4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache
*ino_entry_slab
;
27 struct kmem_cache
*inode_entry_slab
;
30 * We guarantee no failure on the returned page.
32 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
34 struct address_space
*mapping
= META_MAPPING(sbi
);
35 struct page
*page
= NULL
;
37 page
= grab_cache_page(mapping
, index
);
42 f2fs_wait_on_page_writeback(page
, META
);
43 SetPageUptodate(page
);
48 * We guarantee no failure on the returned page.
50 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
53 struct address_space
*mapping
= META_MAPPING(sbi
);
55 struct f2fs_io_info fio
= {
58 .rw
= READ_SYNC
| REQ_META
| REQ_PRIO
,
60 .encrypted_page
= NULL
,
63 if (unlikely(!is_meta
))
66 page
= grab_cache_page(mapping
, index
);
71 if (PageUptodate(page
))
76 if (f2fs_submit_page_bio(&fio
)) {
77 f2fs_put_page(page
, 1);
82 if (unlikely(page
->mapping
!= mapping
)) {
83 f2fs_put_page(page
, 1);
88 * if there is any IO error when accessing device, make our filesystem
89 * readonly and make sure do not write checkpoint with non-uptodate
92 if (unlikely(!PageUptodate(page
)))
93 f2fs_stop_checkpoint(sbi
);
98 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
100 return __get_meta_page(sbi
, index
, true);
104 struct page
*get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
106 return __get_meta_page(sbi
, index
, false);
109 bool is_valid_blkaddr(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int type
)
115 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
119 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
120 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
124 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
125 blkaddr
< __start_cp_addr(sbi
)))
129 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
130 blkaddr
< MAIN_BLKADDR(sbi
)))
141 * Readahead CP/NAT/SIT/SSA pages
143 int ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
146 block_t prev_blk_addr
= 0;
148 block_t blkno
= start
;
149 struct f2fs_io_info fio
= {
152 .rw
= sync
? (READ_SYNC
| REQ_META
| REQ_PRIO
) : READA
,
153 .encrypted_page
= NULL
,
156 if (unlikely(type
== META_POR
))
159 for (; nrpages
-- > 0; blkno
++) {
161 if (!is_valid_blkaddr(sbi
, blkno
, type
))
166 if (unlikely(blkno
>=
167 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
169 /* get nat block addr */
170 fio
.blk_addr
= current_nat_addr(sbi
,
171 blkno
* NAT_ENTRY_PER_BLOCK
);
174 /* get sit block addr */
175 fio
.blk_addr
= current_sit_addr(sbi
,
176 blkno
* SIT_ENTRY_PER_BLOCK
);
177 if (blkno
!= start
&& prev_blk_addr
+ 1 != fio
.blk_addr
)
179 prev_blk_addr
= fio
.blk_addr
;
184 fio
.blk_addr
= blkno
;
190 page
= grab_cache_page(META_MAPPING(sbi
), fio
.blk_addr
);
193 if (PageUptodate(page
)) {
194 f2fs_put_page(page
, 1);
199 f2fs_submit_page_mbio(&fio
);
200 f2fs_put_page(page
, 0);
203 f2fs_submit_merged_bio(sbi
, META
, READ
);
204 return blkno
- start
;
207 void ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
210 bool readahead
= false;
212 page
= find_get_page(META_MAPPING(sbi
), index
);
213 if (!page
|| (page
&& !PageUptodate(page
)))
215 f2fs_put_page(page
, 0);
218 ra_meta_pages(sbi
, index
, MAX_BIO_BLOCKS(sbi
), META_POR
, true);
221 static int f2fs_write_meta_page(struct page
*page
,
222 struct writeback_control
*wbc
)
224 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
226 trace_f2fs_writepage(page
, META
);
228 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
230 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
232 if (unlikely(f2fs_cp_error(sbi
)))
235 f2fs_wait_on_page_writeback(page
, META
);
236 write_meta_page(sbi
, page
);
237 dec_page_count(sbi
, F2FS_DIRTY_META
);
240 if (wbc
->for_reclaim
)
241 f2fs_submit_merged_bio(sbi
, META
, WRITE
);
245 redirty_page_for_writepage(wbc
, page
);
246 return AOP_WRITEPAGE_ACTIVATE
;
249 static int f2fs_write_meta_pages(struct address_space
*mapping
,
250 struct writeback_control
*wbc
)
252 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
255 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
257 /* collect a number of dirty meta pages and write together */
258 if (wbc
->for_kupdate
||
259 get_pages(sbi
, F2FS_DIRTY_META
) < nr_pages_to_skip(sbi
, META
))
262 /* if mounting is failed, skip writing node pages */
263 mutex_lock(&sbi
->cp_mutex
);
264 diff
= nr_pages_to_write(sbi
, META
, wbc
);
265 written
= sync_meta_pages(sbi
, META
