RDS: Heap OOB write in rds_message_alloc_sgs()
[linux/fpc-iii.git] / fs / f2fs / checkpoint.c
blobf661d80474be7ab8f91de74525fa65198cfa68f9
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
30 * We guarantee no failure on the returned page.
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
34 struct address_space *mapping = META_MAPPING(sbi);
35 struct page *page = NULL;
36 repeat:
37 page = grab_cache_page(mapping, index);
38 if (!page) {
39 cond_resched();
40 goto repeat;
42 f2fs_wait_on_page_writeback(page, META);
43 SetPageUptodate(page);
44 return page;
48 * We guarantee no failure on the returned page.
50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
51 bool is_meta)
53 struct address_space *mapping = META_MAPPING(sbi);
54 struct page *page;
55 struct f2fs_io_info fio = {
56 .sbi = sbi,
57 .type = META,
58 .rw = READ_SYNC | REQ_META | REQ_PRIO,
59 .blk_addr = index,
60 .encrypted_page = NULL,
63 if (unlikely(!is_meta))
64 fio.rw &= ~REQ_META;
65 repeat:
66 page = grab_cache_page(mapping, index);
67 if (!page) {
68 cond_resched();
69 goto repeat;
71 if (PageUptodate(page))
72 goto out;
74 fio.page = page;
76 if (f2fs_submit_page_bio(&fio)) {
77 f2fs_put_page(page, 1);
78 goto repeat;
81 lock_page(page);
82 if (unlikely(page->mapping != mapping)) {
83 f2fs_put_page(page, 1);
84 goto repeat;
88 * if there is any IO error when accessing device, make our filesystem
89 * readonly and make sure do not write checkpoint with non-uptodate
90 * meta page.
92 if (unlikely(!PageUptodate(page)))
93 f2fs_stop_checkpoint(sbi);
94 out:
95 return page;
98 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
100 return __get_meta_page(sbi, index, true);
103 /* for POR only */
104 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
106 return __get_meta_page(sbi, index, false);
109 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
111 switch (type) {
112 case META_NAT:
113 break;
114 case META_SIT:
115 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
116 return false;
117 break;
118 case META_SSA:
119 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
120 blkaddr < SM_I(sbi)->ssa_blkaddr))
121 return false;
122 break;
123 case META_CP:
124 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
125 blkaddr < __start_cp_addr(sbi)))
126 return false;
127 break;
128 case META_POR:
129 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
130 blkaddr < MAIN_BLKADDR(sbi)))
131 return false;
132 break;
133 default:
134 BUG();
137 return true;
141 * Readahead CP/NAT/SIT/SSA pages
143 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
144 int type, bool sync)
146 block_t prev_blk_addr = 0;
147 struct page *page;
148 block_t blkno = start;
149 struct f2fs_io_info fio = {
150 .sbi = sbi,
151 .type = META,
152 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
153 .encrypted_page = NULL,
156 if (unlikely(type == META_POR))
157 fio.rw &= ~REQ_META;
159 for (; nrpages-- > 0; blkno++) {
161 if (!is_valid_blkaddr(sbi, blkno, type))
162 goto out;
164 switch (type) {
165 case META_NAT:
166 if (unlikely(blkno >=
167 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
168 blkno = 0;
169 /* get nat block addr */
170 fio.blk_addr = current_nat_addr(sbi,
171 blkno * NAT_ENTRY_PER_BLOCK);
172 break;
173 case META_SIT:
174 /* get sit block addr */
175 fio.blk_addr = current_sit_addr(sbi,
176 blkno * SIT_ENTRY_PER_BLOCK);
177 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
178 goto out;
179 prev_blk_addr = fio.blk_addr;
180 break;
181 case META_SSA:
182 case META_CP:
183 case META_POR:
184 fio.blk_addr = blkno;
185 break;
186 default:
187 BUG();
190 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
191 if (!page)
192 continue;
193 if (PageUptodate(page)) {
194 f2fs_put_page(page, 1);
195 continue;
198 fio.page = page;
199 f2fs_submit_page_mbio(&fio);
200 f2fs_put_page(page, 0);
202 out:
203 f2fs_submit_merged_bio(sbi, META, READ);
204 return blkno - start;
207 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
209 struct page *page;
210 bool readahead = false;
212 page = find_get_page(META_MAPPING(sbi), index);
213 if (!page || (page && !PageUptodate(page)))
214 readahead = true;
215 f2fs_put_page(page, 0);
217 if (readahead)
218 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
