hrtimer_start(&cfs_b
->slack_timer
,
4840 ns_to_ktime(cfs_bandwidth_slack_period
),
4844 /* we know any runtime found here is valid as update_curr() precedes return */
4845 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4847 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4848 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
4850 if (slack_runtime
<= 0)
4853 raw_spin_lock(&cfs_b
->lock
);
4854 if (cfs_b
->quota
!= RUNTIME_INF
&&
4855 cfs_rq
->runtime_expires
== cfs_b
->runtime_expires
) {
4856 cfs_b
->runtime
+= slack_runtime
;
4858 /* we are under rq->lock, defer unthrottling using a timer */
4859 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
4860 !list_empty(&cfs_b
->throttled_cfs_rq
))
4861 start_cfs_slack_bandwidth(cfs_b
);
4863 raw_spin_unlock(&cfs_b
->lock
);
4865 /* even if it's not valid for return we don't want to try again */
4866 cfs_rq
->runtime_remaining
-= slack_runtime
;
4869 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4871 if (!cfs_bandwidth_used())
4874 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
4877 __return_cfs_rq_runtime(cfs_rq
);
4881 * This is done with a timer (instead of inline with bandwidth return) since
4882 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4884 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
4886 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
4889 /* confirm we're still not at a refresh boundary */
4890 raw_spin_lock(&cfs_b
->lock
);
4891 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
4892 raw_spin_unlock(&cfs_b
->lock
);
4896 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
4897 runtime
= cfs_b
->runtime
;
4899 expires
= cfs_b
->runtime_expires
;
4900 raw_spin_unlock(&cfs_b
->lock
);
4905 runtime
= distribute_cfs_runtime(cfs_b
, runtime
, expires
);
4907 raw_spin_lock(&cfs_b
->lock
);
4908 if (expires
== cfs_b
->runtime_expires
)
4909 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
4910 raw_spin_unlock(&cfs_b
->lock
);
4914 * When a group wakes up we want to make sure that its quota is not already
4915 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4916 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4918 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
4920 if (!cfs_bandwidth_used())
4923 /* an active group must be handled by the update_curr()->put() path */
4924 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
4927 /* ensure the group is not already throttled */
4928 if (cfs_rq_throttled(cfs_rq
))
4931 /* update runtime allocation */
4932 account_cfs_rq_runtime(cfs_rq
, 0);
4933 if (cfs_rq
->runtime_remaining
<= 0)
4934 throttle_cfs_rq(cfs_rq
);
4937 static void sync_throttle(struct task_group
*tg
, int cpu
)
4939 struct cfs_rq
*pcfs_rq
, *cfs_rq
;
4941 if (!cfs_bandwidth_used())
4947 cfs_rq
= tg
->cfs_rq
[cpu
];
4948 pcfs_rq
= tg
->parent
->cfs_rq
[cpu
];
4950 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
4951 cfs_rq
->throttled_clock_task
= rq_clock_task(cpu_rq(cpu
));
4954 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4955 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4957 if (!cfs_bandwidth_used())
4960 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
4964 * it's possible for a throttled entity to be forced into a running
4965 * state (e.g. set_curr_task), in this case we're finished.
4967 if (cfs_rq_throttled(cfs_rq
))
4970 throttle_cfs_rq(cfs_rq
);
4974 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
4976 struct cfs_bandwidth
*cfs_b
=
4977 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
4979 do_sched_cfs_slack_timer(cfs_b
);
4981 return HRTIMER_NORESTART
;
4984 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
4986 struct cfs_bandwidth
*cfs_b
=
4987 container_of(timer
, struct cfs_bandwidth
, period_timer
);
4991 raw_spin_lock(&cfs_b
->lock
);
4993 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
4997 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
);
5000 cfs_b
->period_active
= 0;
5001 raw_spin_unlock(&cfs_b
->lock
);
5003 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
5006 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5008 raw_spin_lock_init(&cfs_b
->lock
);
5010 cfs_b
->quota
= RUNTIME_INF
;
5011 cfs_b
->period
= ns_to_ktime(default_cfs_period());
5013 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
5014 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
5015 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
5016 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5017 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
5020 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5022 cfs_rq
->runtime_enabled
= 0;
5023 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
5026 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5028 lockdep_assert_held(&cfs_b
->lock
);
5030 if (!cfs_b
->period_active
) {
5031 cfs_b
->period_active
= 1;
5032 hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
5033 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
5037 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5039 /* init_cfs_bandwidth() was not called */
5040 if (!cfs_b
->throttled_cfs_rq
.next
)
5043 hrtimer_cancel(&cfs_b
->period_timer
);
5044 hrtimer_cancel(&cfs_b
->slack_timer
);
5048 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
5050 * The race is harmless, since modifying bandwidth settings of unhooked group
5051 * bits doesn't do much.
5054 /* cpu online calback */
5055 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
5057 struct task_group
*tg
;
5059 lockdep_assert_held(&rq
->lock
);
5062 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5063 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
5064 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5066 raw_spin_lock(&cfs_b
->lock
);
5067 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
5068 raw_spin_unlock(&cfs_b
->lock
);
5073 /* cpu offline callback */
5074 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
5076 struct task_group
*tg
;
5078 lockdep_assert_held(&rq
->lock
);
5081 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5082 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5084 if (!cfs_rq
->runtime_enabled
)
5088 * clock_task is not advancing so we just need to make sure
5089 * there's some valid quota amount
5091 cfs_rq
->runtime_remaining
= 1;
5093 * Offline rq is schedulable till cpu is completely disabled
5094 * in take_cpu_down(), so we prevent new cfs throttling here.
5096 cfs_rq
->runtime_enabled
= 0;
5098 if (cfs_rq_throttled(cfs_rq
))
5099 unthrottle_cfs_rq(cfs_rq
);
5104 #else /* CONFIG_CFS_BANDWIDTH */
5105 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
5107 return rq_clock_task(rq_of(cfs_rq
));
5110 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
5111 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
5112 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
5113 static inline void sync_throttle(struct task_group
*tg
, int cpu
) {}
5114 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5116 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
5121 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
5126 static inline int throttled_lb_pair(struct task_group
*tg
,
5127 int src_cpu
, int dest_cpu
)
5132 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5134 #ifdef CONFIG_FAIR_GROUP_SCHED
5135 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5138 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
5142 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5143 static inline void update_runtime_enabled(struct rq
*rq
) {}
5144 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
5146 #endif /* CONFIG_CFS_BANDWIDTH */
5148 /**************************************************
5149 * CFS operations on tasks:
5152 #ifdef CONFIG_SCHED_HRTICK
5153 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5155 struct sched_entity
*se
= &p
->se
;
5156 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5158 SCHED_WARN_ON(task_rq(p
) != rq
);
5160 if (rq
->cfs
.h_nr_running
> 1) {
5161 u64 slice
= sched_slice(cfs_rq
, se
);
5162 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
5163 s64 delta
= slice
- ran
;
5170 hrtick_start(rq
, delta
);
5175 * called from enqueue/dequeue and updates the hrtick when the
5176 * current task is from our class and nr_running is low enough
5179 static void hrtick_update(struct rq
*rq
)
5181 struct task_struct
*curr
= rq
->curr
;
5183 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
5186 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
5187 hrtick_start_fair(rq
, curr
);
5189 #else /* !CONFIG_SCHED_HRTICK */
5191 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5195 static inline void hrtick_update(struct rq
*rq
)
5201 * The enqueue_task method is called before nr_running is
5202 * increased. Here we update the fair scheduling stats and
5203 * then put the task into the rbtree:
5206 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5208 struct cfs_rq
*cfs_rq
;
5209 struct sched_entity
*se
= &p
->se
;
5212 * If in_iowait is set, the code below may not trigger any cpufreq
5213 * utilization updates, so do it here explicitly with the IOWAIT flag
5217 cpufreq_update_util(rq
, SCHED_CPUFREQ_IOWAIT
);
5219 for_each_sched_entity(se
) {
5222 cfs_rq
= cfs_rq_of(se
);
5223 enqueue_entity(cfs_rq
, se
, flags
);
5226 * end evaluation on encountering a throttled cfs_rq
5228 * note: in the case of encountering a throttled cfs_rq we will
5229 * post the final h_nr_running increment below.
5231 if (cfs_rq_throttled(cfs_rq
))
5233 cfs_rq
->h_nr_running
++;
5235 flags
= ENQUEUE_WAKEUP
;
5238 for_each_sched_entity(se
) {
5239 cfs_rq
= cfs_rq_of(se
);
5240 cfs_rq
->h_nr_running
++;
5242 if (cfs_rq_throttled(cfs_rq
))
5245 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5246 update_cfs_group(se
);
5250 add_nr_running(rq
, 1);
5255 static void set_next_buddy(struct sched_entity
*se
);
5258 * The dequeue_task method is called before nr_running is
5259 * decreased. We remove the task from the rbtree and
5260 * update the fair scheduling stats:
5262 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5264 struct cfs_rq
*cfs_rq
;
5265 struct sched_entity
*se
= &p
->se
;
5266 int task_sleep
= flags
& DEQUEUE_SLEEP
;
5268 for_each_sched_entity(se
) {
5269 cfs_rq
= cfs_rq_of(se
);
5270 dequeue_entity(cfs_rq
, se
, flags
);
5273 * end evaluation on encountering a throttled cfs_rq
5275 * note: in the case of encountering a throttled cfs_rq we will
5276 * post the final h_nr_running decrement below.
5278 if (cfs_rq_throttled(cfs_rq
))
5280 cfs_rq
->h_nr_running
--;
5282 /* Don't dequeue parent if it has other entities besides us */
5283 if (cfs_rq
->load
.weight
) {
5284 /* Avoid re-evaluating load for this entity: */
5285 se
= parent_entity(se
);
5287 * Bias pick_next to pick a task from this cfs_rq, as
5288 * p is sleeping when it is within its sched_slice.
5290 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
5294 flags
|= DEQUEUE_SLEEP
;
5297 for_each_sched_entity(se
) {
5298 cfs_rq
= cfs_rq_of(se
);
5299 cfs_rq
->h_nr_running
--;
5301 if (cfs_rq_throttled(cfs_rq
))
5304 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5305 update_cfs_group(se
);
5309 sub_nr_running(rq
, 1);
5316 /* Working cpumask for: load_balance, load_balance_newidle. */
5317 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5318 DEFINE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5320 #ifdef CONFIG_NO_HZ_COMMON
5322 * per rq 'load' arrray crap; XXX kill this.
5326 * The exact cpuload calculated at every tick would be:
5328 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5330 * If a cpu misses updates for n ticks (as it was idle) and update gets
5331 * called on the n+1-th tick when cpu may be busy, then we have:
5333 * load_n = (1 - 1/2^i)^n * load_0
5334 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
5336 * decay_load_missed() below does efficient calculation of
5338 * load' = (1 - 1/2^i)^n * load
5340 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5341 * This allows us to precompute the above in said factors, thereby allowing the
5342 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5343 * fixed_power_int())
5345 * The calculation is approximated on a 128 point scale.
5347 #define DEGRADE_SHIFT 7
5349 static const u8 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
5350 static const u8 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
5351 { 0, 0, 0, 0, 0, 0, 0, 0 },
5352 { 64, 32, 8, 0, 0, 0, 0, 0 },
5353 { 96, 72, 40, 12, 1, 0, 0, 0 },
5354 { 112, 98, 75, 43, 15, 1, 0, 0 },
5355 { 120, 112, 98, 76, 45, 16, 2, 0 }
5359 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5360 * would be when CPU is idle and so we just decay the old load without
5361 * adding any new load.
5363 static unsigned long
5364 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
5368 if (!missed_updates
)
5371 if (missed_updates
>= degrade_zero_ticks
[idx
])
5375 return load
>> missed_updates
;
5377 while (missed_updates
) {
5378 if (missed_updates
% 2)
5379 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
5381 missed_updates
>>= 1;
5386 #endif /* CONFIG_NO_HZ_COMMON */
5389 * __cpu_load_update - update the rq->cpu_load[] statistics
5390 * @this_rq: The rq to update statistics for
5391 * @this_load: The current load
5392 * @pending_updates: The number of missed updates
5394 * Update rq->cpu_load[] statistics. This function is usually called every
5395 * scheduler tick (TICK_NSEC).
5397 * This function computes a decaying average:
5399 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5401 * Because of NOHZ it might not get called on every tick which gives need for
5402 * the @pending_updates argument.
5404 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5405 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5406 * = A * (A * load[i]_n-2 + B) + B
5407 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5408 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5409 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5410 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5411 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5413 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5414 * any change in load would have resulted in the tick being turned back on.
5416 * For regular NOHZ, this reduces to:
5418 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5420 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5423 static void cpu_load_update(struct rq
*this_rq
, unsigned long this_load
,
5424 unsigned long pending_updates
)
5426 unsigned long __maybe_unused tickless_load
= this_rq
->cpu_load
[0];
5429 this_rq
->nr_load_updates
++;
5431 /* Update our load: */
5432 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
5433 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
5434 unsigned long old_load
, new_load
;
5436 /* scale is effectively 1 << i now, and >> i divides by scale */
5438 old_load
= this_rq
->cpu_load
[i
];
5439 #ifdef CONFIG_NO_HZ_COMMON
5440 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
5441 if (tickless_load
) {
5442 old_load
-= decay_load_missed(tickless_load
, pending_updates
- 1, i
);
5444 * old_load can never be a negative value because a
5445 * decayed tickless_load cannot be greater than the
5446 * original tickless_load.
5448 old_load
+= tickless_load
;
5451 new_load
= this_load
;
5453 * Round up the averaging division if load is increasing. This
5454 * prevents us from getting stuck on 9 if the load is 10, for
5457 if (new_load
> old_load
)
5458 new_load
+= scale
- 1;
5460 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
5463 sched_avg_update(this_rq
);
5466 /* Used instead of source_load when we know the type == 0 */
5467 static unsigned long weighted_cpuload(struct rq
*rq
)
5469 return cfs_rq_runnable_load_avg(&rq
->cfs
);
5472 #ifdef CONFIG_NO_HZ_COMMON
5474 * There is no sane way to deal with nohz on smp when using jiffies because the
5475 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5476 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5478 * Therefore we need to avoid the delta approach from the regular tick when
5479 * possible since that would seriously skew the load calculation. This is why we
5480 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5481 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5482 * loop exit, nohz_idle_balance, nohz full exit...)
5484 * This means we might still be one tick off for nohz periods.
5487 static void cpu_load_update_nohz(struct rq
*this_rq
,
5488 unsigned long curr_jiffies
,
5491 unsigned long pending_updates
;
5493 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
5494 if (pending_updates
) {
5495 this_rq
->last_load_update_tick
= curr_jiffies
;
5497 * In the regular NOHZ case, we were idle, this means load 0.
5498 * In the NOHZ_FULL case, we were non-idle, we should consider
5499 * its weighted load.
5501 cpu_load_update(this_rq
, load
, pending_updates
);
5506 * Called from nohz_idle_balance() to update the load ratings before doing the
5509 static void cpu_load_update_idle(struct rq
*this_rq
)
5512 * bail if there's load or we're actually up-to-date.
5514 if (weighted_cpuload(this_rq
))
5517 cpu_load_update_nohz(this_rq
, READ_ONCE(jiffies
), 0);
5521 * Record CPU load on nohz entry so we know the tickless load to account
5522 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5523 * than other cpu_load[idx] but it should be fine as cpu_load readers
5524 * shouldn't rely into synchronized cpu_load[*] updates.
5526 void cpu_load_update_nohz_start(void)
5528 struct rq
*this_rq
= this_rq();
5531 * This is all lockless but should be fine. If weighted_cpuload changes
5532 * concurrently we'll exit nohz. And cpu_load write can race with
5533 * cpu_load_update_idle() but both updater would be writing the same.
5535 this_rq
->cpu_load
[0] = weighted_cpuload(this_rq
);
5539 * Account the tickless load in the end of a nohz frame.
