Linux 4.19.127
[linux/fpc-iii.git] / kernel / kprobes.c
blob92aad49b82f9c99b33499fe0b565b6365176b701
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
83 return &(kretprobe_table_locks[hash].lock);
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
96 struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
105 #define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
109 static int slots_per_page(struct kprobe_insn_cache *c)
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
114 enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
120 void __weak *alloc_insn_page(void)
122 return module_alloc(PAGE_SIZE);
125 void __weak free_insn_page(void *page)
127 module_memfree(page);
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
170 rcu_read_unlock();
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
222 return 1;
224 return 0;
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
229 struct kprobe_insn_page *kip, *next;
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
244 c->nr_garbage = 0;
245 return 0;
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
251 struct kprobe_insn_page *kip;
252 long idx;
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
280 mutex_unlock(&c->mutex);
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
290 struct kprobe_insn_page *kip;
291 bool ret = false;
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
301 rcu_read_unlock();
303 return ret;
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
316 #endif
317 #endif
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
322 __this_cpu_write(kprobe_instance, kp);
325 static inline void reset_kprobe_instance(void)
327 __this_cpu_write(kprobe_instance, NULL);
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
336 struct kprobe *get_kprobe(void *addr)
338 struct hlist_head *head;
339 struct kprobe *p;
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
347 return NULL;
349 NOKPROBE_SYMBOL(get_kprobe);
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
356 return p->pre_handler == aggr_pre_handler;
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
367 * Keep all fields in the kprobe consistent
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
385 struct kprobe *kp;
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
392 reset_kprobe_instance();
395 NOKPROBE_SYMBOL(opt_pre_handler);
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
400 struct optimized_kprobe *op;
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
411 struct optimized_kprobe *op;
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
418 return 0;
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
424 struct optimized_kprobe *op;
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
430 op = container_of(p, struct optimized_kprobe, kp);
432 return kprobe_disabled(p) && list_empty(&op->list);
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
438 struct optimized_kprobe *op;
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
445 return 0;
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
468 return NULL;
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
484 static void do_optimize_kprobes(void)
486 lockdep_assert_held(&text_mutex);
488 * The optimization/unoptimization refers online_cpus via
489 * stop_machine() and cpu-hotplug modifies online_cpus.
490 * And same time, text_mutex will be held in cpu-hotplug and here.
491 * This combination can cause a deadlock (cpu-hotplug try to lock
492 * text_mutex but stop_machine can not be done because online_cpus
493 * has been changed)
494 * To avoid this deadlock, caller must have locked cpu hotplug
495 * for preventing cpu-hotplug outside of text_mutex locking.
497 lockdep_assert_cpus_held();
499 /* Optimization never be done when disarmed */
500 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
501 list_empty(&optimizing_list))
502 return;
504 arch_optimize_kprobes(&optimizing_list);
508 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
509 * if need) kprobes listed on unoptimizing_list.
511 static void do_unoptimize_kprobes(void)
513 struct optimized_kprobe *op, *tmp;
515 lockdep_assert_held(&text_mutex);
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
523 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524 /* Loop free_list for disarming */
525 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526 /* Switching from detour code to origin */
527 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
528 /* Disarm probes if marked disabled */
529 if (kprobe_disabled(&op->kp))
530 arch_disarm_kprobe(&op->kp);
531 if (kprobe_unused(&op->kp)) {
533 * Remove unused probes from hash list. After waiting
534 * for synchronization, these probes are reclaimed.
535 * (reclaiming is done by do_free_cleaned_kprobes.)
537 hlist_del_rcu(&op->kp.hlist);
538 } else
539 list_del_init(&op->list);
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
546 struct optimized_kprobe *op, *tmp;
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 list_del_init(&op->list);
550 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
552 * This must not happen, but if there is a kprobe
553 * still in use, keep it on kprobes hash list.
555 continue;
557 free_aggr_kprobe(&op->kp);
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
564 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
570 mutex_lock(&kprobe_mutex);
571 cpus_read_lock();
572 mutex_lock(&text_mutex);
573 /* Lock modules while optimizing kprobes */
574 mutex_lock(&module_mutex);
577 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
578 * kprobes before waiting for quiesence period.
580 do_unoptimize_kprobes();
583 * Step 2: Wait for quiesence period to ensure all potentially
584 * preempted tasks to have normally scheduled. Because optprobe
585 * may modify multiple instructions, there is a chance that Nth
586 * instruction is preempted. In that case, such tasks can return
587 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
588 * Note that on non-preemptive kernel, this is transparently converted
589 * to synchronoze_sched() to wait for all interrupts to have completed.
591 synchronize_rcu_tasks();
593 /* Step 3: Optimize kprobes after quiesence period */
594 do_optimize_kprobes();
596 /* Step 4: Free cleaned kprobes after quiesence period */
597 do_free_cleaned_kprobes();
599 mutex_unlock(&module_mutex);
600 mutex_unlock(&text_mutex);
601 cpus_read_unlock();
602 mutex_unlock(&kprobe_mutex);
604 /* Step 5: Kick optimizer again if needed */
605 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
606 kick_kprobe_optimizer();
609 /* Wait for completing optimization and unoptimization */
610 void wait_for_kprobe_optimizer(void)
612 mutex_lock(&kprobe_mutex);
614 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
615 mutex_unlock(&kprobe_mutex);
617 /* this will also make optimizing_work execute immmediately */
618 flush_delayed_work(&optimizing_work);
619 /* @optimizing_work might not have been queued yet, relax */
620 cpu_relax();
622 mutex_lock(&kprobe_mutex);
625 mutex_unlock(&kprobe_mutex);
628 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
630 struct optimized_kprobe *_op;
632 list_for_each_entry(_op, &unoptimizing_list, list) {
633 if (op == _op)
634 return true;
637 return false;
640 /* Optimize kprobe if p is ready to be optimized */
641 static void optimize_kprobe(struct kprobe *p)
643 struct optimized_kprobe *op;
645 /* Check if the kprobe is disabled or not ready for optimization. */
646 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
647 (kprobe_disabled(p) || kprobes_all_disarmed))
648 return;
650 /* kprobes with post_handler can not be optimized */
651 if (p->post_handler)
652 return;
654 op = container_of(p, struct optimized_kprobe, kp);
656 /* Check there is no other kprobes at the optimized instructions */
657 if (arch_check_optimized_kprobe(op) < 0)
658 return;
660 /* Check if it is already optimized. */
661 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
662 if (optprobe_queued_unopt(op)) {
663 /* This is under unoptimizing. Just dequeue the probe */
664 list_del_init(&op->list);
666 return;
668 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
670 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
671 if (WARN_ON_ONCE(!list_empty(&op->list)))
672 return;
674 list_add(&op->list, &optimizing_list);
675 kick_kprobe_optimizer();
678 /* Short cut to direct unoptimizing */
679 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
681 lockdep_assert_cpus_held();
682 arch_unoptimize_kprobe(op);
683 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
684 if (kprobe_disabled(&op->kp))
685 arch_disarm_kprobe(&op->kp);
688 /* Unoptimize a kprobe if p is optimized */
689 static void unoptimize_kprobe(struct kprobe *p, bool force)
691 struct optimized_kprobe *op;
693 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
694 return; /* This is not an optprobe nor optimized */
696 op = container_of(p, struct optimized_kprobe, kp);
697 if (!kprobe_optimized(p))
698 return;
700 if (!list_empty(&op->list)) {
701 if (optprobe_queued_unopt(op)) {
702 /* Queued in unoptimizing queue */
703 if (force) {
705 * Forcibly unoptimize the kprobe here, and queue it
706 * in the freeing list for release afterwards.