, wbc
->nr_to_write
);
266 mutex_unlock(&sbi
->cp_mutex
);
267 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
271 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
275 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
278 struct address_space
*mapping
= META_MAPPING(sbi
);
279 pgoff_t index
= 0, end
= LONG_MAX
, prev
= LONG_MAX
;
282 struct writeback_control wbc
= {
286 pagevec_init(&pvec
, 0);
288 while (index
<= end
) {
290 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
292 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
293 if (unlikely(nr_pages
== 0))
296 for (i
= 0; i
< nr_pages
; i
++) {
297 struct page
*page
= pvec
.pages
[i
];
299 if (prev
== LONG_MAX
)
300 prev
= page
->index
- 1;
301 if (nr_to_write
!= LONG_MAX
&& page
->index
!= prev
+ 1) {
302 pagevec_release(&pvec
);
308 if (unlikely(page
->mapping
!= mapping
)) {
313 if (!PageDirty(page
)) {
314 /* someone wrote it for us */
315 goto continue_unlock
;
318 if (!clear_page_dirty_for_io(page
))
319 goto continue_unlock
;
321 if (mapping
->a_ops
->writepage(page
, &wbc
)) {
327 if (unlikely(nwritten
>= nr_to_write
))
330 pagevec_release(&pvec
);
335 f2fs_submit_merged_bio(sbi
, type
, WRITE
);
340 static int f2fs_set_meta_page_dirty(struct page
*page
)
342 trace_f2fs_set_page_dirty(page
, META
);
344 SetPageUptodate(page
);
345 if (!PageDirty(page
)) {
346 __set_page_dirty_nobuffers(page
);
347 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
348 SetPagePrivate(page
);
349 f2fs_trace_pid(page
);
355 const struct address_space_operations f2fs_meta_aops
= {
356 .writepage
= f2fs_write_meta_page
,
357 .writepages
= f2fs_write_meta_pages
,
358 .set_page_dirty
= f2fs_set_meta_page_dirty
,
359 .invalidatepage
= f2fs_invalidate_page
,
360 .releasepage
= f2fs_release_page
,
363 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
365 struct inode_management
*im
= &sbi
->im
[type
];
366 struct ino_entry
*e
, *tmp
;
368 tmp
= f2fs_kmem_cache_alloc(ino_entry_slab
, GFP_NOFS
);
370 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
372 spin_lock(&im
->ino_lock
);
373 e
= radix_tree_lookup(&im
->ino_root
, ino
);
376 if (radix_tree_insert(&im
->ino_root
, ino
, e
)) {
377 spin_unlock(&im
->ino_lock
);
378 radix_tree_preload_end();
381 memset(e
, 0, sizeof(struct ino_entry
));
384 list_add_tail(&e
->list
, &im
->ino_list
);
385 if (type
!= ORPHAN_INO
)
388 spin_unlock(&im
->ino_lock
);
389 radix_tree_preload_end();
392 kmem_cache_free(ino_entry_slab
, tmp
);
395 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
397 struct inode_management
*im
= &sbi
->im
[type
];
400 spin_lock(&im
->ino_lock
);
401 e
= radix_tree_lookup(&im
->ino_root
, ino
);
404 radix_tree_delete(&im
->ino_root
, ino
);
406 spin_unlock(&im
->ino_lock
);
407 kmem_cache_free(ino_entry_slab
, e
);
410 spin_unlock(&im
->ino_lock
);
413 void add_dirty_inode(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
415 /* add new dirty ino entry into list */
416 __add_ino_entry(sbi
, ino
, type
);
419 void remove_dirty_inode(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
421 /* remove dirty ino entry from list */
422 __remove_ino_entry(sbi
, ino
, type
);
425 /* mode should be APPEND_INO or UPDATE_INO */
426 bool exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
428 struct inode_management
*im
= &sbi
->im
[mode
];
431 spin_lock(&im
->ino_lock
);
432 e
= radix_tree_lookup(&im
->ino_root
, ino
);
433 spin_unlock(&im
->ino_lock
);
434 return e
? true : false;
437 void release_dirty_inode(struct f2fs_sb_info
*sbi
)
439 struct ino_entry
*e
, *tmp
;
442 for (i
= APPEND_INO
; i
<= UPDATE_INO
; i
++) {
443 struct inode_management
*im
= &sbi
->im
[i
];
445 spin_lock(&im
->ino_lock
);
446 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
448 radix_tree_delete(&im
->ino_root
, e
->ino
);
449 kmem_cache_free(ino_entry_slab
, e
);
452 spin_unlock(&im
->ino_lock
);
456 int acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
458 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
461 spin_lock(&im
->ino_lock
);
462 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
466 spin_unlock(&im
->ino_lock
);
471 void release_orphan_inode(struct f2fs_sb_info
*sbi
)
473 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
475 spin_lock(&im
->ino_lock
);
476 f2fs_bug_on(sbi
, im
->ino_num
== 0);
478 spin_unlock(&im
->ino_lock
);
481 void add_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
