2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 * cgroup_mutex is the master lock. Any modification to cgroup or its
67 * hierarchy must be performed while holding it.
69 * css_set_lock protects task->cgroups pointer, the list of css_set
70 * objects, and the chain of tasks off each css_set.
72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73 * cgroup.h can use them for lockdep annotations.
75 DEFINE_MUTEX(cgroup_mutex
);
76 DEFINE_SPINLOCK(css_set_lock
);
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex
);
80 EXPORT_SYMBOL_GPL(css_set_lock
);
84 * Protects cgroup_idr and css_idr so that IDs can be released without
85 * grabbing cgroup_mutex.
87 static DEFINE_SPINLOCK(cgroup_idr_lock
);
90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
91 * against file removal/re-creation across css hiding.
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
97 #define cgroup_assert_mutex_or_rcu_locked() \
98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
99 !lockdep_is_held(&cgroup_mutex), \
100 "cgroup_mutex or RCU read lock required");
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
108 static struct workqueue_struct
*cgroup_destroy_wq
;
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys
*cgroup_subsys
[] = {
113 #include <linux/cgroup_subsys.h>
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name
[] = {
120 #include <linux/cgroup_subsys.h>
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
135 #include <linux/cgroup_subsys.h>
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
141 #include <linux/cgroup_subsys.h>
146 * The default hierarchy, reserved for the subsystems that are otherwise
147 * unattached - it never has more than a single cgroup, and all tasks are
148 * part of that cgroup.
150 struct cgroup_root cgrp_dfl_root
;
151 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
154 * The default hierarchy always exists but is hidden until mounted for the
155 * first time. This is for backward compatibility.
157 static bool cgrp_dfl_visible
;
159 /* some controllers are not supported in the default hierarchy */
160 static u16 cgrp_dfl_inhibit_ss_mask
;
162 /* some controllers are implicitly enabled on the default hierarchy */
163 static u16 cgrp_dfl_implicit_ss_mask
;
165 /* some controllers can be threaded on the default hierarchy */
166 static u16 cgrp_dfl_threaded_ss_mask
;
168 /* The list of hierarchy roots */
169 LIST_HEAD(cgroup_roots
);
170 static int cgroup_root_count
;
172 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
173 static DEFINE_IDR(cgroup_hierarchy_idr
);
176 * Assign a monotonically increasing serial number to csses. It guarantees
177 * cgroups with bigger numbers are newer than those with smaller numbers.
178 * Also, as csses are always appended to the parent's ->children list, it
179 * guarantees that sibling csses are always sorted in the ascending serial
180 * number order on the list. Protected by cgroup_mutex.
182 static u64 css_serial_nr_next
= 1;
185 * These bitmasks identify subsystems with specific features to avoid
186 * having to do iterative checks repeatedly.
188 static u16 have_fork_callback __read_mostly
;
189 static u16 have_exit_callback __read_mostly
;
190 static u16 have_free_callback __read_mostly
;
191 static u16 have_canfork_callback __read_mostly
;
193 /* cgroup namespace for init task */
194 struct cgroup_namespace init_cgroup_ns
= {
195 .count
= REFCOUNT_INIT(2),
196 .user_ns
= &init_user_ns
,
197 .ns
.ops
= &cgroupns_operations
,
198 .ns
.inum
= PROC_CGROUP_INIT_INO
,
199 .root_cset
= &init_css_set
,
202 static struct file_system_type cgroup2_fs_type
;
203 static struct cftype cgroup_base_files
[];
205 static int cgroup_apply_control(struct cgroup
*cgrp
);
206 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
);
207 static void css_task_iter_advance(struct css_task_iter
*it
);
208 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
209 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
210 struct cgroup_subsys
*ss
);
211 static void css_release(struct percpu_ref
*ref
);
212 static void kill_css(struct cgroup_subsys_state
*css
);
213 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
214 struct cgroup
*cgrp
, struct cftype cfts
[],
218 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
219 * @ssid: subsys ID of interest
221 * cgroup_subsys_enabled() can only be used with literal subsys names which
222 * is fine for individual subsystems but unsuitable for cgroup core. This
223 * is slower static_key_enabled() based test indexed by @ssid.
225 bool cgroup_ssid_enabled(int ssid
)
227 if (CGROUP_SUBSYS_COUNT
== 0)
230 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
234 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
235 * @cgrp: the cgroup of interest
237 * The default hierarchy is the v2 interface of cgroup and this function
238 * can be used to test whether a cgroup is on the default hierarchy for
239 * cases where a subsystem should behave differnetly depending on the
242 * The set of behaviors which change on the default hierarchy are still
243 * being determined and the mount option is prefixed with __DEVEL__.
245 * List of changed behaviors:
247 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
248 * and "name" are disallowed.
250 * - When mounting an existing superblock, mount options should match.
252 * - Remount is disallowed.
254 * - rename(2) is disallowed.
256 * - "tasks" is removed. Everything should be at process granularity. Use
257 * "cgroup.procs" instead.
259 * - "cgroup.procs" is not sorted. pids will be unique unless they got
260 * recycled inbetween reads.
262 * - "release_agent" and "notify_on_release" are removed. Replacement
263 * notification mechanism will be implemented.
265 * - "cgroup.clone_children" is removed.
267 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
268 * and its descendants contain no task; otherwise, 1. The file also
269 * generates kernfs notification which can be monitored through poll and
270 * [di]notify when the value of the file changes.
272 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
273 * take masks of ancestors with non-empty cpus/mems, instead of being
274 * moved to an ancestor.
276 * - cpuset: a task can be moved into an empty cpuset, and again it takes
277 * masks of ancestors.
279 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
282 * - blkcg: blk-throttle becomes properly hierarchical.
284 * - debug: disallowed on the default hierarchy.
286 bool cgroup_on_dfl(const struct cgroup
*cgrp
)
288 return cgrp
->root
== &cgrp_dfl_root
;
291 /* IDR wrappers which synchronize using cgroup_idr_lock */
292 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
297 idr_preload(gfp_mask
);
298 spin_lock_bh(&cgroup_idr_lock
);
299 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
300 spin_unlock_bh(&cgroup_idr_lock
);
305 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
309 spin_lock_bh(&cgroup_idr_lock
);
310 ret
= idr_replace(idr
, ptr
, id
);
311 spin_unlock_bh(&cgroup_idr_lock
);
315 static void cgroup_idr_remove(struct idr
*idr
, int id
)
317 spin_lock_bh(&cgroup_idr_lock
);
319 spin_unlock_bh(&cgroup_idr_lock
);
322 static bool cgroup_has_tasks(struct cgroup
*cgrp
)
324 return cgrp
->nr_populated_csets
;
327 bool cgroup_is_threaded(struct cgroup
*cgrp
)
329 return cgrp
->dom_cgrp
!= cgrp
;
332 /* can @cgrp host both domain and threaded children? */
333 static bool cgroup_is_mixable(struct cgroup
*cgrp
)
336 * Root isn't under domain level resource control exempting it from
337 * the no-internal-process constraint, so it can serve as a thread
338 * root and a parent of resource domains at the same time.
340 return !cgroup_parent(cgrp
);
343 /* can @cgrp become a thread root? should always be true for a thread root */
344 static bool cgroup_can_be_thread_root(struct cgroup
*cgrp
)
346 /* mixables don't care */
347 if (cgroup_is_mixable(cgrp
))
350 /* domain roots can't be nested under threaded */
351 if (cgroup_is_threaded(cgrp
))
354 /* can only have either domain or threaded children */
355 if (cgrp
->nr_populated_domain_children
)
358 /* and no domain controllers can be enabled */
359 if (cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
365 /* is @cgrp root of a threaded subtree? */
366 bool cgroup_is_thread_root(struct cgroup
*cgrp
)
368 /* thread root should be a domain */
369 if (cgroup_is_threaded(cgrp
))
372 /* a domain w/ threaded children is a thread root */
373 if (cgrp
->nr_threaded_children
)
377 * A domain which has tasks and explicit threaded controllers
378 * enabled is a thread root.
380 if (cgroup_has_tasks(cgrp
) &&
381 (cgrp
->subtree_control
& cgrp_dfl_threaded_ss_mask
))
387 /* a domain which isn't connected to the root w/o brekage can't be used */
388 static bool cgroup_is_valid_domain(struct cgroup
*cgrp
)
390 /* the cgroup itself can be a thread root */
391 if (cgroup_is_threaded(cgrp
))
394 /* but the ancestors can't be unless mixable */
395 while ((cgrp
= cgroup_parent(cgrp
))) {
396 if (!cgroup_is_mixable(cgrp
) && cgroup_is_thread_root(cgrp
))
398 if (cgroup_is_threaded(cgrp
))
405 /* subsystems visibly enabled on a cgroup */
406 static u16
cgroup_control(struct cgroup
*cgrp
)
408 struct cgroup
*parent
= cgroup_parent(cgrp
);
409 u16 root_ss_mask
= cgrp
->root
->subsys_mask
;
412 u16 ss_mask
= parent
->subtree_control
;
414 /* threaded cgroups can only have threaded controllers */
415 if (cgroup_is_threaded(cgrp
))
416 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
420 if (cgroup_on_dfl(cgrp
))
421 root_ss_mask
&= ~(cgrp_dfl_inhibit_ss_mask
|
422 cgrp_dfl_implicit_ss_mask
);
426 /* subsystems enabled on a cgroup */
427 static u16
cgroup_ss_mask(struct cgroup
*cgrp
)
429 struct cgroup
*parent
= cgroup_parent(cgrp
);
432 u16 ss_mask
= parent
->subtree_ss_mask
;
434 /* threaded cgroups can only have threaded controllers */
435 if (cgroup_is_threaded(cgrp
))
436 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
440 return cgrp
->root
->subsys_mask
;
444 * cgroup_css - obtain a cgroup's css for the specified subsystem
445 * @cgrp: the cgroup of interest
446 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
448 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
449 * function must be called either under cgroup_mutex or rcu_read_lock() and
450 * the caller is responsible for pinning the returned css if it wants to
451 * keep accessing it outside the said locks. This function may return
452 * %NULL if @cgrp doesn't have @subsys_id enabled.
454 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
455 struct cgroup_subsys
*ss
)
458 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
459 lockdep_is_held(&cgroup_mutex
));
465 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
466 * @cgrp: the cgroup of interest
467 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
469 * Similar to cgroup_css() but returns the effective css, which is defined
470 * as the matching css of the nearest ancestor including self which has @ss
471 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
472 * function is guaranteed to return non-NULL css.
474 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
475 struct cgroup_subsys
*ss
)
477 lockdep_assert_held(&cgroup_mutex
);
483 * This function is used while updating css associations and thus
484 * can't test the csses directly. Test ss_mask.
486 while (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
))) {
487 cgrp
= cgroup_parent(cgrp
);
492 return cgroup_css(cgrp
, ss
);
496 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
497 * @cgrp: the cgroup of interest
498 * @ss: the subsystem of interest
500 * Find and get the effective css of @cgrp for @ss. The effective css is
501 * defined as the matching css of the nearest ancestor including self which
502 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
503 * the root css is returned, so this function always returns a valid css.
504 * The returned css must be put using css_put().
506 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
507 struct cgroup_subsys
*ss
)
509 struct cgroup_subsys_state
*css
;
514 css
= cgroup_css(cgrp
, ss
);
516 if (css
&& css_tryget_online(css
))
518 cgrp
= cgroup_parent(cgrp
);
521 css
= init_css_set
.subsys
[ss
->id
];
528 static void cgroup_get_live(struct cgroup
*cgrp
)
530 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
531 css_get(&cgrp
->self
);
534 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
536 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
537 struct cftype
*cft
= of_cft(of
);
540 * This is open and unprotected implementation of cgroup_css().
541 * seq_css() is only called from a kernfs file operation which has
542 * an active reference on the file. Because all the subsystem
543 * files are drained before a css is disassociated with a cgroup,
544 * the matching css from the cgroup's subsys table is guaranteed to
545 * be and stay valid until the enclosing operation is complete.
548 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
552 EXPORT_SYMBOL_GPL(of_css
);
555 * for_each_css - iterate all css's of a cgroup
556 * @css: the iteration cursor
557 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
558 * @cgrp: the target cgroup to iterate css's of
560 * Should be called under cgroup_[tree_]mutex.
562 #define for_each_css(css, ssid, cgrp) \
563 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
564 if (!((css) = rcu_dereference_check( \
565 (cgrp)->subsys[(ssid)], \
566 lockdep_is_held(&cgroup_mutex)))) { } \
570 * for_each_e_css - iterate all effective css's of a cgroup
571 * @css: the iteration cursor
572 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
573 * @cgrp: the target cgroup to iterate css's of
575 * Should be called under cgroup_[tree_]mutex.
577 #define for_each_e_css(css, ssid, cgrp) \
578 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
579 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
584 * do_each_subsys_mask - filter for_each_subsys with a bitmask
585 * @ss: the iteration cursor
586 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
587 * @ss_mask: the bitmask
589 * The block will only run for cases where the ssid-th bit (1 << ssid) of
592 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
593 unsigned long __ss_mask = (ss_mask); \
594 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
598 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
599 (ss) = cgroup_subsys[ssid]; \
602 #define while_each_subsys_mask() \
607 /* iterate over child cgrps, lock should be held throughout iteration */
608 #define cgroup_for_each_live_child(child, cgrp) \
609 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
610 if (({ lockdep_assert_held(&cgroup_mutex); \
611 cgroup_is_dead(child); })) \
615 /* walk live descendants in preorder */
616 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
617 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
618 if (({ lockdep_assert_held(&cgroup_mutex); \
619 (dsct) = (d_css)->cgroup; \
620 cgroup_is_dead(dsct); })) \
624 /* walk live descendants in postorder */
625 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
626 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
627 if (({ lockdep_assert_held(&cgroup_mutex); \
628 (dsct) = (d_css)->cgroup; \
629 cgroup_is_dead(dsct); })) \
634 * The default css_set - used by init and its children prior to any
635 * hierarchies being mounted. It contains a pointer to the root state
636 * for each subsystem. Also used to anchor the list of css_sets. Not
637 * reference-counted, to improve performance when child cgroups
638 * haven't been created.
640 struct css_set init_css_set
= {
641 .refcount
= REFCOUNT_INIT(1),
642 .dom_cset
= &init_css_set
,
643 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
644 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
645 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
646 .threaded_csets
= LIST_HEAD_INIT(init_css_set
.threaded_csets
),
647 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
648 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
649 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
652 static int css_set_count
= 1; /* 1 for init_css_set */
654 static bool css_set_threaded(struct css_set
*cset
)
656 return cset
->dom_cset
!= cset
;
660 * css_set_populated - does a css_set contain any tasks?
661 * @cset: target css_set
663 * css_set_populated() should be the same as !!cset->nr_tasks at steady
664 * state. However, css_set_populated() can be called while a task is being
665 * added to or removed from the linked list before the nr_tasks is
666 * properly updated. Hence, we can't just look at ->nr_tasks here.
668 static bool css_set_populated(struct css_set
*cset
)
670 lockdep_assert_held(&css_set_lock
);
672 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
676 * cgroup_update_populated - update the populated count of a cgroup
677 * @cgrp: the target cgroup
678 * @populated: inc or dec populated count
680 * One of the css_sets associated with @cgrp is either getting its first
681 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
682 * count is propagated towards root so that a given cgroup's
683 * nr_populated_children is zero iff none of its descendants contain any
686 * @cgrp's interface file "cgroup.populated" is zero if both
687 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
688 * 1 otherwise. When the sum changes from or to zero, userland is notified
689 * that the content of the interface file has changed. This can be used to
690 * detect when @cgrp and its descendants become populated or empty.
692 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
694 struct cgroup
*child
= NULL
;
695 int adj
= populated
? 1 : -1;
697 lockdep_assert_held(&css_set_lock
);
700 bool was_populated
= cgroup_is_populated(cgrp
);
703 cgrp
->nr_populated_csets
+= adj
;
705 if (cgroup_is_threaded(child
))
706 cgrp
->nr_populated_threaded_children
+= adj
;
708 cgrp
->nr_populated_domain_children
+= adj
;
711 if (was_populated
== cgroup_is_populated(cgrp
))
714 cgroup1_check_for_release(cgrp
);
715 cgroup_file_notify(&cgrp
->events_file
);
718 cgrp
= cgroup_parent(cgrp
);
723 * css_set_update_populated - update populated state of a css_set
724 * @cset: target css_set
725 * @populated: whether @cset is populated or depopulated
727 * @cset is either getting the first task or losing the last. Update the
728 * populated counters of all associated cgroups accordingly.
730 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
732 struct cgrp_cset_link
*link
;
734 lockdep_assert_held(&css_set_lock
);
736 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
737 cgroup_update_populated(link
->cgrp
, populated
);
741 * css_set_move_task - move a task from one css_set to another
742 * @task: task being moved
743 * @from_cset: css_set @task currently belongs to (may be NULL)
744 * @to_cset: new css_set @task is being moved to (may be NULL)
745 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
747 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
748 * css_set, @from_cset can be NULL. If @task is being disassociated
749 * instead of moved, @to_cset can be NULL.
751 * This function automatically handles populated counter updates and
752 * css_task_iter adjustments but the caller is responsible for managing
753 * @from_cset and @to_cset's reference counts.
755 static void css_set_move_task(struct task_struct
*task
,
756 struct css_set
*from_cset
, struct css_set
*to_cset
,
759 lockdep_assert_held(&css_set_lock
);
761 if (to_cset
&& !css_set_populated(to_cset
))
762 css_set_update_populated(to_cset
, true);
765 struct css_task_iter
*it
, *pos
;
767 WARN_ON_ONCE(list_empty(&task
->cg_list
));
770 * @task is leaving, advance task iterators which are
771 * pointing to it so that they can resume at the next
772 * position. Advancing an iterator might remove it from
773 * the list, use safe walk. See css_task_iter_advance*()
776 list_for_each_entry_safe(it
, pos
, &from_cset
->task_iters
,
778 if (it
->task_pos
== &task
->cg_list
)
779 css_task_iter_advance(it
);
781 list_del_init(&task
->cg_list
);
782 if (!css_set_populated(from_cset
))
783 css_set_update_populated(from_cset
, false);
785 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
790 * We are synchronized through cgroup_threadgroup_rwsem
791 * against PF_EXITING setting such that we can't race
792 * against cgroup_exit() changing the css_set to
793 * init_css_set and dropping the old one.