708 force_unoptimize_kprobe(op);
709 list_move(&op->list, &freeing_list);
711 } else {
712 /* Dequeue from the optimizing queue */
713 list_del_init(&op->list);
714 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
716 return;
719 /* Optimized kprobe case */
720 if (force) {
721 /* Forcibly update the code: this is a special case */
722 force_unoptimize_kprobe(op);
723 } else {
724 list_add(&op->list, &unoptimizing_list);
725 kick_kprobe_optimizer();
729 /* Cancel unoptimizing for reusing */
730 static int reuse_unused_kprobe(struct kprobe *ap)
732 struct optimized_kprobe *op;
734 BUG_ON(!kprobe_unused(ap));
736 * Unused kprobe MUST be on the way of delayed unoptimizing (means
737 * there is still a relative jump) and disabled.
739 op = container_of(ap, struct optimized_kprobe, kp);
740 WARN_ON_ONCE(list_empty(&op->list));
741 /* Enable the probe again */
742 ap->flags &= ~KPROBE_FLAG_DISABLED;
743 /* Optimize it again (remove from op->list) */
744 if (!kprobe_optready(ap))
745 return -EINVAL;
747 optimize_kprobe(ap);
748 return 0;
751 /* Remove optimized instructions */
752 static void kill_optimized_kprobe(struct kprobe *p)
754 struct optimized_kprobe *op;
756 op = container_of(p, struct optimized_kprobe, kp);
757 if (!list_empty(&op->list))
758 /* Dequeue from the (un)optimization queue */
759 list_del_init(&op->list);
760 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
762 if (kprobe_unused(p)) {
763 /* Enqueue if it is unused */
764 list_add(&op->list, &freeing_list);
766 * Remove unused probes from the hash list. After waiting
767 * for synchronization, this probe is reclaimed.
768 * (reclaiming is done by do_free_cleaned_kprobes().)
770 hlist_del_rcu(&op->kp.hlist);
773 /* Don't touch the code, because it is already freed. */
774 arch_remove_optimized_kprobe(op);
777 static inline
778 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
780 if (!kprobe_ftrace(p))
781 arch_prepare_optimized_kprobe(op, p);
784 /* Try to prepare optimized instructions */
785 static void prepare_optimized_kprobe(struct kprobe *p)
787 struct optimized_kprobe *op;
789 op = container_of(p, struct optimized_kprobe, kp);
790 __prepare_optimized_kprobe(op, p);
793 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
794 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
796 struct optimized_kprobe *op;
798 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
799 if (!op)
800 return NULL;
802 INIT_LIST_HEAD(&op->list);
803 op->kp.addr = p->addr;
804 __prepare_optimized_kprobe(op, p);
806 return &op->kp;
809 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
812 * Prepare an optimized_kprobe and optimize it
813 * NOTE: p must be a normal registered kprobe
815 static void try_to_optimize_kprobe(struct kprobe *p)
817 struct kprobe *ap;
818 struct optimized_kprobe *op;
820 /* Impossible to optimize ftrace-based kprobe */
821 if (kprobe_ftrace(p))
822 return;
824 /* For preparing optimization, jump_label_text_reserved() is called */
825 cpus_read_lock();
826 jump_label_lock();
827 mutex_lock(&text_mutex);
829 ap = alloc_aggr_kprobe(p);
830 if (!ap)
831 goto out;
833 op = container_of(ap, struct optimized_kprobe, kp);
834 if (!arch_prepared_optinsn(&op->optinsn)) {
835 /* If failed to setup optimizing, fallback to kprobe */
836 arch_remove_optimized_kprobe(op);
837 kfree(op);
838 goto out;
841 init_aggr_kprobe(ap, p);
842 optimize_kprobe(ap); /* This just kicks optimizer thread */
844 out:
845 mutex_unlock(&text_mutex);
846 jump_label_unlock();
847 cpus_read_unlock();
850 #ifdef CONFIG_SYSCTL
851 static void optimize_all_kprobes(void)
853 struct hlist_head *head;
854 struct kprobe *p;
855 unsigned int i;
857 mutex_lock(&kprobe_mutex);
858 /* If optimization is already allowed, just return */
859 if (kprobes_allow_optimization)
860 goto out;
862 cpus_read_lock();
863 kprobes_allow_optimization = true;
864 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
865 head = &kprobe_table[i];
866 hlist_for_each_entry_rcu(p, head, hlist)
867 if (!kprobe_disabled(p))
868 optimize_kprobe(p);
870 cpus_read_unlock();
871 printk(KERN_INFO "Kprobes globally optimized\n");
872 out:
873 mutex_unlock(&kprobe_mutex);
876 static void unoptimize_all_kprobes(void)
878 struct hlist_head *head;
879 struct kprobe *p;
880 unsigned int i;
882 mutex_lock(&kprobe_mutex);
883 /* If optimization is already prohibited, just return */
884 if (!kprobes_allow_optimization) {
885 mutex_unlock(&kprobe_mutex);
886 return;
889 cpus_read_lock();
890 kprobes_allow_optimization = false;
891 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
892 head = &kprobe_table[i];
893 hlist_for_each_entry_rcu(p, head, hlist) {
894 if (!kprobe_disabled(p))
895 unoptimize_kprobe(p, false);
898 cpus_read_unlock();
899 mutex_unlock(&kprobe_mutex);
901 /* Wait for unoptimizing completion */
902 wait_for_kprobe_optimizer();
903 printk(KERN_INFO "Kprobes globally unoptimized\n");
906 static DEFINE_MUTEX(kprobe_sysctl_mutex);
907 int sysctl_kprobes_optimization;
908 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
909 void __user *buffer, size_t *length,
910 loff_t *ppos)
912 int ret;
914 mutex_lock(&kprobe_sysctl_mutex);
915 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
916 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
918 if (sysctl_kprobes_optimization)
919 optimize_all_kprobes();
920 else
921 unoptimize_all_kprobes();
922 mutex_unlock(&kprobe_sysctl_mutex);
924 return ret;
926 #endif /* CONFIG_SYSCTL */
928 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
929 static void __arm_kprobe(struct kprobe *p)
931 struct kprobe *_p;
933 /* Check collision with other optimized kprobes */
934 _p = get_optimized_kprobe((unsigned long)p->addr);
935 if (unlikely(_p))
936 /* Fallback to unoptimized kprobe */
937 unoptimize_kprobe(_p, true);
939 arch_arm_kprobe(p);
940 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
943 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
944 static void __disarm_kprobe(struct kprobe *p, bool reopt)
946 struct kprobe *_p;
948 /* Try to unoptimize */
949 unoptimize_kprobe(p, kprobes_all_disarmed);
951 if (!kprobe_queued(p)) {
952 arch_disarm_kprobe(p);
953 /* If another kprobe was blocked, optimize it. */
954 _p = get_optimized_kprobe((unsigned long)p->addr);
955 if (unlikely(_p) && reopt)
956 optimize_kprobe(_p);
958 /* TODO: reoptimize others after unoptimized this probe */
961 #else /* !CONFIG_OPTPROBES */
963 #define optimize_kprobe(p) do {} while (0)
964 #define unoptimize_kprobe(p, f) do {} while (0)
965 #define kill_optimized_kprobe(p) do {} while (0)
966 #define prepare_optimized_kprobe(p) do {} while (0)
967 #define try_to_optimize_kprobe(p) do {} while (0)
968 #define __arm_kprobe(p) arch_arm_kprobe(p)
969 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
970 #define kprobe_disarmed(p) kprobe_disabled(p)
971 #define wait_for_kprobe_optimizer() do {} while (0)
973 static int reuse_unused_kprobe(struct kprobe *ap)
976 * If the optimized kprobe is NOT supported, the aggr kprobe is
977 * released at the same time that the last aggregated kprobe is
978 * unregistered.