483 /* add new orphan ino entry into list */
484 __add_ino_entry(sbi
, ino
, ORPHAN_INO
);
487 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
489 /* remove orphan entry from orphan list */
490 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
493 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
497 inode
= f2fs_iget(sbi
->sb
, ino
);
500 * there should be a bug that we can't find the entry
503 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
504 return PTR_ERR(inode
);
509 /* truncate all the data during iput */
514 int recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
516 block_t start_blk
, orphan_blocks
, i
, j
;
519 if (!is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
))
522 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
523 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
525 ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
527 for (i
= 0; i
< orphan_blocks
; i
++) {
528 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
529 struct f2fs_orphan_block
*orphan_blk
;
531 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
532 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
533 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
534 err
= recover_orphan_inode(sbi
, ino
);
536 f2fs_put_page(page
, 1);
540 f2fs_put_page(page
, 1);
542 /* clear Orphan Flag */
543 clear_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
);
547 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
549 struct list_head
*head
;
550 struct f2fs_orphan_block
*orphan_blk
= NULL
;
551 unsigned int nentries
= 0;
552 unsigned short index
= 1;
553 unsigned short orphan_blocks
;
554 struct page
*page
= NULL
;
555 struct ino_entry
*orphan
= NULL
;
556 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
558 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
561 * we don't need to do spin_lock(&im->ino_lock) here, since all the
562 * orphan inode operations are covered under f2fs_lock_op().
563 * And, spin_lock should be avoided due to page operations below.
565 head
= &im
->ino_list
;
567 /* loop for each orphan inode entry and write them in Jornal block */
568 list_for_each_entry(orphan
, head
, list
) {
570 page
= grab_meta_page(sbi
, start_blk
++);
572 (struct f2fs_orphan_block
*)page_address(page
);
573 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
576 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
578 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
580 * an orphan block is full of 1020 entries,
581 * then we need to flush current orphan blocks
582 * and bring another one in memory
584 orphan_blk
->blk_addr
= cpu_to_le16(index
);
585 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
586 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
587 set_page_dirty(page
);
588 f2fs_put_page(page
, 1);
596 orphan_blk
->blk_addr
= cpu_to_le16(index
);
597 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
598 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
599 set_page_dirty(page
);
600 f2fs_put_page(page
, 1);
604 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
605 block_t cp_addr
, unsigned long long *version
)
607 struct page
*cp_page_1
, *cp_page_2
= NULL
;
608 unsigned long blk_size
= sbi
->blocksize
;
609 struct f2fs_checkpoint
*cp_block
;
610 unsigned long long cur_version
= 0, pre_version
= 0;
614 /* Read the 1st cp block in this CP pack */
615 cp_page_1
= get_meta_page(sbi
, cp_addr
);
617 /* get the version number */
618 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_1
);
619 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
620 if (crc_offset
>= blk_size
)
623 crc
= le32_to_cpu(*((__le32
*)((unsigned char *)cp_block
+ crc_offset
)));
624 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
627 pre_version
= cur_cp_version(cp_block
);
629 /* Read the 2nd cp block in this CP pack */
630 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
631 cp_page_2
= get_meta_page(sbi
, cp_addr
);
633 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_2
);
634 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
635 if (crc_offset
>= blk_size
)
638 crc
= le32_to_cpu(*((__le32
*)((unsigned char *)cp_block
+ crc_offset
)));
639 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
642 cur_version
= cur_cp_version(cp_block
);
644 if (cur_version
== pre_version
) {
645 *version
= cur_version
;
646 f2fs_put_page(cp_page_2
, 1);
650 f2fs_put_page(cp_page_2