5541 void cpu_load_update_nohz_stop(void)
5543 unsigned long curr_jiffies
= READ_ONCE(jiffies
);
5544 struct rq
*this_rq
= this_rq();
5548 if (curr_jiffies
== this_rq
->last_load_update_tick
)
5551 load
= weighted_cpuload(this_rq
);
5552 rq_lock(this_rq
, &rf
);
5553 update_rq_clock(this_rq
);
5554 cpu_load_update_nohz(this_rq
, curr_jiffies
, load
);
5555 rq_unlock(this_rq
, &rf
);
5557 #else /* !CONFIG_NO_HZ_COMMON */
5558 static inline void cpu_load_update_nohz(struct rq
*this_rq
,
5559 unsigned long curr_jiffies
,
5560 unsigned long load
) { }
5561 #endif /* CONFIG_NO_HZ_COMMON */
5563 static void cpu_load_update_periodic(struct rq
*this_rq
, unsigned long load
)
5565 #ifdef CONFIG_NO_HZ_COMMON
5566 /* See the mess around cpu_load_update_nohz(). */
5567 this_rq
->last_load_update_tick
= READ_ONCE(jiffies
);
5569 cpu_load_update(this_rq
, load
, 1);
5573 * Called from scheduler_tick()
5575 void cpu_load_update_active(struct rq
*this_rq
)
5577 unsigned long load
= weighted_cpuload(this_rq
);
5579 if (tick_nohz_tick_stopped())
5580 cpu_load_update_nohz(this_rq
, READ_ONCE(jiffies
), load
);
5582 cpu_load_update_periodic(this_rq
, load
);
5586 * Return a low guess at the load of a migration-source cpu weighted
5587 * according to the scheduling class and "nice" value.
5589 * We want to under-estimate the load of migration sources, to
5590 * balance conservatively.
5592 static unsigned long source_load(int cpu
, int type
)
5594 struct rq
*rq
= cpu_rq(cpu
);
5595 unsigned long total
= weighted_cpuload(rq
);
5597 if (type
== 0 || !sched_feat(LB_BIAS
))
5600 return min(rq
->cpu_load
[type
-1], total
);
5604 * Return a high guess at the load of a migration-target cpu weighted
5605 * according to the scheduling class and "nice" value.
5607 static unsigned long target_load(int cpu
, int type
)
5609 struct rq
*rq
= cpu_rq(cpu
);
5610 unsigned long total
= weighted_cpuload(rq
);
5612 if (type
== 0 || !sched_feat(LB_BIAS
))
5615 return max(rq
->cpu_load
[type
-1], total
);
5618 static unsigned long capacity_of(int cpu
)
5620 return cpu_rq(cpu
)->cpu_capacity
;
5623 static unsigned long capacity_orig_of(int cpu
)
5625 return cpu_rq(cpu
)->cpu_capacity_orig
;
5628 static unsigned long cpu_avg_load_per_task(int cpu
)
5630 struct rq
*rq
= cpu_rq(cpu
);
5631 unsigned long nr_running
= READ_ONCE(rq
->cfs
.h_nr_running
);
5632 unsigned long load_avg
= weighted_cpuload(rq
);
5635 return load_avg
/ nr_running
;
5640 static void record_wakee(struct task_struct
*p
)
5643 * Only decay a single time; tasks that have less then 1 wakeup per
5644 * jiffy will not have built up many flips.
5646 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
5647 current
->wakee_flips
>>= 1;
5648 current
->wakee_flip_decay_ts
= jiffies
;
5651 if (current
->last_wakee
!= p
) {
5652 current
->last_wakee
= p
;
5653 current
->wakee_flips
++;
5658 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5660 * A waker of many should wake a different task than the one last awakened
5661 * at a frequency roughly N times higher than one of its wakees.
5663 * In order to determine whether we should let the load spread vs consolidating
5664 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5665 * partner, and a factor of lls_size higher frequency in the other.
5667 * With both conditions met, we can be relatively sure that the relationship is
5668 * non-monogamous, with partner count exceeding socket size.
5670 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5671 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5674 static int wake_wide(struct task_struct
*p
)
5676 unsigned int master
= current
->wakee_flips
;
5677 unsigned int slave
= p
->wakee_flips
;
5678 int factor
= this_cpu_read(sd_llc_size
);
5681 swap(master
, slave
);
5682 if (slave
< factor
|| master
< slave
* factor
)
5688 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5689 * soonest. For the purpose of speed we only consider the waking and previous
5692 * wake_affine_idle() - only considers 'now', it check if the waking CPU is (or
5695 * wake_affine_weight() - considers the weight to reflect the average
5696 * scheduling latency of the CPUs. This seems to work
5697 * for the overloaded case.
5701 wake_affine_idle(struct sched_domain
*sd
, struct task_struct
*p
,
5702 int this_cpu
, int prev_cpu
, int sync
)
5704 if (idle_cpu(this_cpu
))
5707 if (sync
&& cpu_rq(this_cpu
)->nr_running
== 1)
5714 wake_affine_weight(struct sched_domain
*sd
, struct task_struct
*p
,
5715 int this_cpu
, int prev_cpu
, int sync
)
5717 s64 this_eff_load
, prev_eff_load
;
5718 unsigned long task_load
;
5720 this_eff_load
= target_load(this_cpu
, sd
->wake_idx
);
5721 prev_eff_load
= source_load(prev_cpu
, sd
->wake_idx
);
5724 unsigned long current_load
= task_h_load(current
);
5726 if (current_load
> this_eff_load
)
5729 this_eff_load
-= current_load
;
5732 task_load
= task_h_load(p
);
5734 this_eff_load
+= task_load
;
5735 if (sched_feat(WA_BIAS
))
5736 this_eff_load
*= 100;
5737 this_eff_load
*= capacity_of(prev_cpu
);
5739 prev_eff_load
-= task_load
;
5740 if (sched_feat(WA_BIAS
))
5741 prev_eff_load
*= 100 + (sd
->imbalance_pct
- 100) / 2;
5742 prev_eff_load
*= capacity_of(this_cpu
);
5744 return this_eff_load
<= prev_eff_load
;
5747 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
,
5748 int prev_cpu
, int sync
)
5750 int this_cpu
= smp_processor_id();
5751 bool affine
= false;
5753 if (sched_feat(WA_IDLE
) && !affine
)
5754 affine
= wake_affine_idle(sd
, p
, this_cpu
, prev_cpu
, sync
);
5756 if (sched_feat(WA_WEIGHT
) && !affine
)
5757 affine
= wake_affine_weight(sd
, p
, this_cpu
, prev_cpu
, sync
);
5759 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine_attempts
);
5761 schedstat_inc(sd
->ttwu_move_affine
);
5762 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine
);
5768 static inline int task_util(struct task_struct
*p
);
5769 static int cpu_util_wake(int cpu
, struct task_struct
*p
);
5771 static unsigned long capacity_spare_wake(int cpu
, struct task_struct
*p
)
5773 return capacity_orig_of(cpu
) - cpu_util_wake(cpu
, p
);
5777 * find_idlest_group finds and returns the least busy CPU group within the
5780 * Assumes p is allowed on at least one CPU in sd.
5782 static struct sched_group
*
5783 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
5784 int this_cpu
, int sd_flag
)
5786 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
5787 struct sched_group
*most_spare_sg
= NULL
;
5788 unsigned long min_runnable_load
= ULONG_MAX
;
5789 unsigned long this_runnable_load
= ULONG_MAX
;
5790 unsigned long min_avg_load
= ULONG_MAX
, this_avg_load
= ULONG_MAX
;
5791 unsigned long most_spare
= 0, this_spare
= 0;
5792 int load_idx
= sd
->forkexec_idx
;
5793 int imbalance_scale
= 100 + (sd
->imbalance_pct
-100)/2;
5794 unsigned long imbalance
= scale_load_down(NICE_0_LOAD
) *
5795 (sd
->imbalance_pct
-100) / 100;
5797 if (sd_flag
& SD_BALANCE_WAKE
)
5798 load_idx
= sd
->wake_idx
;
5801 unsigned long load
, avg_load
, runnable_load
;
5802 unsigned long spare_cap
, max_spare_cap
;
5806 /* Skip over this group if it has no CPUs allowed */
5807 if (!cpumask_intersects(sched_group_span(group
),
5811 local_group
= cpumask_test_cpu(this_cpu
,
5812 sched_group_span(group
));
5815 * Tally up the load of all CPUs in the group and find
5816 * the group containing the CPU with most spare capacity.
5822 for_each_cpu(i
, sched_group_span(group
)) {
5823 /* Bias balancing toward cpus of our domain */
5825 load
= source_load(i
, load_idx
);
5827 load
= target_load(i
, load_idx
);
5829 runnable_load
+= load
;
5831 avg_load
+= cfs_rq_load_avg(&cpu_rq(i
)->cfs
);
5833 spare_cap
= capacity_spare_wake(i
, p
);
5835 if (spare_cap
> max_spare_cap
)
5836 max_spare_cap
= spare_cap
;
5839 /* Adjust by relative CPU capacity of the group */
5840 avg_load
= (avg_load
* SCHED_CAPACITY_SCALE
) /
5841 group
->sgc
->capacity
;
5842 runnable_load
= (runnable_load
* SCHED_CAPACITY_SCALE
) /
5843 group
->sgc
->capacity
;
5846 this_runnable_load
= runnable_load
;
5847 this_avg_load
= avg_load
;
5848 this_spare
= max_spare_cap
;
5850 if (min_runnable_load
> (runnable_load
+ imbalance
)) {
5852 * The runnable load is significantly smaller
5853 * so we can pick this new cpu
5855 min_runnable_load
= runnable_load
;
5856 min_avg_load
= avg_load
;
5858 } else if ((runnable_load
< (min_runnable_load
+ imbalance
)) &&
5859 (100*min_avg_load
> imbalance_scale
*avg_load
)) {
5861 * The runnable loads are close so take the
5862 * blocked load into account through avg_load.
5864 min_avg_load
= avg_load
;
5868 if (most_spare
< max_spare_cap
) {
5869 most_spare
= max_spare_cap
;
5870 most_spare_sg
= group
;
5873 } while (group
= group
->next
, group
!= sd
->groups
);
5876 * The cross-over point between using spare capacity or least load
5877 * is too conservative for high utilization tasks on partially
5878 * utilized systems if we require spare_capacity > task_util(p),
5879 * so we allow for some task stuffing by using
5880 * spare_capacity > task_util(p)/2.
5882 * Spare capacity can't be used for fork because the utilization has
5883 * not been set yet, we must first select a rq to compute the initial
5886 if (sd_flag
& SD_BALANCE_FORK
)
5889 if (this_spare
> task_util(p
) / 2 &&
5890 imbalance_scale
*this_spare
> 100*most_spare
)
5893 if (most_spare
> task_util(p
) / 2)
5894 return most_spare_sg
;
5900 if (min_runnable_load
> (this_runnable_load
+ imbalance
))
5903 if ((this_runnable_load
< (min_runnable_load
+ imbalance
)) &&
5904 (100*this_avg_load
< imbalance_scale
*min_avg_load
))
5911 * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
5914 find_idlest_group_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
5916 unsigned long load
, min_load
= ULONG_MAX
;
5917 unsigned int min_exit_latency
= UINT_MAX
;
5918 u64 latest_idle_timestamp
= 0;
5919 int least_loaded_cpu
= this_cpu
;
5920 int shallowest_idle_cpu
= -1;
5923 /* Check if we have any choice: */
5924 if (group
->group_weight
== 1)
5925 return cpumask_first(sched_group_span(group
));
5927 /* Traverse only the allowed CPUs */
5928 for_each_cpu_and(i
, sched_group_span(group
), &p
->cpus_allowed
) {
5930 struct rq
*rq
= cpu_rq(i
);
5931 struct cpuidle_state
*idle
= idle_get_state(rq
);
5932 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
5934 * We give priority to a CPU whose idle state
5935 * has the smallest exit latency irrespective
5936 * of any idle timestamp.
5938 min_exit_latency
= idle
->exit_latency
;
5939 latest_idle_timestamp
= rq
->idle_stamp
;
5940 shallowest_idle_cpu
= i
;
5941 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
5942 rq
->idle_stamp
> latest_idle_timestamp
) {
5944 * If equal or no active idle state, then
5945 * the most recently idled CPU might have
5948 latest_idle_timestamp
= rq
->idle_stamp
;
5949 shallowest_idle_cpu
= i
;
5951 } else if (shallowest_idle_cpu
== -1) {
5952 load
= weighted_cpuload(cpu_rq(i
));
5953 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
5955 least_loaded_cpu
= i
;
5960 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
5963 static inline int find_idlest_cpu(struct sched_domain
*sd
, struct task_struct
*p
,
5964 int cpu
, int prev_cpu
, int sd_flag
)
5968 if (!cpumask_intersects(sched_domain_span(sd
), &p
->cpus_allowed
))
5972 struct sched_group
*group
;
5973 struct sched_domain
*tmp
;
5976 if (!(sd
->flags
& sd_flag
)) {
5981 group
= find_idlest_group(sd
, p
, cpu
, sd_flag
);
5987 new_cpu
= find_idlest_group_cpu(group
, p
, cpu
);
5988 if (new_cpu
== cpu
) {
5989 /* Now try balancing at a lower domain level of cpu */
5994 /* Now try balancing at a lower domain level of new_cpu */
5996 weight
= sd
->span_weight
;
5998 for_each_domain(cpu
, tmp
) {
5999 if (weight
<= tmp
->span_weight
)
6001 if (tmp
->flags
& sd_flag
)
6004 /* while loop will break here if sd == NULL */
6010 #ifdef CONFIG_SCHED_SMT
6012 static inline void set_idle_cores(int cpu
, int val
)
6014 struct sched_domain_shared
*sds
;
6016 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
6018 WRITE_ONCE(sds
->has_idle_cores
, val
);
6021 static inline bool test_idle_cores(int cpu
, bool def
)
6023 struct sched_domain_shared
*sds
;
6025 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
6027 return READ_ONCE(sds
->has_idle_cores
);
6033 * Scans the local SMT mask to see if the entire core is idle, and records this
6034 * information in sd_llc_shared->has_idle_cores.
6036 * Since SMT siblings share all cache levels, inspecting this limited remote
6037 * state should be fairly cheap.
6039 void __update_idle_core(struct rq
*rq
)
6041 int core
= cpu_of(rq
);
6045 if (test_idle_cores(core
, true))
6048 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
6056 set_idle_cores(core
, 1);
6062 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6063 * there are no idle cores left in the system; tracked through
6064 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6066 static int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6068 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6071 if (!static_branch_likely(&sched_smt_present
))
6074 if (!test_idle_cores(target
, false))
6077 cpumask_and(cpus
, sched_domain_span(sd
), &p
->cpus_allowed
);
6079 for_each_cpu_wrap(core
, cpus
, target
) {
6082 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
6083 cpumask_clear_cpu(cpu
, cpus
);
6093 * Failed to find an idle core; stop looking for one.
6095 set_idle_cores(target
, 0);
6101 * Scan the local SMT mask for idle CPUs.
6103 static int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6107 if (!static_branch_likely(&sched_smt_present
))
6110 for_each_cpu(cpu
, cpu_smt_mask(target
)) {
6111 if (!cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
6120 #else /* CONFIG_SCHED_SMT */
6122 static inline int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6127 static inline int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6132 #endif /* CONFIG_SCHED_SMT */
6135 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6136 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6137 * average idle time for this rq (as found in rq->avg_idle).
6139 static int select_idle_cpu(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6141 struct sched_domain
*this_sd
;
6142 u64 avg_cost
, avg_idle
;
6145 int cpu
, nr
= INT_MAX
;
6147 this_sd
= rcu_dereference(*this_cpu_ptr(&sd_llc
));
6152 * Due to large variance we need a large fuzz factor; hackbench in
6153 * particularly is sensitive here.