979 * Thus there should be no chance to reuse unused kprobe.
981 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
982 return -EINVAL;
985 static void free_aggr_kprobe(struct kprobe *p)
987 arch_remove_kprobe(p);
988 kfree(p);
991 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
993 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
995 #endif /* CONFIG_OPTPROBES */
997 #ifdef CONFIG_KPROBES_ON_FTRACE
998 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
999 .func = kprobe_ftrace_handler,
1000 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1002 static int kprobe_ftrace_enabled;
1004 /* Must ensure p->addr is really on ftrace */
1005 static int prepare_kprobe(struct kprobe *p)
1007 if (!kprobe_ftrace(p))
1008 return arch_prepare_kprobe(p);
1010 return arch_prepare_kprobe_ftrace(p);
1013 /* Caller must lock kprobe_mutex */
1014 static int arm_kprobe_ftrace(struct kprobe *p)
1016 int ret = 0;
1018 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1019 (unsigned long)p->addr, 0, 0);
1020 if (ret) {
1021 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1022 p->addr, ret);
1023 return ret;
1026 if (kprobe_ftrace_enabled == 0) {
1027 ret = register_ftrace_function(&kprobe_ftrace_ops);
1028 if (ret) {
1029 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1030 goto err_ftrace;
1034 kprobe_ftrace_enabled++;
1035 return ret;
1037 err_ftrace:
1039 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1040 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1041 * empty filter_hash which would undesirably trace all functions.
1043 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1044 return ret;
1047 /* Caller must lock kprobe_mutex */
1048 static int disarm_kprobe_ftrace(struct kprobe *p)
1050 int ret = 0;
1052 if (kprobe_ftrace_enabled == 1) {
1053 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1054 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1055 return ret;
1058 kprobe_ftrace_enabled--;
1060 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1061 (unsigned long)p->addr, 1, 0);
1062 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1063 p->addr, ret);
1064 return ret;
1066 #else /* !CONFIG_KPROBES_ON_FTRACE */
1067 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1068 #define arm_kprobe_ftrace(p) (-ENODEV)
1069 #define disarm_kprobe_ftrace(p) (-ENODEV)
1070 #endif
1072 /* Arm a kprobe with text_mutex */
1073 static int arm_kprobe(struct kprobe *kp)
1075 if (unlikely(kprobe_ftrace(kp)))
1076 return arm_kprobe_ftrace(kp);
1078 cpus_read_lock();
1079 mutex_lock(&text_mutex);
1080 __arm_kprobe(kp);
1081 mutex_unlock(&text_mutex);
1082 cpus_read_unlock();
1084 return 0;
1087 /* Disarm a kprobe with text_mutex */
1088 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1090 if (unlikely(kprobe_ftrace(kp)))
1091 return disarm_kprobe_ftrace(kp);
1093 cpus_read_lock();
1094 mutex_lock(&text_mutex);
1095 __disarm_kprobe(kp, reopt);
1096 mutex_unlock(&text_mutex);
1097 cpus_read_unlock();
1099 return 0;
1103 * Aggregate handlers for multiple kprobes support - these handlers
1104 * take care of invoking the individual kprobe handlers on p->list
1106 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1108 struct kprobe *kp;
1110 list_for_each_entry_rcu(kp, &p->list, list) {
1111 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1112 set_kprobe_instance(kp);
1113 if (kp->pre_handler(kp, regs))
1114 return 1;
1116 reset_kprobe_instance();
1118 return 0;
1120 NOKPROBE_SYMBOL(aggr_pre_handler);
1122 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1123 unsigned long flags)
1125 struct kprobe *kp;
1127 list_for_each_entry_rcu(kp, &p->list, list) {
1128 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1129 set_kprobe_instance(kp);
1130 kp->post_handler(kp, regs, flags);
1131 reset_kprobe_instance();
1135 NOKPROBE_SYMBOL(aggr_post_handler);
1137 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1138 int trapnr)
1140 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1143 * if we faulted "during" the execution of a user specified
1144 * probe handler, invoke just that probe's fault handler
1146 if (cur && cur->fault_handler) {
1147 if (cur->fault_handler(cur, regs, trapnr))
1148 return 1;
1150 return 0;
1152 NOKPROBE_SYMBOL(aggr_fault_handler);
1154 /* Walks the list and increments nmissed count for multiprobe case */
1155 void kprobes_inc_nmissed_count(struct kprobe *p)
1157 struct kprobe *kp;
1158 if (!kprobe_aggrprobe(p)) {
1159 p->nmissed++;
1160 } else {
1161 list_for_each_entry_rcu(kp, &p->list, list)
1162 kp->nmissed++;
1164 return;
1166 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1168 void recycle_rp_inst(struct kretprobe_instance *ri,
1169 struct hlist_head *head)
1171 struct kretprobe *rp = ri->rp;
1173 /* remove rp inst off the rprobe_inst_table */
1174 hlist_del(&ri->hlist);
1175 INIT_HLIST_NODE(&ri->hlist);
1176 if (likely(rp)) {
1177 raw_spin_lock(&rp->lock);
1178 hlist_add_head(&ri->hlist, &rp->free_instances);
1179 raw_spin_unlock(&rp->lock);
1180 } else
1181 /* Unregistering */
1182 hlist_add_head(&ri->hlist, head);
1184 NOKPROBE_SYMBOL(recycle_rp_inst);
1186 void kretprobe_hash_lock(struct task_struct *tsk,
1187 struct hlist_head **head, unsigned long *flags)
1188 __acquires(hlist_lock)
1190 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1191 raw_spinlock_t *hlist_lock;
1193 *head = &kretprobe_inst_table[hash];
1194 hlist_lock = kretprobe_table_lock_ptr(hash);
1195 raw_spin_lock_irqsave(hlist_lock, *flags);
1197 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1199 static void kretprobe_table_lock(unsigned long hash,
1200 unsigned long *flags)
1201 __acquires(hlist_lock)
1203 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1204 raw_spin_lock_irqsave(hlist_lock, *flags);
1206 NOKPROBE_SYMBOL(kretprobe_table_lock);
1208 void kretprobe_hash_unlock(struct task_struct *tsk,
1209 unsigned long *flags)
1210 __releases(hlist_lock)
1212 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1213 raw_spinlock_t *hlist_lock;
1215 hlist_lock = kretprobe_table_lock_ptr(hash);
1216 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1218 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1220 static void kretprobe_table_unlock(unsigned long hash,
1221 unsigned long *flags)
1222 __releases(hlist_lock)
1224 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1225 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1227 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1230 * This function is called from finish_task_switch when task tk becomes dead,
1231 * so that we can recycle any function-return probe instances associated
1232 * with this task. These left over instances represent probed functions
1233 * that have been called but will never return.