, 1);
652 f2fs_put_page(cp_page_1
, 1);
656 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
658 struct f2fs_checkpoint
*cp_block
;
659 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
660 struct page
*cp1
, *cp2
, *cur_page
;
661 unsigned long blk_size
= sbi
->blocksize
;
662 unsigned long long cp1_version
= 0, cp2_version
= 0;
663 unsigned long long cp_start_blk_no
;
664 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
668 sbi
->ckpt
= kzalloc(cp_blks
* blk_size
, GFP_KERNEL
);
672 * Finding out valid cp block involves read both
673 * sets( cp pack1 and cp pack 2)
675 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
676 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
678 /* The second checkpoint pack should start at the next segment */
679 cp_start_blk_no
+= ((unsigned long long)1) <<
680 le32_to_cpu(fsb
->log_blocks_per_seg
);
681 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
684 if (ver_after(cp2_version
, cp1_version
))
696 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
697 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
702 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
704 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
706 for (i
= 1; i
< cp_blks
; i
++) {
707 void *sit_bitmap_ptr
;
708 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
710 cur_page
= get_meta_page(sbi
, cp_blk_no
+ i
);
711 sit_bitmap_ptr
= page_address(cur_page
);
712 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
713 f2fs_put_page(cur_page
, 1);
716 f2fs_put_page(cp1
, 1);
717 f2fs_put_page(cp2
, 1);
725 static int __add_dirty_inode(struct inode
*inode
, struct inode_entry
*new)
727 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
729 if (is_inode_flag_set(F2FS_I(inode
), FI_DIRTY_DIR
))
732 set_inode_flag(F2FS_I(inode
), FI_DIRTY_DIR
);
733 F2FS_I(inode
)->dirty_dir
= new;
734 list_add_tail(&new->list
, &sbi
->dir_inode_list
);
735 stat_inc_dirty_dir(sbi
);
739 void update_dirty_page(struct inode
*inode
, struct page
*page
)
741 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
742 struct inode_entry
*new;
745 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
746 !S_ISLNK(inode
->i_mode
))
749 if (!S_ISDIR(inode
->i_mode
)) {
750 inode_inc_dirty_pages(inode
);
754 new = f2fs_kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
756 INIT_LIST_HEAD(&new->list
);
758 spin_lock(&sbi
->dir_inode_lock
);
759 ret
= __add_dirty_inode(inode
, new);
760 inode_inc_dirty_pages(inode
);
761 spin_unlock(&sbi
->dir_inode_lock
);
764 kmem_cache_free(inode_entry_slab
, new);
766 SetPagePrivate(page
);
767 f2fs_trace_pid(page
);
770 void add_dirty_dir_inode(struct inode
*inode
)
772 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
773 struct inode_entry
*new =
774 f2fs_kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
778 INIT_LIST_HEAD(&new->list
);
780 spin_lock(&sbi
->dir_inode_lock
);
781 ret
= __add_dirty_inode(inode
, new);
782 spin_unlock(&sbi
->dir_inode_lock
);
785 kmem_cache_free(inode_entry_slab
, new);
788 void remove_dirty_dir_inode(struct inode
*inode
)
790 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
791 struct inode_entry
*entry
;
793 if (!S_ISDIR(inode
->i_mode
))
796 spin_lock(&sbi
->dir_inode_lock
);
797 if (get_dirty_pages(inode
) ||
798 !is_inode_flag_set(F2FS_I(inode
), FI_DIRTY_DIR
)) {
799 spin_unlock(&sbi
->dir_inode_lock
);
803 entry
= F2FS_I(inode
)->dirty_dir
;
804 list_del(&entry
->list
);
805 F2FS_I(inode
)->dirty_dir
= NULL
;
806 clear_inode_flag(F2FS_I(inode
), FI_DIRTY_DIR
);
807 stat_dec_dirty_dir(sbi
);
808 spin_unlock(&sbi
->dir_inode_lock
);
809 kmem_cache_free(inode_entry_slab
, entry
);
811 /* Only from the recovery routine */
812 if (is_inode_flag_set(F2FS_I(inode
), FI_DELAY_IPUT
)) {
813 clear_inode_flag(F2FS_I(inode
), FI_DELAY_IPUT
);
818 void sync_dirty_dir_inodes(struct f2fs_sb_info
*sbi
)
820 struct list_head
*head
;
821 struct inode_entry
*entry
;
824 if (unlikely(f2fs_cp_error(sbi
)))
827 spin_lock(&sbi
->dir_inode_lock
);
829 head
= &sbi
->dir_inode_list
;
830 if (list_empty(head
)) {
831 spin_unlock(&sbi
->dir_inode_lock
);
834 entry
= list_entry(head
->next
, struct inode_entry
, list
);
835 inode
= igrab(entry
->inode
);
836 spin_unlock(&sbi
->dir_inode_lock
);
838 filemap_fdatawrite(inode
->i_mapping
);
842 * We should submit bio, since it exists several
843 * wribacking dentry pages in the freeing inode.