795 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
797 rcu_assign_pointer(task
->cgroups
, to_cset
);
798 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
804 * hash table for cgroup groups. This improves the performance to find
805 * an existing css_set. This hash doesn't (currently) take into
806 * account cgroups in empty hierarchies.
808 #define CSS_SET_HASH_BITS 7
809 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
811 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
813 unsigned long key
= 0UL;
814 struct cgroup_subsys
*ss
;
817 for_each_subsys(ss
, i
)
818 key
+= (unsigned long)css
[i
];
819 key
= (key
>> 16) ^ key
;
824 void put_css_set_locked(struct css_set
*cset
)
826 struct cgrp_cset_link
*link
, *tmp_link
;
827 struct cgroup_subsys
*ss
;
830 lockdep_assert_held(&css_set_lock
);
832 if (!refcount_dec_and_test(&cset
->refcount
))
835 WARN_ON_ONCE(!list_empty(&cset
->threaded_csets
));
837 /* This css_set is dead. unlink it and release cgroup and css refs */
838 for_each_subsys(ss
, ssid
) {
839 list_del(&cset
->e_cset_node
[ssid
]);
840 css_put(cset
->subsys
[ssid
]);
842 hash_del(&cset
->hlist
);
845 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
846 list_del(&link
->cset_link
);
847 list_del(&link
->cgrp_link
);
848 if (cgroup_parent(link
->cgrp
))
849 cgroup_put(link
->cgrp
);
853 if (css_set_threaded(cset
)) {
854 list_del(&cset
->threaded_csets_node
);
855 put_css_set_locked(cset
->dom_cset
);
858 kfree_rcu(cset
, rcu_head
);
862 * compare_css_sets - helper function for find_existing_css_set().
863 * @cset: candidate css_set being tested
864 * @old_cset: existing css_set for a task
865 * @new_cgrp: cgroup that's being entered by the task
866 * @template: desired set of css pointers in css_set (pre-calculated)
868 * Returns true if "cset" matches "old_cset" except for the hierarchy
869 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
871 static bool compare_css_sets(struct css_set
*cset
,
872 struct css_set
*old_cset
,
873 struct cgroup
*new_cgrp
,
874 struct cgroup_subsys_state
*template[])
876 struct cgroup
*new_dfl_cgrp
;
877 struct list_head
*l1
, *l2
;
880 * On the default hierarchy, there can be csets which are
881 * associated with the same set of cgroups but different csses.
882 * Let's first ensure that csses match.
884 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
888 /* @cset's domain should match the default cgroup's */
889 if (cgroup_on_dfl(new_cgrp
))
890 new_dfl_cgrp
= new_cgrp
;
892 new_dfl_cgrp
= old_cset
->dfl_cgrp
;
894 if (new_dfl_cgrp
->dom_cgrp
!= cset
->dom_cset
->dfl_cgrp
)
898 * Compare cgroup pointers in order to distinguish between
899 * different cgroups in hierarchies. As different cgroups may
900 * share the same effective css, this comparison is always
903 l1
= &cset
->cgrp_links
;
904 l2
= &old_cset
->cgrp_links
;
906 struct cgrp_cset_link
*link1
, *link2
;
907 struct cgroup
*cgrp1
, *cgrp2
;
911 /* See if we reached the end - both lists are equal length. */
912 if (l1
== &cset
->cgrp_links
) {
913 BUG_ON(l2
!= &old_cset
->cgrp_links
);
916 BUG_ON(l2
== &old_cset
->cgrp_links
);
918 /* Locate the cgroups associated with these links. */
919 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
920 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
923 /* Hierarchies should be linked in the same order. */
924 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
927 * If this hierarchy is the hierarchy of the cgroup
928 * that's changing, then we need to check that this
929 * css_set points to the new cgroup; if it's any other
930 * hierarchy, then this css_set should point to the
931 * same cgroup as the old css_set.
933 if (cgrp1
->root
== new_cgrp
->root
) {
934 if (cgrp1
!= new_cgrp
)
945 * find_existing_css_set - init css array and find the matching css_set
946 * @old_cset: the css_set that we're using before the cgroup transition
947 * @cgrp: the cgroup that we're moving into
948 * @template: out param for the new set of csses, should be clear on entry
950 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
952 struct cgroup_subsys_state
*template[])
954 struct cgroup_root
*root
= cgrp
->root
;
955 struct cgroup_subsys
*ss
;
956 struct css_set
*cset
;
961 * Build the set of subsystem state objects that we want to see in the
962 * new css_set. while subsystems can change globally, the entries here
963 * won't change, so no need for locking.
965 for_each_subsys(ss
, i
) {
966 if (root
->subsys_mask
& (1UL << i
)) {
968 * @ss is in this hierarchy, so we want the
969 * effective css from @cgrp.
971 template[i
] = cgroup_e_css(cgrp
, ss
);
974 * @ss is not in this hierarchy, so we don't want
977 template[i
] = old_cset
->subsys
[i
];
981 key
= css_set_hash(template);
982 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
983 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
986 /* This css_set matches what we need */
990 /* No existing cgroup group matched */
994 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
996 struct cgrp_cset_link
*link
, *tmp_link
;
998 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
999 list_del(&link
->cset_link
);
1005 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1006 * @count: the number of links to allocate
1007 * @tmp_links: list_head the allocated links are put on
1009 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1010 * through ->cset_link. Returns 0 on success or -errno.
1012 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
1014 struct cgrp_cset_link
*link
;
1017 INIT_LIST_HEAD(tmp_links
);
1019 for (i
= 0; i
< count
; i
++) {
1020 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
1022 free_cgrp_cset_links(tmp_links
);
1025 list_add(&link
->cset_link
, tmp_links
);
1031 * link_css_set - a helper function to link a css_set to a cgroup
1032 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1033 * @cset: the css_set to be linked
1034 * @cgrp: the destination cgroup
1036 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
1037 struct cgroup
*cgrp
)
1039 struct cgrp_cset_link
*link
;
1041 BUG_ON(list_empty(tmp_links
));
1043 if (cgroup_on_dfl(cgrp
))
1044 cset
->dfl_cgrp
= cgrp
;
1046 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
1051 * Always add links to the tail of the lists so that the lists are
1052 * in choronological order.
1054 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
1055 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
1057 if (cgroup_parent(cgrp
))
1058 cgroup_get_live(cgrp
);
1062 * find_css_set - return a new css_set with one cgroup updated
1063 * @old_cset: the baseline css_set
1064 * @cgrp: the cgroup to be updated
1066 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1067 * substituted into the appropriate hierarchy.
1069 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1070 struct cgroup
*cgrp
)
1072 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1073 struct css_set
*cset
;
1074 struct list_head tmp_links
;
1075 struct cgrp_cset_link
*link
;
1076 struct cgroup_subsys
*ss
;
1080 lockdep_assert_held(&cgroup_mutex
);
1082 /* First see if we already have a cgroup group that matches
1083 * the desired set */
1084 spin_lock_irq(&css_set_lock
);
1085 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1088 spin_unlock_irq(&css_set_lock
);
1093 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1097 /* Allocate all the cgrp_cset_link objects that we'll need */
1098 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1103 refcount_set(&cset
->refcount
, 1);
1104 cset
->dom_cset
= cset
;
1105 INIT_LIST_HEAD(&cset
->tasks
);
1106 INIT_LIST_HEAD(&cset
->mg_tasks
);
1107 INIT_LIST_HEAD(&cset
->task_iters
);
1108 INIT_LIST_HEAD(&cset
->threaded_csets
);
1109 INIT_HLIST_NODE(&cset
->hlist
);
1110 INIT_LIST_HEAD(&cset
->cgrp_links
);
1111 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1112 INIT_LIST_HEAD(&cset
->mg_node
);
1114 /* Copy the set of subsystem state objects generated in
1115 * find_existing_css_set() */
1116 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1118 spin_lock_irq(&css_set_lock
);
1119 /* Add reference counts and links from the new css_set. */
1120 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1121 struct cgroup
*c
= link
->cgrp
;
1123 if (c
->root
== cgrp
->root
)
1125 link_css_set(&tmp_links
, cset
, c
);
1128 BUG_ON(!list_empty(&tmp_links
));
1132 /* Add @cset to the hash table */
1133 key
= css_set_hash(cset
->subsys
);
1134 hash_add(css_set_table
, &cset
->hlist
, key
);
1136 for_each_subsys(ss
, ssid
) {
1137 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1139 list_add_tail(&cset
->e_cset_node
[ssid
],
1140 &css
->cgroup
->e_csets
[ssid
]);
1144 spin_unlock_irq(&css_set_lock
);
1147 * If @cset should be threaded, look up the matching dom_cset and
1148 * link them up. We first fully initialize @cset then look for the
1149 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1150 * to stay empty until we return.
1152 if (cgroup_is_threaded(cset
->dfl_cgrp
)) {
1153 struct css_set
*dcset
;
1155 dcset
= find_css_set(cset
, cset
->dfl_cgrp
->dom_cgrp
);
1161 spin_lock_irq(&css_set_lock
);
1162 cset
->dom_cset
= dcset
;
1163 list_add_tail(&cset
->threaded_csets_node
,
1164 &dcset
->threaded_csets
);
1165 spin_unlock_irq(&css_set_lock
);
1171 struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1173 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1175 return root_cgrp
->root
;
1178 static int cgroup_init_root_id(struct cgroup_root
*root
)
1182 lockdep_assert_held(&cgroup_mutex
);
1184 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1188 root
->hierarchy_id
= id
;
1192 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1194 lockdep_assert_held(&cgroup_mutex
);
1196 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1199 void cgroup_free_root(struct cgroup_root
*root
)
1202 idr_destroy(&root
->cgroup_idr
);
1207 static void cgroup_destroy_root(struct cgroup_root
*root
)
1209 struct cgroup
*cgrp
= &root
->cgrp
;
1210 struct cgrp_cset_link
*link
, *tmp_link
;
1212 trace_cgroup_destroy_root(root
);
1214 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1216 BUG_ON(atomic_read(&root
->nr_cgrps
));
1217 BUG_ON(!list_empty(&cgrp
->self
.children
));
1219 /* Rebind all subsystems back to the default hierarchy */
1220 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
));
1223 * Release all the links from cset_links to this hierarchy's
1226 spin_lock_irq(&css_set_lock
);
1228 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1229 list_del(&link
->cset_link
);
1230 list_del(&link
->cgrp_link
);
1234 spin_unlock_irq(&css_set_lock
);
1236 if (!list_empty(&root
->root_list
)) {
1237 list_del(&root
->root_list
);
1238 cgroup_root_count
--;
1241 cgroup_exit_root_id(root
);
1243 mutex_unlock(&cgroup_mutex
);
1245 kernfs_destroy_root(root
->kf_root
);
1246 cgroup_free_root(root
);
1250 * look up cgroup associated with current task's cgroup namespace on the
1251 * specified hierarchy
1253 static struct cgroup
*
1254 current_cgns_cgroup_from_root(struct cgroup_root
*root
)
1256 struct cgroup
*res
= NULL
;
1257 struct css_set
*cset
;
1259 lockdep_assert_held(&css_set_lock
);
1263 cset
= current
->nsproxy
->cgroup_ns
->root_cset
;
1264 if (cset
== &init_css_set
) {
1267 struct cgrp_cset_link
*link
;
1269 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1270 struct cgroup
*c
= link
->cgrp
;
1272 if (c
->root
== root
) {
1284 /* look up cgroup associated with given css_set on the specified hierarchy */
1285 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1286 struct cgroup_root
*root
)
1288 struct cgroup
*res
= NULL
;
1290 lockdep_assert_held(&cgroup_mutex
);
1291 lockdep_assert_held(&css_set_lock
);
1293 if (cset
== &init_css_set
) {
1295 } else if (root
== &cgrp_dfl_root
) {
1296 res
= cset
->dfl_cgrp
;
1298 struct cgrp_cset_link
*link
;
1300 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1301 struct cgroup
*c
= link
->cgrp
;
1303 if (c
->root
== root
) {
1315 * Return the cgroup for "task" from the given hierarchy. Must be
1316 * called with cgroup_mutex and css_set_lock held.
1318 struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1319 struct cgroup_root
*root
)
1322 * No need to lock the task - since we hold cgroup_mutex the
1323 * task can't change groups, so the only thing that can happen
1324 * is that it exits and its css is set back to init_css_set.
1326 return cset_cgroup_from_root(task_css_set(task
), root
);
1330 * A task must hold cgroup_mutex to modify cgroups.
1332 * Any task can increment and decrement the count field without lock.
1333 * So in general, code holding cgroup_mutex can't rely on the count
1334 * field not changing. However, if the count goes to zero, then only
1335 * cgroup_attach_task() can increment it again. Because a count of zero
1336 * means that no tasks are currently attached, therefore there is no
1337 * way a task attached to that cgroup can fork (the other way to
1338 * increment the count). So code holding cgroup_mutex can safely
1339 * assume that if the count is zero, it will stay zero. Similarly, if
1340 * a task holds cgroup_mutex on a cgroup with zero count, it
1341 * knows that the cgroup won't be removed, as cgroup_rmdir()
1344 * A cgroup can only be deleted if both its 'count' of using tasks
1345 * is zero, and its list of 'children' cgroups is empty. Since all
1346 * tasks in the system use _some_ cgroup, and since there is always at
1347 * least one task in the system (init, pid == 1), therefore, root cgroup
1348 * always has either children cgroups and/or using tasks. So we don't
1349 * need a special hack to ensure that root cgroup cannot be deleted.
1351 * P.S. One more locking exception. RCU is used to guard the
1352 * update of a tasks cgroup pointer by cgroup_attach_task()
1355 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1357 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1360 struct cgroup_subsys
*ss
= cft
->ss
;
1362 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1363 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1364 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1365 cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1368 strncpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1373 * cgroup_file_mode - deduce file mode of a control file
1374 * @cft: the control file in question
1376 * S_IRUGO for read, S_IWUSR for write.
1378 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1382 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1385 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1386 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1396 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1397 * @subtree_control: the new subtree_control mask to consider
1398 * @this_ss_mask: available subsystems
1400 * On the default hierarchy, a subsystem may request other subsystems to be
1401 * enabled together through its ->depends_on mask. In such cases, more
1402 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1404 * This function calculates which subsystems need to be enabled if
1405 * @subtree_control is to be applied while restricted to @this_ss_mask.
1407 static u16
cgroup_calc_subtree_ss_mask(u16 subtree_control
, u16 this_ss_mask
)
1409 u16 cur_ss_mask
= subtree_control
;
1410 struct cgroup_subsys
*ss
;
1413 lockdep_assert_held(&cgroup_mutex
);
1415 cur_ss_mask
|= cgrp_dfl_implicit_ss_mask
;
1418 u16 new_ss_mask
= cur_ss_mask
;
1420 do_each_subsys_mask(ss
, ssid
, cur_ss_mask
) {
1421 new_ss_mask
|= ss
->depends_on
;
1422 } while_each_subsys_mask();
1425 * Mask out subsystems which aren't available. This can
1426 * happen only if some depended-upon subsystems were bound
1427 * to non-default hierarchies.
1429 new_ss_mask
&= this_ss_mask
;
1431 if (new_ss_mask
== cur_ss_mask
)
1433 cur_ss_mask
= new_ss_mask
;
1440 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1441 * @kn: the kernfs_node being serviced
1443 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1444 * the method finishes if locking succeeded. Note that once this function
1445 * returns the cgroup returned by cgroup_kn_lock_live() may become
1446 * inaccessible any time. If the caller intends to continue to access the
1447 * cgroup, it should pin it before invoking this function.
1449 void cgroup_kn_unlock(struct kernfs_node
*kn
)
1451 struct cgroup
*cgrp
;
1453 if (kernfs_type(kn
) == KERNFS_DIR
)
1456 cgrp
= kn
->parent
->priv
;
1458 mutex_unlock(&cgroup_mutex
);
1460 kernfs_unbreak_active_protection(kn
);
1465 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1466 * @kn: the kernfs_node being serviced
1467 * @drain_offline: perform offline draining on the cgroup
1469 * This helper is to be used by a cgroup kernfs method currently servicing
1470 * @kn. It breaks the active protection, performs cgroup locking and
1471 * verifies that the associated cgroup is alive. Returns the cgroup if
1472 * alive; otherwise, %NULL. A successful return should be undone by a
1473 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1474 * cgroup is drained of offlining csses before return.
1476 * Any cgroup kernfs method implementation which requires locking the
1477 * associated cgroup should use this helper. It avoids nesting cgroup
1478 * locking under kernfs active protection and allows all kernfs operations
1479 * including self-removal.
1481 struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
, bool drain_offline
)
1483 struct cgroup
*cgrp
;
1485 if (kernfs_type(kn
) == KERNFS_DIR
)
1488 cgrp
= kn
->parent
->priv
;
1491 * We're gonna grab cgroup_mutex which nests outside kernfs
1492 * active_ref. cgroup liveliness check alone provides enough
1493 * protection against removal. Ensure @cgrp stays accessible and
1494 * break the active_ref protection.