1235 void kprobe_flush_task(struct task_struct *tk)
1237 struct kretprobe_instance *ri;
1238 struct hlist_head *head, empty_rp;
1239 struct hlist_node *tmp;
1240 unsigned long hash, flags = 0;
1242 if (unlikely(!kprobes_initialized))
1243 /* Early boot. kretprobe_table_locks not yet initialized. */
1244 return;
1246 INIT_HLIST_HEAD(&empty_rp);
1247 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1248 head = &kretprobe_inst_table[hash];
1249 kretprobe_table_lock(hash, &flags);
1250 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1251 if (ri->task == tk)
1252 recycle_rp_inst(ri, &empty_rp);
1254 kretprobe_table_unlock(hash, &flags);
1255 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1256 hlist_del(&ri->hlist);
1257 kfree(ri);
1260 NOKPROBE_SYMBOL(kprobe_flush_task);
1262 static inline void free_rp_inst(struct kretprobe *rp)
1264 struct kretprobe_instance *ri;
1265 struct hlist_node *next;
1267 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1268 hlist_del(&ri->hlist);
1269 kfree(ri);
1273 static void cleanup_rp_inst(struct kretprobe *rp)
1275 unsigned long flags, hash;
1276 struct kretprobe_instance *ri;
1277 struct hlist_node *next;
1278 struct hlist_head *head;
1280 /* No race here */
1281 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1282 kretprobe_table_lock(hash, &flags);
1283 head = &kretprobe_inst_table[hash];
1284 hlist_for_each_entry_safe(ri, next, head, hlist) {
1285 if (ri->rp == rp)
1286 ri->rp = NULL;
1288 kretprobe_table_unlock(hash, &flags);
1290 free_rp_inst(rp);
1292 NOKPROBE_SYMBOL(cleanup_rp_inst);
1294 /* Add the new probe to ap->list */
1295 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1297 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1299 if (p->post_handler)
1300 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1302 list_add_rcu(&p->list, &ap->list);
1303 if (p->post_handler && !ap->post_handler)
1304 ap->post_handler = aggr_post_handler;
1306 return 0;
1310 * Fill in the required fields of the "manager kprobe". Replace the
1311 * earlier kprobe in the hlist with the manager kprobe
1313 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1315 /* Copy p's insn slot to ap */
1316 copy_kprobe(p, ap);
1317 flush_insn_slot(ap);
1318 ap->addr = p->addr;
1319 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1320 ap->pre_handler = aggr_pre_handler;
1321 ap->fault_handler = aggr_fault_handler;
1322 /* We don't care the kprobe which has gone. */
1323 if (p->post_handler && !kprobe_gone(p))
1324 ap->post_handler = aggr_post_handler;
1326 INIT_LIST_HEAD(&ap->list);
1327 INIT_HLIST_NODE(&ap->hlist);
1329 list_add_rcu(&p->list, &ap->list);
1330 hlist_replace_rcu(&p->hlist, &ap->hlist);
1334 * This is the second or subsequent kprobe at the address - handle
1335 * the intricacies
1337 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1339 int ret = 0;
1340 struct kprobe *ap = orig_p;
1342 cpus_read_lock();
1344 /* For preparing optimization, jump_label_text_reserved() is called */
1345 jump_label_lock();
1346 mutex_lock(&text_mutex);
1348 if (!kprobe_aggrprobe(orig_p)) {
1349 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1350 ap = alloc_aggr_kprobe(orig_p);
1351 if (!ap) {
1352 ret = -ENOMEM;
1353 goto out;
1355 init_aggr_kprobe(ap, orig_p);
1356 } else if (kprobe_unused(ap)) {
1357 /* This probe is going to die. Rescue it */
1358 ret = reuse_unused_kprobe(ap);
1359 if (ret)
1360 goto out;
1363 if (kprobe_gone(ap)) {
1365 * Attempting to insert new probe at the same location that
1366 * had a probe in the module vaddr area which already
1367 * freed. So, the instruction slot has already been
1368 * released. We need a new slot for the new probe.
1370 ret = arch_prepare_kprobe(ap);
1371 if (ret)
1373 * Even if fail to allocate new slot, don't need to
1374 * free aggr_probe. It will be used next time, or
1375 * freed by unregister_kprobe.
1377 goto out;
1379 /* Prepare optimized instructions if possible. */
1380 prepare_optimized_kprobe(ap);
1383 * Clear gone flag to prevent allocating new slot again, and
1384 * set disabled flag because it is not armed yet.
1386 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1387 | KPROBE_FLAG_DISABLED;
1390 /* Copy ap's insn slot to p */
1391 copy_kprobe(ap, p);
1392 ret = add_new_kprobe(ap, p);
1394 out:
1395 mutex_unlock(&text_mutex);
1396 jump_label_unlock();
1397 cpus_read_unlock();
1399 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1400 ap->flags &= ~KPROBE_FLAG_DISABLED;
1401 if (!kprobes_all_disarmed) {
1402 /* Arm the breakpoint again. */
1403 ret = arm_kprobe(ap);
1404 if (ret) {
1405 ap->flags |= KPROBE_FLAG_DISABLED;
1406 list_del_rcu(&p->list);
1407 synchronize_sched();
1411 return ret;
1414 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1416 /* The __kprobes marked functions and entry code must not be probed */
1417 return addr >= (unsigned long)__kprobes_text_start &&
1418 addr < (unsigned long)__kprobes_text_end;
1421 bool within_kprobe_blacklist(unsigned long addr)
1423 struct kprobe_blacklist_entry *ent;
1425 if (arch_within_kprobe_blacklist(addr))
1426 return true;
1428 * If there exists a kprobe_blacklist, verify and
1429 * fail any probe registration in the prohibited area
1431 list_for_each_entry(ent, &kprobe_blacklist, list) {
1432 if (addr >= ent->start_addr && addr < ent->end_addr)
1433 return true;
1436 return false;
1440 * If we have a symbol_name argument, look it up and add the offset field
1441 * to it. This way, we can specify a relative address to a symbol.
1442 * This returns encoded errors if it fails to look up symbol or invalid
1443 * combination of parameters.
1445 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1446 const char *symbol_name, unsigned int offset)
1448 if ((symbol_name && addr) || (!symbol_name && !addr))
1449 goto invalid;
1451 if (symbol_name) {
1452 addr = kprobe_lookup_name(symbol_name, offset);
1453 if (!addr)
1454 return ERR_PTR(-ENOENT);
1457 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1458 if (addr)
1459 return addr;
1461 invalid:
1462 return ERR_PTR(-EINVAL);
1465 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1467 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1470 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1471 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1473 struct kprobe *ap, *list_p;
1475 ap = get_kprobe(p->addr);
1476 if (unlikely(!ap))
1477 return NULL;
1479 if (p != ap) {
1480 list_for_each_entry_rcu(list_p, &ap->list, list)
1481 if (list_p == p)
1482 /* kprobe p is a valid probe */
1483 goto valid;
1484 return NULL;
1486 valid:
1487 return ap;
1490 /* Return error if the kprobe is being re-registered */
1491 static inline int check_kprobe_rereg(struct kprobe *p)
1493 int ret = 0;
1495 mutex_lock(&kprobe_mutex);
1496 if (__get_valid_kprobe(p))
1497 ret = -EINVAL;
1498 mutex_unlock(&kprobe_mutex);
1500 return ret;
1503 int __weak arch_check_ftrace_location(struct kprobe *p)
1505 unsigned long ftrace_addr;
1507 ftrace_addr = ftrace_location((unsigned long)p->addr);
1508 if (ftrace_addr) {
1509 #ifdef CONFIG_KPROBES_ON_FTRACE
1510 /* Given address is not on the instruction boundary */
1511 if ((unsigned long)p->addr != ftrace_addr)
1512 return -EILSEQ;
1513 p->flags |= KPROBE_FLAG_FTRACE;
1514 #else /* !CONFIG_KPROBES_ON_FTRACE */
1515 return -EINVAL;
1516 #endif
1518 return 0;
1521 static int check_kprobe_address_safe(struct kprobe *p,
1522 struct module **probed_mod)
1524 int ret;
1526 ret = arch_check_ftrace_location(p);
1527 if (ret)
1528 return ret;
1529 jump_label_lock();
1530 preempt_disable();
1532 /* Ensure it is not in reserved area nor out of text */
1533 if (!kernel_text_address((unsigned long) p->addr) ||
1534 within_kprobe_blacklist((unsigned long) p->addr) ||
1535 jump_label_text_reserved(p->addr, p->addr) ||
1536 find_bug((unsigned long)p->addr)) {
1537 ret = -EINVAL;
1538 goto out;
1541 /* Check if are we probing a module */
1542 *probed_mod = __module_text_address((unsigned long) p->addr);
1543 if (*probed_mod) {
1545 * We must hold a refcount of the probed module while updating
1546 * its code to prohibit unexpected unloading.