6155 avg_idle
= this_rq()->avg_idle
/ 512;
6156 avg_cost
= this_sd
->avg_scan_cost
+ 1;
6158 if (sched_feat(SIS_AVG_CPU
) && avg_idle
< avg_cost
)
6161 if (sched_feat(SIS_PROP
)) {
6162 u64 span_avg
= sd
->span_weight
* avg_idle
;
6163 if (span_avg
> 4*avg_cost
)
6164 nr
= div_u64(span_avg
, avg_cost
);
6169 time
= local_clock();
6171 for_each_cpu_wrap(cpu
, sched_domain_span(sd
), target
) {
6174 if (!cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
6180 time
= local_clock() - time
;
6181 cost
= this_sd
->avg_scan_cost
;
6182 delta
= (s64
)(time
- cost
) / 8;
6183 this_sd
->avg_scan_cost
+= delta
;
6189 * Try and locate an idle core/thread in the LLC cache domain.
6191 static int select_idle_sibling(struct task_struct
*p
, int prev
, int target
)
6193 struct sched_domain
*sd
;
6196 if (idle_cpu(target
))
6200 * If the previous cpu is cache affine and idle, don't be stupid.
6202 if (prev
!= target
&& cpus_share_cache(prev
, target
) && idle_cpu(prev
))
6205 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
6209 i
= select_idle_core(p
, sd
, target
);
6210 if ((unsigned)i
< nr_cpumask_bits
)
6213 i
= select_idle_cpu(p
, sd
, target
);
6214 if ((unsigned)i
< nr_cpumask_bits
)
6217 i
= select_idle_smt(p
, sd
, target
);
6218 if ((unsigned)i
< nr_cpumask_bits
)
6225 * cpu_util returns the amount of capacity of a CPU that is used by CFS
6226 * tasks. The unit of the return value must be the one of capacity so we can
6227 * compare the utilization with the capacity of the CPU that is available for
6228 * CFS task (ie cpu_capacity).
6230 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6231 * recent utilization of currently non-runnable tasks on a CPU. It represents
6232 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6233 * capacity_orig is the cpu_capacity available at the highest frequency
6234 * (arch_scale_freq_capacity()).
6235 * The utilization of a CPU converges towards a sum equal to or less than the
6236 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6237 * the running time on this CPU scaled by capacity_curr.
6239 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6240 * higher than capacity_orig because of unfortunate rounding in
6241 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6242 * the average stabilizes with the new running time. We need to check that the
6243 * utilization stays within the range of [0..capacity_orig] and cap it if
6244 * necessary. Without utilization capping, a group could be seen as overloaded
6245 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6246 * available capacity. We allow utilization to overshoot capacity_curr (but not
6247 * capacity_orig) as it useful for predicting the capacity required after task
6248 * migrations (scheduler-driven DVFS).
6250 static int cpu_util(int cpu
)
6252 unsigned long util
= cpu_rq(cpu
)->cfs
.avg
.util_avg
;
6253 unsigned long capacity
= capacity_orig_of(cpu
);
6255 return (util
>= capacity
) ? capacity
: util
;
6258 static inline int task_util(struct task_struct
*p
)
6260 return p
->se
.avg
.util_avg
;
6264 * cpu_util_wake: Compute cpu utilization with any contributions from
6265 * the waking task p removed.
6267 static int cpu_util_wake(int cpu
, struct task_struct
*p
)
6269 unsigned long util
, capacity
;
6271 /* Task has no contribution or is new */
6272 if (cpu
!= task_cpu(p
) || !p
->se
.avg
.last_update_time
)
6273 return cpu_util(cpu
);
6275 capacity
= capacity_orig_of(cpu
);
6276 util
= max_t(long, cpu_rq(cpu
)->cfs
.avg
.util_avg
- task_util(p
), 0);
6278 return (util
>= capacity
) ? capacity
: util
;
6282 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6283 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6285 * In that case WAKE_AFFINE doesn't make sense and we'll let
6286 * BALANCE_WAKE sort things out.
6288 static int wake_cap(struct task_struct
*p
, int cpu
, int prev_cpu
)
6290 long min_cap
, max_cap
;
6292 min_cap
= min(capacity_orig_of(prev_cpu
), capacity_orig_of(cpu
));
6293 max_cap
= cpu_rq(cpu
)->rd
->max_cpu_capacity
;
6295 /* Minimum capacity is close to max, no need to abort wake_affine */
6296 if (max_cap
- min_cap
< max_cap
>> 3)
6299 /* Bring task utilization in sync with prev_cpu */
6300 sync_entity_load_avg(&p
->se
);
6302 return min_cap
* 1024 < task_util(p
) * capacity_margin
;
6306 * select_task_rq_fair: Select target runqueue for the waking task in domains
6307 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6308 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6310 * Balances load by selecting the idlest cpu in the idlest group, or under
6311 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
6313 * Returns the target cpu number.
6315 * preempt must be disabled.
6318 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int sd_flag
, int wake_flags
)
6320 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
6321 int cpu
= smp_processor_id();
6322 int new_cpu
= prev_cpu
;
6323 int want_affine
= 0;
6324 int sync
= wake_flags
& WF_SYNC
;
6326 if (sd_flag
& SD_BALANCE_WAKE
) {
6328 want_affine
= !wake_wide(p
) && !wake_cap(p
, cpu
, prev_cpu
)
6329 && cpumask_test_cpu(cpu
, &p
->cpus_allowed
);
6333 for_each_domain(cpu
, tmp
) {
6334 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
6338 * If both cpu and prev_cpu are part of this domain,
6339 * cpu is a valid SD_WAKE_AFFINE target.
6341 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
6342 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
6347 if (tmp
->flags
& sd_flag
)
6349 else if (!want_affine
)
6354 sd
= NULL
; /* Prefer wake_affine over balance flags */
6355 if (cpu
== prev_cpu
)
6358 if (wake_affine(affine_sd
, p
, prev_cpu
, sync
))
6362 if (sd
&& !(sd_flag
& SD_BALANCE_FORK
)) {
6364 * We're going to need the task's util for capacity_spare_wake
6365 * in find_idlest_group. Sync it up to prev_cpu's
6368 sync_entity_load_avg(&p
->se
);
6373 if (sd_flag
& SD_BALANCE_WAKE
) /* XXX always ? */
6374 new_cpu
= select_idle_sibling(p
, prev_cpu
, new_cpu
);
6377 new_cpu
= find_idlest_cpu(sd
, p
, cpu
, prev_cpu
, sd_flag
);
6384 static void detach_entity_cfs_rq(struct sched_entity
*se
);
6387 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6388 * cfs_rq_of(p) references at time of call are still valid and identify the
6389 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6391 static void migrate_task_rq_fair(struct task_struct
*p
)
6394 * As blocked tasks retain absolute vruntime the migration needs to
6395 * deal with this by subtracting the old and adding the new
6396 * min_vruntime -- the latter is done by enqueue_entity() when placing
6397 * the task on the new runqueue.
6399 if (p
->state
== TASK_WAKING
) {
6400 struct sched_entity
*se
= &p
->se
;
6401 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
6404 #ifndef CONFIG_64BIT
6405 u64 min_vruntime_copy
;
6408 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
6410 min_vruntime
= cfs_rq
->min_vruntime
;
6411 } while (min_vruntime
!= min_vruntime_copy
);
6413 min_vruntime
= cfs_rq
->min_vruntime
;
6416 se
->vruntime
-= min_vruntime
;
6419 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
) {
6421 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6422 * rq->lock and can modify state directly.
6424 lockdep_assert_held(&task_rq(p
)->lock
);
6425 detach_entity_cfs_rq(&p
->se
);
6429 * We are supposed to update the task to "current" time, then
6430 * its up to date and ready to go to new CPU/cfs_rq. But we
6431 * have difficulty in getting what current time is, so simply
6432 * throw away the out-of-date time. This will result in the
6433 * wakee task is less decayed, but giving the wakee more load
6436 remove_entity_load_avg(&p
->se
);
6439 /* Tell new CPU we are migrated */
6440 p
->se
.avg
.last_update_time
= 0;
6442 /* We have migrated, no longer consider this task hot */
6443 p
->se
.exec_start
= 0;
6446 static void task_dead_fair(struct task_struct
*p
)
6448 remove_entity_load_avg(&p
->se
);
6450 #endif /* CONFIG_SMP */
6452 static unsigned long
6453 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
6455 unsigned long gran
= sysctl_sched_wakeup_granularity
;
6458 * Since its curr running now, convert the gran from real-time
6459 * to virtual-time in his units.
6461 * By using 'se' instead of 'curr' we penalize light tasks, so
6462 * they get preempted easier. That is, if 'se' < 'curr' then
6463 * the resulting gran will be larger, therefore penalizing the
6464 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6465 * be smaller, again penalizing the lighter task.
6467 * This is especially important for buddies when the leftmost
6468 * task is higher priority than the buddy.
6470 return calc_delta_fair(gran
, se
);
6474 * Should 'se' preempt 'curr'.
6488 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
6490 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
6495 gran
= wakeup_gran(curr
, se
);
6502 static void set_last_buddy(struct sched_entity
*se
)
6504 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
6507 for_each_sched_entity(se
) {
6508 if (SCHED_WARN_ON(!se
->on_rq
))
6510 cfs_rq_of(se
)->last
= se
;
6514 static void set_next_buddy(struct sched_entity
*se
)
6516 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
6519 for_each_sched_entity(se
) {
6520 if (SCHED_WARN_ON(!se
->on_rq
))
6522 cfs_rq_of(se
)->next
= se
;
6526 static void set_skip_buddy(struct sched_entity
*se
)
6528 for_each_sched_entity(se
)
6529 cfs_rq_of(se
)->skip
= se
;
6533 * Preempt the current task with a newly woken task if needed:
6535 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
6537 struct task_struct
*curr
= rq
->curr
;
6538 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
6539 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6540 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
6541 int next_buddy_marked
= 0;
6543 if (unlikely(se
== pse
))
6547 * This is possible from callers such as attach_tasks(), in which we
6548 * unconditionally check_prempt_curr() after an enqueue (which may have
6549 * lead to a throttle). This both saves work and prevents false
6550 * next-buddy nomination below.
6552 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
6555 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
6556 set_next_buddy(pse
);
6557 next_buddy_marked
= 1;
6561 * We can come here with TIF_NEED_RESCHED already set from new task
6564 * Note: this also catches the edge-case of curr being in a throttled
6565 * group (e.g. via set_curr_task), since update_curr() (in the
6566 * enqueue of curr) will have resulted in resched being set. This
6567 * prevents us from potentially nominating it as a false LAST_BUDDY
6570 if (test_tsk_need_resched(curr
))
6573 /* Idle tasks are by definition preempted by non-idle tasks. */
6574 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
6575 likely(p
->policy
!= SCHED_IDLE
))
6579 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6580 * is driven by the tick):
6582 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
6585 find_matching_se(&se
, &pse
);
6586 update_curr(cfs_rq_of(se
));
6588 if (wakeup_preempt_entity(se
, pse
) == 1) {
6590 * Bias pick_next to pick the sched entity that is
6591 * triggering this preemption.
6593 if (!next_buddy_marked
)
6594 set_next_buddy(pse
);
6603 * Only set the backward buddy when the current task is still
6604 * on the rq. This can happen when a wakeup gets interleaved
6605 * with schedule on the ->pre_schedule() or idle_balance()
6606 * point, either of which can * drop the rq lock.
6608 * Also, during early boot the idle thread is in the fair class,
6609 * for obvious reasons its a bad idea to schedule back to it.
6611 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
6614 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
6618 static struct task_struct
*
6619 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
6621 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
6622 struct sched_entity
*se
;
6623 struct task_struct
*p
;
6627 if (!cfs_rq
->nr_running
)
6630 #ifdef CONFIG_FAIR_GROUP_SCHED
6631 if (prev
->sched_class
!= &fair_sched_class
)
6635 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6636 * likely that a next task is from the same cgroup as the current.
6638 * Therefore attempt to avoid putting and setting the entire cgroup
6639 * hierarchy, only change the part that actually changes.
6643 struct sched_entity
*curr
= cfs_rq
->curr
;
6646 * Since we got here without doing put_prev_entity() we also
6647 * have to consider cfs_rq->curr. If it is still a runnable
6648 * entity, update_curr() will update its vruntime, otherwise
6649 * forget we've ever seen it.
6653 update_curr(cfs_rq
);
6658 * This call to check_cfs_rq_runtime() will do the
6659 * throttle and dequeue its entity in the parent(s).
6660 * Therefore the nr_running test will indeed
6663 if (unlikely(check_cfs_rq_runtime(cfs_rq
))) {
6666 if (!cfs_rq
->nr_running
)
6673 se
= pick_next_entity(cfs_rq
, curr
);
6674 cfs_rq
= group_cfs_rq(se
);
6680 * Since we haven't yet done put_prev_entity and if the selected task
6681 * is a different task than we started out with, try and touch the
6682 * least amount of cfs_rqs.
6685 struct sched_entity
*pse
= &prev
->se
;
6687 while (!(cfs_rq
= is_same_group(se
, pse
))) {
6688 int se_depth
= se
->depth
;
6689 int pse_depth
= pse
->depth
;
6691 if (se_depth
<= pse_depth
) {
6692 put_prev_entity(cfs_rq_of(pse
), pse
);
6693 pse
= parent_entity(pse
);
6695 if (se_depth
>= pse_depth
) {
6696 set_next_entity(cfs_rq_of(se
), se
);
6697 se
= parent_entity(se
);
6701 put_prev_entity(cfs_rq
, pse
);
6702 set_next_entity(cfs_rq
, se
);
6709 put_prev_task(rq
, prev
);
6712 se
= pick_next_entity(cfs_rq
, NULL
);
6713 set_next_entity(cfs_rq
, se
);
6714 cfs_rq
= group_cfs_rq(se
);
6719 done
: __maybe_unused
6722 * Move the next running task to the front of
6723 * the list, so our cfs_tasks list becomes MRU
6726 list_move(&p
->se
.group_node
, &rq
->cfs_tasks
);
6729 if (hrtick_enabled(rq
))
6730 hrtick_start_fair(rq
, p
);
6735 new_tasks
= idle_balance(rq
, rf
);
6738 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6739 * possible for any higher priority task to appear. In that case we
6740 * must re-start the pick_next_entity() loop.
6752 * Account for a descheduled task:
6754 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
6756 struct sched_entity
*se
= &prev
->se
;
6757 struct cfs_rq
*cfs_rq
;
6759 for_each_sched_entity(se
) {
6760 cfs_rq
= cfs_rq_of(se
);
6761 put_prev_entity(cfs_rq
, se
);
6766 * sched_yield() is very simple
6768 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6770 static void yield_task_fair(struct rq
*rq
)
6772 struct task_struct
*curr
= rq
->curr
;
6773 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6774 struct sched_entity
*se
= &curr
->se
;
6777 * Are we the only task in the tree?
6779 if (unlikely(rq
->nr_running
== 1))
6782 clear_buddies(cfs_rq
, se
);
6784 if (curr
->policy
!= SCHED_BATCH
) {
6785 update_rq_clock(rq
);
6787 * Update run-time statistics of the 'current'.
6789 update_curr(cfs_rq
);
6791 * Tell update_rq_clock() that we've just updated,
6792 * so we don't do microscopic update in schedule()
6793 * and double the fastpath cost.
6795 rq_clock_skip_update(rq
, true);
6801 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
6803 struct sched_entity
*se
= &p
->se
;
6805 /* throttled hierarchies are not runnable */
6806 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
6809 /* Tell the scheduler that we'd really like pse to run next. */
6812 yield_task_fair(rq
);
6818 /**************************************************
6819 * Fair scheduling class load-balancing methods.
6823 * The purpose of load-balancing is to achieve the same basic fairness the
6824 * per-cpu scheduler provides, namely provide a proportional amount of compute
6825 * time to each task. This is expressed in the following equation:
6827 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6829 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6830 * W_i,0 is defined as:
6832 * W_i,0 = \Sum_j w_i,j (2)
6834 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6835 * is derived from the nice value as per sched_prio_to_weight[].