221 static int f2fs_write_meta_page(struct page *page,
222 struct writeback_control *wbc)
224 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
226 trace_f2fs_writepage(page, META);
228 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
229 goto redirty_out;
230 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
231 goto redirty_out;
232 if (unlikely(f2fs_cp_error(sbi)))
233 goto redirty_out;
235 f2fs_wait_on_page_writeback(page, META);
236 write_meta_page(sbi, page);
237 dec_page_count(sbi, F2FS_DIRTY_META);
238 unlock_page(page);
240 if (wbc->for_reclaim)
241 f2fs_submit_merged_bio(sbi, META, WRITE);
242 return 0;
244 redirty_out:
245 redirty_page_for_writepage(wbc, page);
246 return AOP_WRITEPAGE_ACTIVATE;
249 static int f2fs_write_meta_pages(struct address_space *mapping,
250 struct writeback_control *wbc)
252 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
253 long diff, written;
255 trace_f2fs_writepages(mapping->host, wbc, META);
257 /* collect a number of dirty meta pages and write together */
258 if (wbc->for_kupdate ||
259 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
260 goto skip_write;
262 /* if mounting is failed, skip writing node pages */
263 mutex_lock(&sbi->cp_mutex);
264 diff = nr_pages_to_write(sbi, META, wbc);
265 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
266 mutex_unlock(&sbi->cp_mutex);
267 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
268 return 0;
270 skip_write:
271 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
272 return 0;
275 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
276 long nr_to_write)
278 struct address_space *mapping = META_MAPPING(sbi);
279 pgoff_t index = 0, end = LONG_MAX, prev = LONG_MAX;
280 struct pagevec pvec;
281 long nwritten = 0;
282 struct writeback_control wbc = {
283 .for_reclaim = 0,
286 pagevec_init(&pvec, 0);
288 while (index <= end) {
289 int i, nr_pages;
290 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 PAGECACHE_TAG_DIRTY,
292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
293 if (unlikely(nr_pages == 0))
294 break;
296 for (i = 0; i < nr_pages; i++) {
297 struct page *page = pvec.pages[i];
299 if (prev == LONG_MAX)
300 prev = page->index - 1;
301 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
302 pagevec_release(&pvec);
303 goto stop;
306 lock_page(page);
308 if (unlikely(page->mapping != mapping)) {
309 continue_unlock:
310 unlock_page(page);
311 continue;
313 if (!PageDirty(page)) {
314 /* someone wrote it for us */
315 goto continue_unlock;
318 if (!clear_page_dirty_for_io(page))
319 goto continue_unlock;
321 if (mapping->a_ops->writepage(page, &wbc)) {
322 unlock_page(page);
323 break;
325 nwritten++;
326 prev = page->index;
327 if (unlikely(nwritten >= nr_to_write))
328 break;
330 pagevec_release(&pvec);
331 cond_resched();
333 stop:
334 if (nwritten)
335 f2fs_submit_merged_bio(sbi, type, WRITE);
337 return nwritten;
340 static int f2fs_set_meta_page_dirty(struct page *page)
342 trace_f2fs_set_page_dirty(page, META);
344 SetPageUptodate(page);
345 if (!PageDirty(page)) {
346 __set_page_dirty_nobuffers(page);
347 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
348 SetPagePrivate(page);
349 f2fs_trace_pid(page);
350 return 1;
352 return 0;
355 const struct address_space_operations f2fs_meta_aops = {
356 .writepage = f2fs_write_meta_page,
357 .writepages = f2fs_write_meta_pages,
358 .set_page_dirty = f2fs_set_meta_page_dirty,
359 .invalidatepage = f2fs_invalidate_page,
360 .releasepage = f2fs_release_page,
363 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
365 struct inode_management *im = &sbi->im[type];
366 struct ino_entry *e, *tmp;
368 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
369 retry:
370 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
372 spin_lock(&im->ino_lock);
373 e = radix_tree_lookup(&im->ino_root, ino);
374 if (!e) {
375 e = tmp;
376 if (radix_tree_insert(&im->ino_root, ino, e)) {
377 spin_unlock(&im->ino_lock);
378 radix_tree_preload_end();
379 goto retry;
381 memset(e, 0, sizeof(struct ino_entry));
382 e->ino = ino;
384 list_add_tail(&e->list, &im->ino_list);
385 if (type != ORPHAN_INO)
386 im->ino_num++;
388 spin_unlock(&im->ino_lock);
389 radix_tree_preload_end();