845 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
852 * Freeze all the FS-operations for checkpoint.
854 static int block_operations(struct f2fs_sb_info
*sbi
)
856 struct writeback_control wbc
= {
857 .sync_mode
= WB_SYNC_ALL
,
858 .nr_to_write
= LONG_MAX
,
861 struct blk_plug plug
;
864 blk_start_plug(&plug
);
868 /* write all the dirty dentry pages */
869 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
870 f2fs_unlock_all(sbi
);
871 sync_dirty_dir_inodes(sbi
);
872 if (unlikely(f2fs_cp_error(sbi
))) {
876 goto retry_flush_dents
;
880 * POR: we should ensure that there are no dirty node pages
881 * until finishing nat/sit flush.
884 down_write(&sbi
->node_write
);
886 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
887 up_write(&sbi
->node_write
);
888 sync_node_pages(sbi
, 0, &wbc
);
889 if (unlikely(f2fs_cp_error(sbi
))) {
890 f2fs_unlock_all(sbi
);
894 goto retry_flush_nodes
;
897 blk_finish_plug(&plug
);
901 static void unblock_operations(struct f2fs_sb_info
*sbi
)
903 up_write(&sbi
->node_write
);
904 f2fs_unlock_all(sbi
);
907 static void wait_on_all_pages_writeback(struct f2fs_sb_info
*sbi
)
912 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
914 if (!get_pages(sbi
, F2FS_WRITEBACK
))
919 finish_wait(&sbi
->cp_wait
, &wait
);
922 static void do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
924 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
925 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_WARM_NODE
);
926 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
927 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
928 nid_t last_nid
= nm_i
->next_scan_nid
;
930 unsigned int data_sum_blocks
, orphan_blocks
;
933 int cp_payload_blks
= __cp_payload(sbi
);
934 block_t discard_blk
= NEXT_FREE_BLKADDR(sbi
, curseg
);
935 bool invalidate
= false;
938 * This avoids to conduct wrong roll-forward operations and uses
939 * metapages, so should be called prior to sync_meta_pages below.
941 if (discard_next_dnode(sbi
, discard_blk
))
944 /* Flush all the NAT/SIT pages */
945 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
946 sync_meta_pages(sbi
, META
, LONG_MAX
);
947 if (unlikely(f2fs_cp_error(sbi
)))
951 next_free_nid(sbi
, &last_nid
);
955 * version number is already updated
957 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
958 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
959 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
960 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
961 ckpt
->cur_node_segno
[i
] =
962 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
963 ckpt
->cur_node_blkoff
[i
] =
964 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
965 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
966 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
968 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
969 ckpt
->cur_data_segno
[i
] =
970 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
971 ckpt
->cur_data_blkoff
[i
] =
972 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
973 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
974 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
977 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
978 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
979 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
981 /* 2 cp + n data seg summary + orphan inode blocks */
982 data_sum_blocks
= npages_for_summary_flush(sbi
, false);
983 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
984 set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
986 clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
988 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
989 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
992 if (__remain_node_summaries(cpc
->reason
))
993 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
994 cp_payload_blks
+ data_sum_blocks
+
995 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
997 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
998 cp_payload_blks
+ data_sum_blocks
+
1001 if (cpc
->reason
== CP_UMOUNT
)
1002 set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1004 clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1006 if (cpc
->reason
== CP_FASTBOOT
)
1007 set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1009 clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1012 set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1014 clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1016 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1017 set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1019 /* update SIT/NAT bitmap */