6837 * The weight average is an exponential decay average of the instantaneous
6840 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6842 * C_i is the compute capacity of cpu i, typically it is the
6843 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6844 * can also include other factors [XXX].
6846 * To achieve this balance we define a measure of imbalance which follows
6847 * directly from (1):
6849 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6851 * We them move tasks around to minimize the imbalance. In the continuous
6852 * function space it is obvious this converges, in the discrete case we get
6853 * a few fun cases generally called infeasible weight scenarios.
6856 * - infeasible weights;
6857 * - local vs global optima in the discrete case. ]
6862 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6863 * for all i,j solution, we create a tree of cpus that follows the hardware
6864 * topology where each level pairs two lower groups (or better). This results
6865 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6866 * tree to only the first of the previous level and we decrease the frequency
6867 * of load-balance at each level inv. proportional to the number of cpus in
6873 * \Sum { --- * --- * 2^i } = O(n) (5)
6875 * `- size of each group
6876 * | | `- number of cpus doing load-balance
6878 * `- sum over all levels
6880 * Coupled with a limit on how many tasks we can migrate every balance pass,
6881 * this makes (5) the runtime complexity of the balancer.
6883 * An important property here is that each CPU is still (indirectly) connected
6884 * to every other cpu in at most O(log n) steps:
6886 * The adjacency matrix of the resulting graph is given by:
6889 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6892 * And you'll find that:
6894 * A^(log_2 n)_i,j != 0 for all i,j (7)
6896 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6897 * The task movement gives a factor of O(m), giving a convergence complexity
6900 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6905 * In order to avoid CPUs going idle while there's still work to do, new idle
6906 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6907 * tree itself instead of relying on other CPUs to bring it work.
6909 * This adds some complexity to both (5) and (8) but it reduces the total idle
6917 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6920 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6925 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6927 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6929 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6932 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6933 * rewrite all of this once again.]
6936 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
6938 enum fbq_type
{ regular
, remote
, all
};
6940 #define LBF_ALL_PINNED 0x01
6941 #define LBF_NEED_BREAK 0x02
6942 #define LBF_DST_PINNED 0x04
6943 #define LBF_SOME_PINNED 0x08
6946 struct sched_domain
*sd
;
6954 struct cpumask
*dst_grpmask
;
6956 enum cpu_idle_type idle
;
6958 /* The set of CPUs under consideration for load-balancing */
6959 struct cpumask
*cpus
;
6964 unsigned int loop_break
;
6965 unsigned int loop_max
;
6967 enum fbq_type fbq_type
;
6968 struct list_head tasks
;
6972 * Is this task likely cache-hot:
6974 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
6978 lockdep_assert_held(&env
->src_rq
->lock
);
6980 if (p
->sched_class
!= &fair_sched_class
)
6983 if (unlikely(p
->policy
== SCHED_IDLE
))
6987 * Buddy candidates are cache hot:
6989 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
6990 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
6991 &p
->se
== cfs_rq_of(&p
->se
)->last
))
6994 if (sysctl_sched_migration_cost
== -1)
6996 if (sysctl_sched_migration_cost
== 0)
6999 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
7001 return delta
< (s64
)sysctl_sched_migration_cost
;
7004 #ifdef CONFIG_NUMA_BALANCING
7006 * Returns 1, if task migration degrades locality
7007 * Returns 0, if task migration improves locality i.e migration preferred.
7008 * Returns -1, if task migration is not affected by locality.
7010 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
7012 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
7013 unsigned long src_faults
, dst_faults
;
7014 int src_nid
, dst_nid
;
7016 if (!static_branch_likely(&sched_numa_balancing
))
7019 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
7022 src_nid
= cpu_to_node(env
->src_cpu
);
7023 dst_nid
= cpu_to_node(env
->dst_cpu
);
7025 if (src_nid
== dst_nid
)
7028 /* Migrating away from the preferred node is always bad. */
7029 if (src_nid
== p
->numa_preferred_nid
) {
7030 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
7036 /* Encourage migration to the preferred node. */
7037 if (dst_nid
== p
->numa_preferred_nid
)
7040 /* Leaving a core idle is often worse than degrading locality. */
7041 if (env
->idle
!= CPU_NOT_IDLE
)
7045 src_faults
= group_faults(p
, src_nid
);
7046 dst_faults
= group_faults(p
, dst_nid
);
7048 src_faults
= task_faults(p
, src_nid
);
7049 dst_faults
= task_faults(p
, dst_nid
);
7052 return dst_faults
< src_faults
;
7056 static inline int migrate_degrades_locality(struct task_struct
*p
,
7064 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7067 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
7071 lockdep_assert_held(&env
->src_rq
->lock
);
7074 * We do not migrate tasks that are:
7075 * 1) throttled_lb_pair, or
7076 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7077 * 3) running (obviously), or
7078 * 4) are cache-hot on their current CPU.
7080 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
7083 if (!cpumask_test_cpu(env
->dst_cpu
, &p
->cpus_allowed
)) {
7086 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_affine
);
7088 env
->flags
|= LBF_SOME_PINNED
;
7091 * Remember if this task can be migrated to any other cpu in
7092 * our sched_group. We may want to revisit it if we couldn't
7093 * meet load balance goals by pulling other tasks on src_cpu.
7095 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7096 * already computed one in current iteration.
7098 if (env
->idle
== CPU_NEWLY_IDLE
|| (env
->flags
& LBF_DST_PINNED
))
7101 /* Prevent to re-select dst_cpu via env's cpus */
7102 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
7103 if (cpumask_test_cpu(cpu
, &p
->cpus_allowed
)) {
7104 env
->flags
|= LBF_DST_PINNED
;
7105 env
->new_dst_cpu
= cpu
;
7113 /* Record that we found atleast one task that could run on dst_cpu */
7114 env
->flags
&= ~LBF_ALL_PINNED
;
7116 if (task_running(env
->src_rq
, p
)) {
7117 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_running
);
7122 * Aggressive migration if:
7123 * 1) destination numa is preferred
7124 * 2) task is cache cold, or
7125 * 3) too many balance attempts have failed.
7127 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
7128 if (tsk_cache_hot
== -1)
7129 tsk_cache_hot
= task_hot(p
, env
);
7131 if (tsk_cache_hot
<= 0 ||
7132 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
7133 if (tsk_cache_hot
== 1) {
7134 schedstat_inc(env
->sd
->lb_hot_gained
[env
->idle
]);
7135 schedstat_inc(p
->se
.statistics
.nr_forced_migrations
);
7140 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_hot
);
7145 * detach_task() -- detach the task for the migration specified in env
7147 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
7149 lockdep_assert_held(&env
->src_rq
->lock
);
7151 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
7152 deactivate_task(env
->src_rq
, p
, DEQUEUE_NOCLOCK
);
7153 set_task_cpu(p
, env
->dst_cpu
);
7157 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7158 * part of active balancing operations within "domain".
7160 * Returns a task if successful and NULL otherwise.
7162 static struct task_struct
*detach_one_task(struct lb_env
*env
)
7164 struct task_struct
*p
;
7166 lockdep_assert_held(&env
->src_rq
->lock
);
7168 list_for_each_entry_reverse(p
,
7169 &env
->src_rq
->cfs_tasks
, se
.group_node
) {
7170 if (!can_migrate_task(p
, env
))
7173 detach_task(p
, env
);
7176 * Right now, this is only the second place where
7177 * lb_gained[env->idle] is updated (other is detach_tasks)
7178 * so we can safely collect stats here rather than
7179 * inside detach_tasks().
7181 schedstat_inc(env
->sd
->lb_gained
[env
->idle
]);
7187 static const unsigned int sched_nr_migrate_break
= 32;
7190 * detach_tasks() -- tries to detach up to imbalance weighted load from
7191 * busiest_rq, as part of a balancing operation within domain "sd".
7193 * Returns number of detached tasks if successful and 0 otherwise.
7195 static int detach_tasks(struct lb_env
*env
)
7197 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
7198 struct task_struct
*p
;
7202 lockdep_assert_held(&env
->src_rq
->lock
);
7204 if (env
->imbalance
<= 0)
7207 while (!list_empty(tasks
)) {
7209 * We don't want to steal all, otherwise we may be treated likewise,
7210 * which could at worst lead to a livelock crash.
7212 if (env
->idle
!= CPU_NOT_IDLE
&& env
->src_rq
->nr_running
<= 1)
7215 p
= list_last_entry(tasks
, struct task_struct
, se
.group_node
);
7218 /* We've more or less seen every task there is, call it quits */
7219 if (env
->loop
> env
->loop_max
)
7222 /* take a breather every nr_migrate tasks */
7223 if (env
->loop
> env
->loop_break
) {
7224 env
->loop_break
+= sched_nr_migrate_break
;
7225 env
->flags
|= LBF_NEED_BREAK
;
7229 if (!can_migrate_task(p
, env
))
7232 load
= task_h_load(p
);
7234 if (sched_feat(LB_MIN
) && load
< 16 && !env
->sd
->nr_balance_failed
)
7237 if ((load
/ 2) > env
->imbalance
)
7240 detach_task(p
, env
);
7241 list_add(&p
->se
.group_node
, &env
->tasks
);
7244 env
->imbalance
-= load
;
7246 #ifdef CONFIG_PREEMPT
7248 * NEWIDLE balancing is a source of latency, so preemptible
7249 * kernels will stop after the first task is detached to minimize
7250 * the critical section.
7252 if (env
->idle
== CPU_NEWLY_IDLE
)
7257 * We only want to steal up to the prescribed amount of
7260 if (env
->imbalance
<= 0)
7265 list_move(&p
->se
.group_node
, tasks
);
7269 * Right now, this is one of only two places we collect this stat
7270 * so we can safely collect detach_one_task() stats here rather
7271 * than inside detach_one_task().
7273 schedstat_add(env
->sd
->lb_gained
[env
->idle
], detached
);
7279 * attach_task() -- attach the task detached by detach_task() to its new rq.
7281 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
7283 lockdep_assert_held(&rq
->lock
);
7285 BUG_ON(task_rq(p
) != rq
);
7286 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
7287 p
->on_rq
= TASK_ON_RQ_QUEUED
;
7288 check_preempt_curr(rq
, p
, 0);
7292 * attach_one_task() -- attaches the task returned from detach_one_task() to
7295 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
7300 update_rq_clock(rq
);
7306 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7309 static void attach_tasks(struct lb_env
*env
)
7311 struct list_head
*tasks
= &env
->tasks
;
7312 struct task_struct
*p
;
7315 rq_lock(env
->dst_rq
, &rf
);
7316 update_rq_clock(env
->dst_rq
);
7318 while (!list_empty(tasks
)) {
7319 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
7320 list_del_init(&p
->se
.group_node
);
7322 attach_task(env
->dst_rq
, p
);
7325 rq_unlock(env
->dst_rq
, &rf
);
7328 #ifdef CONFIG_FAIR_GROUP_SCHED
7330 static inline bool cfs_rq_is_decayed(struct cfs_rq
*cfs_rq
)
7332 if (cfs_rq
->load
.weight
)
7335 if (cfs_rq
->avg
.load_sum
)
7338 if (cfs_rq
->avg
.util_sum
)
7341 if (cfs_rq
->avg
.runnable_load_sum
)
7347 static void update_blocked_averages(int cpu
)
7349 struct rq
*rq
= cpu_rq(cpu
);
7350 struct cfs_rq
*cfs_rq
, *pos
;
7353 rq_lock_irqsave(rq
, &rf
);
7354 update_rq_clock(rq
);
7357 * Iterates the task_group tree in a bottom up fashion, see
7358 * list_add_leaf_cfs_rq() for details.
7360 for_each_leaf_cfs_rq_safe(rq
, cfs_rq
, pos
) {
7361 struct sched_entity
*se
;
7363 /* throttled entities do not contribute to load */
7364 if (throttled_hierarchy(cfs_rq
))
7367 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
))
7368 update_tg_load_avg(cfs_rq
, 0);
7370 /* Propagate pending load changes to the parent, if any: */
7371 se
= cfs_rq
->tg
->se
[cpu
];
7372 if (se
&& !skip_blocked_update(se
))
7373 update_load_avg(cfs_rq_of(se
), se
, 0);
7376 * There can be a lot of idle CPU cgroups. Don't let fully
7377 * decayed cfs_rqs linger on the list.
7379 if (cfs_rq_is_decayed(cfs_rq
))
7380 list_del_leaf_cfs_rq(cfs_rq
);
7382 rq_unlock_irqrestore(rq
, &rf
);
7386 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7387 * This needs to be done in a top-down fashion because the load of a child
7388 * group is a fraction of its parents load.
7390 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
7392 struct rq
*rq
= rq_of(cfs_rq
);
7393 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
7394 unsigned long now
= jiffies
;
7397 if (cfs_rq
->last_h_load_update
== now
)
7400 cfs_rq
->h_load_next
= NULL
;
7401 for_each_sched_entity(se
) {
7402 cfs_rq
= cfs_rq_of(se
);
7403 cfs_rq
->h_load_next
= se
;
7404 if (cfs_rq
->last_h_load_update
== now
)
7409 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
7410 cfs_rq
->last_h_load_update
= now
;
7413 while ((se
= cfs_rq
->h_load_next
) != NULL
) {
7414 load
= cfs_rq
->h_load
;
7415 load
= div64_ul(load
* se
->avg
.load_avg
,
7416 cfs_rq_load_avg(cfs_rq
) + 1);
7417 cfs_rq
= group_cfs_rq(se
);
7418 cfs_rq
->h_load
= load
;
7419 cfs_rq
->last_h_load_update
= now
;
7423 static unsigned long task_h_load(struct task_struct
*p
)
7425 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
7427 update_cfs_rq_h_load(cfs_rq
);
7428 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
7429 cfs_rq_load_avg(cfs_rq
) + 1);
7432 static inline void update_blocked_averages(int cpu
)
7434 struct rq
*rq
= cpu_rq(cpu
);
7435 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
7438 rq_lock_irqsave(rq
, &rf
);
7439 update_rq_clock(rq
);
7440 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
);
7441 rq_unlock_irqrestore(rq
, &rf
);
7444 static unsigned long task_h_load(struct task_struct
*p
)
7446 return p
->se
.avg
.load_avg
;
7450 /********** Helpers for find_busiest_group ************************/
7459 * sg_lb_stats - stats of a sched_group required for load_balancing
7461 struct sg_lb_stats
{
7462 unsigned long avg_load
; /*Avg load across the CPUs of the group */
7463 unsigned long group_load
; /* Total load over the CPUs of the group */
7464 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
7465 unsigned long load_per_task
;
7466 unsigned long group_capacity
;
7467 unsigned long group_util
; /* Total utilization of the group */
7468 unsigned int sum_nr_running
; /* Nr tasks running in the group */
7469 unsigned int idle_cpus
;
7470 unsigned int group_weight
;
7471 enum group_type group_type
;
7472 int group_no_capacity
;
7473 #ifdef CONFIG_NUMA_BALANCING
7474 unsigned int nr_numa_running
;
7475 unsigned int nr_preferred_running
;
7480 * sd_lb_stats - Structure to store the statistics of a sched_domain
7481 * during load balancing.
7483 struct sd_lb_stats
{
7484 struct sched_group
*busiest
; /* Busiest group in this sd */
7485 struct sched_group
*local
; /* Local group in this sd */
7486 unsigned long total_running
;
7487 unsigned long total_load
; /* Total load of all groups in sd */
7488 unsigned long total_capacity
; /* Total capacity of all groups in sd */
7489 unsigned long avg_load
; /* Average load across all groups in sd */
7491 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
7492 struct sg_lb_stats local_stat
; /* Statistics of the local group */
7495 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
7498 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7499 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7500 * We must however clear busiest_stat::avg_load because
7501 * update_sd_pick_busiest() reads this before assignment.