391 if (e != tmp)
392 kmem_cache_free(ino_entry_slab, tmp);
395 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
397 struct inode_management *im = &sbi->im[type];
398 struct ino_entry *e;
400 spin_lock(&im->ino_lock);
401 e = radix_tree_lookup(&im->ino_root, ino);
402 if (e) {
403 list_del(&e->list);
404 radix_tree_delete(&im->ino_root, ino);
405 im->ino_num--;
406 spin_unlock(&im->ino_lock);
407 kmem_cache_free(ino_entry_slab, e);
408 return;
410 spin_unlock(&im->ino_lock);
413 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
415 /* add new dirty ino entry into list */
416 __add_ino_entry(sbi, ino, type);
419 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
421 /* remove dirty ino entry from list */
422 __remove_ino_entry(sbi, ino, type);
425 /* mode should be APPEND_INO or UPDATE_INO */
426 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
428 struct inode_management *im = &sbi->im[mode];
429 struct ino_entry *e;
431 spin_lock(&im->ino_lock);
432 e = radix_tree_lookup(&im->ino_root, ino);
433 spin_unlock(&im->ino_lock);
434 return e ? true : false;
437 void release_dirty_inode(struct f2fs_sb_info *sbi)
439 struct ino_entry *e, *tmp;
440 int i;
442 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
443 struct inode_management *im = &sbi->im[i];
445 spin_lock(&im->ino_lock);
446 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
447 list_del(&e->list);
448 radix_tree_delete(&im->ino_root, e->ino);
449 kmem_cache_free(ino_entry_slab, e);
450 im->ino_num--;
452 spin_unlock(&im->ino_lock);
456 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
458 struct inode_management *im = &sbi->im[ORPHAN_INO];
459 int err = 0;
461 spin_lock(&im->ino_lock);
462 if (unlikely(im->ino_num >= sbi->max_orphans))
463 err = -ENOSPC;
464 else
465 im->ino_num++;
466 spin_unlock(&im->ino_lock);
468 return err;
471 void release_orphan_inode(struct f2fs_sb_info *sbi)
473 struct inode_management *im = &sbi->im[ORPHAN_INO];
475 spin_lock(&im->ino_lock);
476 f2fs_bug_on(sbi, im->ino_num == 0);
477 im->ino_num--;
478 spin_unlock(&im->ino_lock);
481 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
483 /* add new orphan ino entry into list */
484 __add_ino_entry(sbi, ino, ORPHAN_INO);
487 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
489 /* remove orphan entry from orphan list */
490 __remove_ino_entry(sbi, ino, ORPHAN_INO);
493 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
495 struct inode *inode;
497 inode = f2fs_iget(sbi->sb, ino);
498 if (IS_ERR(inode)) {
500 * there should be a bug that we can't find the entry
501 * to orphan inode.
503 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
504 return PTR_ERR(inode);
507 clear_nlink(inode);
509 /* truncate all the data during iput */
510 iput(inode);
511 return 0;
514 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
516 block_t start_blk, orphan_blocks, i, j;
517 int err;
519 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
520 return 0;
522 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
523 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
525 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
527 for (i = 0; i < orphan_blocks; i++) {
528 struct page *page = get_meta_page(sbi, start_blk + i);
529 struct f2fs_orphan_block *orphan_blk;
531 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
532 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
533 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
534 err = recover_orphan_inode(sbi, ino);
535 if (err) {
536 f2fs_put_page(page, 1);
537 return err;
540 f2fs_put_page(page, 1);
542 /* clear Orphan Flag */
543 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
544 return 0;
547 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
549 struct list_head *head;
550 struct f2fs_orphan_block *orphan_blk = NULL;
551 unsigned int nentries = 0;
552 unsigned short index = 1;
553 unsigned short orphan_blocks;
554 struct page *page = NULL;
555 struct ino_entry *orphan = NULL;
556 struct inode_management *im = &sbi->im[ORPHAN_INO];
558 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
561 * we don't need to do spin_lock(&im->ino_lock) here, since all the
562 * orphan inode operations are covered under f2fs_lock_op().