1496 if (!cgroup_tryget(cgrp
))
1498 kernfs_break_active_protection(kn
);
1501 cgroup_lock_and_drain_offline(cgrp
);
1503 mutex_lock(&cgroup_mutex
);
1505 if (!cgroup_is_dead(cgrp
))
1508 cgroup_kn_unlock(kn
);
1512 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1514 char name
[CGROUP_FILE_NAME_MAX
];
1516 lockdep_assert_held(&cgroup_mutex
);
1518 if (cft
->file_offset
) {
1519 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1520 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1522 spin_lock_irq(&cgroup_file_kn_lock
);
1524 spin_unlock_irq(&cgroup_file_kn_lock
);
1527 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1531 * css_clear_dir - remove subsys files in a cgroup directory
1534 static void css_clear_dir(struct cgroup_subsys_state
*css
)
1536 struct cgroup
*cgrp
= css
->cgroup
;
1537 struct cftype
*cfts
;
1539 if (!(css
->flags
& CSS_VISIBLE
))
1542 css
->flags
&= ~CSS_VISIBLE
;
1544 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1545 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1549 * css_populate_dir - create subsys files in a cgroup directory
1552 * On failure, no file is added.
1554 static int css_populate_dir(struct cgroup_subsys_state
*css
)
1556 struct cgroup
*cgrp
= css
->cgroup
;
1557 struct cftype
*cfts
, *failed_cfts
;
1560 if ((css
->flags
& CSS_VISIBLE
) || !cgrp
->kn
)
1564 if (cgroup_on_dfl(cgrp
))
1565 cfts
= cgroup_base_files
;
1567 cfts
= cgroup1_base_files
;
1569 return cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1572 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1573 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1580 css
->flags
|= CSS_VISIBLE
;
1584 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1585 if (cfts
== failed_cfts
)
1587 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1592 int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
)
1594 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1595 struct cgroup_subsys
*ss
;
1598 lockdep_assert_held(&cgroup_mutex
);
1600 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1602 * If @ss has non-root csses attached to it, can't move.
1603 * If @ss is an implicit controller, it is exempt from this
1604 * rule and can be stolen.
1606 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)) &&
1607 !ss
->implicit_on_dfl
)
1610 /* can't move between two non-dummy roots either */
1611 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1613 } while_each_subsys_mask();
1615 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1616 struct cgroup_root
*src_root
= ss
->root
;
1617 struct cgroup
*scgrp
= &src_root
->cgrp
;
1618 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1619 struct css_set
*cset
;
1621 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1623 /* disable from the source */
1624 src_root
->subsys_mask
&= ~(1 << ssid
);
1625 WARN_ON(cgroup_apply_control(scgrp
));
1626 cgroup_finalize_control(scgrp
, 0);
1629 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1630 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1631 ss
->root
= dst_root
;
1632 css
->cgroup
= dcgrp
;
1634 spin_lock_irq(&css_set_lock
);
1635 hash_for_each(css_set_table
, i
, cset
, hlist
)
1636 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1637 &dcgrp
->e_csets
[ss
->id
]);
1638 spin_unlock_irq(&css_set_lock
);
1640 /* default hierarchy doesn't enable controllers by default */
1641 dst_root
->subsys_mask
|= 1 << ssid
;
1642 if (dst_root
== &cgrp_dfl_root
) {
1643 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1645 dcgrp
->subtree_control
|= 1 << ssid
;
1646 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1649 ret
= cgroup_apply_control(dcgrp
);
1651 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1656 } while_each_subsys_mask();
1658 kernfs_activate(dcgrp
->kn
);
1662 int cgroup_show_path(struct seq_file
*sf
, struct kernfs_node
*kf_node
,
1663 struct kernfs_root
*kf_root
)
1667 struct cgroup_root
*kf_cgroot
= cgroup_root_from_kf(kf_root
);
1668 struct cgroup
*ns_cgroup
;
1670 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1674 spin_lock_irq(&css_set_lock
);
1675 ns_cgroup
= current_cgns_cgroup_from_root(kf_cgroot
);
1676 len
= kernfs_path_from_node(kf_node
, ns_cgroup
->kn
, buf
, PATH_MAX
);
1677 spin_unlock_irq(&css_set_lock
);
1679 if (len
>= PATH_MAX
)
1682 seq_escape(sf
, buf
, " \t\n\\");
1689 static int parse_cgroup_root_flags(char *data
, unsigned int *root_flags
)
1698 while ((token
= strsep(&data
, ",")) != NULL
) {
1699 if (!strcmp(token
, "nsdelegate")) {
1700 *root_flags
|= CGRP_ROOT_NS_DELEGATE
;
1704 pr_err("cgroup2: unknown option \"%s\"\n", token
);
1711 static void apply_cgroup_root_flags(unsigned int root_flags
)
1713 if (current
->nsproxy
->cgroup_ns
== &init_cgroup_ns
) {
1714 if (root_flags
& CGRP_ROOT_NS_DELEGATE
)
1715 cgrp_dfl_root
.flags
|= CGRP_ROOT_NS_DELEGATE
;
1717 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_NS_DELEGATE
;
1721 static int cgroup_show_options(struct seq_file
*seq
, struct kernfs_root
*kf_root
)
1723 if (cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
)
1724 seq_puts(seq
, ",nsdelegate");
1728 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1730 unsigned int root_flags
;
1733 ret
= parse_cgroup_root_flags(data
, &root_flags
);
1737 apply_cgroup_root_flags(root_flags
);
1742 * To reduce the fork() overhead for systems that are not actually using
1743 * their cgroups capability, we don't maintain the lists running through
1744 * each css_set to its tasks until we see the list actually used - in other
1745 * words after the first mount.
1747 static bool use_task_css_set_links __read_mostly
;
1749 static void cgroup_enable_task_cg_lists(void)
1751 struct task_struct
*p
, *g
;
1753 spin_lock_irq(&css_set_lock
);
1755 if (use_task_css_set_links
)
1758 use_task_css_set_links
= true;
1761 * We need tasklist_lock because RCU is not safe against
1762 * while_each_thread(). Besides, a forking task that has passed
1763 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1764 * is not guaranteed to have its child immediately visible in the
1765 * tasklist if we walk through it with RCU.
1767 read_lock(&tasklist_lock
);
1768 do_each_thread(g
, p
) {
1769 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1770 task_css_set(p
) != &init_css_set
);
1773 * We should check if the process is exiting, otherwise
1774 * it will race with cgroup_exit() in that the list
1775 * entry won't be deleted though the process has exited.
1776 * Do it while holding siglock so that we don't end up
1777 * racing against cgroup_exit().
1779 * Interrupts were already disabled while acquiring
1780 * the css_set_lock, so we do not need to disable it
1781 * again when acquiring the sighand->siglock here.
1783 spin_lock(&p
->sighand
->siglock
);
1784 if (!(p
->flags
& PF_EXITING
)) {
1785 struct css_set
*cset
= task_css_set(p
);
1787 if (!css_set_populated(cset
))
1788 css_set_update_populated(cset
, true);
1789 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1793 spin_unlock(&p
->sighand
->siglock
);
1794 } while_each_thread(g
, p
);
1795 read_unlock(&tasklist_lock
);
1797 spin_unlock_irq(&css_set_lock
);
1800 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1802 struct cgroup_subsys
*ss
;
1805 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1806 INIT_LIST_HEAD(&cgrp
->self
.children
);
1807 INIT_LIST_HEAD(&cgrp
->cset_links
);
1808 INIT_LIST_HEAD(&cgrp
->pidlists
);
1809 mutex_init(&cgrp
->pidlist_mutex
);
1810 cgrp
->self
.cgroup
= cgrp
;
1811 cgrp
->self
.flags
|= CSS_ONLINE
;
1812 cgrp
->dom_cgrp
= cgrp
;
1813 cgrp
->max_descendants
= INT_MAX
;
1814 cgrp
->max_depth
= INT_MAX
;
1816 for_each_subsys(ss
, ssid
)
1817 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1819 init_waitqueue_head(&cgrp
->offline_waitq
);
1820 INIT_WORK(&cgrp
->release_agent_work
, cgroup1_release_agent
);
1823 void init_cgroup_root(struct cgroup_root
*root
, struct cgroup_sb_opts
*opts
)
1825 struct cgroup
*cgrp
= &root
->cgrp
;
1827 INIT_LIST_HEAD(&root
->root_list
);
1828 atomic_set(&root
->nr_cgrps
, 1);
1830 init_cgroup_housekeeping(cgrp
);
1831 idr_init(&root
->cgroup_idr
);
1833 root
->flags
= opts
->flags
;
1834 if (opts
->release_agent
)
1835 strcpy(root
->release_agent_path
, opts
->release_agent
);
1837 strcpy(root
->name
, opts
->name
);
1838 if (opts
->cpuset_clone_children
)
1839 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1842 int cgroup_setup_root(struct cgroup_root
*root
, u16 ss_mask
, int ref_flags
)
1844 LIST_HEAD(tmp_links
);
1845 struct cgroup
*root_cgrp
= &root
->cgrp
;
1846 struct kernfs_syscall_ops
*kf_sops
;
1847 struct css_set
*cset
;
1850 lockdep_assert_held(&cgroup_mutex
);
1852 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
1855 root_cgrp
->id
= ret
;
1856 root_cgrp
->ancestor_ids
[0] = ret
;
1858 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
,
1859 ref_flags
, GFP_KERNEL
);
1864 * We're accessing css_set_count without locking css_set_lock here,
1865 * but that's OK - it can only be increased by someone holding
1866 * cgroup_lock, and that's us. Later rebinding may disable
1867 * controllers on the default hierarchy and thus create new csets,
1868 * which can't be more than the existing ones. Allocate 2x.
1870 ret
= allocate_cgrp_cset_links(2 * css_set_count
, &tmp_links
);
1874 ret
= cgroup_init_root_id(root
);
1878 kf_sops
= root
== &cgrp_dfl_root
?
1879 &cgroup_kf_syscall_ops
: &cgroup1_kf_syscall_ops
;
1881 root
->kf_root
= kernfs_create_root(kf_sops
,
1882 KERNFS_ROOT_CREATE_DEACTIVATED
|
1883 KERNFS_ROOT_SUPPORT_EXPORTOP
,
1885 if (IS_ERR(root
->kf_root
)) {
1886 ret
= PTR_ERR(root
->kf_root
);
1889 root_cgrp
->kn
= root
->kf_root
->kn
;
1891 ret
= css_populate_dir(&root_cgrp
->self
);
1895 ret
= rebind_subsystems(root
, ss_mask
);
1899 trace_cgroup_setup_root(root
);
1902 * There must be no failure case after here, since rebinding takes
1903 * care of subsystems' refcounts, which are explicitly dropped in
1904 * the failure exit path.
1906 list_add(&root
->root_list
, &cgroup_roots
);
1907 cgroup_root_count
++;
1910 * Link the root cgroup in this hierarchy into all the css_set
1913 spin_lock_irq(&css_set_lock
);
1914 hash_for_each(css_set_table
, i
, cset
, hlist
) {
1915 link_css_set(&tmp_links
, cset
, root_cgrp
);
1916 if (css_set_populated(cset
))
1917 cgroup_update_populated(root_cgrp
, true);
1919 spin_unlock_irq(&css_set_lock
);
1921 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1922 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1924 kernfs_activate(root_cgrp
->kn
);
1929 kernfs_destroy_root(root
->kf_root
);
1930 root
->kf_root
= NULL
;
1932 cgroup_exit_root_id(root
);
1934 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
1936 free_cgrp_cset_links(&tmp_links
);
1940 struct dentry
*cgroup_do_mount(struct file_system_type
*fs_type
, int flags
,
1941 struct cgroup_root
*root
, unsigned long magic
,
1942 struct cgroup_namespace
*ns
)
1944 struct dentry
*dentry
;
1947 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
, magic
, &new_sb
);
1950 * In non-init cgroup namespace, instead of root cgroup's dentry,
1951 * we return the dentry corresponding to the cgroupns->root_cgrp.
1953 if (!IS_ERR(dentry
) && ns
!= &init_cgroup_ns
) {
1954 struct dentry
*nsdentry
;
1955 struct cgroup
*cgrp
;
1957 mutex_lock(&cgroup_mutex
);
1958 spin_lock_irq(&css_set_lock
);
1960 cgrp
= cset_cgroup_from_root(ns
->root_cset
, root
);
1962 spin_unlock_irq(&css_set_lock
);
1963 mutex_unlock(&cgroup_mutex
);
1965 nsdentry
= kernfs_node_dentry(cgrp
->kn
, dentry
->d_sb
);
1970 if (IS_ERR(dentry
) || !new_sb
)
1971 cgroup_put(&root
->cgrp
);
1976 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1977 int flags
, const char *unused_dev_name
,
1980 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
1981 struct dentry
*dentry
;
1986 /* Check if the caller has permission to mount. */
1987 if (!ns_capable(ns
->user_ns
, CAP_SYS_ADMIN
)) {
1989 return ERR_PTR(-EPERM
);
1993 * The first time anyone tries to mount a cgroup, enable the list
1994 * linking each css_set to its tasks and fix up all existing tasks.
1996 if (!use_task_css_set_links
)
1997 cgroup_enable_task_cg_lists();
1999 if (fs_type
== &cgroup2_fs_type
) {
2000 unsigned int root_flags
;
2002 ret
= parse_cgroup_root_flags(data
, &root_flags
);
2005 return ERR_PTR(ret
);
2008 cgrp_dfl_visible
= true;
2009 cgroup_get_live(&cgrp_dfl_root
.cgrp
);
2011 dentry
= cgroup_do_mount(&cgroup2_fs_type
, flags
, &cgrp_dfl_root
,
2012 CGROUP2_SUPER_MAGIC
, ns
);
2013 if (!IS_ERR(dentry
))
2014 apply_cgroup_root_flags(root_flags
);
2016 dentry
= cgroup1_mount(&cgroup_fs_type
, flags
, data
,
2017 CGROUP_SUPER_MAGIC
, ns
);
2024 static void cgroup_kill_sb(struct super_block
*sb
)
2026 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2027 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2030 * If @root doesn't have any mounts or children, start killing it.
2031 * This prevents new mounts by disabling percpu_ref_tryget_live().
2032 * cgroup_mount() may wait for @root's release.
2034 * And don't kill the default root.
2036 if (!list_empty(&root
->cgrp
.self
.children
) ||
2037 root
== &cgrp_dfl_root
)
2038 cgroup_put(&root
->cgrp
);
2040 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2045 struct file_system_type cgroup_fs_type
= {
2047 .mount
= cgroup_mount
,
2048 .kill_sb
= cgroup_kill_sb
,
2049 .fs_flags
= FS_USERNS_MOUNT
,
2052 static struct file_system_type cgroup2_fs_type
= {
2054 .mount
= cgroup_mount
,
2055 .kill_sb
= cgroup_kill_sb
,
2056 .fs_flags
= FS_USERNS_MOUNT
,
2059 int cgroup_path_ns_locked(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2060 struct cgroup_namespace
*ns
)
2062 struct cgroup
*root
= cset_cgroup_from_root(ns
->root_cset
, cgrp
->root
);
2064 return kernfs_path_from_node(cgrp
->kn
, root
->kn
, buf
, buflen
);
2067 int cgroup_path_ns(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2068 struct cgroup_namespace
*ns
)
2072 mutex_lock(&cgroup_mutex
);
2073 spin_lock_irq(&css_set_lock
);
2075 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, ns
);
2077 spin_unlock_irq(&css_set_lock
);
2078 mutex_unlock(&cgroup_mutex
);
2082 EXPORT_SYMBOL_GPL(cgroup_path_ns
);
2085 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2086 * @task: target task
2087 * @buf: the buffer to write the path into
2088 * @buflen: the length of the buffer
2090 * Determine @task's cgroup on the first (the one with the lowest non-zero
2091 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2092 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2093 * cgroup controller callbacks.
2095 * Return value is the same as kernfs_path().
2097 int task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2099 struct cgroup_root
*root
;
2100 struct cgroup
*cgrp
;
2101 int hierarchy_id
= 1;
2104 mutex_lock(&cgroup_mutex
);
2105 spin_lock_irq(&css_set_lock
);
2107 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2110 cgrp
= task_cgroup_from_root(task
, root
);
2111 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, &init_cgroup_ns
);
2113 /* if no hierarchy exists, everyone is in "/" */
2114 ret
= strlcpy(buf
, "/", buflen
);
2117 spin_unlock_irq(&css_set_lock
);
2118 mutex_unlock(&cgroup_mutex
);
2121 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2124 * cgroup_migrate_add_task - add a migration target task to a migration context
2125 * @task: target task
2126 * @mgctx: target migration context
2128 * Add @task, which is a migration target, to @mgctx->tset. This function
2129 * becomes noop if @task doesn't need to be migrated. @task's css_set
2130 * should have been added as a migration source and @task->cg_list will be
2131 * moved from the css_set's tasks list to mg_tasks one.
2133 static void cgroup_migrate_add_task(struct task_struct
*task
,
2134 struct cgroup_mgctx
*mgctx
)
2136 struct css_set
*cset
;
2138 lockdep_assert_held(&css_set_lock
);
2140 /* @task either already exited or can't exit until the end */
2141 if (task
->flags
& PF_EXITING
)
2144 /* leave @task alone if post_fork() hasn't linked it yet */
2145 if (list_empty(&task
->cg_list
))
2148 cset
= task_css_set(task
);
2149 if (!cset
->mg_src_cgrp
)
2152 mgctx
->tset
.nr_tasks
++;
2154 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2155 if (list_empty(&cset
->mg_node
))
2156 list_add_tail(&cset
->mg_node
,
2157 &mgctx
->tset
.src_csets
);
2158 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2159 list_add_tail(&cset
->mg_dst_cset
->mg_node
,
2160 &mgctx
->tset
.dst_csets
);
2164 * cgroup_taskset_first - reset taskset and return the first task
2165 * @tset: taskset of interest
2166 * @dst_cssp: output variable for the destination css
2168 * @tset iteration is initialized and the first task is returned.
2170 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2171 struct cgroup_subsys_state
**dst_cssp
)
2173 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2174 tset
->cur_task
= NULL
;
2176 return cgroup_taskset_next(tset
, dst_cssp
);
2180 * cgroup_taskset_next - iterate to the next task in taskset
2181 * @tset: taskset of interest
2182 * @dst_cssp: output variable for the destination css
2184 * Return the next task in @tset. Iteration must have been initialized
2185 * with cgroup_taskset_first().