1548 if (unlikely(!try_module_get(*probed_mod))) {
1549 ret = -ENOENT;
1550 goto out;
1554 * If the module freed .init.text, we couldn't insert
1555 * kprobes in there.
1557 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1558 (*probed_mod)->state != MODULE_STATE_COMING) {
1559 module_put(*probed_mod);
1560 *probed_mod = NULL;
1561 ret = -ENOENT;
1564 out:
1565 preempt_enable();
1566 jump_label_unlock();
1568 return ret;
1571 int register_kprobe(struct kprobe *p)
1573 int ret;
1574 struct kprobe *old_p;
1575 struct module *probed_mod;
1576 kprobe_opcode_t *addr;
1578 /* Adjust probe address from symbol */
1579 addr = kprobe_addr(p);
1580 if (IS_ERR(addr))
1581 return PTR_ERR(addr);
1582 p->addr = addr;
1584 ret = check_kprobe_rereg(p);
1585 if (ret)
1586 return ret;
1588 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1589 p->flags &= KPROBE_FLAG_DISABLED;
1590 p->nmissed = 0;
1591 INIT_LIST_HEAD(&p->list);
1593 ret = check_kprobe_address_safe(p, &probed_mod);
1594 if (ret)
1595 return ret;
1597 mutex_lock(&kprobe_mutex);
1599 old_p = get_kprobe(p->addr);
1600 if (old_p) {
1601 /* Since this may unoptimize old_p, locking text_mutex. */
1602 ret = register_aggr_kprobe(old_p, p);
1603 goto out;
1606 cpus_read_lock();
1607 /* Prevent text modification */
1608 mutex_lock(&text_mutex);
1609 ret = prepare_kprobe(p);
1610 mutex_unlock(&text_mutex);
1611 cpus_read_unlock();
1612 if (ret)
1613 goto out;
1615 INIT_HLIST_NODE(&p->hlist);
1616 hlist_add_head_rcu(&p->hlist,
1617 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1619 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1620 ret = arm_kprobe(p);
1621 if (ret) {
1622 hlist_del_rcu(&p->hlist);
1623 synchronize_sched();
1624 goto out;
1628 /* Try to optimize kprobe */
1629 try_to_optimize_kprobe(p);
1630 out:
1631 mutex_unlock(&kprobe_mutex);
1633 if (probed_mod)
1634 module_put(probed_mod);
1636 return ret;
1638 EXPORT_SYMBOL_GPL(register_kprobe);
1640 /* Check if all probes on the aggrprobe are disabled */
1641 static int aggr_kprobe_disabled(struct kprobe *ap)
1643 struct kprobe *kp;
1645 list_for_each_entry_rcu(kp, &ap->list, list)
1646 if (!kprobe_disabled(kp))
1648 * There is an active probe on the list.
1649 * We can't disable this ap.
1651 return 0;
1653 return 1;
1656 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1657 static struct kprobe *__disable_kprobe(struct kprobe *p)
1659 struct kprobe *orig_p;
1660 int ret;
1662 /* Get an original kprobe for return */
1663 orig_p = __get_valid_kprobe(p);
1664 if (unlikely(orig_p == NULL))
1665 return ERR_PTR(-EINVAL);
1667 if (!kprobe_disabled(p)) {
1668 /* Disable probe if it is a child probe */
1669 if (p != orig_p)
1670 p->flags |= KPROBE_FLAG_DISABLED;
1672 /* Try to disarm and disable this/parent probe */
1673 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1675 * If kprobes_all_disarmed is set, orig_p
1676 * should have already been disarmed, so
1677 * skip unneed disarming process.
1679 if (!kprobes_all_disarmed) {
1680 ret = disarm_kprobe(orig_p, true);
1681 if (ret) {
1682 p->flags &= ~KPROBE_FLAG_DISABLED;
1683 return ERR_PTR(ret);
1686 orig_p->flags |= KPROBE_FLAG_DISABLED;
1690 return orig_p;
1694 * Unregister a kprobe without a scheduler synchronization.
1696 static int __unregister_kprobe_top(struct kprobe *p)
1698 struct kprobe *ap, *list_p;
1700 /* Disable kprobe. This will disarm it if needed. */
1701 ap = __disable_kprobe(p);
1702 if (IS_ERR(ap))
1703 return PTR_ERR(ap);
1705 if (ap == p)
1707 * This probe is an independent(and non-optimized) kprobe
1708 * (not an aggrprobe). Remove from the hash list.
1710 goto disarmed;
1712 /* Following process expects this probe is an aggrprobe */
1713 WARN_ON(!kprobe_aggrprobe(ap));
1715 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1717 * !disarmed could be happen if the probe is under delayed
1718 * unoptimizing.
1720 goto disarmed;
1721 else {
1722 /* If disabling probe has special handlers, update aggrprobe */
1723 if (p->post_handler && !kprobe_gone(p)) {
1724 list_for_each_entry_rcu(list_p, &ap->list, list) {
1725 if ((list_p != p) && (list_p->post_handler))
1726 goto noclean;
1728 ap->post_handler = NULL;
1730 noclean:
1732 * Remove from the aggrprobe: this path will do nothing in
1733 * __unregister_kprobe_bottom().
1735 list_del_rcu(&p->list);
1736 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1738 * Try to optimize this probe again, because post
1739 * handler may have been changed.
1741 optimize_kprobe(ap);
1743 return 0;
1745 disarmed:
1746 BUG_ON(!kprobe_disarmed(ap));
1747 hlist_del_rcu(&ap->hlist);
1748 return 0;
1751 static void __unregister_kprobe_bottom(struct kprobe *p)
1753 struct kprobe *ap;
1755 if (list_empty(&p->list))
1756 /* This is an independent kprobe */
1757 arch_remove_kprobe(p);
1758 else if (list_is_singular(&p->list)) {
1759 /* This is the last child of an aggrprobe */
1760 ap = list_entry(p->list.next, struct kprobe, list);
1761 list_del(&p->list);
1762 free_aggr_kprobe(ap);
1764 /* Otherwise, do nothing. */
1767 int register_kprobes(struct kprobe **kps, int num)
1769 int i, ret = 0;
1771 if (num <= 0)
1772 return -EINVAL;
1773 for (i = 0; i < num; i++) {
1774 ret = register_kprobe(kps[i]);
1775 if (ret < 0) {
1776 if (i > 0)
1777 unregister_kprobes(kps, i);
1778 break;
1781 return ret;
1783 EXPORT_SYMBOL_GPL(register_kprobes);
1785 void unregister_kprobe(struct kprobe *p)
1787 unregister_kprobes(&p, 1);
1789 EXPORT_SYMBOL_GPL(unregister_kprobe);
1791 void unregister_kprobes(struct kprobe **kps, int num)
1793 int i;
1795 if (num <= 0)
1796 return;
1797 mutex_lock(&kprobe_mutex);
1798 for (i = 0; i < num; i++)
1799 if (__unregister_kprobe_top(kps[i]) < 0)
1800 kps[i]->addr = NULL;
1801 mutex_unlock(&kprobe_mutex);
1803 synchronize_sched();
1804 for (i = 0; i < num; i++)
1805 if (kps[i]->addr)
1806 __unregister_kprobe_bottom(kps[i]);
1808 EXPORT_SYMBOL_GPL(unregister_kprobes);
1810 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1811 unsigned long val, void *data)
1813 return NOTIFY_DONE;
1815 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1817 static struct notifier_block kprobe_exceptions_nb = {
1818 .notifier_call = kprobe_exceptions_notify,
1819 .priority = 0x7fffffff /* we need to be notified first */
1822 unsigned long __weak arch_deref_entry_point(void *entry)
1824 return (unsigned long)entry;
1827 #ifdef CONFIG_KRETPROBES
1829 * This kprobe pre_handler is registered with every kretprobe. When probe
1830 * hits it will set up the return probe.