7503 *sds
= (struct sd_lb_stats
){
7506 .total_running
= 0UL,
7508 .total_capacity
= 0UL,
7511 .sum_nr_running
= 0,
7512 .group_type
= group_other
,
7518 * get_sd_load_idx - Obtain the load index for a given sched domain.
7519 * @sd: The sched_domain whose load_idx is to be obtained.
7520 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7522 * Return: The load index.
7524 static inline int get_sd_load_idx(struct sched_domain
*sd
,
7525 enum cpu_idle_type idle
)
7531 load_idx
= sd
->busy_idx
;
7534 case CPU_NEWLY_IDLE
:
7535 load_idx
= sd
->newidle_idx
;
7538 load_idx
= sd
->idle_idx
;
7545 static unsigned long scale_rt_capacity(int cpu
)
7547 struct rq
*rq
= cpu_rq(cpu
);
7548 u64 total
, used
, age_stamp
, avg
;
7552 * Since we're reading these variables without serialization make sure
7553 * we read them once before doing sanity checks on them.
7555 age_stamp
= READ_ONCE(rq
->age_stamp
);
7556 avg
= READ_ONCE(rq
->rt_avg
);
7557 delta
= __rq_clock_broken(rq
) - age_stamp
;
7559 if (unlikely(delta
< 0))
7562 total
= sched_avg_period() + delta
;
7564 used
= div_u64(avg
, total
);
7566 if (likely(used
< SCHED_CAPACITY_SCALE
))
7567 return SCHED_CAPACITY_SCALE
- used
;
7572 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
7574 unsigned long capacity
= arch_scale_cpu_capacity(sd
, cpu
);
7575 struct sched_group
*sdg
= sd
->groups
;
7577 cpu_rq(cpu
)->cpu_capacity_orig
= capacity
;
7579 capacity
*= scale_rt_capacity(cpu
);
7580 capacity
>>= SCHED_CAPACITY_SHIFT
;
7585 cpu_rq(cpu
)->cpu_capacity
= capacity
;
7586 sdg
->sgc
->capacity
= capacity
;
7587 sdg
->sgc
->min_capacity
= capacity
;
7590 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
7592 struct sched_domain
*child
= sd
->child
;
7593 struct sched_group
*group
, *sdg
= sd
->groups
;
7594 unsigned long capacity
, min_capacity
;
7595 unsigned long interval
;
7597 interval
= msecs_to_jiffies(sd
->balance_interval
);
7598 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
7599 sdg
->sgc
->next_update
= jiffies
+ interval
;
7602 update_cpu_capacity(sd
, cpu
);
7607 min_capacity
= ULONG_MAX
;
7609 if (child
->flags
& SD_OVERLAP
) {
7611 * SD_OVERLAP domains cannot assume that child groups
7612 * span the current group.
7615 for_each_cpu(cpu
, sched_group_span(sdg
)) {
7616 struct sched_group_capacity
*sgc
;
7617 struct rq
*rq
= cpu_rq(cpu
);
7620 * build_sched_domains() -> init_sched_groups_capacity()
7621 * gets here before we've attached the domains to the
7624 * Use capacity_of(), which is set irrespective of domains
7625 * in update_cpu_capacity().
7627 * This avoids capacity from being 0 and
7628 * causing divide-by-zero issues on boot.
7630 if (unlikely(!rq
->sd
)) {
7631 capacity
+= capacity_of(cpu
);
7633 sgc
= rq
->sd
->groups
->sgc
;
7634 capacity
+= sgc
->capacity
;
7637 min_capacity
= min(capacity
, min_capacity
);
7641 * !SD_OVERLAP domains can assume that child groups
7642 * span the current group.
7645 group
= child
->groups
;
7647 struct sched_group_capacity
*sgc
= group
->sgc
;
7649 capacity
+= sgc
->capacity
;
7650 min_capacity
= min(sgc
->min_capacity
, min_capacity
);
7651 group
= group
->next
;
7652 } while (group
!= child
->groups
);
7655 sdg
->sgc
->capacity
= capacity
;
7656 sdg
->sgc
->min_capacity
= min_capacity
;
7660 * Check whether the capacity of the rq has been noticeably reduced by side
7661 * activity. The imbalance_pct is used for the threshold.
7662 * Return true is the capacity is reduced
7665 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
7667 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
7668 (rq
->cpu_capacity_orig
* 100));
7672 * Group imbalance indicates (and tries to solve) the problem where balancing
7673 * groups is inadequate due to ->cpus_allowed constraints.
7675 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7676 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7679 * { 0 1 2 3 } { 4 5 6 7 }
7682 * If we were to balance group-wise we'd place two tasks in the first group and
7683 * two tasks in the second group. Clearly this is undesired as it will overload
7684 * cpu 3 and leave one of the cpus in the second group unused.
7686 * The current solution to this issue is detecting the skew in the first group
7687 * by noticing the lower domain failed to reach balance and had difficulty
7688 * moving tasks due to affinity constraints.
7690 * When this is so detected; this group becomes a candidate for busiest; see
7691 * update_sd_pick_busiest(). And calculate_imbalance() and
7692 * find_busiest_group() avoid some of the usual balance conditions to allow it
7693 * to create an effective group imbalance.
7695 * This is a somewhat tricky proposition since the next run might not find the
7696 * group imbalance and decide the groups need to be balanced again. A most
7697 * subtle and fragile situation.
7700 static inline int sg_imbalanced(struct sched_group
*group
)
7702 return group
->sgc
->imbalance
;
7706 * group_has_capacity returns true if the group has spare capacity that could
7707 * be used by some tasks.
7708 * We consider that a group has spare capacity if the * number of task is
7709 * smaller than the number of CPUs or if the utilization is lower than the
7710 * available capacity for CFS tasks.
7711 * For the latter, we use a threshold to stabilize the state, to take into
7712 * account the variance of the tasks' load and to return true if the available
7713 * capacity in meaningful for the load balancer.
7714 * As an example, an available capacity of 1% can appear but it doesn't make
7715 * any benefit for the load balance.
7718 group_has_capacity(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
7720 if (sgs
->sum_nr_running
< sgs
->group_weight
)
7723 if ((sgs
->group_capacity
* 100) >
7724 (sgs
->group_util
* env
->sd
->imbalance_pct
))
7731 * group_is_overloaded returns true if the group has more tasks than it can
7733 * group_is_overloaded is not equals to !group_has_capacity because a group
7734 * with the exact right number of tasks, has no more spare capacity but is not
7735 * overloaded so both group_has_capacity and group_is_overloaded return
7739 group_is_overloaded(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
7741 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
7744 if ((sgs
->group_capacity
* 100) <
7745 (sgs
->group_util
* env
->sd
->imbalance_pct
))
7752 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7753 * per-CPU capacity than sched_group ref.
7756 group_smaller_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
7758 return sg
->sgc
->min_capacity
* capacity_margin
<
7759 ref
->sgc
->min_capacity
* 1024;
7763 group_type
group_classify(struct sched_group
*group
,
7764 struct sg_lb_stats
*sgs
)
7766 if (sgs
->group_no_capacity
)
7767 return group_overloaded
;
7769 if (sg_imbalanced(group
))
7770 return group_imbalanced
;
7776 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7777 * @env: The load balancing environment.
7778 * @group: sched_group whose statistics are to be updated.
7779 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7780 * @local_group: Does group contain this_cpu.
7781 * @sgs: variable to hold the statistics for this group.
7782 * @overload: Indicate more than one runnable task for any CPU.
7784 static inline void update_sg_lb_stats(struct lb_env
*env
,
7785 struct sched_group
*group
, int load_idx
,
7786 int local_group
, struct sg_lb_stats
*sgs
,
7792 memset(sgs
, 0, sizeof(*sgs
));
7794 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
7795 struct rq
*rq
= cpu_rq(i
);
7797 /* Bias balancing toward cpus of our domain */
7799 load
= target_load(i
, load_idx
);
7801 load
= source_load(i
, load_idx
);
7803 sgs
->group_load
+= load
;
7804 sgs
->group_util
+= cpu_util(i
);
7805 sgs
->sum_nr_running
+= rq
->cfs
.h_nr_running
;
7807 nr_running
= rq
->nr_running
;
7811 #ifdef CONFIG_NUMA_BALANCING
7812 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
7813 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
7815 sgs
->sum_weighted_load
+= weighted_cpuload(rq
);
7817 * No need to call idle_cpu() if nr_running is not 0
7819 if (!nr_running
&& idle_cpu(i
))
7823 /* Adjust by relative CPU capacity of the group */
7824 sgs
->group_capacity
= group
->sgc
->capacity
;
7825 sgs
->avg_load
= (sgs
->group_load
*SCHED_CAPACITY_SCALE
) / sgs
->group_capacity
;
7827 if (sgs
->sum_nr_running
)
7828 sgs
->load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
7830 sgs
->group_weight
= group
->group_weight
;
7832 sgs
->group_no_capacity
= group_is_overloaded(env
, sgs
);
7833 sgs
->group_type
= group_classify(group
, sgs
);
7837 * update_sd_pick_busiest - return 1 on busiest group
7838 * @env: The load balancing environment.
7839 * @sds: sched_domain statistics
7840 * @sg: sched_group candidate to be checked for being the busiest
7841 * @sgs: sched_group statistics
7843 * Determine if @sg is a busier group than the previously selected
7846 * Return: %true if @sg is a busier group than the previously selected
7847 * busiest group. %false otherwise.
7849 static bool update_sd_pick_busiest(struct lb_env
*env
,
7850 struct sd_lb_stats
*sds
,
7851 struct sched_group
*sg
,
7852 struct sg_lb_stats
*sgs
)
7854 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
7856 if (sgs
->group_type
> busiest
->group_type
)
7859 if (sgs
->group_type
< busiest
->group_type
)
7862 if (sgs
->avg_load
<= busiest
->avg_load
)
7865 if (!(env
->sd
->flags
& SD_ASYM_CPUCAPACITY
))
7869 * Candidate sg has no more than one task per CPU and
7870 * has higher per-CPU capacity. Migrating tasks to less
7871 * capable CPUs may harm throughput. Maximize throughput,
7872 * power/energy consequences are not considered.
7874 if (sgs
->sum_nr_running
<= sgs
->group_weight
&&
7875 group_smaller_cpu_capacity(sds
->local
, sg
))
7879 /* This is the busiest node in its class. */
7880 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
7883 /* No ASYM_PACKING if target cpu is already busy */
7884 if (env
->idle
== CPU_NOT_IDLE
)
7887 * ASYM_PACKING needs to move all the work to the highest
7888 * prority CPUs in the group, therefore mark all groups
7889 * of lower priority than ourself as busy.
7891 if (sgs
->sum_nr_running
&&
7892 sched_asym_prefer(env
->dst_cpu
, sg
->asym_prefer_cpu
)) {
7896 /* Prefer to move from lowest priority cpu's work */
7897 if (sched_asym_prefer(sds
->busiest
->asym_prefer_cpu
,
7898 sg
->asym_prefer_cpu
))
7905 #ifdef CONFIG_NUMA_BALANCING
7906 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
7908 if (sgs
->sum_nr_running
> sgs
->nr_numa_running
)
7910 if (sgs
->sum_nr_running
> sgs
->nr_preferred_running
)
7915 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
7917 if (rq
->nr_running
> rq
->nr_numa_running
)
7919 if (rq
->nr_running
> rq
->nr_preferred_running
)
7924 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
7929 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
7933 #endif /* CONFIG_NUMA_BALANCING */
7936 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7937 * @env: The load balancing environment.
7938 * @sds: variable to hold the statistics for this sched_domain.
7940 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7942 struct sched_domain
*child
= env
->sd
->child
;
7943 struct sched_group
*sg
= env
->sd
->groups
;
7944 struct sg_lb_stats
*local
= &sds
->local_stat
;
7945 struct sg_lb_stats tmp_sgs
;
7946 int load_idx
, prefer_sibling
= 0;
7947 bool overload
= false;
7949 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
7952 load_idx
= get_sd_load_idx(env
->sd
, env
->idle
);
7955 struct sg_lb_stats
*sgs
= &tmp_sgs
;
7958 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(sg
));
7963 if (env
->idle
!= CPU_NEWLY_IDLE
||
7964 time_after_eq(jiffies
, sg
->sgc
->next_update
))
7965 update_group_capacity(env
->sd
, env
->dst_cpu
);
7968 update_sg_lb_stats(env
, sg
, load_idx
, local_group
, sgs
,
7975 * In case the child domain prefers tasks go to siblings
7976 * first, lower the sg capacity so that we'll try
7977 * and move all the excess tasks away. We lower the capacity
7978 * of a group only if the local group has the capacity to fit
7979 * these excess tasks. The extra check prevents the case where
7980 * you always pull from the heaviest group when it is already
7981 * under-utilized (possible with a large weight task outweighs
7982 * the tasks on the system).
7984 if (prefer_sibling
&& sds
->local
&&
7985 group_has_capacity(env
, local
) &&
7986 (sgs
->sum_nr_running
> local
->sum_nr_running
+ 1)) {
7987 sgs
->group_no_capacity
= 1;
7988 sgs
->group_type
= group_classify(sg
, sgs
);
7991 if (update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
7993 sds
->busiest_stat
= *sgs
;
7997 /* Now, start updating sd_lb_stats */
7998 sds
->total_running
+= sgs
->sum_nr_running
;
7999 sds
->total_load
+= sgs
->group_load
;
8000 sds
->total_capacity
+= sgs
->group_capacity
;
8003 } while (sg
!= env
->sd
->groups
);
8005 if (env
->sd
->flags
& SD_NUMA
)
8006 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
8008 if (!env
->sd
->parent
) {
8009 /* update overload indicator if we are at root domain */
8010 if (env
->dst_rq
->rd
->overload
!= overload
)
8011 env
->dst_rq
->rd
->overload
= overload
;
8016 * check_asym_packing - Check to see if the group is packed into the
8019 * This is primarily intended to used at the sibling level. Some
8020 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8021 * case of POWER7, it can move to lower SMT modes only when higher
8022 * threads are idle. When in lower SMT modes, the threads will
8023 * perform better since they share less core resources. Hence when we
8024 * have idle threads, we want them to be the higher ones.
8026 * This packing function is run on idle threads. It checks to see if
8027 * the busiest CPU in this domain (core in the P7 case) has a higher
8028 * CPU number than the packing function is being run on. Here we are
8029 * assuming lower CPU number will be equivalent to lower a SMT thread
8032 * Return: 1 when packing is required and a task should be moved to
8033 * this CPU. The amount of the imbalance is returned in env->imbalance.
8035 * @env: The load balancing environment.
8036 * @sds: Statistics of the sched_domain which is to be packed
8038 static int check_asym_packing(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8042 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
8045 if (env
->idle
== CPU_NOT_IDLE
)
8051 busiest_cpu
= sds
->busiest
->asym_prefer_cpu
;
8052 if (sched_asym_prefer(busiest_cpu
, env
->dst_cpu
))
8055 env
->imbalance
= DIV_ROUND_CLOSEST(
8056 sds
->busiest_stat
.avg_load
* sds
->busiest_stat
.group_capacity
,
8057 SCHED_CAPACITY_SCALE
);
8063 * fix_small_imbalance - Calculate the minor imbalance that exists
8064 * amongst the groups of a sched_domain, during
8066 * @env: The load balancing environment.