2187 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2188 struct cgroup_subsys_state
**dst_cssp
)
2190 struct css_set
*cset
= tset
->cur_cset
;
2191 struct task_struct
*task
= tset
->cur_task
;
2193 while (&cset
->mg_node
!= tset
->csets
) {
2195 task
= list_first_entry(&cset
->mg_tasks
,
2196 struct task_struct
, cg_list
);
2198 task
= list_next_entry(task
, cg_list
);
2200 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2201 tset
->cur_cset
= cset
;
2202 tset
->cur_task
= task
;
2205 * This function may be called both before and
2206 * after cgroup_taskset_migrate(). The two cases
2207 * can be distinguished by looking at whether @cset
2208 * has its ->mg_dst_cset set.
2210 if (cset
->mg_dst_cset
)
2211 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2213 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2218 cset
= list_next_entry(cset
, mg_node
);
2226 * cgroup_taskset_migrate - migrate a taskset
2227 * @mgctx: migration context
2229 * Migrate tasks in @mgctx as setup by migration preparation functions.
2230 * This function fails iff one of the ->can_attach callbacks fails and
2231 * guarantees that either all or none of the tasks in @mgctx are migrated.
2232 * @mgctx is consumed regardless of success.
2234 static int cgroup_migrate_execute(struct cgroup_mgctx
*mgctx
)
2236 struct cgroup_taskset
*tset
= &mgctx
->tset
;
2237 struct cgroup_subsys
*ss
;
2238 struct task_struct
*task
, *tmp_task
;
2239 struct css_set
*cset
, *tmp_cset
;
2240 int ssid
, failed_ssid
, ret
;
2242 /* check that we can legitimately attach to the cgroup */
2243 if (tset
->nr_tasks
) {
2244 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2245 if (ss
->can_attach
) {
2247 ret
= ss
->can_attach(tset
);
2250 goto out_cancel_attach
;
2253 } while_each_subsys_mask();
2257 * Now that we're guaranteed success, proceed to move all tasks to
2258 * the new cgroup. There are no failure cases after here, so this
2259 * is the commit point.
2261 spin_lock_irq(&css_set_lock
);
2262 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2263 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2264 struct css_set
*from_cset
= task_css_set(task
);
2265 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2267 get_css_set(to_cset
);
2268 to_cset
->nr_tasks
++;
2269 css_set_move_task(task
, from_cset
, to_cset
, true);
2270 put_css_set_locked(from_cset
);
2271 from_cset
->nr_tasks
--;
2274 spin_unlock_irq(&css_set_lock
);
2277 * Migration is committed, all target tasks are now on dst_csets.
2278 * Nothing is sensitive to fork() after this point. Notify
2279 * controllers that migration is complete.
2281 tset
->csets
= &tset
->dst_csets
;
2283 if (tset
->nr_tasks
) {
2284 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2289 } while_each_subsys_mask();
2293 goto out_release_tset
;
2296 if (tset
->nr_tasks
) {
2297 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2298 if (ssid
== failed_ssid
)
2300 if (ss
->cancel_attach
) {
2302 ss
->cancel_attach(tset
);
2304 } while_each_subsys_mask();
2307 spin_lock_irq(&css_set_lock
);
2308 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2309 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2310 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2311 list_del_init(&cset
->mg_node
);
2313 spin_unlock_irq(&css_set_lock
);
2316 * Re-initialize the cgroup_taskset structure in case it is reused
2317 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2321 tset
->csets
= &tset
->src_csets
;
2326 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2327 * @dst_cgrp: destination cgroup to test
2329 * On the default hierarchy, except for the mixable, (possible) thread root
2330 * and threaded cgroups, subtree_control must be zero for migration
2331 * destination cgroups with tasks so that child cgroups don't compete
2334 int cgroup_migrate_vet_dst(struct cgroup
*dst_cgrp
)
2336 /* v1 doesn't have any restriction */
2337 if (!cgroup_on_dfl(dst_cgrp
))
2340 /* verify @dst_cgrp can host resources */
2341 if (!cgroup_is_valid_domain(dst_cgrp
->dom_cgrp
))
2344 /* mixables don't care */
2345 if (cgroup_is_mixable(dst_cgrp
))
2349 * If @dst_cgrp is already or can become a thread root or is
2350 * threaded, it doesn't matter.
2352 if (cgroup_can_be_thread_root(dst_cgrp
) || cgroup_is_threaded(dst_cgrp
))
2355 /* apply no-internal-process constraint */
2356 if (dst_cgrp
->subtree_control
)
2363 * cgroup_migrate_finish - cleanup after attach
2364 * @mgctx: migration context
2366 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2367 * those functions for details.
2369 void cgroup_migrate_finish(struct cgroup_mgctx
*mgctx
)
2371 LIST_HEAD(preloaded
);
2372 struct css_set
*cset
, *tmp_cset
;
2374 lockdep_assert_held(&cgroup_mutex
);
2376 spin_lock_irq(&css_set_lock
);
2378 list_splice_tail_init(&mgctx
->preloaded_src_csets
, &preloaded
);
2379 list_splice_tail_init(&mgctx
->preloaded_dst_csets
, &preloaded
);
2381 list_for_each_entry_safe(cset
, tmp_cset
, &preloaded
, mg_preload_node
) {
2382 cset
->mg_src_cgrp
= NULL
;
2383 cset
->mg_dst_cgrp
= NULL
;
2384 cset
->mg_dst_cset
= NULL
;
2385 list_del_init(&cset
->mg_preload_node
);
2386 put_css_set_locked(cset
);
2389 spin_unlock_irq(&css_set_lock
);
2393 * cgroup_migrate_add_src - add a migration source css_set
2394 * @src_cset: the source css_set to add
2395 * @dst_cgrp: the destination cgroup
2396 * @mgctx: migration context
2398 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2399 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2400 * up by cgroup_migrate_finish().
2402 * This function may be called without holding cgroup_threadgroup_rwsem
2403 * even if the target is a process. Threads may be created and destroyed
2404 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2405 * into play and the preloaded css_sets are guaranteed to cover all
2408 void cgroup_migrate_add_src(struct css_set
*src_cset
,
2409 struct cgroup
*dst_cgrp
,
2410 struct cgroup_mgctx
*mgctx
)
2412 struct cgroup
*src_cgrp
;
2414 lockdep_assert_held(&cgroup_mutex
);
2415 lockdep_assert_held(&css_set_lock
);
2418 * If ->dead, @src_set is associated with one or more dead cgroups
2419 * and doesn't contain any migratable tasks. Ignore it early so
2420 * that the rest of migration path doesn't get confused by it.
2425 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2427 if (!list_empty(&src_cset
->mg_preload_node
))
2430 WARN_ON(src_cset
->mg_src_cgrp
);
2431 WARN_ON(src_cset
->mg_dst_cgrp
);
2432 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2433 WARN_ON(!list_empty(&src_cset
->mg_node
));
2435 src_cset
->mg_src_cgrp
= src_cgrp
;
2436 src_cset
->mg_dst_cgrp
= dst_cgrp
;
2437 get_css_set(src_cset
);
2438 list_add_tail(&src_cset
->mg_preload_node
, &mgctx
->preloaded_src_csets
);
2442 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2443 * @mgctx: migration context
2445 * Tasks are about to be moved and all the source css_sets have been
2446 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2447 * pins all destination css_sets, links each to its source, and append them
2448 * to @mgctx->preloaded_dst_csets.
2450 * This function must be called after cgroup_migrate_add_src() has been
2451 * called on each migration source css_set. After migration is performed
2452 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2455 int cgroup_migrate_prepare_dst(struct cgroup_mgctx
*mgctx
)
2457 struct css_set
*src_cset
, *tmp_cset
;
2459 lockdep_assert_held(&cgroup_mutex
);
2461 /* look up the dst cset for each src cset and link it to src */
2462 list_for_each_entry_safe(src_cset
, tmp_cset
, &mgctx
->preloaded_src_csets
,
2464 struct css_set
*dst_cset
;
2465 struct cgroup_subsys
*ss
;
2468 dst_cset
= find_css_set(src_cset
, src_cset
->mg_dst_cgrp
);
2472 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2475 * If src cset equals dst, it's noop. Drop the src.
2476 * cgroup_migrate() will skip the cset too. Note that we
2477 * can't handle src == dst as some nodes are used by both.
2479 if (src_cset
== dst_cset
) {
2480 src_cset
->mg_src_cgrp
= NULL
;
2481 src_cset
->mg_dst_cgrp
= NULL
;
2482 list_del_init(&src_cset
->mg_preload_node
);
2483 put_css_set(src_cset
);
2484 put_css_set(dst_cset
);
2488 src_cset
->mg_dst_cset
= dst_cset
;
2490 if (list_empty(&dst_cset
->mg_preload_node
))
2491 list_add_tail(&dst_cset
->mg_preload_node
,
2492 &mgctx
->preloaded_dst_csets
);
2494 put_css_set(dst_cset
);
2496 for_each_subsys(ss
, ssid
)
2497 if (src_cset
->subsys
[ssid
] != dst_cset
->subsys
[ssid
])
2498 mgctx
->ss_mask
|= 1 << ssid
;
2503 cgroup_migrate_finish(mgctx
);
2508 * cgroup_migrate - migrate a process or task to a cgroup
2509 * @leader: the leader of the process or the task to migrate
2510 * @threadgroup: whether @leader points to the whole process or a single task
2511 * @mgctx: migration context
2513 * Migrate a process or task denoted by @leader. If migrating a process,
2514 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2515 * responsible for invoking cgroup_migrate_add_src() and
2516 * cgroup_migrate_prepare_dst() on the targets before invoking this
2517 * function and following up with cgroup_migrate_finish().
2519 * As long as a controller's ->can_attach() doesn't fail, this function is
2520 * guaranteed to succeed. This means that, excluding ->can_attach()
2521 * failure, when migrating multiple targets, the success or failure can be
2522 * decided for all targets by invoking group_migrate_prepare_dst() before
2523 * actually starting migrating.
2525 int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2526 struct cgroup_mgctx
*mgctx
)
2528 struct task_struct
*task
;
2531 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2532 * already PF_EXITING could be freed from underneath us unless we
2533 * take an rcu_read_lock.
2535 spin_lock_irq(&css_set_lock
);
2539 cgroup_migrate_add_task(task
, mgctx
);
2542 } while_each_thread(leader
, task
);
2544 spin_unlock_irq(&css_set_lock
);
2546 return cgroup_migrate_execute(mgctx
);
2550 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2551 * @dst_cgrp: the cgroup to attach to
2552 * @leader: the task or the leader of the threadgroup to be attached
2553 * @threadgroup: attach the whole threadgroup?
2555 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2557 int cgroup_attach_task(struct cgroup
*dst_cgrp
, struct task_struct
*leader
,
2560 DEFINE_CGROUP_MGCTX(mgctx
);
2561 struct task_struct
*task
;
2564 ret
= cgroup_migrate_vet_dst(dst_cgrp
);
2568 /* look up all src csets */
2569 spin_lock_irq(&css_set_lock
);
2573 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
, &mgctx
);
2576 } while_each_thread(leader
, task
);
2578 spin_unlock_irq(&css_set_lock
);
2580 /* prepare dst csets and commit */
2581 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2583 ret
= cgroup_migrate(leader
, threadgroup
, &mgctx
);
2585 cgroup_migrate_finish(&mgctx
);
2588 trace_cgroup_attach_task(dst_cgrp
, leader
, threadgroup
);
2593 struct task_struct
*cgroup_procs_write_start(char *buf
, bool threadgroup
)
2594 __acquires(&cgroup_threadgroup_rwsem
)
2596 struct task_struct
*tsk
;
2599 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2600 return ERR_PTR(-EINVAL
);
2602 percpu_down_write(&cgroup_threadgroup_rwsem
);
2606 tsk
= find_task_by_vpid(pid
);
2608 tsk
= ERR_PTR(-ESRCH
);
2609 goto out_unlock_threadgroup
;
2616 tsk
= tsk
->group_leader
;
2619 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2620 * If userland migrates such a kthread to a non-root cgroup, it can
2621 * become trapped in a cpuset, or RT kthread may be born in a
2622 * cgroup with no rt_runtime allocated. Just say no.
2624 if (tsk
->no_cgroup_migration
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2625 tsk
= ERR_PTR(-EINVAL
);
2626 goto out_unlock_threadgroup
;
2629 get_task_struct(tsk
);
2630 goto out_unlock_rcu
;
2632 out_unlock_threadgroup
:
2633 percpu_up_write(&cgroup_threadgroup_rwsem
);
2639 void cgroup_procs_write_finish(struct task_struct
*task
)
2640 __releases(&cgroup_threadgroup_rwsem
)
2642 struct cgroup_subsys
*ss
;
2645 /* release reference from cgroup_procs_write_start() */
2646 put_task_struct(task
);
2648 percpu_up_write(&cgroup_threadgroup_rwsem
);
2649 for_each_subsys(ss
, ssid
)
2650 if (ss
->post_attach
)
2654 static void cgroup_print_ss_mask(struct seq_file
*seq
, u16 ss_mask
)
2656 struct cgroup_subsys
*ss
;
2657 bool printed
= false;
2660 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
2663 seq_printf(seq
, "%s", ss
->name
);
2665 } while_each_subsys_mask();
2667 seq_putc(seq
, '\n');
2670 /* show controllers which are enabled from the parent */
2671 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2673 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2675 cgroup_print_ss_mask(seq
, cgroup_control(cgrp
));
2679 /* show controllers which are enabled for a given cgroup's children */
2680 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2682 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2684 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2689 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2690 * @cgrp: root of the subtree to update csses for
2692 * @cgrp's control masks have changed and its subtree's css associations
2693 * need to be updated accordingly. This function looks up all css_sets
2694 * which are attached to the subtree, creates the matching updated css_sets
2695 * and migrates the tasks to the new ones.
2697 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2699 DEFINE_CGROUP_MGCTX(mgctx
);
2700 struct cgroup_subsys_state
*d_css
;
2701 struct cgroup
*dsct
;
2702 struct css_set
*src_cset
;
2705 lockdep_assert_held(&cgroup_mutex
);
2707 percpu_down_write(&cgroup_threadgroup_rwsem
);
2709 /* look up all csses currently attached to @cgrp's subtree */
2710 spin_lock_irq(&css_set_lock
);
2711 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2712 struct cgrp_cset_link
*link
;
2714 list_for_each_entry(link
, &dsct
->cset_links
, cset_link
)
2715 cgroup_migrate_add_src(link
->cset
, dsct
, &mgctx
);
2717 spin_unlock_irq(&css_set_lock
);
2719 /* NULL dst indicates self on default hierarchy */
2720 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2724 spin_lock_irq(&css_set_lock
);
2725 list_for_each_entry(src_cset
, &mgctx
.preloaded_src_csets
, mg_preload_node
) {
2726 struct task_struct
*task
, *ntask
;
2728 /* all tasks in src_csets need to be migrated */
2729 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
2730 cgroup_migrate_add_task(task
, &mgctx
);
2732 spin_unlock_irq(&css_set_lock
);
2734 ret
= cgroup_migrate_execute(&mgctx
);
2736 cgroup_migrate_finish(&mgctx
);
2737 percpu_up_write(&cgroup_threadgroup_rwsem
);
2742 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2743 * @cgrp: root of the target subtree
2745 * Because css offlining is asynchronous, userland may try to re-enable a
2746 * controller while the previous css is still around. This function grabs
2747 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2749 void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
)
2750 __acquires(&cgroup_mutex
)
2752 struct cgroup
*dsct
;
2753 struct cgroup_subsys_state
*d_css
;
2754 struct cgroup_subsys
*ss
;
2758 mutex_lock(&cgroup_mutex
);
2760 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2761 for_each_subsys(ss
, ssid
) {
2762 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2765 if (!css
|| !percpu_ref_is_dying(&css
->refcnt
))
2768 cgroup_get_live(dsct
);
2769 prepare_to_wait(&dsct
->offline_waitq
, &wait
,
2770 TASK_UNINTERRUPTIBLE
);
2772 mutex_unlock(&cgroup_mutex
);
2774 finish_wait(&dsct
->offline_waitq
, &wait
);
2783 * cgroup_save_control - save control masks of a subtree
2784 * @cgrp: root of the target subtree
2786 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2787 * prefixed fields for @cgrp's subtree including @cgrp itself.
2789 static void cgroup_save_control(struct cgroup
*cgrp
)
2791 struct cgroup
*dsct
;
2792 struct cgroup_subsys_state
*d_css
;
2794 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2795 dsct
->old_subtree_control
= dsct
->subtree_control
;
2796 dsct
->old_subtree_ss_mask
= dsct
->subtree_ss_mask
;
2801 * cgroup_propagate_control - refresh control masks of a subtree
2802 * @cgrp: root of the target subtree
2804 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2805 * ->subtree_control and propagate controller availability through the
2806 * subtree so that descendants don't have unavailable controllers enabled.
2808 static void cgroup_propagate_control(struct cgroup
*cgrp
)
2810 struct cgroup
*dsct
;
2811 struct cgroup_subsys_state
*d_css
;
2813 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2814 dsct
->subtree_control
&= cgroup_control(dsct
);
2815 dsct
->subtree_ss_mask
=
2816 cgroup_calc_subtree_ss_mask(dsct
->subtree_control
,
2817 cgroup_ss_mask(dsct
));
2822 * cgroup_restore_control - restore control masks of a subtree
2823 * @cgrp: root of the target subtree
2825 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2826 * prefixed fields for @cgrp's subtree including @cgrp itself.