1832 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1834 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1835 unsigned long hash, flags = 0;
1836 struct kretprobe_instance *ri;
1839 * To avoid deadlocks, prohibit return probing in NMI contexts,
1840 * just skip the probe and increase the (inexact) 'nmissed'
1841 * statistical counter, so that the user is informed that
1842 * something happened:
1844 if (unlikely(in_nmi())) {
1845 rp->nmissed++;
1846 return 0;
1849 /* TODO: consider to only swap the RA after the last pre_handler fired */
1850 hash = hash_ptr(current, KPROBE_HASH_BITS);
1851 raw_spin_lock_irqsave(&rp->lock, flags);
1852 if (!hlist_empty(&rp->free_instances)) {
1853 ri = hlist_entry(rp->free_instances.first,
1854 struct kretprobe_instance, hlist);
1855 hlist_del(&ri->hlist);
1856 raw_spin_unlock_irqrestore(&rp->lock, flags);
1858 ri->rp = rp;
1859 ri->task = current;
1861 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1862 raw_spin_lock_irqsave(&rp->lock, flags);
1863 hlist_add_head(&ri->hlist, &rp->free_instances);
1864 raw_spin_unlock_irqrestore(&rp->lock, flags);
1865 return 0;
1868 arch_prepare_kretprobe(ri, regs);
1870 /* XXX(hch): why is there no hlist_move_head? */
1871 INIT_HLIST_NODE(&ri->hlist);
1872 kretprobe_table_lock(hash, &flags);
1873 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1874 kretprobe_table_unlock(hash, &flags);
1875 } else {
1876 rp->nmissed++;
1877 raw_spin_unlock_irqrestore(&rp->lock, flags);
1879 return 0;
1881 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1883 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1885 return !offset;
1888 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1890 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1892 if (IS_ERR(kp_addr))
1893 return false;
1895 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1896 !arch_kprobe_on_func_entry(offset))
1897 return false;
1899 return true;
1902 int register_kretprobe(struct kretprobe *rp)
1904 int ret = 0;
1905 struct kretprobe_instance *inst;
1906 int i;
1907 void *addr;
1909 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1910 return -EINVAL;
1912 if (kretprobe_blacklist_size) {
1913 addr = kprobe_addr(&rp->kp);
1914 if (IS_ERR(addr))
1915 return PTR_ERR(addr);
1917 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1918 if (kretprobe_blacklist[i].addr == addr)
1919 return -EINVAL;
1923 rp->kp.pre_handler = pre_handler_kretprobe;
1924 rp->kp.post_handler = NULL;
1925 rp->kp.fault_handler = NULL;
1927 /* Pre-allocate memory for max kretprobe instances */
1928 if (rp->maxactive <= 0) {
1929 #ifdef CONFIG_PREEMPT
1930 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1931 #else
1932 rp->maxactive = num_possible_cpus();
1933 #endif
1935 raw_spin_lock_init(&rp->lock);
1936 INIT_HLIST_HEAD(&rp->free_instances);
1937 for (i = 0; i < rp->maxactive; i++) {
1938 inst = kmalloc(sizeof(struct kretprobe_instance) +
1939 rp->data_size, GFP_KERNEL);
1940 if (inst == NULL) {
1941 free_rp_inst(rp);
1942 return -ENOMEM;
1944 INIT_HLIST_NODE(&inst->hlist);
1945 hlist_add_head(&inst->hlist, &rp->free_instances);
1948 rp->nmissed = 0;
1949 /* Establish function entry probe point */
1950 ret = register_kprobe(&rp->kp);
1951 if (ret != 0)
1952 free_rp_inst(rp);
1953 return ret;
1955 EXPORT_SYMBOL_GPL(register_kretprobe);
1957 int register_kretprobes(struct kretprobe **rps, int num)
1959 int ret = 0, i;
1961 if (num <= 0)
1962 return -EINVAL;
1963 for (i = 0; i < num; i++) {
1964 ret = register_kretprobe(rps[i]);
1965 if (ret < 0) {
1966 if (i > 0)
1967 unregister_kretprobes(rps, i);
1968 break;
1971 return ret;
1973 EXPORT_SYMBOL_GPL(register_kretprobes);
1975 void unregister_kretprobe(struct kretprobe *rp)
1977 unregister_kretprobes(&rp, 1);
1979 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1981 void unregister_kretprobes(struct kretprobe **rps, int num)
1983 int i;
1985 if (num <= 0)
1986 return;
1987 mutex_lock(&kprobe_mutex);
1988 for (i = 0; i < num; i++)
1989 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1990 rps[i]->kp.addr = NULL;
1991 mutex_unlock(&kprobe_mutex);
1993 synchronize_sched();
1994 for (i = 0; i < num; i++) {
1995 if (rps[i]->kp.addr) {
1996 __unregister_kprobe_bottom(&rps[i]->kp);
1997 cleanup_rp_inst(rps[i]);
2001 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2003 #else /* CONFIG_KRETPROBES */
2004 int register_kretprobe(struct kretprobe *rp)
2006 return -ENOSYS;
2008 EXPORT_SYMBOL_GPL(register_kretprobe);
2010 int register_kretprobes(struct kretprobe **rps, int num)
2012 return -ENOSYS;
2014 EXPORT_SYMBOL_GPL(register_kretprobes);
2016 void unregister_kretprobe(struct kretprobe *rp)
2019 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2021 void unregister_kretprobes(struct kretprobe **rps, int num)
2024 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2026 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2028 return 0;
2030 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2032 #endif /* CONFIG_KRETPROBES */
2034 /* Set the kprobe gone and remove its instruction buffer. */
2035 static void kill_kprobe(struct kprobe *p)
2037 struct kprobe *kp;
2039 p->flags |= KPROBE_FLAG_GONE;
2040 if (kprobe_aggrprobe(p)) {
2042 * If this is an aggr_kprobe, we have to list all the
2043 * chained probes and mark them GONE.
2045 list_for_each_entry_rcu(kp, &p->list, list)
2046 kp->flags |= KPROBE_FLAG_GONE;
2047 p->post_handler = NULL;
2048 kill_optimized_kprobe(p);
2051 * Here, we can remove insn_slot safely, because no thread calls
2052 * the original probed function (which will be freed soon) any more.