563 * And, spin_lock should be avoided due to page operations below.
565 head = &im->ino_list;
567 /* loop for each orphan inode entry and write them in Jornal block */
568 list_for_each_entry(orphan, head, list) {
569 if (!page) {
570 page = grab_meta_page(sbi, start_blk++);
571 orphan_blk =
572 (struct f2fs_orphan_block *)page_address(page);
573 memset(orphan_blk, 0, sizeof(*orphan_blk));
576 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
578 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
580 * an orphan block is full of 1020 entries,
581 * then we need to flush current orphan blocks
582 * and bring another one in memory
584 orphan_blk->blk_addr = cpu_to_le16(index);
585 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
586 orphan_blk->entry_count = cpu_to_le32(nentries);
587 set_page_dirty(page);
588 f2fs_put_page(page, 1);
589 index++;
590 nentries = 0;
591 page = NULL;
595 if (page) {
596 orphan_blk->blk_addr = cpu_to_le16(index);
597 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
598 orphan_blk->entry_count = cpu_to_le32(nentries);
599 set_page_dirty(page);
600 f2fs_put_page(page, 1);
604 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
605 block_t cp_addr, unsigned long long *version)
607 struct page *cp_page_1, *cp_page_2 = NULL;
608 unsigned long blk_size = sbi->blocksize;
609 struct f2fs_checkpoint *cp_block;
610 unsigned long long cur_version = 0, pre_version = 0;
611 size_t crc_offset;
612 __u32 crc = 0;
614 /* Read the 1st cp block in this CP pack */
615 cp_page_1 = get_meta_page(sbi, cp_addr);
617 /* get the version number */
618 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
619 crc_offset = le32_to_cpu(cp_block->checksum_offset);
620 if (crc_offset >= blk_size)
621 goto invalid_cp1;
623 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
624 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
625 goto invalid_cp1;
627 pre_version = cur_cp_version(cp_block);
629 /* Read the 2nd cp block in this CP pack */
630 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
631 cp_page_2 = get_meta_page(sbi, cp_addr);
633 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
634 crc_offset = le32_to_cpu(cp_block->checksum_offset);
635 if (crc_offset >= blk_size)
636 goto invalid_cp2;
638 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
639 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
640 goto invalid_cp2;
642 cur_version = cur_cp_version(cp_block);
644 if (cur_version == pre_version) {
645 *version = cur_version;
646 f2fs_put_page(cp_page_2, 1);
647 return cp_page_1;
649 invalid_cp2:
650 f2fs_put_page(cp_page_2, 1);
651 invalid_cp1:
652 f2fs_put_page(cp_page_1, 1);
653 return NULL;
656 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
658 struct f2fs_checkpoint *cp_block;
659 struct f2fs_super_block *fsb = sbi->raw_super;
660 struct page *cp1, *cp2, *cur_page;
661 unsigned long blk_size = sbi->blocksize;
662 unsigned long long cp1_version = 0, cp2_version = 0;
663 unsigned long long cp_start_blk_no;
664 unsigned int cp_blks = 1 + __cp_payload(sbi);
665 block_t cp_blk_no;
666 int i;
668 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
669 if (!sbi->ckpt)
670 return -ENOMEM;
672 * Finding out valid cp block involves read both
673 * sets( cp pack1 and cp pack 2)
675 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
676 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
678 /* The second checkpoint pack should start at the next segment */
679 cp_start_blk_no += ((unsigned long long)1) <<
680 le32_to_cpu(fsb->log_blocks_per_seg);
681 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
683 if (cp1 && cp2) {
684 if (ver_after(cp2_version, cp1_version))
685 cur_page = cp2;
686 else
687 cur_page = cp1;
688 } else if (cp1) {
689 cur_page = cp1;
690 } else if (cp2) {
691 cur_page = cp2;
692 } else {
693 goto fail_no_cp;