2828 static void cgroup_restore_control(struct cgroup
*cgrp
)
2830 struct cgroup
*dsct
;
2831 struct cgroup_subsys_state
*d_css
;
2833 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2834 dsct
->subtree_control
= dsct
->old_subtree_control
;
2835 dsct
->subtree_ss_mask
= dsct
->old_subtree_ss_mask
;
2839 static bool css_visible(struct cgroup_subsys_state
*css
)
2841 struct cgroup_subsys
*ss
= css
->ss
;
2842 struct cgroup
*cgrp
= css
->cgroup
;
2844 if (cgroup_control(cgrp
) & (1 << ss
->id
))
2846 if (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
)))
2848 return cgroup_on_dfl(cgrp
) && ss
->implicit_on_dfl
;
2852 * cgroup_apply_control_enable - enable or show csses according to control
2853 * @cgrp: root of the target subtree
2855 * Walk @cgrp's subtree and create new csses or make the existing ones
2856 * visible. A css is created invisible if it's being implicitly enabled
2857 * through dependency. An invisible css is made visible when the userland
2858 * explicitly enables it.
2860 * Returns 0 on success, -errno on failure. On failure, csses which have
2861 * been processed already aren't cleaned up. The caller is responsible for
2862 * cleaning up with cgroup_apply_control_disable().
2864 static int cgroup_apply_control_enable(struct cgroup
*cgrp
)
2866 struct cgroup
*dsct
;
2867 struct cgroup_subsys_state
*d_css
;
2868 struct cgroup_subsys
*ss
;
2871 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2872 for_each_subsys(ss
, ssid
) {
2873 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2875 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
2877 if (!(cgroup_ss_mask(dsct
) & (1 << ss
->id
)))
2881 css
= css_create(dsct
, ss
);
2883 return PTR_ERR(css
);
2886 if (css_visible(css
)) {
2887 ret
= css_populate_dir(css
);
2898 * cgroup_apply_control_disable - kill or hide csses according to control
2899 * @cgrp: root of the target subtree
2901 * Walk @cgrp's subtree and kill and hide csses so that they match
2902 * cgroup_ss_mask() and cgroup_visible_mask().
2904 * A css is hidden when the userland requests it to be disabled while other
2905 * subsystems are still depending on it. The css must not actively control
2906 * resources and be in the vanilla state if it's made visible again later.
2907 * Controllers which may be depended upon should provide ->css_reset() for
2910 static void cgroup_apply_control_disable(struct cgroup
*cgrp
)
2912 struct cgroup
*dsct
;
2913 struct cgroup_subsys_state
*d_css
;
2914 struct cgroup_subsys
*ss
;
2917 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2918 for_each_subsys(ss
, ssid
) {
2919 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2921 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
2927 !(cgroup_ss_mask(dsct
) & (1 << ss
->id
))) {
2929 } else if (!css_visible(css
)) {
2939 * cgroup_apply_control - apply control mask updates to the subtree
2940 * @cgrp: root of the target subtree
2942 * subsystems can be enabled and disabled in a subtree using the following
2945 * 1. Call cgroup_save_control() to stash the current state.
2946 * 2. Update ->subtree_control masks in the subtree as desired.
2947 * 3. Call cgroup_apply_control() to apply the changes.
2948 * 4. Optionally perform other related operations.
2949 * 5. Call cgroup_finalize_control() to finish up.
2951 * This function implements step 3 and propagates the mask changes
2952 * throughout @cgrp's subtree, updates csses accordingly and perform
2953 * process migrations.
2955 static int cgroup_apply_control(struct cgroup
*cgrp
)
2959 cgroup_propagate_control(cgrp
);
2961 ret
= cgroup_apply_control_enable(cgrp
);
2966 * At this point, cgroup_e_css() results reflect the new csses
2967 * making the following cgroup_update_dfl_csses() properly update
2968 * css associations of all tasks in the subtree.
2970 ret
= cgroup_update_dfl_csses(cgrp
);
2978 * cgroup_finalize_control - finalize control mask update
2979 * @cgrp: root of the target subtree
2980 * @ret: the result of the update
2982 * Finalize control mask update. See cgroup_apply_control() for more info.
2984 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
)
2987 cgroup_restore_control(cgrp
);
2988 cgroup_propagate_control(cgrp
);
2991 cgroup_apply_control_disable(cgrp
);
2994 static int cgroup_vet_subtree_control_enable(struct cgroup
*cgrp
, u16 enable
)
2996 u16 domain_enable
= enable
& ~cgrp_dfl_threaded_ss_mask
;
2998 /* if nothing is getting enabled, nothing to worry about */
3002 /* can @cgrp host any resources? */
3003 if (!cgroup_is_valid_domain(cgrp
->dom_cgrp
))
3006 /* mixables don't care */
3007 if (cgroup_is_mixable(cgrp
))
3010 if (domain_enable
) {
3011 /* can't enable domain controllers inside a thread subtree */
3012 if (cgroup_is_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3016 * Threaded controllers can handle internal competitions
3017 * and are always allowed inside a (prospective) thread
3020 if (cgroup_can_be_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3025 * Controllers can't be enabled for a cgroup with tasks to avoid
3026 * child cgroups competing against tasks.
3028 if (cgroup_has_tasks(cgrp
))
3034 /* change the enabled child controllers for a cgroup in the default hierarchy */
3035 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
3036 char *buf
, size_t nbytes
,
3039 u16 enable
= 0, disable
= 0;
3040 struct cgroup
*cgrp
, *child
;
3041 struct cgroup_subsys
*ss
;
3046 * Parse input - space separated list of subsystem names prefixed
3047 * with either + or -.
3049 buf
= strstrip(buf
);
3050 while ((tok
= strsep(&buf
, " "))) {
3053 do_each_subsys_mask(ss
, ssid
, ~cgrp_dfl_inhibit_ss_mask
) {
3054 if (!cgroup_ssid_enabled(ssid
) ||
3055 strcmp(tok
+ 1, ss
->name
))
3059 enable
|= 1 << ssid
;
3060 disable
&= ~(1 << ssid
);
3061 } else if (*tok
== '-') {
3062 disable
|= 1 << ssid
;
3063 enable
&= ~(1 << ssid
);
3068 } while_each_subsys_mask();
3069 if (ssid
== CGROUP_SUBSYS_COUNT
)
3073 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3077 for_each_subsys(ss
, ssid
) {
3078 if (enable
& (1 << ssid
)) {
3079 if (cgrp
->subtree_control
& (1 << ssid
)) {
3080 enable
&= ~(1 << ssid
);
3084 if (!(cgroup_control(cgrp
) & (1 << ssid
))) {
3088 } else if (disable
& (1 << ssid
)) {
3089 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3090 disable
&= ~(1 << ssid
);
3094 /* a child has it enabled? */
3095 cgroup_for_each_live_child(child
, cgrp
) {
3096 if (child
->subtree_control
& (1 << ssid
)) {
3104 if (!enable
&& !disable
) {
3109 ret
= cgroup_vet_subtree_control_enable(cgrp
, enable
);
3113 /* save and update control masks and prepare csses */
3114 cgroup_save_control(cgrp
);
3116 cgrp
->subtree_control
|= enable
;
3117 cgrp
->subtree_control
&= ~disable
;
3119 ret
= cgroup_apply_control(cgrp
);
3120 cgroup_finalize_control(cgrp
, ret
);
3124 kernfs_activate(cgrp
->kn
);
3126 cgroup_kn_unlock(of
->kn
);
3127 return ret
?: nbytes
;
3131 * cgroup_enable_threaded - make @cgrp threaded
3132 * @cgrp: the target cgroup
3134 * Called when "threaded" is written to the cgroup.type interface file and
3135 * tries to make @cgrp threaded and join the parent's resource domain.
3136 * This function is never called on the root cgroup as cgroup.type doesn't
3139 static int cgroup_enable_threaded(struct cgroup
*cgrp
)
3141 struct cgroup
*parent
= cgroup_parent(cgrp
);
3142 struct cgroup
*dom_cgrp
= parent
->dom_cgrp
;
3145 lockdep_assert_held(&cgroup_mutex
);
3147 /* noop if already threaded */
3148 if (cgroup_is_threaded(cgrp
))
3151 /* we're joining the parent's domain, ensure its validity */
3152 if (!cgroup_is_valid_domain(dom_cgrp
) ||
3153 !cgroup_can_be_thread_root(dom_cgrp
))
3157 * The following shouldn't cause actual migrations and should
3160 cgroup_save_control(cgrp
);
3162 cgrp
->dom_cgrp
= dom_cgrp
;
3163 ret
= cgroup_apply_control(cgrp
);
3165 parent
->nr_threaded_children
++;
3167 cgrp
->dom_cgrp
= cgrp
;
3169 cgroup_finalize_control(cgrp
, ret
);
3173 static int cgroup_type_show(struct seq_file
*seq
, void *v
)
3175 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3177 if (cgroup_is_threaded(cgrp
))
3178 seq_puts(seq
, "threaded\n");
3179 else if (!cgroup_is_valid_domain(cgrp
))
3180 seq_puts(seq
, "domain invalid\n");
3181 else if (cgroup_is_thread_root(cgrp
))
3182 seq_puts(seq
, "domain threaded\n");
3184 seq_puts(seq
, "domain\n");
3189 static ssize_t
cgroup_type_write(struct kernfs_open_file
*of
, char *buf
,
3190 size_t nbytes
, loff_t off
)
3192 struct cgroup
*cgrp
;
3195 /* only switching to threaded mode is supported */
3196 if (strcmp(strstrip(buf
), "threaded"))
3199 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3203 /* threaded can only be enabled */
3204 ret
= cgroup_enable_threaded(cgrp
);
3206 cgroup_kn_unlock(of
->kn
);
3207 return ret
?: nbytes
;
3210 static int cgroup_max_descendants_show(struct seq_file
*seq
, void *v
)
3212 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3213 int descendants
= READ_ONCE(cgrp
->max_descendants
);
3215 if (descendants
== INT_MAX
)
3216 seq_puts(seq
, "max\n");
3218 seq_printf(seq
, "%d\n", descendants
);
3223 static ssize_t
cgroup_max_descendants_write(struct kernfs_open_file
*of
,
3224 char *buf
, size_t nbytes
, loff_t off
)
3226 struct cgroup
*cgrp
;
3230 buf
= strstrip(buf
);
3231 if (!strcmp(buf
, "max")) {
3232 descendants
= INT_MAX
;
3234 ret
= kstrtoint(buf
, 0, &descendants
);
3239 if (descendants
< 0)
3242 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3246 cgrp
->max_descendants
= descendants
;
3248 cgroup_kn_unlock(of
->kn
);
3253 static int cgroup_max_depth_show(struct seq_file
*seq
, void *v
)
3255 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3256 int depth
= READ_ONCE(cgrp
->max_depth
);
3258 if (depth
== INT_MAX
)
3259 seq_puts(seq
, "max\n");
3261 seq_printf(seq
, "%d\n", depth
);
3266 static ssize_t
cgroup_max_depth_write(struct kernfs_open_file
*of
,
3267 char *buf
, size_t nbytes
, loff_t off
)
3269 struct cgroup
*cgrp
;
3273 buf
= strstrip(buf
);
3274 if (!strcmp(buf
, "max")) {
3277 ret
= kstrtoint(buf
, 0, &depth
);
3285 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3289 cgrp
->max_depth
= depth
;
3291 cgroup_kn_unlock(of
->kn
);
3296 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3298 seq_printf(seq
, "populated %d\n",
3299 cgroup_is_populated(seq_css(seq
)->cgroup
));
3303 static int cgroup_stat_show(struct seq_file
*seq
, void *v
)
3305 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3307 seq_printf(seq
, "nr_descendants %d\n",
3308 cgroup
->nr_descendants
);
3309 seq_printf(seq
, "nr_dying_descendants %d\n",
3310 cgroup
->nr_dying_descendants
);
3315 static int cgroup_file_open(struct kernfs_open_file
*of
)
3317 struct cftype
*cft
= of
->kn
->priv
;
3320 return cft
->open(of
);
3324 static void cgroup_file_release(struct kernfs_open_file
*of
)
3326 struct cftype
*cft
= of
->kn
->priv
;
3332 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3333 size_t nbytes
, loff_t off
)
3335 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
3336 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3337 struct cftype
*cft
= of
->kn
->priv
;
3338 struct cgroup_subsys_state
*css
;
3342 * If namespaces are delegation boundaries, disallow writes to
3343 * files in an non-init namespace root from inside the namespace
3344 * except for the files explicitly marked delegatable -
3345 * cgroup.procs and cgroup.subtree_control.
3347 if ((cgrp
->root
->flags
& CGRP_ROOT_NS_DELEGATE
) &&
3348 !(cft
->flags
& CFTYPE_NS_DELEGATABLE
) &&
3349 ns
!= &init_cgroup_ns
&& ns
->root_cset
->dfl_cgrp
== cgrp
)
3353 return cft
->write(of
, buf
, nbytes
, off
);
3356 * kernfs guarantees that a file isn't deleted with operations in
3357 * flight, which means that the matching css is and stays alive and
3358 * doesn't need to be pinned. The RCU locking is not necessary
3359 * either. It's just for the convenience of using cgroup_css().
3362 css
= cgroup_css(cgrp
, cft
->ss
);
3365 if (cft
->write_u64
) {
3366 unsigned long long v
;
3367 ret
= kstrtoull(buf
, 0, &v
);
3369 ret
= cft
->write_u64(css
, cft
, v
);
3370 } else if (cft
->write_s64
) {
3372 ret
= kstrtoll(buf
, 0, &v
);
3374 ret
= cft
->write_s64(css
, cft
, v
);
3379 return ret
?: nbytes
;
3382 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3384 return seq_cft(seq
)->seq_start(seq
, ppos
);
3387 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3389 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3392 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3394 if (seq_cft(seq
)->seq_stop
)
3395 seq_cft(seq
)->seq_stop(seq
, v
);
3398 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3400 struct cftype
*cft
= seq_cft(m
);
3401 struct cgroup_subsys_state
*css
= seq_css(m
);
3404 return cft
->seq_show(m
, arg
);
3407 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3408 else if (cft
->read_s64
)
3409 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3415 static struct kernfs_ops cgroup_kf_single_ops
= {
3416 .atomic_write_len
= PAGE_SIZE
,
3417 .open
= cgroup_file_open
,
3418 .release
= cgroup_file_release
,
3419 .write
= cgroup_file_write
,
3420 .seq_show
= cgroup_seqfile_show
,
3423 static struct kernfs_ops cgroup_kf_ops
= {
3424 .atomic_write_len
= PAGE_SIZE
,
3425 .open
= cgroup_file_open
,
3426 .release
= cgroup_file_release
,
3427 .write
= cgroup_file_write
,
3428 .seq_start
= cgroup_seqfile_start
,
3429 .seq_next
= cgroup_seqfile_next
,
3430 .seq_stop
= cgroup_seqfile_stop
,
3431 .seq_show
= cgroup_seqfile_show
,
3434 /* set uid and gid of cgroup dirs and files to that of the creator */
3435 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3437 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3438 .ia_uid
= current_fsuid(),
3439 .ia_gid
= current_fsgid(), };
3441 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3442 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3445 return kernfs_setattr(kn
, &iattr
);
3448 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3451 char name
[CGROUP_FILE_NAME_MAX
];
3452 struct kernfs_node
*kn
;
3453 struct lock_class_key
*key
= NULL
;
3456 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3457 key
= &cft
->lockdep_key
;
3459 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3460 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
3465 ret
= cgroup_kn_set_ugid(kn
);
3471 if (cft
->file_offset
) {
3472 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3474 spin_lock_irq(&cgroup_file_kn_lock
);
3476 spin_unlock_irq(&cgroup_file_kn_lock
);
3483 * cgroup_addrm_files - add or remove files to a cgroup directory
3484 * @css: the target css
3485 * @cgrp: the target cgroup (usually css->cgroup)
3486 * @cfts: array of cftypes to be added
3487 * @is_add: whether to add or remove
3489 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3490 * For removals, this function never fails.
3492 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3493 struct cgroup
*cgrp
, struct cftype cfts
[],
3496 struct cftype
*cft
, *cft_end
= NULL
;
3499 lockdep_assert_held(&cgroup_mutex
);
3502 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3503 /* does cft->flags tell us to skip this file on @cgrp? */
3504 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3506 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3508 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3510 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3514 ret
= cgroup_add_file(css
, cgrp
, cft
);
3516 pr_warn("%s: failed to add %s, err=%d\n",
3517 __func__
, cft
->name
, ret
);
3523 cgroup_rm_file(cgrp
, cft
);
3529 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3531 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3532 struct cgroup
*root
= &ss
->root
->cgrp
;
3533 struct cgroup_subsys_state
*css
;
3536 lockdep_assert_held(&cgroup_mutex
);
3538 /* add/rm files for all cgroups created before */
3539 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3540 struct cgroup
*cgrp
= css
->cgroup
;
3542 if (!(css
->flags
& CSS_VISIBLE
))
3545 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3551 kernfs_activate(root
->kn
);
3555 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3559 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3560 /* free copy for custom atomic_write_len, see init_cftypes() */
3561 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3566 /* revert flags set by cgroup core while adding @cfts */
3567 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3571 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3575 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3576 struct kernfs_ops
*kf_ops
;
3578 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3581 kf_ops
= &cgroup_kf_ops
;
3583 kf_ops
= &cgroup_kf_single_ops
;
3586 * Ugh... if @cft wants a custom max_write_len, we need to
3587 * make a copy of kf_ops to set its atomic_write_len.
3589 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3590 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3592 cgroup_exit_cftypes(cfts
);
3595 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3598 cft
->kf_ops
= kf_ops
;
3605 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3607 lockdep_assert_held(&cgroup_mutex
);
3609 if (!cfts
|| !cfts
[0].ss
)
3612 list_del(&cfts
->node
);
3613 cgroup_apply_cftypes(cfts
, false);
3614 cgroup_exit_cftypes(cfts
);
3619 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3620 * @cfts: zero-length name terminated array of cftypes
3622 * Unregister @cfts. Files described by @cfts are removed from all
3623 * existing cgroups and all future cgroups won't have them either. This
3624 * function can be called anytime whether @cfts' subsys is attached or not.