2054 arch_remove_kprobe(p);
2057 /* Disable one kprobe */
2058 int disable_kprobe(struct kprobe *kp)
2060 int ret = 0;
2061 struct kprobe *p;
2063 mutex_lock(&kprobe_mutex);
2065 /* Disable this kprobe */
2066 p = __disable_kprobe(kp);
2067 if (IS_ERR(p))
2068 ret = PTR_ERR(p);
2070 mutex_unlock(&kprobe_mutex);
2071 return ret;
2073 EXPORT_SYMBOL_GPL(disable_kprobe);
2075 /* Enable one kprobe */
2076 int enable_kprobe(struct kprobe *kp)
2078 int ret = 0;
2079 struct kprobe *p;
2081 mutex_lock(&kprobe_mutex);
2083 /* Check whether specified probe is valid. */
2084 p = __get_valid_kprobe(kp);
2085 if (unlikely(p == NULL)) {
2086 ret = -EINVAL;
2087 goto out;
2090 if (kprobe_gone(kp)) {
2091 /* This kprobe has gone, we couldn't enable it. */
2092 ret = -EINVAL;
2093 goto out;
2096 if (p != kp)
2097 kp->flags &= ~KPROBE_FLAG_DISABLED;
2099 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2100 p->flags &= ~KPROBE_FLAG_DISABLED;
2101 ret = arm_kprobe(p);
2102 if (ret)
2103 p->flags |= KPROBE_FLAG_DISABLED;
2105 out:
2106 mutex_unlock(&kprobe_mutex);
2107 return ret;
2109 EXPORT_SYMBOL_GPL(enable_kprobe);
2111 /* Caller must NOT call this in usual path. This is only for critical case */
2112 void dump_kprobe(struct kprobe *kp)
2114 pr_err("Dumping kprobe:\n");
2115 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2116 kp->symbol_name, kp->offset, kp->addr);
2118 NOKPROBE_SYMBOL(dump_kprobe);
2120 int kprobe_add_ksym_blacklist(unsigned long entry)
2122 struct kprobe_blacklist_entry *ent;
2123 unsigned long offset = 0, size = 0;
2125 if (!kernel_text_address(entry) ||
2126 !kallsyms_lookup_size_offset(entry, &size, &offset))
2127 return -EINVAL;
2129 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2130 if (!ent)
2131 return -ENOMEM;
2132 ent->start_addr = entry;
2133 ent->end_addr = entry + size;
2134 INIT_LIST_HEAD(&ent->list);
2135 list_add_tail(&ent->list, &kprobe_blacklist);
2137 return (int)size;
2140 /* Add all symbols in given area into kprobe blacklist */
2141 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2143 unsigned long entry;
2144 int ret = 0;
2146 for (entry = start; entry < end; entry += ret) {
2147 ret = kprobe_add_ksym_blacklist(entry);
2148 if (ret < 0)
2149 return ret;
2150 if (ret == 0) /* In case of alias symbol */
2151 ret = 1;
2153 return 0;
2156 int __init __weak arch_populate_kprobe_blacklist(void)
2158 return 0;
2162 * Lookup and populate the kprobe_blacklist.
2164 * Unlike the kretprobe blacklist, we'll need to determine
2165 * the range of addresses that belong to the said functions,
2166 * since a kprobe need not necessarily be at the beginning
2167 * of a function.
2169 static int __init populate_kprobe_blacklist(unsigned long *start,
2170 unsigned long *end)
2172 unsigned long entry;
2173 unsigned long *iter;
2174 int ret;
2176 for (iter = start; iter < end; iter++) {
2177 entry = arch_deref_entry_point((void *)*iter);
2178 ret = kprobe_add_ksym_blacklist(entry);
2179 if (ret == -EINVAL)
2180 continue;
2181 if (ret < 0)
2182 return ret;
2185 /* Symbols in __kprobes_text are blacklisted */
2186 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2187 (unsigned long)__kprobes_text_end);
2189 return ret ? : arch_populate_kprobe_blacklist();
2192 /* Module notifier call back, checking kprobes on the module */
2193 static int kprobes_module_callback(struct notifier_block *nb,
2194 unsigned long val, void *data)
2196 struct module *mod = data;
2197 struct hlist_head *head;
2198 struct kprobe *p;
2199 unsigned int i;
2200 int checkcore = (val == MODULE_STATE_GOING);
2202 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2203 return NOTIFY_DONE;
2206 * When MODULE_STATE_GOING was notified, both of module .text and
2207 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2208 * notified, only .init.text section would be freed. We need to
2209 * disable kprobes which have been inserted in the sections.
2211 mutex_lock(&kprobe_mutex);
2212 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2213 head = &kprobe_table[i];
2214 hlist_for_each_entry_rcu(p, head, hlist)
2215 if (within_module_init((unsigned long)p->addr, mod) ||
2216 (checkcore &&
2217 within_module_core((unsigned long)p->addr, mod))) {
2219 * The vaddr this probe is installed will soon
2220 * be vfreed buy not synced to disk. Hence,
2221 * disarming the breakpoint isn't needed.
2223 * Note, this will also move any optimized probes
2224 * that are pending to be removed from their
2225 * corresponding lists to the freeing_list and
2226 * will not be touched by the delayed
2227 * kprobe_optimizer work handler.
2229 kill_kprobe(p);
2232 mutex_unlock(&kprobe_mutex);
2233 return NOTIFY_DONE;
2236 static struct notifier_block kprobe_module_nb = {
2237 .notifier_call = kprobes_module_callback,
2238 .priority = 0
2241 /* Markers of _kprobe_blacklist section */
2242 extern unsigned long __start_kprobe_blacklist[];
2243 extern unsigned long __stop_kprobe_blacklist[];
2245 static int __init init_kprobes(void)
2247 int i, err = 0;
2249 /* FIXME allocate the probe table, currently defined statically */
2250 /* initialize all list heads */
2251 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2252 INIT_HLIST_HEAD(&kprobe_table[i]);
2253 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2254 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2257 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2258 __stop_kprobe_blacklist);
2259 if (err) {
2260 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2261 pr_err("Please take care of using kprobes.\n");
2264 if (kretprobe_blacklist_size) {
2265 /* lookup the function address from its name */
2266 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2267 kretprobe_blacklist[i].addr =
2268 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2269 if (!kretprobe_blacklist[i].addr)
2270 printk("kretprobe: lookup failed: %s\n",
2271 kretprobe_blacklist[i].name);
2275 #if defined(CONFIG_OPTPROBES)
2276 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2277 /* Init kprobe_optinsn_slots */
2278 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2279 #endif
2280 /* By default, kprobes can be optimized */
2281 kprobes_allow_optimization = true;
2282 #endif
2284 /* By default, kprobes are armed */
2285 kprobes_all_disarmed = false;
2287 err = arch_init_kprobes();
2288 if (!err)
2289 err = register_die_notifier(&kprobe_exceptions_nb);
2290 if (!err)
2291 err = register_module_notifier(&kprobe_module_nb);
2293 kprobes_initialized = (err == 0);
2295 if (!err)
2296 init_test_probes();
2297 return err;
2300 #ifdef CONFIG_DEBUG_FS
2301 static void report_probe(struct seq_file *pi, struct kprobe *p,
2302 const char *sym, int offset, char *modname, struct kprobe *pp)
2304 char *kprobe_type;
2305 void *addr = p->addr;
2307 if (p->pre_handler == pre_handler_kretprobe)
2308 kprobe_type = "r";
2309 else
2310 kprobe_type = "k";
2312 if (!kallsyms_show_value())
2313 addr = NULL;
2315 if (sym)
2316 seq_printf(pi, "%px %s %s+0x%x %s ",
2317 addr, kprobe_type, sym, offset,
2318 (modname ? modname : " "));
2319 else /* try to use %pS */
2320 seq_printf(pi, "%px %s %pS ",
2321 addr, kprobe_type, p->addr);
2323 if (!pp)
2324 pp = p;
2325 seq_printf(pi, "%s%s%s%s\n",
2326 (kprobe_gone(p) ? "[GONE]" : ""),
2327 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2328 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2329 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2332 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2334 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2337 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2339 (*pos)++;
2340 if (*pos >= KPROBE_TABLE_SIZE)
2341 return NULL;
2342 return pos;
2345 static void kprobe_seq_stop(struct seq_file *f, void *v)
2347 /* Nothing to do */
2350 static int show_kprobe_addr(struct seq_file *pi, void *v)
2352 struct hlist_head *head;
2353 struct kprobe *p, *kp;
2354 const char *sym = NULL;
2355 unsigned int i = *(loff_t *) v;
2356 unsigned long offset = 0;
2357 char *modname, namebuf[KSYM_NAME_LEN];
2359 head = &kprobe_table[i];
2360 preempt_disable();
2361 hlist_for_each_entry_rcu(p, head, hlist) {
2362 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2363 &offset, &modname, namebuf);
2364 if (kprobe_aggrprobe(p)) {
2365 list_for_each_entry_rcu(kp, &p->list, list)
2366 report_probe(pi, kp, sym, offset, modname, p);
2367 } else
2368 report_probe(pi, p, sym, offset, modname, NULL);
2370 preempt_enable();
2371 return 0;
2374 static const struct seq_operations kprobes_seq_ops = {
2375 .start = kprobe_seq_start,
2376 .next = kprobe_seq_next,
2377 .stop = kprobe_seq_stop,
2378 .show = show_kprobe_addr
2381 static int kprobes_open(struct inode *inode, struct file *filp)
2383 return seq_open(filp, &kprobes_seq_ops);
2386 static const struct file_operations debugfs_kprobes_operations = {
2387 .open = kprobes_open,
2388 .read = seq_read,
2389 .llseek = seq_lseek,
2390 .release = seq_release,
2393 /* kprobes/blacklist -- shows which functions can not be probed */
2394 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2396 return seq_list_start(&kprobe_blacklist, *pos);
2399 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2401 return seq_list_next(v, &kprobe_blacklist, pos);
2404 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2406 struct kprobe_blacklist_entry *ent =
2407 list_entry(v, struct kprobe_blacklist_entry, list);
2410 * If /proc/kallsyms is not showing kernel address, we won't
2411 * show them here either.