696 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
697 memcpy(sbi->ckpt, cp_block, blk_size);
699 if (cp_blks <= 1)
700 goto done;
702 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
703 if (cur_page == cp2)
704 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
706 for (i = 1; i < cp_blks; i++) {
707 void *sit_bitmap_ptr;
708 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
710 cur_page = get_meta_page(sbi, cp_blk_no + i);
711 sit_bitmap_ptr = page_address(cur_page);
712 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
713 f2fs_put_page(cur_page, 1);
715 done:
716 f2fs_put_page(cp1, 1);
717 f2fs_put_page(cp2, 1);
718 return 0;
720 fail_no_cp:
721 kfree(sbi->ckpt);
722 return -EINVAL;
725 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
727 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
729 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
730 return -EEXIST;
732 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
733 F2FS_I(inode)->dirty_dir = new;
734 list_add_tail(&new->list, &sbi->dir_inode_list);
735 stat_inc_dirty_dir(sbi);
736 return 0;
739 void update_dirty_page(struct inode *inode, struct page *page)
741 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
742 struct inode_entry *new;
743 int ret = 0;
745 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
746 !S_ISLNK(inode->i_mode))
747 return;
749 if (!S_ISDIR(inode->i_mode)) {
750 inode_inc_dirty_pages(inode);
751 goto out;
754 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
755 new->inode = inode;
756 INIT_LIST_HEAD(&new->list);
758 spin_lock(&sbi->dir_inode_lock);
759 ret = __add_dirty_inode(inode, new);
760 inode_inc_dirty_pages(inode);
761 spin_unlock(&sbi->dir_inode_lock);
763 if (ret)
764 kmem_cache_free(inode_entry_slab, new);
765 out:
766 SetPagePrivate(page);
767 f2fs_trace_pid(page);
770 void add_dirty_dir_inode(struct inode *inode)
772 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
773 struct inode_entry *new =
774 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
775 int ret = 0;
777 new->inode = inode;
778 INIT_LIST_HEAD(&new->list);
780 spin_lock(&sbi->dir_inode_lock);
781 ret = __add_dirty_inode(inode, new);
782 spin_unlock(&sbi->dir_inode_lock);
784 if (ret)
785 kmem_cache_free(inode_entry_slab, new);
788 void remove_dirty_dir_inode(struct inode *inode)
790 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
791 struct inode_entry *entry;
793 if (!S_ISDIR(inode->i_mode))
794 return;
796 spin_lock(&sbi->dir_inode_lock);
797 if (get_dirty_pages(inode) ||
798 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
799 spin_unlock(&sbi->dir_inode_lock);
800 return;
803 entry = F2FS_I(inode)->dirty_dir;
804 list_del(&entry->list);
805 F2FS_I(inode)->dirty_dir = NULL;
806 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
807 stat_dec_dirty_dir(sbi);
808 spin_unlock(&sbi->dir_inode_lock);
809 kmem_cache_free(inode_entry_slab, entry);
811 /* Only from the recovery routine */
812 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
813 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
814 iput(inode);
818 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
820 struct list_head *head;
821 struct inode_entry *entry;
822 struct inode *inode;
823 retry:
824 if (unlikely(f2fs_cp_error(sbi)))
825 return;
827 spin_lock(&sbi->dir_inode_lock);
829 head = &sbi->dir_inode_list;
830 if (list_empty(head)) {
831 spin_unlock(&sbi->dir_inode_lock);
832 return;
834 entry = list_entry(head->next, struct inode_entry, list);
835 inode = igrab(entry->inode);
836 spin_unlock(&sbi->dir_inode_lock);
837 if (inode) {
838 filemap_fdatawrite(inode->i_mapping);
839 iput(inode);
840 } else {
842 * We should submit bio, since it exists several
843 * wribacking dentry pages in the freeing inode.
845 f2fs_submit_merged_bio(sbi, DATA, WRITE);
846 cond_resched();
848 goto retry;
852 * Freeze all the FS-operations for checkpoint.