3626 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3629 int cgroup_rm_cftypes(struct cftype
*cfts
)
3633 mutex_lock(&cgroup_mutex
);
3634 ret
= cgroup_rm_cftypes_locked(cfts
);
3635 mutex_unlock(&cgroup_mutex
);
3640 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3641 * @ss: target cgroup subsystem
3642 * @cfts: zero-length name terminated array of cftypes
3644 * Register @cfts to @ss. Files described by @cfts are created for all
3645 * existing cgroups to which @ss is attached and all future cgroups will
3646 * have them too. This function can be called anytime whether @ss is
3649 * Returns 0 on successful registration, -errno on failure. Note that this
3650 * function currently returns 0 as long as @cfts registration is successful
3651 * even if some file creation attempts on existing cgroups fail.
3653 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3657 if (!cgroup_ssid_enabled(ss
->id
))
3660 if (!cfts
|| cfts
[0].name
[0] == '\0')
3663 ret
= cgroup_init_cftypes(ss
, cfts
);
3667 mutex_lock(&cgroup_mutex
);
3669 list_add_tail(&cfts
->node
, &ss
->cfts
);
3670 ret
= cgroup_apply_cftypes(cfts
, true);
3672 cgroup_rm_cftypes_locked(cfts
);
3674 mutex_unlock(&cgroup_mutex
);
3679 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3680 * @ss: target cgroup subsystem
3681 * @cfts: zero-length name terminated array of cftypes
3683 * Similar to cgroup_add_cftypes() but the added files are only used for
3684 * the default hierarchy.
3686 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3690 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3691 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3692 return cgroup_add_cftypes(ss
, cfts
);
3696 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3697 * @ss: target cgroup subsystem
3698 * @cfts: zero-length name terminated array of cftypes
3700 * Similar to cgroup_add_cftypes() but the added files are only used for
3701 * the legacy hierarchies.
3703 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3707 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3708 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3709 return cgroup_add_cftypes(ss
, cfts
);
3713 * cgroup_file_notify - generate a file modified event for a cgroup_file
3714 * @cfile: target cgroup_file
3716 * @cfile must have been obtained by setting cftype->file_offset.
3718 void cgroup_file_notify(struct cgroup_file
*cfile
)
3720 unsigned long flags
;
3722 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
3724 kernfs_notify(cfile
->kn
);
3725 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
3729 * css_next_child - find the next child of a given css
3730 * @pos: the current position (%NULL to initiate traversal)
3731 * @parent: css whose children to walk
3733 * This function returns the next child of @parent and should be called
3734 * under either cgroup_mutex or RCU read lock. The only requirement is
3735 * that @parent and @pos are accessible. The next sibling is guaranteed to
3736 * be returned regardless of their states.
3738 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3739 * css which finished ->css_online() is guaranteed to be visible in the
3740 * future iterations and will stay visible until the last reference is put.
3741 * A css which hasn't finished ->css_online() or already finished
3742 * ->css_offline() may show up during traversal. It's each subsystem's
3743 * responsibility to synchronize against on/offlining.
3745 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3746 struct cgroup_subsys_state
*parent
)
3748 struct cgroup_subsys_state
*next
;
3750 cgroup_assert_mutex_or_rcu_locked();
3753 * @pos could already have been unlinked from the sibling list.
3754 * Once a cgroup is removed, its ->sibling.next is no longer
3755 * updated when its next sibling changes. CSS_RELEASED is set when
3756 * @pos is taken off list, at which time its next pointer is valid,
3757 * and, as releases are serialized, the one pointed to by the next
3758 * pointer is guaranteed to not have started release yet. This
3759 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3760 * critical section, the one pointed to by its next pointer is
3761 * guaranteed to not have finished its RCU grace period even if we
3762 * have dropped rcu_read_lock() inbetween iterations.
3764 * If @pos has CSS_RELEASED set, its next pointer can't be
3765 * dereferenced; however, as each css is given a monotonically
3766 * increasing unique serial number and always appended to the
3767 * sibling list, the next one can be found by walking the parent's
3768 * children until the first css with higher serial number than
3769 * @pos's. While this path can be slower, it happens iff iteration
3770 * races against release and the race window is very small.
3773 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3774 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3775 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3777 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3778 if (next
->serial_nr
> pos
->serial_nr
)
3783 * @next, if not pointing to the head, can be dereferenced and is
3786 if (&next
->sibling
!= &parent
->children
)
3792 * css_next_descendant_pre - find the next descendant for pre-order walk
3793 * @pos: the current position (%NULL to initiate traversal)
3794 * @root: css whose descendants to walk
3796 * To be used by css_for_each_descendant_pre(). Find the next descendant
3797 * to visit for pre-order traversal of @root's descendants. @root is
3798 * included in the iteration and the first node to be visited.
3800 * While this function requires cgroup_mutex or RCU read locking, it
3801 * doesn't require the whole traversal to be contained in a single critical
3802 * section. This function will return the correct next descendant as long
3803 * as both @pos and @root are accessible and @pos is a descendant of @root.
3805 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3806 * css which finished ->css_online() is guaranteed to be visible in the
3807 * future iterations and will stay visible until the last reference is put.
3808 * A css which hasn't finished ->css_online() or already finished
3809 * ->css_offline() may show up during traversal. It's each subsystem's
3810 * responsibility to synchronize against on/offlining.
3812 struct cgroup_subsys_state
*
3813 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3814 struct cgroup_subsys_state
*root
)
3816 struct cgroup_subsys_state
*next
;
3818 cgroup_assert_mutex_or_rcu_locked();
3820 /* if first iteration, visit @root */
3824 /* visit the first child if exists */
3825 next
= css_next_child(NULL
, pos
);
3829 /* no child, visit my or the closest ancestor's next sibling */
3830 while (pos
!= root
) {
3831 next
= css_next_child(pos
, pos
->parent
);
3841 * css_rightmost_descendant - return the rightmost descendant of a css
3842 * @pos: css of interest
3844 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3845 * is returned. This can be used during pre-order traversal to skip
3848 * While this function requires cgroup_mutex or RCU read locking, it
3849 * doesn't require the whole traversal to be contained in a single critical
3850 * section. This function will return the correct rightmost descendant as
3851 * long as @pos is accessible.
3853 struct cgroup_subsys_state
*
3854 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3856 struct cgroup_subsys_state
*last
, *tmp
;
3858 cgroup_assert_mutex_or_rcu_locked();
3862 /* ->prev isn't RCU safe, walk ->next till the end */
3864 css_for_each_child(tmp
, last
)
3871 static struct cgroup_subsys_state
*
3872 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3874 struct cgroup_subsys_state
*last
;
3878 pos
= css_next_child(NULL
, pos
);
3885 * css_next_descendant_post - find the next descendant for post-order walk
3886 * @pos: the current position (%NULL to initiate traversal)
3887 * @root: css whose descendants to walk
3889 * To be used by css_for_each_descendant_post(). Find the next descendant
3890 * to visit for post-order traversal of @root's descendants. @root is
3891 * included in the iteration and the last node to be visited.
3893 * While this function requires cgroup_mutex or RCU read locking, it
3894 * doesn't require the whole traversal to be contained in a single critical
3895 * section. This function will return the correct next descendant as long
3896 * as both @pos and @cgroup are accessible and @pos is a descendant of
3899 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3900 * css which finished ->css_online() is guaranteed to be visible in the
3901 * future iterations and will stay visible until the last reference is put.
3902 * A css which hasn't finished ->css_online() or already finished
3903 * ->css_offline() may show up during traversal. It's each subsystem's
3904 * responsibility to synchronize against on/offlining.
3906 struct cgroup_subsys_state
*
3907 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
3908 struct cgroup_subsys_state
*root
)
3910 struct cgroup_subsys_state
*next
;
3912 cgroup_assert_mutex_or_rcu_locked();
3914 /* if first iteration, visit leftmost descendant which may be @root */
3916 return css_leftmost_descendant(root
);
3918 /* if we visited @root, we're done */
3922 /* if there's an unvisited sibling, visit its leftmost descendant */
3923 next
= css_next_child(pos
, pos
->parent
);
3925 return css_leftmost_descendant(next
);
3927 /* no sibling left, visit parent */
3932 * css_has_online_children - does a css have online children
3933 * @css: the target css
3935 * Returns %true if @css has any online children; otherwise, %false. This
3936 * function can be called from any context but the caller is responsible
3937 * for synchronizing against on/offlining as necessary.
3939 bool css_has_online_children(struct cgroup_subsys_state
*css
)
3941 struct cgroup_subsys_state
*child
;
3945 css_for_each_child(child
, css
) {
3946 if (child
->flags
& CSS_ONLINE
) {
3955 static struct css_set
*css_task_iter_next_css_set(struct css_task_iter
*it
)
3957 struct list_head
*l
;
3958 struct cgrp_cset_link
*link
;
3959 struct css_set
*cset
;
3961 lockdep_assert_held(&css_set_lock
);
3963 /* find the next threaded cset */
3964 if (it
->tcset_pos
) {
3965 l
= it
->tcset_pos
->next
;
3967 if (l
!= it
->tcset_head
) {
3969 return container_of(l
, struct css_set
,
3970 threaded_csets_node
);
3973 it
->tcset_pos
= NULL
;
3976 /* find the next cset */
3979 if (l
== it
->cset_head
) {
3980 it
->cset_pos
= NULL
;
3985 cset
= container_of(l
, struct css_set
, e_cset_node
[it
->ss
->id
]);
3987 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
3993 /* initialize threaded css_set walking */
3994 if (it
->flags
& CSS_TASK_ITER_THREADED
) {
3996 put_css_set_locked(it
->cur_dcset
);
3997 it
->cur_dcset
= cset
;
4000 it
->tcset_head
= &cset
->threaded_csets
;
4001 it
->tcset_pos
= &cset
->threaded_csets
;
4008 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4009 * @it: the iterator to advance
4011 * Advance @it to the next css_set to walk.
4013 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
4015 struct css_set
*cset
;
4017 lockdep_assert_held(&css_set_lock
);
4019 /* Advance to the next non-empty css_set */
4021 cset
= css_task_iter_next_css_set(it
);
4023 it
->task_pos
= NULL
;
4026 } while (!css_set_populated(cset
));
4028 if (!list_empty(&cset
->tasks
))
4029 it
->task_pos
= cset
->tasks
.next
;
4031 it
->task_pos
= cset
->mg_tasks
.next
;
4033 it
->tasks_head
= &cset
->tasks
;
4034 it
->mg_tasks_head
= &cset
->mg_tasks
;
4037 * We don't keep css_sets locked across iteration steps and thus
4038 * need to take steps to ensure that iteration can be resumed after
4039 * the lock is re-acquired. Iteration is performed at two levels -
4040 * css_sets and tasks in them.
4042 * Once created, a css_set never leaves its cgroup lists, so a
4043 * pinned css_set is guaranteed to stay put and we can resume
4044 * iteration afterwards.
4046 * Tasks may leave @cset across iteration steps. This is resolved
4047 * by registering each iterator with the css_set currently being
4048 * walked and making css_set_move_task() advance iterators whose
4049 * next task is leaving.
4052 list_del(&it
->iters_node
);
4053 put_css_set_locked(it
->cur_cset
);
4056 it
->cur_cset
= cset
;
4057 list_add(&it
->iters_node
, &cset
->task_iters
);
4060 static void css_task_iter_advance(struct css_task_iter
*it
)
4062 struct list_head
*l
= it
->task_pos
;
4064 lockdep_assert_held(&css_set_lock
);
4069 * Advance iterator to find next entry. cset->tasks is consumed
4070 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4075 if (l
== it
->tasks_head
)
4076 l
= it
->mg_tasks_head
->next
;
4078 if (l
== it
->mg_tasks_head
)
4079 css_task_iter_advance_css_set(it
);
4083 /* if PROCS, skip over tasks which aren't group leaders */
4084 if ((it
->flags
& CSS_TASK_ITER_PROCS
) && it
->task_pos
&&
4085 !thread_group_leader(list_entry(it
->task_pos
, struct task_struct
,
4091 * css_task_iter_start - initiate task iteration
4092 * @css: the css to walk tasks of
4093 * @flags: CSS_TASK_ITER_* flags
4094 * @it: the task iterator to use
4096 * Initiate iteration through the tasks of @css. The caller can call
4097 * css_task_iter_next() to walk through the tasks until the function
4098 * returns NULL. On completion of iteration, css_task_iter_end() must be
4101 void css_task_iter_start(struct cgroup_subsys_state
*css
, unsigned int flags
,
4102 struct css_task_iter
*it
)
4104 /* no one should try to iterate before mounting cgroups */
4105 WARN_ON_ONCE(!use_task_css_set_links
);
4107 memset(it
, 0, sizeof(*it
));
4109 spin_lock_irq(&css_set_lock
);
4115 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
4117 it
->cset_pos
= &css
->cgroup
->cset_links
;
4119 it
->cset_head
= it
->cset_pos
;
4121 css_task_iter_advance_css_set(it
);
4123 spin_unlock_irq(&css_set_lock
);
4127 * css_task_iter_next - return the next task for the iterator
4128 * @it: the task iterator being iterated
4130 * The "next" function for task iteration. @it should have been
4131 * initialized via css_task_iter_start(). Returns NULL when the iteration
4134 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4137 put_task_struct(it
->cur_task
);
4138 it
->cur_task
= NULL
;
4141 spin_lock_irq(&css_set_lock
);
4144 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4146 get_task_struct(it
->cur_task
);
4147 css_task_iter_advance(it
);
4150 spin_unlock_irq(&css_set_lock
);
4152 return it
->cur_task
;
4156 * css_task_iter_end - finish task iteration
4157 * @it: the task iterator to finish
4159 * Finish task iteration started by css_task_iter_start().
4161 void css_task_iter_end(struct css_task_iter
*it
)
4164 spin_lock_irq(&css_set_lock
);
4165 list_del(&it
->iters_node
);
4166 put_css_set_locked(it
->cur_cset
);
4167 spin_unlock_irq(&css_set_lock
);
4171 put_css_set(it
->cur_dcset
);
4174 put_task_struct(it
->cur_task
);
4177 static void cgroup_procs_release(struct kernfs_open_file
*of
)
4180 css_task_iter_end(of
->priv
);
4185 static void *cgroup_procs_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4187 struct kernfs_open_file
*of
= s
->private;
4188 struct css_task_iter
*it
= of
->priv
;
4190 return css_task_iter_next(it
);
4193 static void *__cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
,
4194 unsigned int iter_flags
)
4196 struct kernfs_open_file
*of
= s
->private;
4197 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4198 struct css_task_iter
*it
= of
->priv
;
4201 * When a seq_file is seeked, it's always traversed sequentially
4202 * from position 0, so we can simply keep iterating on !0 *pos.
4205 if (WARN_ON_ONCE((*pos
)++))
4206 return ERR_PTR(-EINVAL
);
4208 it
= kzalloc(sizeof(*it
), GFP_KERNEL
);
4210 return ERR_PTR(-ENOMEM
);
4212 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4213 } else if (!(*pos
)++) {
4214 css_task_iter_end(it
);
4215 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4218 return cgroup_procs_next(s
, NULL
, NULL
);
4221 static void *cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
)
4223 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4226 * All processes of a threaded subtree belong to the domain cgroup
4227 * of the subtree. Only threads can be distributed across the
4228 * subtree. Reject reads on cgroup.procs in the subtree proper.
4229 * They're always empty anyway.
4231 if (cgroup_is_threaded(cgrp
))
4232 return ERR_PTR(-EOPNOTSUPP
);
4234 return __cgroup_procs_start(s
, pos
, CSS_TASK_ITER_PROCS
|
4235 CSS_TASK_ITER_THREADED
);
4238 static int cgroup_procs_show(struct seq_file
*s
, void *v
)
4240 seq_printf(s
, "%d\n", task_pid_vnr(v
));
4244 static int cgroup_procs_write_permission(struct cgroup
*src_cgrp
,
4245 struct cgroup
*dst_cgrp
,
4246 struct super_block
*sb
)
4248 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
4249 struct cgroup
*com_cgrp
= src_cgrp
;
4250 struct inode
*inode
;
4253 lockdep_assert_held(&cgroup_mutex
);
4255 /* find the common ancestor */
4256 while (!cgroup_is_descendant(dst_cgrp
, com_cgrp
))
4257 com_cgrp
= cgroup_parent(com_cgrp
);
4259 /* %current should be authorized to migrate to the common ancestor */
4260 inode
= kernfs_get_inode(sb
, com_cgrp
->procs_file
.kn
);
4264 ret
= inode_permission(inode
, MAY_WRITE
);
4270 * If namespaces are delegation boundaries, %current must be able
4271 * to see both source and destination cgroups from its namespace.