2413 if (!kallsyms_show_value())
2414 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2415 (void *)ent->start_addr);
2416 else
2417 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2418 (void *)ent->end_addr, (void *)ent->start_addr);
2419 return 0;
2422 static const struct seq_operations kprobe_blacklist_seq_ops = {
2423 .start = kprobe_blacklist_seq_start,
2424 .next = kprobe_blacklist_seq_next,
2425 .stop = kprobe_seq_stop, /* Reuse void function */
2426 .show = kprobe_blacklist_seq_show,
2429 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2431 return seq_open(filp, &kprobe_blacklist_seq_ops);
2434 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2435 .open = kprobe_blacklist_open,
2436 .read = seq_read,
2437 .llseek = seq_lseek,
2438 .release = seq_release,
2441 static int arm_all_kprobes(void)
2443 struct hlist_head *head;
2444 struct kprobe *p;
2445 unsigned int i, total = 0, errors = 0;
2446 int err, ret = 0;
2448 mutex_lock(&kprobe_mutex);
2450 /* If kprobes are armed, just return */
2451 if (!kprobes_all_disarmed)
2452 goto already_enabled;
2455 * optimize_kprobe() called by arm_kprobe() checks
2456 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2457 * arm_kprobe.
2459 kprobes_all_disarmed = false;
2460 /* Arming kprobes doesn't optimize kprobe itself */
2461 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2462 head = &kprobe_table[i];
2463 /* Arm all kprobes on a best-effort basis */
2464 hlist_for_each_entry_rcu(p, head, hlist) {
2465 if (!kprobe_disabled(p)) {
2466 err = arm_kprobe(p);
2467 if (err) {
2468 errors++;
2469 ret = err;
2471 total++;
2476 if (errors)
2477 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2478 errors, total);
2479 else
2480 pr_info("Kprobes globally enabled\n");
2482 already_enabled:
2483 mutex_unlock(&kprobe_mutex);
2484 return ret;
2487 static int disarm_all_kprobes(void)
2489 struct hlist_head *head;
2490 struct kprobe *p;
2491 unsigned int i, total = 0, errors = 0;
2492 int err, ret = 0;
2494 mutex_lock(&kprobe_mutex);
2496 /* If kprobes are already disarmed, just return */
2497 if (kprobes_all_disarmed) {
2498 mutex_unlock(&kprobe_mutex);
2499 return 0;
2502 kprobes_all_disarmed = true;
2504 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2505 head = &kprobe_table[i];
2506 /* Disarm all kprobes on a best-effort basis */
2507 hlist_for_each_entry_rcu(p, head, hlist) {
2508 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2509 err = disarm_kprobe(p, false);
2510 if (err) {
2511 errors++;
2512 ret = err;
2514 total++;
2519 if (errors)
2520 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2521 errors, total);
2522 else
2523 pr_info("Kprobes globally disabled\n");
2525 mutex_unlock(&kprobe_mutex);
2527 /* Wait for disarming all kprobes by optimizer */
2528 wait_for_kprobe_optimizer();
2530 return ret;
2534 * XXX: The debugfs bool file interface doesn't allow for callbacks
2535 * when the bool state is switched. We can reuse that facility when
2536 * available
2538 static ssize_t read_enabled_file_bool(struct file *file,
2539 char __user *user_buf, size_t count, loff_t *ppos)
2541 char buf[3];
2543 if (!kprobes_all_disarmed)
2544 buf[0] = '1';
2545 else
2546 buf[0] = '0';
2547 buf[1] = '\n';
2548 buf[2] = 0x00;
2549 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2552 static ssize_t write_enabled_file_bool(struct file *file,
2553 const char __user *user_buf, size_t count, loff_t *ppos)
2555 char buf[32];
2556 size_t buf_size;
2557 int ret = 0;
2559 buf_size = min(count, (sizeof(buf)-1));
2560 if (copy_from_user(buf, user_buf, buf_size))
2561 return -EFAULT;
2563 buf[buf_size] = '\0';
2564 switch (buf[0]) {
2565 case 'y':
2566 case 'Y':
2567 case '1':
2568 ret = arm_all_kprobes();
2569 break;
2570 case 'n':
2571 case 'N':
2572 case '0':
2573 ret = disarm_all_kprobes();
2574 break;
2575 default:
2576 return -EINVAL;
2579 if (ret)
2580 return ret;
2582 return count;
2585 static const struct file_operations fops_kp = {
2586 .read = read_enabled_file_bool,
2587 .write = write_enabled_file_bool,
2588 .llseek = default_llseek,
2591 static int __init debugfs_kprobe_init(void)
2593 struct dentry *dir, *file;
2594 unsigned int value = 1;
2596 dir = debugfs_create_dir("kprobes", NULL);
2597 if (!dir)
2598 return -ENOMEM;
2600 file = debugfs_create_file("list", 0400, dir, NULL,
2601 &debugfs_kprobes_operations);
2602 if (!file)
2603 goto error;
2605 file = debugfs_create_file("enabled", 0600, dir,
2606 &value, &fops_kp);
2607 if (!file)
2608 goto error;
2610 file = debugfs_create_file("blacklist", 0400, dir, NULL,
2611 &debugfs_kprobe_blacklist_ops);
2612 if (!file)
2613 goto error;
2615 return 0;
2617 error:
2618 debugfs_remove(dir);
2619 return -ENOMEM;
2622 late_initcall(debugfs_kprobe_init);
2623 #endif /* CONFIG_DEBUG_FS */
2625 module_init(init_kprobes);