854 static int block_operations(struct f2fs_sb_info *sbi)
856 struct writeback_control wbc = {
857 .sync_mode = WB_SYNC_ALL,
858 .nr_to_write = LONG_MAX,
859 .for_reclaim = 0,
861 struct blk_plug plug;
862 int err = 0;
864 blk_start_plug(&plug);
866 retry_flush_dents:
867 f2fs_lock_all(sbi);
868 /* write all the dirty dentry pages */
869 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
870 f2fs_unlock_all(sbi);
871 sync_dirty_dir_inodes(sbi);
872 if (unlikely(f2fs_cp_error(sbi))) {
873 err = -EIO;
874 goto out;
876 goto retry_flush_dents;
880 * POR: we should ensure that there are no dirty node pages
881 * until finishing nat/sit flush.
883 retry_flush_nodes:
884 down_write(&sbi->node_write);
886 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
887 up_write(&sbi->node_write);
888 sync_node_pages(sbi, 0, &wbc);
889 if (unlikely(f2fs_cp_error(sbi))) {
890 f2fs_unlock_all(sbi);
891 err = -EIO;
892 goto out;
894 goto retry_flush_nodes;
896 out:
897 blk_finish_plug(&plug);
898 return err;
901 static void unblock_operations(struct f2fs_sb_info *sbi)
903 up_write(&sbi->node_write);
904 f2fs_unlock_all(sbi);
907 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
909 DEFINE_WAIT(wait);
911 for (;;) {
912 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
914 if (!get_pages(sbi, F2FS_WRITEBACK))
915 break;
917 io_schedule();
919 finish_wait(&sbi->cp_wait, &wait);
922 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
924 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
925 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
926 struct f2fs_nm_info *nm_i = NM_I(sbi);
927 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
928 nid_t last_nid = nm_i->next_scan_nid;
929 block_t start_blk;
930 unsigned int data_sum_blocks, orphan_blocks;
931 __u32 crc32 = 0;
932 int i;
933 int cp_payload_blks = __cp_payload(sbi);
934 block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
935 bool invalidate = false;
938 * This avoids to conduct wrong roll-forward operations and uses
939 * metapages, so should be called prior to sync_meta_pages below.
941 if (discard_next_dnode(sbi, discard_blk))
942 invalidate = true;
944 /* Flush all the NAT/SIT pages */
945 while (get_pages(sbi, F2FS_DIRTY_META)) {
946 sync_meta_pages(sbi, META, LONG_MAX);
947 if (unlikely(f2fs_cp_error(sbi)))
948 return;
951 next_free_nid(sbi, &last_nid);
954 * modify checkpoint
955 * version number is already updated
957 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
958 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
959 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
960 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
961 ckpt->cur_node_segno[i] =
962 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
963 ckpt->cur_node_blkoff[i] =
964 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
965 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
966 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
968 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
969 ckpt->cur_data_segno[i] =
970 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
971 ckpt->cur_data_blkoff[i] =
972 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
973 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
974 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
977 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
978 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
979 ckpt->next_free_nid = cpu_to_le32(last_nid);
981 /* 2 cp + n data seg summary + orphan inode blocks */
982 data_sum_blocks = npages_for_summary_flush(sbi, false);
983 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
984 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
985 else
986 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
988 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
989 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
990 orphan_blocks);
992 if (__remain_node_summaries(cpc->reason))
993 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
994 cp_payload_blks + data_sum_blocks +
995 orphan_blocks + NR_CURSEG_NODE_TYPE);
996 else
997 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
998 cp_payload_blks + data_sum_blocks +
999 orphan_blocks);
1001 if (cpc->reason == CP_UMOUNT)
1002 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1003 else
1004 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1006 if (cpc->reason == CP_FASTBOOT)
1007 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1008 else
1009 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1011 if (orphan_num)
1012 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1013 else
1014 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1016 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1017 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1019 /* update SIT/NAT bitmap */