1020 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1021 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1023 crc32
= f2fs_crc32(ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
1024 *((__le32
*)((unsigned char *)ckpt
+
1025 le32_to_cpu(ckpt
->checksum_offset
)))
1026 = cpu_to_le32(crc32
);
1028 start_blk
= __start_cp_addr(sbi
);
1030 /* need to wait for end_io results */
1031 wait_on_all_pages_writeback(sbi
);
1032 if (unlikely(f2fs_cp_error(sbi
)))
1035 /* write out checkpoint buffer at block 0 */
1036 update_meta_page(sbi
, ckpt
, start_blk
++);
1038 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1039 update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1043 write_orphan_inodes(sbi
, start_blk
);
1044 start_blk
+= orphan_blocks
;
1047 write_data_summaries(sbi
, start_blk
);
1048 start_blk
+= data_sum_blocks
;
1049 if (__remain_node_summaries(cpc
->reason
)) {
1050 write_node_summaries(sbi
, start_blk
);
1051 start_blk
+= NR_CURSEG_NODE_TYPE
;
1054 /* writeout checkpoint block */
1055 update_meta_page(sbi
, ckpt
, start_blk
);
1057 /* wait for previous submitted node/meta pages writeback */
1058 wait_on_all_pages_writeback(sbi
);
1060 if (unlikely(f2fs_cp_error(sbi
)))
1063 filemap_fdatawait_range(NODE_MAPPING(sbi
), 0, LONG_MAX
);
1064 filemap_fdatawait_range(META_MAPPING(sbi
), 0, LONG_MAX
);
1066 /* update user_block_counts */
1067 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1068 sbi
->alloc_valid_block_count
= 0;
1070 /* Here, we only have one bio having CP pack */
1071 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
);
1073 /* wait for previous submitted meta pages writeback */
1074 wait_on_all_pages_writeback(sbi
);
1077 * invalidate meta page which is used temporarily for zeroing out
1078 * block at the end of warm node chain.
1081 invalidate_mapping_pages(META_MAPPING(sbi
), discard_blk
,
1084 release_dirty_inode(sbi
);
1086 if (unlikely(f2fs_cp_error(sbi
)))
1089 clear_prefree_segments(sbi
, cpc
);
1090 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1094 * We guarantee that this checkpoint procedure will not fail.
1096 void write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1098 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1099 unsigned long long ckpt_ver
;
1101 mutex_lock(&sbi
->cp_mutex
);
1103 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1104 (cpc
->reason
== CP_FASTBOOT
|| cpc
->reason
== CP_SYNC
||
1105 (cpc
->reason
== CP_DISCARD
&& !sbi
->discard_blks
)))
1107 if (unlikely(f2fs_cp_error(sbi
)))
1109 if (f2fs_readonly(sbi
->sb
))
1112 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1114 if (block_operations(sbi
))
1117 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1119 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
1120 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1121 f2fs_submit_merged_bio(sbi
, META
, WRITE
);
1124 * update checkpoint pack index
1125 * Increase the version number so that
1126 * SIT entries and seg summaries are written at correct place
1128 ckpt_ver
= cur_cp_version(ckpt
);
1129 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1131 /* write cached NAT/SIT entries to NAT/SIT area */
1132 flush_nat_entries(sbi
);
1133 flush_sit_entries(sbi
, cpc
);
1135 /* unlock all the fs_lock[] in do_checkpoint() */
1136 do_checkpoint(sbi
, cpc
);
1138 unblock_operations(sbi
);
1139 stat_inc_cp_count(sbi
->stat_info
);
1141 if (cpc
->reason
== CP_RECOVERY
)
1142 f2fs_msg(sbi
->sb
, KERN_NOTICE
,
1143 "checkpoint: version = %llx", ckpt_ver
);
1145 /* do checkpoint periodically */
1146 sbi
->cp_expires
= round_jiffies_up(jiffies
+ HZ
* sbi
->cp_interval
);
1148 mutex_unlock(&sbi
->cp_mutex
);
1149 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1152 void init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1156 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1157 struct inode_management
*im
= &sbi
->im
[i
];
1159 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1160 spin_lock_init(&im
->ino_lock
);
1161 INIT_LIST_HEAD(&im
->ino_list
);
1165 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1166 NR_CURSEG_TYPE
- __cp_payload(sbi
)) *
1167 F2FS_ORPHANS_PER_BLOCK
;
1170 int __init
create_checkpoint_caches(void)
1172 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1173 sizeof(struct ino_entry
));
1174 if (!ino_entry_slab
)
1176 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1177 sizeof(struct inode_entry
));
1178 if (!inode_entry_slab
) {
1179 kmem_cache_destroy(ino_entry_slab
);
1185 void destroy_checkpoint_caches(void)
1187 kmem_cache_destroy(ino_entry_slab
);
1188 kmem_cache_destroy(inode_entry_slab
);