8067 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8070 void fix_small_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8072 unsigned long tmp
, capa_now
= 0, capa_move
= 0;
8073 unsigned int imbn
= 2;
8074 unsigned long scaled_busy_load_per_task
;
8075 struct sg_lb_stats
*local
, *busiest
;
8077 local
= &sds
->local_stat
;
8078 busiest
= &sds
->busiest_stat
;
8080 if (!local
->sum_nr_running
)
8081 local
->load_per_task
= cpu_avg_load_per_task(env
->dst_cpu
);
8082 else if (busiest
->load_per_task
> local
->load_per_task
)
8085 scaled_busy_load_per_task
=
8086 (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
8087 busiest
->group_capacity
;
8089 if (busiest
->avg_load
+ scaled_busy_load_per_task
>=
8090 local
->avg_load
+ (scaled_busy_load_per_task
* imbn
)) {
8091 env
->imbalance
= busiest
->load_per_task
;
8096 * OK, we don't have enough imbalance to justify moving tasks,
8097 * however we may be able to increase total CPU capacity used by
8101 capa_now
+= busiest
->group_capacity
*
8102 min(busiest
->load_per_task
, busiest
->avg_load
);
8103 capa_now
+= local
->group_capacity
*
8104 min(local
->load_per_task
, local
->avg_load
);
8105 capa_now
/= SCHED_CAPACITY_SCALE
;
8107 /* Amount of load we'd subtract */
8108 if (busiest
->avg_load
> scaled_busy_load_per_task
) {
8109 capa_move
+= busiest
->group_capacity
*
8110 min(busiest
->load_per_task
,
8111 busiest
->avg_load
- scaled_busy_load_per_task
);
8114 /* Amount of load we'd add */
8115 if (busiest
->avg_load
* busiest
->group_capacity
<
8116 busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) {
8117 tmp
= (busiest
->avg_load
* busiest
->group_capacity
) /
8118 local
->group_capacity
;
8120 tmp
= (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
8121 local
->group_capacity
;
8123 capa_move
+= local
->group_capacity
*
8124 min(local
->load_per_task
, local
->avg_load
+ tmp
);
8125 capa_move
/= SCHED_CAPACITY_SCALE
;
8127 /* Move if we gain throughput */
8128 if (capa_move
> capa_now
)
8129 env
->imbalance
= busiest
->load_per_task
;
8133 * calculate_imbalance - Calculate the amount of imbalance present within the
8134 * groups of a given sched_domain during load balance.
8135 * @env: load balance environment
8136 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8138 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8140 unsigned long max_pull
, load_above_capacity
= ~0UL;
8141 struct sg_lb_stats
*local
, *busiest
;
8143 local
= &sds
->local_stat
;
8144 busiest
= &sds
->busiest_stat
;
8146 if (busiest
->group_type
== group_imbalanced
) {
8148 * In the group_imb case we cannot rely on group-wide averages
8149 * to ensure cpu-load equilibrium, look at wider averages. XXX
8151 busiest
->load_per_task
=
8152 min(busiest
->load_per_task
, sds
->avg_load
);
8156 * Avg load of busiest sg can be less and avg load of local sg can
8157 * be greater than avg load across all sgs of sd because avg load
8158 * factors in sg capacity and sgs with smaller group_type are
8159 * skipped when updating the busiest sg:
8161 if (busiest
->avg_load
<= sds
->avg_load
||
8162 local
->avg_load
>= sds
->avg_load
) {
8164 return fix_small_imbalance(env
, sds
);
8168 * If there aren't any idle cpus, avoid creating some.
8170 if (busiest
->group_type
== group_overloaded
&&
8171 local
->group_type
== group_overloaded
) {
8172 load_above_capacity
= busiest
->sum_nr_running
* SCHED_CAPACITY_SCALE
;
8173 if (load_above_capacity
> busiest
->group_capacity
) {
8174 load_above_capacity
-= busiest
->group_capacity
;
8175 load_above_capacity
*= scale_load_down(NICE_0_LOAD
);
8176 load_above_capacity
/= busiest
->group_capacity
;
8178 load_above_capacity
= ~0UL;
8182 * We're trying to get all the cpus to the average_load, so we don't
8183 * want to push ourselves above the average load, nor do we wish to
8184 * reduce the max loaded cpu below the average load. At the same time,
8185 * we also don't want to reduce the group load below the group
8186 * capacity. Thus we look for the minimum possible imbalance.
8188 max_pull
= min(busiest
->avg_load
- sds
->avg_load
, load_above_capacity
);
8190 /* How much load to actually move to equalise the imbalance */
8191 env
->imbalance
= min(
8192 max_pull
* busiest
->group_capacity
,
8193 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
8194 ) / SCHED_CAPACITY_SCALE
;
8197 * if *imbalance is less than the average load per runnable task
8198 * there is no guarantee that any tasks will be moved so we'll have
8199 * a think about bumping its value to force at least one task to be
8202 if (env
->imbalance
< busiest
->load_per_task
)
8203 return fix_small_imbalance(env
, sds
);
8206 /******* find_busiest_group() helpers end here *********************/
8209 * find_busiest_group - Returns the busiest group within the sched_domain
8210 * if there is an imbalance.
8212 * Also calculates the amount of weighted load which should be moved
8213 * to restore balance.
8215 * @env: The load balancing environment.
8217 * Return: - The busiest group if imbalance exists.
8219 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
8221 struct sg_lb_stats
*local
, *busiest
;
8222 struct sd_lb_stats sds
;
8224 init_sd_lb_stats(&sds
);
8227 * Compute the various statistics relavent for load balancing at
8230 update_sd_lb_stats(env
, &sds
);
8231 local
= &sds
.local_stat
;
8232 busiest
= &sds
.busiest_stat
;
8234 /* ASYM feature bypasses nice load balance check */
8235 if (check_asym_packing(env
, &sds
))
8238 /* There is no busy sibling group to pull tasks from */
8239 if (!sds
.busiest
|| busiest
->sum_nr_running
== 0)
8242 /* XXX broken for overlapping NUMA groups */
8243 sds
.avg_load
= (SCHED_CAPACITY_SCALE
* sds
.total_load
)
8244 / sds
.total_capacity
;
8247 * If the busiest group is imbalanced the below checks don't
8248 * work because they assume all things are equal, which typically
8249 * isn't true due to cpus_allowed constraints and the like.
8251 if (busiest
->group_type
== group_imbalanced
)
8255 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8256 * capacities from resulting in underutilization due to avg_load.
8258 if (env
->idle
!= CPU_NOT_IDLE
&& group_has_capacity(env
, local
) &&
8259 busiest
->group_no_capacity
)
8263 * If the local group is busier than the selected busiest group
8264 * don't try and pull any tasks.
8266 if (local
->avg_load
>= busiest
->avg_load
)
8270 * Don't pull any tasks if this group is already above the domain
8273 if (local
->avg_load
>= sds
.avg_load
)
8276 if (env
->idle
== CPU_IDLE
) {
8278 * This cpu is idle. If the busiest group is not overloaded
8279 * and there is no imbalance between this and busiest group
8280 * wrt idle cpus, it is balanced. The imbalance becomes
8281 * significant if the diff is greater than 1 otherwise we
8282 * might end up to just move the imbalance on another group
8284 if ((busiest
->group_type
!= group_overloaded
) &&
8285 (local
->idle_cpus
<= (busiest
->idle_cpus
+ 1)))
8289 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8290 * imbalance_pct to be conservative.
8292 if (100 * busiest
->avg_load
<=
8293 env
->sd
->imbalance_pct
* local
->avg_load
)
8298 /* Looks like there is an imbalance. Compute it */
8299 calculate_imbalance(env
, &sds
);
8308 * find_busiest_queue - find the busiest runqueue among the cpus in group.
8310 static struct rq
*find_busiest_queue(struct lb_env
*env
,
8311 struct sched_group
*group
)
8313 struct rq
*busiest
= NULL
, *rq
;
8314 unsigned long busiest_load
= 0, busiest_capacity
= 1;
8317 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
8318 unsigned long capacity
, wl
;
8322 rt
= fbq_classify_rq(rq
);
8325 * We classify groups/runqueues into three groups:
8326 * - regular: there are !numa tasks
8327 * - remote: there are numa tasks that run on the 'wrong' node
8328 * - all: there is no distinction
8330 * In order to avoid migrating ideally placed numa tasks,
8331 * ignore those when there's better options.
8333 * If we ignore the actual busiest queue to migrate another
8334 * task, the next balance pass can still reduce the busiest
8335 * queue by moving tasks around inside the node.
8337 * If we cannot move enough load due to this classification
8338 * the next pass will adjust the group classification and
8339 * allow migration of more tasks.
8341 * Both cases only affect the total convergence complexity.
8343 if (rt
> env
->fbq_type
)
8346 capacity
= capacity_of(i
);
8348 wl
= weighted_cpuload(rq
);
8351 * When comparing with imbalance, use weighted_cpuload()
8352 * which is not scaled with the cpu capacity.
8355 if (rq
->nr_running
== 1 && wl
> env
->imbalance
&&
8356 !check_cpu_capacity(rq
, env
->sd
))
8360 * For the load comparisons with the other cpu's, consider
8361 * the weighted_cpuload() scaled with the cpu capacity, so
8362 * that the load can be moved away from the cpu that is
8363 * potentially running at a lower capacity.
8365 * Thus we're looking for max(wl_i / capacity_i), crosswise
8366 * multiplication to rid ourselves of the division works out
8367 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8368 * our previous maximum.
8370 if (wl
* busiest_capacity
> busiest_load
* capacity
) {
8372 busiest_capacity
= capacity
;
8381 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8382 * so long as it is large enough.
8384 #define MAX_PINNED_INTERVAL 512
8386 static int need_active_balance(struct lb_env
*env
)
8388 struct sched_domain
*sd
= env
->sd
;
8390 if (env
->idle
== CPU_NEWLY_IDLE
) {
8393 * ASYM_PACKING needs to force migrate tasks from busy but
8394 * lower priority CPUs in order to pack all tasks in the
8395 * highest priority CPUs.
8397 if ((sd
->flags
& SD_ASYM_PACKING
) &&
8398 sched_asym_prefer(env
->dst_cpu
, env
->src_cpu
))
8403 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8404 * It's worth migrating the task if the src_cpu's capacity is reduced
8405 * because of other sched_class or IRQs if more capacity stays
8406 * available on dst_cpu.
8408 if ((env
->idle
!= CPU_NOT_IDLE
) &&
8409 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
8410 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
8411 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
8415 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
8418 static int active_load_balance_cpu_stop(void *data
);
8420 static int should_we_balance(struct lb_env
*env
)
8422 struct sched_group
*sg
= env
->sd
->groups
;
8423 int cpu
, balance_cpu
= -1;
8426 * Ensure the balancing environment is consistent; can happen
8427 * when the softirq triggers 'during' hotplug.
8429 if (!cpumask_test_cpu(env
->dst_cpu
, env
->cpus
))
8433 * In the newly idle case, we will allow all the cpu's
8434 * to do the newly idle load balance.
8436 if (env
->idle
== CPU_NEWLY_IDLE
)
8439 /* Try to find first idle cpu */
8440 for_each_cpu_and(cpu
, group_balance_mask(sg
), env
->cpus
) {
8448 if (balance_cpu
== -1)
8449 balance_cpu
= group_balance_cpu(sg
);
8452 * First idle cpu or the first cpu(busiest) in this sched group
8453 * is eligible for doing load balancing at this and above domains.
8455 return balance_cpu
== env
->dst_cpu
;
8459 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8460 * tasks if there is an imbalance.
8462 static int load_balance(int this_cpu
, struct rq
*this_rq
,
8463 struct sched_domain
*sd
, enum cpu_idle_type idle
,
8464 int *continue_balancing
)
8466 int ld_moved
, cur_ld_moved
, active_balance
= 0;
8467 struct sched_domain
*sd_parent
= sd
->parent
;
8468 struct sched_group
*group
;
8471 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
8473 struct lb_env env
= {
8475 .dst_cpu
= this_cpu
,
8477 .dst_grpmask
= sched_group_span(sd
->groups
),
8479 .loop_break
= sched_nr_migrate_break
,
8482 .tasks
= LIST_HEAD_INIT(env
.tasks
),
8485 cpumask_and(cpus
, sched_domain_span(sd
), cpu_active_mask
);
8487 schedstat_inc(sd
->lb_count
[idle
]);
8490 if (!should_we_balance(&env
)) {
8491 *continue_balancing
= 0;
8495 group
= find_busiest_group(&env
);
8497 schedstat_inc(sd
->lb_nobusyg
[idle
]);
8501 busiest
= find_busiest_queue(&env
, group
);
8503 schedstat_inc(sd
->lb_nobusyq
[idle
]);
8507 BUG_ON(busiest
== env
.dst_rq
);
8509 schedstat_add(sd
->lb_imbalance
[idle
], env
.imbalance
);
8511 env
.src_cpu
= busiest
->cpu
;
8512 env
.src_rq
= busiest
;
8515 if (busiest
->nr_running
> 1) {
8517 * Attempt to move tasks. If find_busiest_group has found
8518 * an imbalance but busiest->nr_running <= 1, the group is
8519 * still unbalanced. ld_moved simply stays zero, so it is
8520 * correctly treated as an imbalance.
8522 env
.flags
|= LBF_ALL_PINNED
;
8523 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
8526 rq_lock_irqsave(busiest
, &rf
);
8527 update_rq_clock(busiest
);
8530 * cur_ld_moved - load moved in current iteration
8531 * ld_moved - cumulative load moved across iterations
8533 cur_ld_moved
= detach_tasks(&env
);
8536 * We've detached some tasks from busiest_rq. Every
8537 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8538 * unlock busiest->lock, and we are able to be sure
8539 * that nobody can manipulate the tasks in parallel.
8540 * See task_rq_lock() family for the details.
8543 rq_unlock(busiest
, &rf
);
8547 ld_moved
+= cur_ld_moved
;
8550 local_irq_restore(rf
.flags
);
8552 if (env
.flags
& LBF_NEED_BREAK
) {
8553 env
.flags
&= ~LBF_NEED_BREAK
;
8558 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8559 * us and move them to an alternate dst_cpu in our sched_group
8560 * where they can run. The upper limit on how many times we
8561 * iterate on same src_cpu is dependent on number of cpus in our
8564 * This changes load balance semantics a bit on who can move
8565 * load to a given_cpu. In addition to the given_cpu itself
8566 * (or a ilb_cpu acting on its behalf where given_cpu is
8567 * nohz-idle), we now have balance_cpu in a position to move
8568 * load to given_cpu. In rare situations, this may cause
8569 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8570 * _independently_ and at _same_ time to move some load to
8571 * given_cpu) causing exceess load to be moved to given_cpu.
8572 * This however should not happen so much in practice and
8573 * moreover subsequent load balance cycles should correct the
8574 * excess load moved.
8576 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
8578 /* Prevent to re-select dst_cpu via env's cpus */
8579 cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
8581 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
8582 env
.dst_cpu
= env
.new_dst_cpu
;
8583 env
.flags
&= ~LBF_DST_PINNED
;
8585 env
.loop_break
= sched_nr_migrate_break
;
8588 * Go back to "more_balance" rather than "redo" since we
8589 * need to continue with same src_cpu.
8595 * We failed to reach balance because of affinity.
8598 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
8600 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
8601 *group_imbalance
= 1;
8604 /* All tasks on this runqueue were pinned by CPU affinity */
8605 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
8606 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
8608 * Attempting to continue load balancing at the current
8609 * sched_domain level only makes sense if there are
8610 * active CPUs remaining as possible busiest CPUs to
8611 * pull load from which are not contained within the
8612 * destination group that is receiving any migrated
8615 if (!cpumask_subset(cpus
, env
.dst_grpmask
)) {
8617 env
.loop_break
= sched_nr_migrate_break
;
8620 goto out_all_pinned
;
8625 schedstat_inc(sd
->lb_failed
[idle
]);
8627 * Increment the failure counter only on periodic balance.
8628 * We do not want newidle balance, which can be very
8629 * frequent, pollute the failure counter causing
8630 * excessive cache_hot migrations and active balances.
8632 if (idle
!= CPU_NEWLY_IDLE
)
8633 sd
->nr_balance_failed
++;
8635 if (need_active_balance(&env
)) {
8636 unsigned long flags
;
8638 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
8640 /* don't kick the active_load_balance_cpu_stop,
8641 * if the curr task on busiest cpu can't be
8644 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
8645 raw_spin_unlock_irqrestore(&busiest
->lock
,
8647 env
.flags
|= LBF_ALL_PINNED
;
8648 goto out_one_pinned
;
8652 * ->active_balance synchronizes accesses to
8653 * ->active_balance_work. Once set, it's cleared
8654 * only after active load balance is finished.