4273 if ((cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
) &&
4274 (!cgroup_is_descendant(src_cgrp
, ns
->root_cset
->dfl_cgrp
) ||
4275 !cgroup_is_descendant(dst_cgrp
, ns
->root_cset
->dfl_cgrp
)))
4281 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
4282 char *buf
, size_t nbytes
, loff_t off
)
4284 struct cgroup
*src_cgrp
, *dst_cgrp
;
4285 struct task_struct
*task
;
4288 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4292 task
= cgroup_procs_write_start(buf
, true);
4293 ret
= PTR_ERR_OR_ZERO(task
);
4297 /* find the source cgroup */
4298 spin_lock_irq(&css_set_lock
);
4299 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4300 spin_unlock_irq(&css_set_lock
);
4302 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4303 of
->file
->f_path
.dentry
->d_sb
);
4307 ret
= cgroup_attach_task(dst_cgrp
, task
, true);
4310 cgroup_procs_write_finish(task
);
4312 cgroup_kn_unlock(of
->kn
);
4314 return ret
?: nbytes
;
4317 static void *cgroup_threads_start(struct seq_file
*s
, loff_t
*pos
)
4319 return __cgroup_procs_start(s
, pos
, 0);
4322 static ssize_t
cgroup_threads_write(struct kernfs_open_file
*of
,
4323 char *buf
, size_t nbytes
, loff_t off
)
4325 struct cgroup
*src_cgrp
, *dst_cgrp
;
4326 struct task_struct
*task
;
4329 buf
= strstrip(buf
);
4331 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4335 task
= cgroup_procs_write_start(buf
, false);
4336 ret
= PTR_ERR_OR_ZERO(task
);
4340 /* find the source cgroup */
4341 spin_lock_irq(&css_set_lock
);
4342 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4343 spin_unlock_irq(&css_set_lock
);
4345 /* thread migrations follow the cgroup.procs delegation rule */
4346 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4347 of
->file
->f_path
.dentry
->d_sb
);
4351 /* and must be contained in the same domain */
4353 if (src_cgrp
->dom_cgrp
!= dst_cgrp
->dom_cgrp
)
4356 ret
= cgroup_attach_task(dst_cgrp
, task
, false);
4359 cgroup_procs_write_finish(task
);
4361 cgroup_kn_unlock(of
->kn
);
4363 return ret
?: nbytes
;
4366 /* cgroup core interface files for the default hierarchy */
4367 static struct cftype cgroup_base_files
[] = {
4369 .name
= "cgroup.type",
4370 .flags
= CFTYPE_NOT_ON_ROOT
,
4371 .seq_show
= cgroup_type_show
,
4372 .write
= cgroup_type_write
,
4375 .name
= "cgroup.procs",
4376 .flags
= CFTYPE_NS_DELEGATABLE
,
4377 .file_offset
= offsetof(struct cgroup
, procs_file
),
4378 .release
= cgroup_procs_release
,
4379 .seq_start
= cgroup_procs_start
,
4380 .seq_next
= cgroup_procs_next
,
4381 .seq_show
= cgroup_procs_show
,
4382 .write
= cgroup_procs_write
,
4385 .name
= "cgroup.threads",
4386 .release
= cgroup_procs_release
,
4387 .seq_start
= cgroup_threads_start
,
4388 .seq_next
= cgroup_procs_next
,
4389 .seq_show
= cgroup_procs_show
,
4390 .write
= cgroup_threads_write
,
4393 .name
= "cgroup.controllers",
4394 .seq_show
= cgroup_controllers_show
,
4397 .name
= "cgroup.subtree_control",
4398 .flags
= CFTYPE_NS_DELEGATABLE
,
4399 .seq_show
= cgroup_subtree_control_show
,
4400 .write
= cgroup_subtree_control_write
,
4403 .name
= "cgroup.events",
4404 .flags
= CFTYPE_NOT_ON_ROOT
,
4405 .file_offset
= offsetof(struct cgroup
, events_file
),
4406 .seq_show
= cgroup_events_show
,
4409 .name
= "cgroup.max.descendants",
4410 .seq_show
= cgroup_max_descendants_show
,
4411 .write
= cgroup_max_descendants_write
,
4414 .name
= "cgroup.max.depth",
4415 .seq_show
= cgroup_max_depth_show
,
4416 .write
= cgroup_max_depth_write
,
4419 .name
= "cgroup.stat",
4420 .seq_show
= cgroup_stat_show
,
4426 * css destruction is four-stage process.
4428 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4429 * Implemented in kill_css().
4431 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4432 * and thus css_tryget_online() is guaranteed to fail, the css can be
4433 * offlined by invoking offline_css(). After offlining, the base ref is
4434 * put. Implemented in css_killed_work_fn().
4436 * 3. When the percpu_ref reaches zero, the only possible remaining
4437 * accessors are inside RCU read sections. css_release() schedules the
4440 * 4. After the grace period, the css can be freed. Implemented in
4441 * css_free_work_fn().
4443 * It is actually hairier because both step 2 and 4 require process context
4444 * and thus involve punting to css->destroy_work adding two additional
4445 * steps to the already complex sequence.
4447 static void css_free_work_fn(struct work_struct
*work
)
4449 struct cgroup_subsys_state
*css
=
4450 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4451 struct cgroup_subsys
*ss
= css
->ss
;
4452 struct cgroup
*cgrp
= css
->cgroup
;
4454 percpu_ref_exit(&css
->refcnt
);
4458 struct cgroup_subsys_state
*parent
= css
->parent
;
4462 cgroup_idr_remove(&ss
->css_idr
, id
);
4468 /* cgroup free path */
4469 atomic_dec(&cgrp
->root
->nr_cgrps
);
4470 cgroup1_pidlist_destroy_all(cgrp
);
4471 cancel_work_sync(&cgrp
->release_agent_work
);
4473 if (cgroup_parent(cgrp
)) {
4475 * We get a ref to the parent, and put the ref when
4476 * this cgroup is being freed, so it's guaranteed
4477 * that the parent won't be destroyed before its
4480 cgroup_put(cgroup_parent(cgrp
));
4481 kernfs_put(cgrp
->kn
);
4485 * This is root cgroup's refcnt reaching zero,
4486 * which indicates that the root should be
4489 cgroup_destroy_root(cgrp
->root
);
4494 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4496 struct cgroup_subsys_state
*css
=
4497 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4499 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4500 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4503 static void css_release_work_fn(struct work_struct
*work
)
4505 struct cgroup_subsys_state
*css
=
4506 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4507 struct cgroup_subsys
*ss
= css
->ss
;
4508 struct cgroup
*cgrp
= css
->cgroup
;
4510 mutex_lock(&cgroup_mutex
);
4512 css
->flags
|= CSS_RELEASED
;
4513 list_del_rcu(&css
->sibling
);
4516 /* css release path */
4517 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4518 if (ss
->css_released
)
4519 ss
->css_released(css
);
4521 struct cgroup
*tcgrp
;
4523 /* cgroup release path */
4524 trace_cgroup_release(cgrp
);
4526 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
;
4527 tcgrp
= cgroup_parent(tcgrp
))
4528 tcgrp
->nr_dying_descendants
--;
4530 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4534 * There are two control paths which try to determine
4535 * cgroup from dentry without going through kernfs -
4536 * cgroupstats_build() and css_tryget_online_from_dir().
4537 * Those are supported by RCU protecting clearing of
4538 * cgrp->kn->priv backpointer.
4541 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
,
4544 cgroup_bpf_put(cgrp
);
4547 mutex_unlock(&cgroup_mutex
);
4549 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4552 static void css_release(struct percpu_ref
*ref
)
4554 struct cgroup_subsys_state
*css
=
4555 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4557 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4558 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4561 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4562 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4564 lockdep_assert_held(&cgroup_mutex
);
4566 cgroup_get_live(cgrp
);
4568 memset(css
, 0, sizeof(*css
));
4572 INIT_LIST_HEAD(&css
->sibling
);
4573 INIT_LIST_HEAD(&css
->children
);
4574 css
->serial_nr
= css_serial_nr_next
++;
4575 atomic_set(&css
->online_cnt
, 0);
4577 if (cgroup_parent(cgrp
)) {
4578 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4579 css_get(css
->parent
);
4582 BUG_ON(cgroup_css(cgrp
, ss
));
4585 /* invoke ->css_online() on a new CSS and mark it online if successful */
4586 static int online_css(struct cgroup_subsys_state
*css
)
4588 struct cgroup_subsys
*ss
= css
->ss
;
4591 lockdep_assert_held(&cgroup_mutex
);
4594 ret
= ss
->css_online(css
);
4596 css
->flags
|= CSS_ONLINE
;
4597 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
4599 atomic_inc(&css
->online_cnt
);
4601 atomic_inc(&css
->parent
->online_cnt
);
4606 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4607 static void offline_css(struct cgroup_subsys_state
*css
)
4609 struct cgroup_subsys
*ss
= css
->ss
;
4611 lockdep_assert_held(&cgroup_mutex
);
4613 if (!(css
->flags
& CSS_ONLINE
))
4616 if (ss
->css_offline
)
4617 ss
->css_offline(css
);
4619 css
->flags
&= ~CSS_ONLINE
;
4620 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
4622 wake_up_all(&css
->cgroup
->offline_waitq
);
4626 * css_create - create a cgroup_subsys_state
4627 * @cgrp: the cgroup new css will be associated with
4628 * @ss: the subsys of new css
4630 * Create a new css associated with @cgrp - @ss pair. On success, the new
4631 * css is online and installed in @cgrp. This function doesn't create the
4632 * interface files. Returns 0 on success, -errno on failure.
4634 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
4635 struct cgroup_subsys
*ss
)
4637 struct cgroup
*parent
= cgroup_parent(cgrp
);
4638 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
4639 struct cgroup_subsys_state
*css
;
4642 lockdep_assert_held(&cgroup_mutex
);
4644 css
= ss
->css_alloc(parent_css
);
4646 css
= ERR_PTR(-ENOMEM
);
4650 init_and_link_css(css
, ss
, cgrp
);
4652 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
4656 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
4661 /* @css is ready to be brought online now, make it visible */
4662 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
4663 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
4665 err
= online_css(css
);
4669 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4670 cgroup_parent(parent
)) {
4671 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4672 current
->comm
, current
->pid
, ss
->name
);
4673 if (!strcmp(ss
->name
, "memory"))
4674 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4675 ss
->warned_broken_hierarchy
= true;
4681 list_del_rcu(&css
->sibling
);
4683 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4684 return ERR_PTR(err
);
4688 * The returned cgroup is fully initialized including its control mask, but
4689 * it isn't associated with its kernfs_node and doesn't have the control
4692 static struct cgroup
*cgroup_create(struct cgroup
*parent
)
4694 struct cgroup_root
*root
= parent
->root
;
4695 struct cgroup
*cgrp
, *tcgrp
;
4696 int level
= parent
->level
+ 1;
4699 /* allocate the cgroup and its ID, 0 is reserved for the root */
4700 cgrp
= kzalloc(sizeof(*cgrp
) +
4701 sizeof(cgrp
->ancestor_ids
[0]) * (level
+ 1), GFP_KERNEL
);
4703 return ERR_PTR(-ENOMEM
);
4705 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
4710 * Temporarily set the pointer to NULL, so idr_find() won't return
4711 * a half-baked cgroup.
4713 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
4716 goto out_cancel_ref
;
4719 init_cgroup_housekeeping(cgrp
);
4721 cgrp
->self
.parent
= &parent
->self
;
4723 cgrp
->level
= level
;
4725 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
4726 cgrp
->ancestor_ids
[tcgrp
->level
] = tcgrp
->id
;
4729 tcgrp
->nr_descendants
++;
4732 if (notify_on_release(parent
))
4733 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4735 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4736 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4738 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
4740 /* allocation complete, commit to creation */
4741 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
4742 atomic_inc(&root
->nr_cgrps
);
4743 cgroup_get_live(parent
);
4746 * @cgrp is now fully operational. If something fails after this
4747 * point, it'll be released via the normal destruction path.
4749 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4752 * On the default hierarchy, a child doesn't automatically inherit
4753 * subtree_control from the parent. Each is configured manually.
4755 if (!cgroup_on_dfl(cgrp
))
4756 cgrp
->subtree_control
= cgroup_control(cgrp
);
4759 cgroup_bpf_inherit(cgrp
, parent
);
4761 cgroup_propagate_control(cgrp
);
4766 percpu_ref_exit(&cgrp
->self
.refcnt
);
4769 return ERR_PTR(ret
);
4772 static bool cgroup_check_hierarchy_limits(struct cgroup
*parent
)
4774 struct cgroup
*cgroup
;
4778 lockdep_assert_held(&cgroup_mutex
);
4780 for (cgroup
= parent
; cgroup
; cgroup
= cgroup_parent(cgroup
)) {
4781 if (cgroup
->nr_descendants
>= cgroup
->max_descendants
)
4784 if (level
> cgroup
->max_depth
)
4795 int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
, umode_t mode
)
4797 struct cgroup
*parent
, *cgrp
;
4798 struct kernfs_node
*kn
;
4801 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4802 if (strchr(name
, '\n'))
4805 parent
= cgroup_kn_lock_live(parent_kn
, false);
4809 if (!cgroup_check_hierarchy_limits(parent
)) {
4814 cgrp
= cgroup_create(parent
);
4816 ret
= PTR_ERR(cgrp
);
4820 /* create the directory */
4821 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
4829 * This extra ref will be put in cgroup_free_fn() and guarantees
4830 * that @cgrp->kn is always accessible.
4834 ret
= cgroup_kn_set_ugid(kn
);
4838 ret
= css_populate_dir(&cgrp
->self
);
4842 ret
= cgroup_apply_control_enable(cgrp
);
4846 trace_cgroup_mkdir(cgrp
);
4848 /* let's create and online css's */
4849 kernfs_activate(kn
);
4855 cgroup_destroy_locked(cgrp
);
4857 cgroup_kn_unlock(parent_kn
);
4862 * This is called when the refcnt of a css is confirmed to be killed.
4863 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4864 * initate destruction and put the css ref from kill_css().
4866 static void css_killed_work_fn(struct work_struct
*work
)
4868 struct cgroup_subsys_state
*css
=
4869 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4871 mutex_lock(&cgroup_mutex
);
4876 /* @css can't go away while we're holding cgroup_mutex */
4878 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
4880 mutex_unlock(&cgroup_mutex
);
4883 /* css kill confirmation processing requires process context, bounce */
4884 static void css_killed_ref_fn(struct percpu_ref
*ref
)
4886 struct cgroup_subsys_state
*css
=
4887 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4889 if (atomic_dec_and_test(&css
->online_cnt
)) {
4890 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
4891 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4896 * kill_css - destroy a css
4897 * @css: css to destroy
4899 * This function initiates destruction of @css by removing cgroup interface
4900 * files and putting its base reference. ->css_offline() will be invoked
4901 * asynchronously once css_tryget_online() is guaranteed to fail and when
4902 * the reference count reaches zero, @css will be released.
4904 static void kill_css(struct cgroup_subsys_state
*css
)
4906 lockdep_assert_held(&cgroup_mutex
);
4908 if (css
->flags
& CSS_DYING
)
4911 css
->flags
|= CSS_DYING
;
4914 * This must happen before css is disassociated with its cgroup.
4915 * See seq_css() for details.
4920 * Killing would put the base ref, but we need to keep it alive
4921 * until after ->css_offline().
4926 * cgroup core guarantees that, by the time ->css_offline() is
4927 * invoked, no new css reference will be given out via
4928 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4929 * proceed to offlining css's because percpu_ref_kill() doesn't
4930 * guarantee that the ref is seen as killed on all CPUs on return.
4932 * Use percpu_ref_kill_and_confirm() to get notifications as each
4933 * css is confirmed to be seen as killed on all CPUs.
4935 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
4939 * cgroup_destroy_locked - the first stage of cgroup destruction
4940 * @cgrp: cgroup to be destroyed
4942 * css's make use of percpu refcnts whose killing latency shouldn't be
4943 * exposed to userland and are RCU protected. Also, cgroup core needs to
4944 * guarantee that css_tryget_online() won't succeed by the time
4945 * ->css_offline() is invoked. To satisfy all the requirements,
4946 * destruction is implemented in the following two steps.
4948 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4949 * userland visible parts and start killing the percpu refcnts of
4950 * css's. Set up so that the next stage will be kicked off once all
4951 * the percpu refcnts are confirmed to be killed.
4953 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4954 * rest of destruction. Once all cgroup references are gone, the
4955 * cgroup is RCU-freed.
4957 * This function implements s1. After this step, @cgrp is gone as far as
4958 * the userland is concerned and a new cgroup with the same name may be
4959 * created. As cgroup doesn't care about the names internally, this
4960 * doesn't cause any problem.
4962 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
4963 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
4965 struct cgroup
*tcgrp
, *parent
= cgroup_parent(cgrp
);
4966 struct cgroup_subsys_state
*css
;
4967 struct cgrp_cset_link
*link
;
4970 lockdep_assert_held(&cgroup_mutex
);
4973 * Only migration can raise populated from zero and we're already
4974 * holding cgroup_mutex.
4976 if (cgroup_is_populated(cgrp
))
4980 * Make sure there's no live children. We can't test emptiness of
4981 * ->self.children as dead children linger on it while being
4982 * drained; otherwise, "rmdir parent/child parent" may fail.
4984 if (css_has_online_children(&cgrp
->self
))
4988 * Mark @cgrp and the associated csets dead. The former prevents
4989 * further task migration and child creation by disabling
4990 * cgroup_lock_live_group(). The latter makes the csets ignored by
4991 * the migration path.
4993 cgrp
->self
.flags
&= ~CSS_ONLINE
;
4995 spin_lock_irq(&css_set_lock
);
4996 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
4997 link
->cset
->dead
= true;
4998 spin_unlock_irq(&css_set_lock
);
5000 /* initiate massacre of all css's */
5001 for_each_css(css
, ssid
, cgrp
)
5005 * Remove @cgrp directory along with the base files. @cgrp has an
5006 * extra ref on its kn.
5008 kernfs_remove(cgrp
->kn
);
5010 if (parent
&& cgroup_is_threaded(cgrp
))
5011 parent
->nr_threaded_children
--;
5013 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5014 tcgrp
->nr_descendants
--;
5015 tcgrp
->nr_dying_descendants
++;
5018 cgroup1_check_for_release(parent
);
5020 /* put the base reference */
5021 percpu_ref_kill(&cgrp
->self
.refcnt
);
5026 int cgroup_rmdir(struct kernfs_node
*kn
)
5028 struct cgroup
*cgrp
;
5031 cgrp
= cgroup_kn_lock_live(kn
, false);
5035 ret
= cgroup_destroy_locked(cgrp
);
5038 trace_cgroup_rmdir(cgrp
);
5040 cgroup_kn_unlock(kn
);
5044 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5045 .show_options
= cgroup_show_options
,
5046 .remount_fs
= cgroup_remount
,
5047 .mkdir
= cgroup_mkdir
,
5048 .rmdir
= cgroup_rmdir
,
5049 .show_path
= cgroup_show_path
,
5052 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5054 struct cgroup_subsys_state
*css
;
5056 pr_debug("Initializing cgroup subsys %s\n", ss
->name
);
5058 mutex_lock(&cgroup_mutex
);
5060 idr_init(&ss
->css_idr
);
5061 INIT_LIST_HEAD(&ss
->cfts
);
5063 /* Create the root cgroup state for this subsystem */
5064 ss
->root
= &cgrp_dfl_root
;
5065 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5066 /* We don't handle early failures gracefully */
5067 BUG_ON(IS_ERR(css
));
5068 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5071 * Root csses are never destroyed and we can't initialize
5072 * percpu_ref during early init. Disable refcnting.