1020 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1021 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1023 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
1024 *((__le32 *)((unsigned char *)ckpt +
1025 le32_to_cpu(ckpt->checksum_offset)))
1026 = cpu_to_le32(crc32);
1028 start_blk = __start_cp_addr(sbi);
1030 /* need to wait for end_io results */
1031 wait_on_all_pages_writeback(sbi);
1032 if (unlikely(f2fs_cp_error(sbi)))
1033 return;
1035 /* write out checkpoint buffer at block 0 */
1036 update_meta_page(sbi, ckpt, start_blk++);
1038 for (i = 1; i < 1 + cp_payload_blks; i++)
1039 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1040 start_blk++);
1042 if (orphan_num) {
1043 write_orphan_inodes(sbi, start_blk);
1044 start_blk += orphan_blocks;
1047 write_data_summaries(sbi, start_blk);
1048 start_blk += data_sum_blocks;
1049 if (__remain_node_summaries(cpc->reason)) {
1050 write_node_summaries(sbi, start_blk);
1051 start_blk += NR_CURSEG_NODE_TYPE;
1054 /* writeout checkpoint block */
1055 update_meta_page(sbi, ckpt, start_blk);
1057 /* wait for previous submitted node/meta pages writeback */
1058 wait_on_all_pages_writeback(sbi);
1060 if (unlikely(f2fs_cp_error(sbi)))
1061 return;
1063 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1064 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1066 /* update user_block_counts */
1067 sbi->last_valid_block_count = sbi->total_valid_block_count;
1068 sbi->alloc_valid_block_count = 0;
1070 /* Here, we only have one bio having CP pack */
1071 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1073 /* wait for previous submitted meta pages writeback */
1074 wait_on_all_pages_writeback(sbi);
1077 * invalidate meta page which is used temporarily for zeroing out
1078 * block at the end of warm node chain.
1080 if (invalidate)
1081 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1082 discard_blk);
1084 release_dirty_inode(sbi);
1086 if (unlikely(f2fs_cp_error(sbi)))
1087 return;
1089 clear_prefree_segments(sbi, cpc);
1090 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1094 * We guarantee that this checkpoint procedure will not fail.
1096 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1098 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1099 unsigned long long ckpt_ver;
1101 mutex_lock(&sbi->cp_mutex);
1103 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1104 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1105 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1106 goto out;
1107 if (unlikely(f2fs_cp_error(sbi)))
1108 goto out;
1109 if (f2fs_readonly(sbi->sb))
1110 goto out;
1112 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1114 if (block_operations(sbi))
1115 goto out;
1117 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1119 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1120 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1121 f2fs_submit_merged_bio(sbi, META, WRITE);
1124 * update checkpoint pack index
1125 * Increase the version number so that
1126 * SIT entries and seg summaries are written at correct place
1128 ckpt_ver = cur_cp_version(ckpt);
1129 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1131 /* write cached NAT/SIT entries to NAT/SIT area */
1132 flush_nat_entries(sbi);
1133 flush_sit_entries(sbi, cpc);
1135 /* unlock all the fs_lock[] in do_checkpoint() */
1136 do_checkpoint(sbi, cpc);
1138 unblock_operations(sbi);
1139 stat_inc_cp_count(sbi->stat_info);
1141 if (cpc->reason == CP_RECOVERY)
1142 f2fs_msg(sbi->sb, KERN_NOTICE,
1143 "checkpoint: version = %llx", ckpt_ver);
1145 /* do checkpoint periodically */
1146 sbi->cp_expires = round_jiffies_up(jiffies + HZ * sbi->cp_interval);
1147 out:
1148 mutex_unlock(&sbi->cp_mutex);
1149 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1152 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1154 int i;
1156 for (i = 0; i < MAX_INO_ENTRY; i++) {
1157 struct inode_management *im = &sbi->im[i];
1159 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1160 spin_lock_init(&im->ino_lock);
1161 INIT_LIST_HEAD(&im->ino_list);
1162 im->ino_num = 0;
1165 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1166 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1167 F2FS_ORPHANS_PER_BLOCK;
1170 int __init create_checkpoint_caches(void)
1172 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1173 sizeof(struct ino_entry));
1174 if (!ino_entry_slab)
1175 return -ENOMEM;
1176 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1177 sizeof(struct inode_entry));
1178 if (!inode_entry_slab) {
1179 kmem_cache_destroy(ino_entry_slab);
1180 return -ENOMEM;
1182 return 0;
1185 void destroy_checkpoint_caches(void)
1187 kmem_cache_destroy(ino_entry_slab);
1188 kmem_cache_destroy(inode_entry_slab);