8656 if (!busiest
->active_balance
) {
8657 busiest
->active_balance
= 1;
8658 busiest
->push_cpu
= this_cpu
;
8661 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
8663 if (active_balance
) {
8664 stop_one_cpu_nowait(cpu_of(busiest
),
8665 active_load_balance_cpu_stop
, busiest
,
8666 &busiest
->active_balance_work
);
8669 /* We've kicked active balancing, force task migration. */
8670 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
8673 sd
->nr_balance_failed
= 0;
8675 if (likely(!active_balance
)) {
8676 /* We were unbalanced, so reset the balancing interval */
8677 sd
->balance_interval
= sd
->min_interval
;
8680 * If we've begun active balancing, start to back off. This
8681 * case may not be covered by the all_pinned logic if there
8682 * is only 1 task on the busy runqueue (because we don't call
8685 if (sd
->balance_interval
< sd
->max_interval
)
8686 sd
->balance_interval
*= 2;
8693 * We reach balance although we may have faced some affinity
8694 * constraints. Clear the imbalance flag if it was set.
8697 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
8699 if (*group_imbalance
)
8700 *group_imbalance
= 0;
8705 * We reach balance because all tasks are pinned at this level so
8706 * we can't migrate them. Let the imbalance flag set so parent level
8707 * can try to migrate them.
8709 schedstat_inc(sd
->lb_balanced
[idle
]);
8711 sd
->nr_balance_failed
= 0;
8714 /* tune up the balancing interval */
8715 if (((env
.flags
& LBF_ALL_PINNED
) &&
8716 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
8717 (sd
->balance_interval
< sd
->max_interval
))
8718 sd
->balance_interval
*= 2;
8725 static inline unsigned long
8726 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
8728 unsigned long interval
= sd
->balance_interval
;
8731 interval
*= sd
->busy_factor
;
8733 /* scale ms to jiffies */
8734 interval
= msecs_to_jiffies(interval
);
8735 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
8741 update_next_balance(struct sched_domain
*sd
, unsigned long *next_balance
)
8743 unsigned long interval
, next
;
8745 /* used by idle balance, so cpu_busy = 0 */
8746 interval
= get_sd_balance_interval(sd
, 0);
8747 next
= sd
->last_balance
+ interval
;
8749 if (time_after(*next_balance
, next
))
8750 *next_balance
= next
;
8754 * idle_balance is called by schedule() if this_cpu is about to become
8755 * idle. Attempts to pull tasks from other CPUs.
8757 static int idle_balance(struct rq
*this_rq
, struct rq_flags
*rf
)
8759 unsigned long next_balance
= jiffies
+ HZ
;
8760 int this_cpu
= this_rq
->cpu
;
8761 struct sched_domain
*sd
;
8762 int pulled_task
= 0;
8766 * We must set idle_stamp _before_ calling idle_balance(), such that we
8767 * measure the duration of idle_balance() as idle time.
8769 this_rq
->idle_stamp
= rq_clock(this_rq
);
8772 * Do not pull tasks towards !active CPUs...
8774 if (!cpu_active(this_cpu
))
8778 * This is OK, because current is on_cpu, which avoids it being picked
8779 * for load-balance and preemption/IRQs are still disabled avoiding
8780 * further scheduler activity on it and we're being very careful to
8781 * re-start the picking loop.
8783 rq_unpin_lock(this_rq
, rf
);
8785 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
||
8786 !this_rq
->rd
->overload
) {
8788 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
8790 update_next_balance(sd
, &next_balance
);
8796 raw_spin_unlock(&this_rq
->lock
);
8798 update_blocked_averages(this_cpu
);
8800 for_each_domain(this_cpu
, sd
) {
8801 int continue_balancing
= 1;
8802 u64 t0
, domain_cost
;
8804 if (!(sd
->flags
& SD_LOAD_BALANCE
))
8807 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
) {
8808 update_next_balance(sd
, &next_balance
);
8812 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
8813 t0
= sched_clock_cpu(this_cpu
);
8815 pulled_task
= load_balance(this_cpu
, this_rq
,
8817 &continue_balancing
);
8819 domain_cost
= sched_clock_cpu(this_cpu
) - t0
;
8820 if (domain_cost
> sd
->max_newidle_lb_cost
)
8821 sd
->max_newidle_lb_cost
= domain_cost
;
8823 curr_cost
+= domain_cost
;
8826 update_next_balance(sd
, &next_balance
);
8829 * Stop searching for tasks to pull if there are
8830 * now runnable tasks on this rq.
8832 if (pulled_task
|| this_rq
->nr_running
> 0)
8837 raw_spin_lock(&this_rq
->lock
);
8839 if (curr_cost
> this_rq
->max_idle_balance_cost
)
8840 this_rq
->max_idle_balance_cost
= curr_cost
;
8843 * While browsing the domains, we released the rq lock, a task could
8844 * have been enqueued in the meantime. Since we're not going idle,
8845 * pretend we pulled a task.
8847 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
8851 /* Move the next balance forward */
8852 if (time_after(this_rq
->next_balance
, next_balance
))
8853 this_rq
->next_balance
= next_balance
;
8855 /* Is there a task of a high priority class? */
8856 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
8860 this_rq
->idle_stamp
= 0;
8862 rq_repin_lock(this_rq
, rf
);
8868 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8869 * running tasks off the busiest CPU onto idle CPUs. It requires at
8870 * least 1 task to be running on each physical CPU where possible, and
8871 * avoids physical / logical imbalances.
8873 static int active_load_balance_cpu_stop(void *data
)
8875 struct rq
*busiest_rq
= data
;
8876 int busiest_cpu
= cpu_of(busiest_rq
);
8877 int target_cpu
= busiest_rq
->push_cpu
;
8878 struct rq
*target_rq
= cpu_rq(target_cpu
);
8879 struct sched_domain
*sd
;
8880 struct task_struct
*p
= NULL
;
8883 rq_lock_irq(busiest_rq
, &rf
);
8885 * Between queueing the stop-work and running it is a hole in which
8886 * CPUs can become inactive. We should not move tasks from or to
8889 if (!cpu_active(busiest_cpu
) || !cpu_active(target_cpu
))
8892 /* make sure the requested cpu hasn't gone down in the meantime */
8893 if (unlikely(busiest_cpu
!= smp_processor_id() ||
8894 !busiest_rq
->active_balance
))
8897 /* Is there any task to move? */
8898 if (busiest_rq
->nr_running
<= 1)
8902 * This condition is "impossible", if it occurs
8903 * we need to fix it. Originally reported by
8904 * Bjorn Helgaas on a 128-cpu setup.
8906 BUG_ON(busiest_rq
== target_rq
);
8908 /* Search for an sd spanning us and the target CPU. */
8910 for_each_domain(target_cpu
, sd
) {
8911 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
8912 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
8917 struct lb_env env
= {
8919 .dst_cpu
= target_cpu
,
8920 .dst_rq
= target_rq
,
8921 .src_cpu
= busiest_rq
->cpu
,
8922 .src_rq
= busiest_rq
,
8925 * can_migrate_task() doesn't need to compute new_dst_cpu
8926 * for active balancing. Since we have CPU_IDLE, but no
8927 * @dst_grpmask we need to make that test go away with lying
8930 .flags
= LBF_DST_PINNED
,
8933 schedstat_inc(sd
->alb_count
);
8934 update_rq_clock(busiest_rq
);
8936 p
= detach_one_task(&env
);
8938 schedstat_inc(sd
->alb_pushed
);
8939 /* Active balancing done, reset the failure counter. */
8940 sd
->nr_balance_failed
= 0;
8942 schedstat_inc(sd
->alb_failed
);
8947 busiest_rq
->active_balance
= 0;
8948 rq_unlock(busiest_rq
, &rf
);
8951 attach_one_task(target_rq
, p
);
8958 static inline int on_null_domain(struct rq
*rq
)
8960 return unlikely(!rcu_dereference_sched(rq
->sd
));
8963 #ifdef CONFIG_NO_HZ_COMMON
8965 * idle load balancing details
8966 * - When one of the busy CPUs notice that there may be an idle rebalancing
8967 * needed, they will kick the idle load balancer, which then does idle
8968 * load balancing for all the idle CPUs.
8971 cpumask_var_t idle_cpus_mask
;
8973 unsigned long next_balance
; /* in jiffy units */
8974 } nohz ____cacheline_aligned
;
8976 static inline int find_new_ilb(void)
8978 int ilb
= cpumask_first(nohz
.idle_cpus_mask
);
8980 if (ilb
< nr_cpu_ids
&& idle_cpu(ilb
))
8987 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8988 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8989 * CPU (if there is one).
8991 static void nohz_balancer_kick(void)
8995 nohz
.next_balance
++;
8997 ilb_cpu
= find_new_ilb();
8999 if (ilb_cpu
>= nr_cpu_ids
)
9002 if (test_and_set_bit(NOHZ_BALANCE_KICK
, nohz_flags(ilb_cpu
)))
9005 * Use smp_send_reschedule() instead of resched_cpu().
9006 * This way we generate a sched IPI on the target cpu which
9007 * is idle. And the softirq performing nohz idle load balance
9008 * will be run before returning from the IPI.
9010 smp_send_reschedule(ilb_cpu
);
9014 void nohz_balance_exit_idle(unsigned int cpu
)
9016 if (unlikely(test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))) {
9018 * Completely isolated CPUs don't ever set, so we must test.
9020 if (likely(cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))) {
9021 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
9022 atomic_dec(&nohz
.nr_cpus
);
9024 clear_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
9028 static inline void set_cpu_sd_state_busy(void)
9030 struct sched_domain
*sd
;
9031 int cpu
= smp_processor_id();
9034 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
9036 if (!sd
|| !sd
->nohz_idle
)
9040 atomic_inc(&sd
->shared
->nr_busy_cpus
);
9045 void set_cpu_sd_state_idle(void)
9047 struct sched_domain
*sd
;
9048 int cpu
= smp_processor_id();
9051 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
9053 if (!sd
|| sd
->nohz_idle
)
9057 atomic_dec(&sd
->shared
->nr_busy_cpus
);
9063 * This routine will record that the cpu is going idle with tick stopped.
9064 * This info will be used in performing idle load balancing in the future.
9066 void nohz_balance_enter_idle(int cpu
)
9069 * If this cpu is going down, then nothing needs to be done.
9071 if (!cpu_active(cpu
))
9074 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9075 if (!housekeeping_cpu(cpu
, HK_FLAG_SCHED
))
9078 if (test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))
9082 * If we're a completely isolated CPU, we don't play.
9084 if (on_null_domain(cpu_rq(cpu
)))
9087 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
9088 atomic_inc(&nohz
.nr_cpus
);
9089 set_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
9093 static DEFINE_SPINLOCK(balancing
);
9096 * Scale the max load_balance interval with the number of CPUs in the system.
9097 * This trades load-balance latency on larger machines for less cross talk.
9099 void update_max_interval(void)
9101 max_load_balance_interval
= HZ
*num_online_cpus()/10;
9105 * It checks each scheduling domain to see if it is due to be balanced,
9106 * and initiates a balancing operation if so.
9108 * Balancing parameters are set up in init_sched_domains.
9110 static void rebalance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
9112 int continue_balancing
= 1;
9114 unsigned long interval
;
9115 struct sched_domain
*sd
;
9116 /* Earliest time when we have to do rebalance again */
9117 unsigned long next_balance
= jiffies
+ 60*HZ
;
9118 int update_next_balance
= 0;
9119 int need_serialize
, need_decay
= 0;
9122 update_blocked_averages(cpu
);
9125 for_each_domain(cpu
, sd
) {
9127 * Decay the newidle max times here because this is a regular
9128 * visit to all the domains. Decay ~1% per second.
9130 if (time_after(jiffies
, sd
->next_decay_max_lb_cost
)) {
9131 sd
->max_newidle_lb_cost
=
9132 (sd
->max_newidle_lb_cost
* 253) / 256;
9133 sd
->next_decay_max_lb_cost
= jiffies
+ HZ
;
9136 max_cost
+= sd
->max_newidle_lb_cost
;
9138 if (!(sd
->flags
& SD_LOAD_BALANCE
))
9142 * Stop the load balance at this level. There is another
9143 * CPU in our sched group which is doing load balancing more
9146 if (!continue_balancing
) {
9152 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
9154 need_serialize
= sd
->flags
& SD_SERIALIZE
;
9155 if (need_serialize
) {
9156 if (!spin_trylock(&balancing
))
9160 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
9161 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
9163 * The LBF_DST_PINNED logic could have changed
9164 * env->dst_cpu, so we can't know our idle
9165 * state even if we migrated tasks. Update it.
9167 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
9169 sd
->last_balance
= jiffies
;
9170 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
9173 spin_unlock(&balancing
);
9175 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
9176 next_balance
= sd
->last_balance
+ interval
;
9177 update_next_balance
= 1;
9182 * Ensure the rq-wide value also decays but keep it at a
9183 * reasonable floor to avoid funnies with rq->avg_idle.
9185 rq
->max_idle_balance_cost
=
9186 max((u64
)sysctl_sched_migration_cost
, max_cost
);
9191 * next_balance will be updated only when there is a need.
9192 * When the cpu is attached to null domain for ex, it will not be
9195 if (likely(update_next_balance
)) {
9196 rq
->next_balance
= next_balance
;
9198 #ifdef CONFIG_NO_HZ_COMMON
9200 * If this CPU has been elected to perform the nohz idle
9201 * balance. Other idle CPUs have already rebalanced with
9202 * nohz_idle_balance() and nohz.next_balance has been
9203 * updated accordingly. This CPU is now running the idle load
9204 * balance for itself and we need to update the
9205 * nohz.next_balance accordingly.
9207 if ((idle
== CPU_IDLE
) && time_after(nohz
.next_balance
, rq
->next_balance
))
9208 nohz
.next_balance
= rq
->next_balance
;
9213 #ifdef CONFIG_NO_HZ_COMMON
9215 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9216 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9218 static void nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
9220 int this_cpu
= this_rq
->cpu
;
9223 /* Earliest time when we have to do rebalance again */
9224 unsigned long next_balance
= jiffies
+ 60*HZ
;
9225 int update_next_balance
= 0;
9227 if (idle
!= CPU_IDLE
||
9228 !test_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
)))
9231 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
9232 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
9236 * If this cpu gets work to do, stop the load balancing
9237 * work being done for other cpus. Next load
9238 * balancing owner will pick it up.
9243 rq
= cpu_rq(balance_cpu
);
9246 * If time for next balance is due,
9249 if (time_after_eq(jiffies
, rq
->next_balance
)) {
9252 rq_lock_irq(rq
, &rf
);
9253 update_rq_clock(rq
);
9254 cpu_load_update_idle(rq
);
9255 rq_unlock_irq(rq
, &rf
);
9257 rebalance_domains(rq
, CPU_IDLE
);
9260 if (time_after(next_balance
, rq
->next_balance
)) {
9261 next_balance
= rq
->next_balance
;
9262 update_next_balance
= 1;
9267 * next_balance will be updated only when there is a need.
9268 * When the CPU is attached to null domain for ex, it will not be
9271 if (likely(update_next_balance
))
9272 nohz
.next_balance
= next_balance
;
9274 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
));
9278 * Current heuristic for kicking the idle load balancer in the presence
9279 * of an idle cpu in the system.
9280 * - This rq has more than one task.
9281 * - This rq has at least one CFS task and the capacity of the CPU is
9282 * significantly reduced because of RT tasks or IRQs.
9283 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9284 * multiple busy cpu.
9285 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9286 * domain span are idle.