5074 css
->flags
|= CSS_NO_REF
;
5077 /* allocation can't be done safely during early init */
5080 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5081 BUG_ON(css
->id
< 0);
5084 /* Update the init_css_set to contain a subsys
5085 * pointer to this state - since the subsystem is
5086 * newly registered, all tasks and hence the
5087 * init_css_set is in the subsystem's root cgroup. */
5088 init_css_set
.subsys
[ss
->id
] = css
;
5090 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5091 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5092 have_free_callback
|= (bool)ss
->free
<< ss
->id
;
5093 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5095 /* At system boot, before all subsystems have been
5096 * registered, no tasks have been forked, so we don't
5097 * need to invoke fork callbacks here. */
5098 BUG_ON(!list_empty(&init_task
.tasks
));
5100 BUG_ON(online_css(css
));
5102 mutex_unlock(&cgroup_mutex
);
5106 * cgroup_init_early - cgroup initialization at system boot
5108 * Initialize cgroups at system boot, and initialize any
5109 * subsystems that request early init.
5111 int __init
cgroup_init_early(void)
5113 static struct cgroup_sb_opts __initdata opts
;
5114 struct cgroup_subsys
*ss
;
5117 init_cgroup_root(&cgrp_dfl_root
, &opts
);
5118 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5120 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5122 for_each_subsys(ss
, i
) {
5123 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5124 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5125 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5127 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5128 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5131 ss
->name
= cgroup_subsys_name
[i
];
5132 if (!ss
->legacy_name
)
5133 ss
->legacy_name
= cgroup_subsys_name
[i
];
5136 cgroup_init_subsys(ss
, true);
5141 static u16 cgroup_disable_mask __initdata
;
5144 * cgroup_init - cgroup initialization
5146 * Register cgroup filesystem and /proc file, and initialize
5147 * any subsystems that didn't request early init.
5149 int __init
cgroup_init(void)
5151 struct cgroup_subsys
*ss
;
5154 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT
> 16);
5155 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5156 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_base_files
));
5157 BUG_ON(cgroup_init_cftypes(NULL
, cgroup1_base_files
));
5160 * The latency of the synchronize_sched() is too high for cgroups,
5161 * avoid it at the cost of forcing all readers into the slow path.
5163 rcu_sync_enter_start(&cgroup_threadgroup_rwsem
.rss
);
5165 get_user_ns(init_cgroup_ns
.user_ns
);
5167 mutex_lock(&cgroup_mutex
);
5170 * Add init_css_set to the hash table so that dfl_root can link to
5173 hash_add(css_set_table
, &init_css_set
.hlist
,
5174 css_set_hash(init_css_set
.subsys
));
5176 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0, 0));
5178 mutex_unlock(&cgroup_mutex
);
5180 for_each_subsys(ss
, ssid
) {
5181 if (ss
->early_init
) {
5182 struct cgroup_subsys_state
*css
=
5183 init_css_set
.subsys
[ss
->id
];
5185 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5187 BUG_ON(css
->id
< 0);
5189 cgroup_init_subsys(ss
, false);
5192 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5193 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5196 * Setting dfl_root subsys_mask needs to consider the
5197 * disabled flag and cftype registration needs kmalloc,
5198 * both of which aren't available during early_init.
5200 if (cgroup_disable_mask
& (1 << ssid
)) {
5201 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5202 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5207 if (cgroup1_ssid_disabled(ssid
))
5208 printk(KERN_INFO
"Disabling %s control group subsystem in v1 mounts\n",
5211 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5213 /* implicit controllers must be threaded too */
5214 WARN_ON(ss
->implicit_on_dfl
&& !ss
->threaded
);
5216 if (ss
->implicit_on_dfl
)
5217 cgrp_dfl_implicit_ss_mask
|= 1 << ss
->id
;
5218 else if (!ss
->dfl_cftypes
)
5219 cgrp_dfl_inhibit_ss_mask
|= 1 << ss
->id
;
5222 cgrp_dfl_threaded_ss_mask
|= 1 << ss
->id
;
5224 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5225 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5227 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5228 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5232 ss
->bind(init_css_set
.subsys
[ssid
]);
5234 mutex_lock(&cgroup_mutex
);
5235 css_populate_dir(init_css_set
.subsys
[ssid
]);
5236 mutex_unlock(&cgroup_mutex
);
5239 /* init_css_set.subsys[] has been updated, re-hash */
5240 hash_del(&init_css_set
.hlist
);
5241 hash_add(css_set_table
, &init_css_set
.hlist
,
5242 css_set_hash(init_css_set
.subsys
));
5244 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5245 WARN_ON(register_filesystem(&cgroup_fs_type
));
5246 WARN_ON(register_filesystem(&cgroup2_fs_type
));
5247 WARN_ON(!proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
));
5252 static int __init
cgroup_wq_init(void)
5255 * There isn't much point in executing destruction path in
5256 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5257 * Use 1 for @max_active.
5259 * We would prefer to do this in cgroup_init() above, but that
5260 * is called before init_workqueues(): so leave this until after.
5262 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5263 BUG_ON(!cgroup_destroy_wq
);
5266 core_initcall(cgroup_wq_init
);
5268 void cgroup_path_from_kernfs_id(const union kernfs_node_id
*id
,
5269 char *buf
, size_t buflen
)
5271 struct kernfs_node
*kn
;
5273 kn
= kernfs_get_node_by_id(cgrp_dfl_root
.kf_root
, id
);
5276 kernfs_path(kn
, buf
, buflen
);
5281 * proc_cgroup_show()
5282 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5283 * - Used for /proc/<pid>/cgroup.
5285 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5286 struct pid
*pid
, struct task_struct
*tsk
)
5290 struct cgroup_root
*root
;
5293 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5297 mutex_lock(&cgroup_mutex
);
5298 spin_lock_irq(&css_set_lock
);
5300 for_each_root(root
) {
5301 struct cgroup_subsys
*ss
;
5302 struct cgroup
*cgrp
;
5303 int ssid
, count
= 0;
5305 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_visible
)
5308 seq_printf(m
, "%d:", root
->hierarchy_id
);
5309 if (root
!= &cgrp_dfl_root
)
5310 for_each_subsys(ss
, ssid
)
5311 if (root
->subsys_mask
& (1 << ssid
))
5312 seq_printf(m
, "%s%s", count
++ ? "," : "",
5314 if (strlen(root
->name
))
5315 seq_printf(m
, "%sname=%s", count
? "," : "",
5319 cgrp
= task_cgroup_from_root(tsk
, root
);
5322 * On traditional hierarchies, all zombie tasks show up as
5323 * belonging to the root cgroup. On the default hierarchy,
5324 * while a zombie doesn't show up in "cgroup.procs" and
5325 * thus can't be migrated, its /proc/PID/cgroup keeps
5326 * reporting the cgroup it belonged to before exiting. If
5327 * the cgroup is removed before the zombie is reaped,
5328 * " (deleted)" is appended to the cgroup path.
5330 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5331 retval
= cgroup_path_ns_locked(cgrp
, buf
, PATH_MAX
,
5332 current
->nsproxy
->cgroup_ns
);
5333 if (retval
>= PATH_MAX
)
5334 retval
= -ENAMETOOLONG
;
5343 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5344 seq_puts(m
, " (deleted)\n");
5351 spin_unlock_irq(&css_set_lock
);
5352 mutex_unlock(&cgroup_mutex
);
5359 * cgroup_fork - initialize cgroup related fields during copy_process()
5360 * @child: pointer to task_struct of forking parent process.
5362 * A task is associated with the init_css_set until cgroup_post_fork()
5363 * attaches it to the parent's css_set. Empty cg_list indicates that
5364 * @child isn't holding reference to its css_set.
5366 void cgroup_fork(struct task_struct
*child
)
5368 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5369 INIT_LIST_HEAD(&child
->cg_list
);
5373 * cgroup_can_fork - called on a new task before the process is exposed
5374 * @child: the task in question.
5376 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5377 * returns an error, the fork aborts with that error code. This allows for
5378 * a cgroup subsystem to conditionally allow or deny new forks.
5380 int cgroup_can_fork(struct task_struct
*child
)
5382 struct cgroup_subsys
*ss
;
5385 do_each_subsys_mask(ss
, i
, have_canfork_callback
) {
5386 ret
= ss
->can_fork(child
);
5389 } while_each_subsys_mask();
5394 for_each_subsys(ss
, j
) {
5397 if (ss
->cancel_fork
)
5398 ss
->cancel_fork(child
);
5405 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5406 * @child: the task in question
5408 * This calls the cancel_fork() callbacks if a fork failed *after*
5409 * cgroup_can_fork() succeded.
5411 void cgroup_cancel_fork(struct task_struct
*child
)
5413 struct cgroup_subsys
*ss
;
5416 for_each_subsys(ss
, i
)
5417 if (ss
->cancel_fork
)
5418 ss
->cancel_fork(child
);
5422 * cgroup_post_fork - called on a new task after adding it to the task list
5423 * @child: the task in question
5425 * Adds the task to the list running through its css_set if necessary and
5426 * call the subsystem fork() callbacks. Has to be after the task is
5427 * visible on the task list in case we race with the first call to
5428 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5431 void cgroup_post_fork(struct task_struct
*child
)
5433 struct cgroup_subsys
*ss
;
5437 * This may race against cgroup_enable_task_cg_lists(). As that
5438 * function sets use_task_css_set_links before grabbing
5439 * tasklist_lock and we just went through tasklist_lock to add
5440 * @child, it's guaranteed that either we see the set
5441 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5442 * @child during its iteration.
5444 * If we won the race, @child is associated with %current's
5445 * css_set. Grabbing css_set_lock guarantees both that the
5446 * association is stable, and, on completion of the parent's
5447 * migration, @child is visible in the source of migration or
5448 * already in the destination cgroup. This guarantee is necessary
5449 * when implementing operations which need to migrate all tasks of
5450 * a cgroup to another.
5452 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5453 * will remain in init_css_set. This is safe because all tasks are
5454 * in the init_css_set before cg_links is enabled and there's no
5455 * operation which transfers all tasks out of init_css_set.
5457 if (use_task_css_set_links
) {
5458 struct css_set
*cset
;
5460 spin_lock_irq(&css_set_lock
);
5461 cset
= task_css_set(current
);
5462 if (list_empty(&child
->cg_list
)) {
5465 css_set_move_task(child
, NULL
, cset
, false);
5467 spin_unlock_irq(&css_set_lock
);
5471 * Call ss->fork(). This must happen after @child is linked on
5472 * css_set; otherwise, @child might change state between ->fork()
5473 * and addition to css_set.
5475 do_each_subsys_mask(ss
, i
, have_fork_callback
) {
5477 } while_each_subsys_mask();
5481 * cgroup_exit - detach cgroup from exiting task
5482 * @tsk: pointer to task_struct of exiting process
5484 * Description: Detach cgroup from @tsk and release it.
5486 * Note that cgroups marked notify_on_release force every task in
5487 * them to take the global cgroup_mutex mutex when exiting.
5488 * This could impact scaling on very large systems. Be reluctant to
5489 * use notify_on_release cgroups where very high task exit scaling
5490 * is required on large systems.
5492 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5493 * call cgroup_exit() while the task is still competent to handle
5494 * notify_on_release(), then leave the task attached to the root cgroup in
5495 * each hierarchy for the remainder of its exit. No need to bother with
5496 * init_css_set refcnting. init_css_set never goes away and we can't race
5497 * with migration path - PF_EXITING is visible to migration path.
5499 void cgroup_exit(struct task_struct
*tsk
)
5501 struct cgroup_subsys
*ss
;
5502 struct css_set
*cset
;
5506 * Unlink from @tsk from its css_set. As migration path can't race
5507 * with us, we can check css_set and cg_list without synchronization.
5509 cset
= task_css_set(tsk
);
5511 if (!list_empty(&tsk
->cg_list
)) {
5512 spin_lock_irq(&css_set_lock
);
5513 css_set_move_task(tsk
, cset
, NULL
, false);
5515 spin_unlock_irq(&css_set_lock
);
5520 /* see cgroup_post_fork() for details */
5521 do_each_subsys_mask(ss
, i
, have_exit_callback
) {
5523 } while_each_subsys_mask();
5526 void cgroup_free(struct task_struct
*task
)
5528 struct css_set
*cset
= task_css_set(task
);
5529 struct cgroup_subsys
*ss
;
5532 do_each_subsys_mask(ss
, ssid
, have_free_callback
) {
5534 } while_each_subsys_mask();
5539 static int __init
cgroup_disable(char *str
)
5541 struct cgroup_subsys
*ss
;
5545 while ((token
= strsep(&str
, ",")) != NULL
) {
5549 for_each_subsys(ss
, i
) {
5550 if (strcmp(token
, ss
->name
) &&
5551 strcmp(token
, ss
->legacy_name
))
5553 cgroup_disable_mask
|= 1 << i
;
5558 __setup("cgroup_disable=", cgroup_disable
);
5561 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5562 * @dentry: directory dentry of interest
5563 * @ss: subsystem of interest
5565 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5566 * to get the corresponding css and return it. If such css doesn't exist
5567 * or can't be pinned, an ERR_PTR value is returned.
5569 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
5570 struct cgroup_subsys
*ss
)
5572 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
5573 struct file_system_type
*s_type
= dentry
->d_sb
->s_type
;
5574 struct cgroup_subsys_state
*css
= NULL
;
5575 struct cgroup
*cgrp
;
5577 /* is @dentry a cgroup dir? */
5578 if ((s_type
!= &cgroup_fs_type
&& s_type
!= &cgroup2_fs_type
) ||
5579 !kn
|| kernfs_type(kn
) != KERNFS_DIR
)
5580 return ERR_PTR(-EBADF
);
5585 * This path doesn't originate from kernfs and @kn could already
5586 * have been or be removed at any point. @kn->priv is RCU
5587 * protected for this access. See css_release_work_fn() for details.
5589 cgrp
= rcu_dereference(*(void __rcu __force
**)&kn
->priv
);
5591 css
= cgroup_css(cgrp
, ss
);
5593 if (!css
|| !css_tryget_online(css
))
5594 css
= ERR_PTR(-ENOENT
);
5601 * css_from_id - lookup css by id
5602 * @id: the cgroup id
5603 * @ss: cgroup subsys to be looked into
5605 * Returns the css if there's valid one with @id, otherwise returns NULL.
5606 * Should be called under rcu_read_lock().
5608 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5610 WARN_ON_ONCE(!rcu_read_lock_held());
5611 return idr_find(&ss
->css_idr
, id
);
5615 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5616 * @path: path on the default hierarchy
5618 * Find the cgroup at @path on the default hierarchy, increment its
5619 * reference count and return it. Returns pointer to the found cgroup on
5620 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5621 * if @path points to a non-directory.
5623 struct cgroup
*cgroup_get_from_path(const char *path
)
5625 struct kernfs_node
*kn
;
5626 struct cgroup
*cgrp
;
5628 mutex_lock(&cgroup_mutex
);
5630 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
5632 if (kernfs_type(kn
) == KERNFS_DIR
) {
5634 cgroup_get_live(cgrp
);
5636 cgrp
= ERR_PTR(-ENOTDIR
);
5640 cgrp
= ERR_PTR(-ENOENT
);
5643 mutex_unlock(&cgroup_mutex
);
5646 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
5649 * cgroup_get_from_fd - get a cgroup pointer from a fd
5650 * @fd: fd obtained by open(cgroup2_dir)
5652 * Find the cgroup from a fd which should be obtained
5653 * by opening a cgroup directory. Returns a pointer to the
5654 * cgroup on success. ERR_PTR is returned if the cgroup
5657 struct cgroup
*cgroup_get_from_fd(int fd
)
5659 struct cgroup_subsys_state
*css
;
5660 struct cgroup
*cgrp
;
5665 return ERR_PTR(-EBADF
);
5667 css
= css_tryget_online_from_dir(f
->f_path
.dentry
, NULL
);
5670 return ERR_CAST(css
);
5673 if (!cgroup_on_dfl(cgrp
)) {
5675 return ERR_PTR(-EBADF
);
5680 EXPORT_SYMBOL_GPL(cgroup_get_from_fd
);
5683 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5684 * definition in cgroup-defs.h.
5686 #ifdef CONFIG_SOCK_CGROUP_DATA
5688 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5690 DEFINE_SPINLOCK(cgroup_sk_update_lock
);
5691 static bool cgroup_sk_alloc_disabled __read_mostly
;
5693 void cgroup_sk_alloc_disable(void)
5695 if (cgroup_sk_alloc_disabled
)
5697 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5698 cgroup_sk_alloc_disabled
= true;
5703 #define cgroup_sk_alloc_disabled false
5707 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
5709 if (cgroup_sk_alloc_disabled
)
5712 /* Socket clone path */
5715 * We might be cloning a socket which is left in an empty
5716 * cgroup and the cgroup might have already been rmdir'd.
5717 * Don't use cgroup_get_live().
5719 cgroup_get(sock_cgroup_ptr(skcd
));
5726 struct css_set
*cset
;
5728 cset
= task_css_set(current
);
5729 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
5730 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
5739 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
5741 cgroup_put(sock_cgroup_ptr(skcd
));
5744 #endif /* CONFIG_SOCK_CGROUP_DATA */
5746 #ifdef CONFIG_CGROUP_BPF
5747 int cgroup_bpf_update(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
5748 enum bpf_attach_type type
, bool overridable
)
5750 struct cgroup
*parent
= cgroup_parent(cgrp
);
5753 mutex_lock(&cgroup_mutex
);
5754 ret
= __cgroup_bpf_update(cgrp
, parent
, prog
, type
, overridable
);
5755 mutex_unlock(&cgroup_mutex
);
5758 #endif /* CONFIG_CGROUP_BPF */