9288 static inline bool nohz_kick_needed(struct rq
*rq
)
9290 unsigned long now
= jiffies
;
9291 struct sched_domain_shared
*sds
;
9292 struct sched_domain
*sd
;
9293 int nr_busy
, i
, cpu
= rq
->cpu
;
9296 if (unlikely(rq
->idle_balance
))
9300 * We may be recently in ticked or tickless idle mode. At the first
9301 * busy tick after returning from idle, we will update the busy stats.
9303 set_cpu_sd_state_busy();
9304 nohz_balance_exit_idle(cpu
);
9307 * None are in tickless mode and hence no need for NOHZ idle load
9310 if (likely(!atomic_read(&nohz
.nr_cpus
)))
9313 if (time_before(now
, nohz
.next_balance
))
9316 if (rq
->nr_running
>= 2)
9320 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
9323 * XXX: write a coherent comment on why we do this.
9324 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9326 nr_busy
= atomic_read(&sds
->nr_busy_cpus
);
9334 sd
= rcu_dereference(rq
->sd
);
9336 if ((rq
->cfs
.h_nr_running
>= 1) &&
9337 check_cpu_capacity(rq
, sd
)) {
9343 sd
= rcu_dereference(per_cpu(sd_asym
, cpu
));
9345 for_each_cpu(i
, sched_domain_span(sd
)) {
9347 !cpumask_test_cpu(i
, nohz
.idle_cpus_mask
))
9350 if (sched_asym_prefer(i
, cpu
)) {
9361 static void nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
) { }
9365 * run_rebalance_domains is triggered when needed from the scheduler tick.
9366 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9368 static __latent_entropy
void run_rebalance_domains(struct softirq_action
*h
)
9370 struct rq
*this_rq
= this_rq();
9371 enum cpu_idle_type idle
= this_rq
->idle_balance
?
9372 CPU_IDLE
: CPU_NOT_IDLE
;
9375 * If this cpu has a pending nohz_balance_kick, then do the
9376 * balancing on behalf of the other idle cpus whose ticks are
9377 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9378 * give the idle cpus a chance to load balance. Else we may
9379 * load balance only within the local sched_domain hierarchy
9380 * and abort nohz_idle_balance altogether if we pull some load.
9382 nohz_idle_balance(this_rq
, idle
);
9383 rebalance_domains(this_rq
, idle
);
9387 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9389 void trigger_load_balance(struct rq
*rq
)
9391 /* Don't need to rebalance while attached to NULL domain */
9392 if (unlikely(on_null_domain(rq
)))
9395 if (time_after_eq(jiffies
, rq
->next_balance
))
9396 raise_softirq(SCHED_SOFTIRQ
);
9397 #ifdef CONFIG_NO_HZ_COMMON
9398 if (nohz_kick_needed(rq
))
9399 nohz_balancer_kick();
9403 static void rq_online_fair(struct rq
*rq
)
9407 update_runtime_enabled(rq
);
9410 static void rq_offline_fair(struct rq
*rq
)
9414 /* Ensure any throttled groups are reachable by pick_next_task */
9415 unthrottle_offline_cfs_rqs(rq
);
9418 #endif /* CONFIG_SMP */
9421 * scheduler tick hitting a task of our scheduling class:
9423 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
9425 struct cfs_rq
*cfs_rq
;
9426 struct sched_entity
*se
= &curr
->se
;
9428 for_each_sched_entity(se
) {
9429 cfs_rq
= cfs_rq_of(se
);
9430 entity_tick(cfs_rq
, se
, queued
);
9433 if (static_branch_unlikely(&sched_numa_balancing
))
9434 task_tick_numa(rq
, curr
);
9438 * called on fork with the child task as argument from the parent's context
9439 * - child not yet on the tasklist
9440 * - preemption disabled
9442 static void task_fork_fair(struct task_struct
*p
)
9444 struct cfs_rq
*cfs_rq
;
9445 struct sched_entity
*se
= &p
->se
, *curr
;
9446 struct rq
*rq
= this_rq();
9450 update_rq_clock(rq
);
9452 cfs_rq
= task_cfs_rq(current
);
9453 curr
= cfs_rq
->curr
;
9455 update_curr(cfs_rq
);
9456 se
->vruntime
= curr
->vruntime
;
9458 place_entity(cfs_rq
, se
, 1);
9460 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
9462 * Upon rescheduling, sched_class::put_prev_task() will place
9463 * 'current' within the tree based on its new key value.
9465 swap(curr
->vruntime
, se
->vruntime
);
9469 se
->vruntime
-= cfs_rq
->min_vruntime
;
9474 * Priority of the task has changed. Check to see if we preempt
9478 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
9480 if (!task_on_rq_queued(p
))
9484 * Reschedule if we are currently running on this runqueue and
9485 * our priority decreased, or if we are not currently running on
9486 * this runqueue and our priority is higher than the current's
9488 if (rq
->curr
== p
) {
9489 if (p
->prio
> oldprio
)
9492 check_preempt_curr(rq
, p
, 0);
9495 static inline bool vruntime_normalized(struct task_struct
*p
)
9497 struct sched_entity
*se
= &p
->se
;
9500 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9501 * the dequeue_entity(.flags=0) will already have normalized the
9508 * When !on_rq, vruntime of the task has usually NOT been normalized.
9509 * But there are some cases where it has already been normalized:
9511 * - A forked child which is waiting for being woken up by
9512 * wake_up_new_task().
9513 * - A task which has been woken up by try_to_wake_up() and
9514 * waiting for actually being woken up by sched_ttwu_pending().
9516 if (!se
->sum_exec_runtime
|| p
->state
== TASK_WAKING
)
9522 #ifdef CONFIG_FAIR_GROUP_SCHED
9524 * Propagate the changes of the sched_entity across the tg tree to make it
9525 * visible to the root
9527 static void propagate_entity_cfs_rq(struct sched_entity
*se
)
9529 struct cfs_rq
*cfs_rq
;
9531 /* Start to propagate at parent */
9534 for_each_sched_entity(se
) {
9535 cfs_rq
= cfs_rq_of(se
);
9537 if (cfs_rq_throttled(cfs_rq
))
9540 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
9544 static void propagate_entity_cfs_rq(struct sched_entity
*se
) { }
9547 static void detach_entity_cfs_rq(struct sched_entity
*se
)
9549 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9551 /* Catch up with the cfs_rq and remove our load when we leave */
9552 update_load_avg(cfs_rq
, se
, 0);
9553 detach_entity_load_avg(cfs_rq
, se
);
9554 update_tg_load_avg(cfs_rq
, false);
9555 propagate_entity_cfs_rq(se
);
9558 static void attach_entity_cfs_rq(struct sched_entity
*se
)
9560 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9562 #ifdef CONFIG_FAIR_GROUP_SCHED
9564 * Since the real-depth could have been changed (only FAIR
9565 * class maintain depth value), reset depth properly.
9567 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
9570 /* Synchronize entity with its cfs_rq */
9571 update_load_avg(cfs_rq
, se
, sched_feat(ATTACH_AGE_LOAD
) ? 0 : SKIP_AGE_LOAD
);
9572 attach_entity_load_avg(cfs_rq
, se
);
9573 update_tg_load_avg(cfs_rq
, false);
9574 propagate_entity_cfs_rq(se
);
9577 static void detach_task_cfs_rq(struct task_struct
*p
)
9579 struct sched_entity
*se
= &p
->se
;
9580 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9582 if (!vruntime_normalized(p
)) {
9584 * Fix up our vruntime so that the current sleep doesn't
9585 * cause 'unlimited' sleep bonus.
9587 place_entity(cfs_rq
, se
, 0);
9588 se
->vruntime
-= cfs_rq
->min_vruntime
;
9591 detach_entity_cfs_rq(se
);
9594 static void attach_task_cfs_rq(struct task_struct
*p
)
9596 struct sched_entity
*se
= &p
->se
;
9597 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9599 attach_entity_cfs_rq(se
);
9601 if (!vruntime_normalized(p
))
9602 se
->vruntime
+= cfs_rq
->min_vruntime
;
9605 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
9607 detach_task_cfs_rq(p
);
9610 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
9612 attach_task_cfs_rq(p
);
9614 if (task_on_rq_queued(p
)) {
9616 * We were most likely switched from sched_rt, so
9617 * kick off the schedule if running, otherwise just see
9618 * if we can still preempt the current task.
9623 check_preempt_curr(rq
, p
, 0);
9627 /* Account for a task changing its policy or group.
9629 * This routine is mostly called to set cfs_rq->curr field when a task
9630 * migrates between groups/classes.
9632 static void set_curr_task_fair(struct rq
*rq
)
9634 struct sched_entity
*se
= &rq
->curr
->se
;
9636 for_each_sched_entity(se
) {
9637 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9639 set_next_entity(cfs_rq
, se
);
9640 /* ensure bandwidth has been allocated on our new cfs_rq */
9641 account_cfs_rq_runtime(cfs_rq
, 0);
9645 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
9647 cfs_rq
->tasks_timeline
= RB_ROOT_CACHED
;
9648 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9649 #ifndef CONFIG_64BIT
9650 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
9653 raw_spin_lock_init(&cfs_rq
->removed
.lock
);
9657 #ifdef CONFIG_FAIR_GROUP_SCHED
9658 static void task_set_group_fair(struct task_struct
*p
)
9660 struct sched_entity
*se
= &p
->se
;
9662 set_task_rq(p
, task_cpu(p
));
9663 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
9666 static void task_move_group_fair(struct task_struct
*p
)
9668 detach_task_cfs_rq(p
);
9669 set_task_rq(p
, task_cpu(p
));
9672 /* Tell se's cfs_rq has been changed -- migrated */
9673 p
->se
.avg
.last_update_time
= 0;
9675 attach_task_cfs_rq(p
);
9678 static void task_change_group_fair(struct task_struct
*p
, int type
)
9681 case TASK_SET_GROUP
:
9682 task_set_group_fair(p
);
9685 case TASK_MOVE_GROUP
:
9686 task_move_group_fair(p
);
9691 void free_fair_sched_group(struct task_group
*tg
)
9695 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
9697 for_each_possible_cpu(i
) {
9699 kfree(tg
->cfs_rq
[i
]);
9708 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9710 struct sched_entity
*se
;
9711 struct cfs_rq
*cfs_rq
;
9714 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9717 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
9721 tg
->shares
= NICE_0_LOAD
;
9723 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
9725 for_each_possible_cpu(i
) {
9726 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9727 GFP_KERNEL
, cpu_to_node(i
));
9731 se
= kzalloc_node(sizeof(struct sched_entity
),
9732 GFP_KERNEL
, cpu_to_node(i
));
9736 init_cfs_rq(cfs_rq
);
9737 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
9738 init_entity_runnable_average(se
);
9749 void online_fair_sched_group(struct task_group
*tg
)
9751 struct sched_entity
*se
;
9755 for_each_possible_cpu(i
) {
9759 raw_spin_lock_irq(&rq
->lock
);
9760 update_rq_clock(rq
);
9761 attach_entity_cfs_rq(se
);
9762 sync_throttle(tg
, i
);
9763 raw_spin_unlock_irq(&rq
->lock
);
9767 void unregister_fair_sched_group(struct task_group
*tg
)
9769 unsigned long flags
;
9773 for_each_possible_cpu(cpu
) {
9775 remove_entity_load_avg(tg
->se
[cpu
]);
9778 * Only empty task groups can be destroyed; so we can speculatively
9779 * check on_list without danger of it being re-added.
9781 if (!tg
->cfs_rq
[cpu
]->on_list
)
9786 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9787 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
9788 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9792 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9793 struct sched_entity
*se
, int cpu
,
9794 struct sched_entity
*parent
)
9796 struct rq
*rq
= cpu_rq(cpu
);
9800 init_cfs_rq_runtime(cfs_rq
);
9802 tg
->cfs_rq
[cpu
] = cfs_rq
;
9805 /* se could be NULL for root_task_group */
9810 se
->cfs_rq
= &rq
->cfs
;
9813 se
->cfs_rq
= parent
->my_q
;
9814 se
->depth
= parent
->depth
+ 1;
9818 /* guarantee group entities always have weight */
9819 update_load_set(&se
->load
, NICE_0_LOAD
);
9820 se
->parent
= parent
;
9823 static DEFINE_MUTEX(shares_mutex
);
9825 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
9830 * We can't change the weight of the root cgroup.
9835 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
9837 mutex_lock(&shares_mutex
);
9838 if (tg
->shares
== shares
)
9841 tg
->shares
= shares
;
9842 for_each_possible_cpu(i
) {
9843 struct rq
*rq
= cpu_rq(i
);
9844 struct sched_entity
*se
= tg
->se
[i
];
9847 /* Propagate contribution to hierarchy */
9848 rq_lock_irqsave(rq
, &rf
);
9849 update_rq_clock(rq
);
9850 for_each_sched_entity(se
) {
9851 update_load_avg(cfs_rq_of(se
), se
, UPDATE_TG
);
9852 update_cfs_group(se
);
9854 rq_unlock_irqrestore(rq
, &rf
);
9858 mutex_unlock(&shares_mutex
);
9861 #else /* CONFIG_FAIR_GROUP_SCHED */
9863 void free_fair_sched_group(struct task_group
*tg
) { }
9865 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9870 void online_fair_sched_group(struct task_group
*tg
) { }
9872 void unregister_fair_sched_group(struct task_group
*tg
) { }
9874 #endif /* CONFIG_FAIR_GROUP_SCHED */
9877 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
9879 struct sched_entity
*se
= &task
->se
;
9880 unsigned int rr_interval
= 0;
9883 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9886 if (rq
->cfs
.load
.weight
)
9887 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
9893 * All the scheduling class methods:
9895 const struct sched_class fair_sched_class
= {
9896 .next
= &idle_sched_class
,
9897 .enqueue_task
= enqueue_task_fair
,
9898 .dequeue_task
= dequeue_task_fair
,
9899 .yield_task
= yield_task_fair
,
9900 .yield_to_task
= yield_to_task_fair
,
9902 .check_preempt_curr
= check_preempt_wakeup
,
9904 .pick_next_task
= pick_next_task_fair
,
9905 .put_prev_task
= put_prev_task_fair
,
9908 .select_task_rq
= select_task_rq_fair
,
9909 .migrate_task_rq
= migrate_task_rq_fair
,
9911 .rq_online
= rq_online_fair
,
9912 .rq_offline
= rq_offline_fair
,
9914 .task_dead
= task_dead_fair
,
9915 .set_cpus_allowed
= set_cpus_allowed_common
,
9918 .set_curr_task
= set_curr_task_fair
,
9919 .task_tick
= task_tick_fair
,
9920 .task_fork
= task_fork_fair
,
9922 .prio_changed
= prio_changed_fair
,
9923 .switched_from
= switched_from_fair
,
9924 .switched_to
= switched_to_fair
,
9926 .get_rr_interval
= get_rr_interval_fair
,
9928 .update_curr
= update_curr_fair
,
9930 #ifdef CONFIG_FAIR_GROUP_SCHED
9931 .task_change_group
= task_change_group_fair
,
9935 #ifdef CONFIG_SCHED_DEBUG
9936 void print_cfs_stats(struct seq_file
*m
, int cpu
)
9938 struct cfs_rq
*cfs_rq
, *pos
;
9941 for_each_leaf_cfs_rq_safe(cpu_rq(cpu
), cfs_rq
, pos
)
9942 print_cfs_rq(m
, cpu
, cfs_rq
);
9946 #ifdef CONFIG_NUMA_BALANCING
9947 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
9950 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
9952 for_each_online_node(node
) {
9953 if (p
->numa_faults
) {
9954 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
9955 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
9957 if (p
->numa_group
) {
9958 gsf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
9959 gpf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
9961 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
9964 #endif /* CONFIG_NUMA_BALANCING */
9965 #endif /* CONFIG_SCHED_DEBUG */
9967 __init
void init_sched_fair_class(void)
9970 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9972 #ifdef CONFIG_NO_HZ_COMMON
9973 nohz
.next_balance
= jiffies
;
9974 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);