RDS: Heap OOB write in rds_message_alloc_sgs()
[linux/fpc-iii.git] / fs / fs-writeback.c
blob22b30249fbcb1c9cfa09594aded0b5422891a1be
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
34 * 4MB minimal write chunk size
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 struct wb_completion {
39 atomic_t cnt;
43 * Passed into wb_writeback(), essentially a subset of writeback_control
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87 static inline struct inode *wb_inode(struct list_head *head)
89 return list_entry(head, struct inode, i_io_list);
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
139 assert_spin_locked(&wb->list_lock);
141 list_move(&inode->i_io_list, head);
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
147 wb_io_lists_depopulated(wb);
148 return false;
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
162 assert_spin_locked(&wb->list_lock);
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
168 static void wb_wakeup(struct bdi_writeback *wb)
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
179 struct wb_completion *done = work->done;
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
187 static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
190 trace_writeback_queue(wb, work);
192 if (work->done)
193 atomic_inc(&work->done->cnt);
195 spin_lock_bh(&wb->work_lock);
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
203 spin_unlock_bh(&wb->work_lock);
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
224 #ifdef CONFIG_CGROUP_WRITEBACK
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
243 void __inode_attach_wb(struct inode *inode, struct page *page)
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
262 if (!wb)
263 wb = &bdi->wb;
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
305 spin_unlock(&wb->list_lock);
306 wb_put(wb);
307 cpu_relax();
308 spin_lock(&inode->i_lock);
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
326 struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
330 struct rcu_head rcu_head;
331 struct work_struct work;
334 static void inode_switch_wbs_work_fn(struct work_struct *work)
336 struct inode_switch_wbs_context *isw =
337 container_of(work, struct inode_switch_wbs_context, work);
338 struct inode *inode = isw->inode;
339 struct address_space *mapping = inode->i_mapping;
340 struct bdi_writeback *old_wb = inode->i_wb;
341 struct bdi_writeback *new_wb = isw->new_wb;
342 struct radix_tree_iter iter;
343 bool switched = false;
344 void **slot;
347 * By the time control reaches here, RCU grace period has passed
348 * since I_WB_SWITCH assertion and all wb stat update transactions
349 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
350 * synchronizing against mapping->tree_lock.
352 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
353 * gives us exclusion against all wb related operations on @inode
354 * including IO list manipulations and stat updates.
356 if (old_wb < new_wb) {
357 spin_lock(&old_wb->list_lock);
358 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
359 } else {
360 spin_lock(&new_wb->list_lock);
361 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
363 spin_lock(&inode->i_lock);
364 spin_lock_irq(&mapping->tree_lock);
367 * Once I_FREEING is visible under i_lock, the eviction path owns
368 * the inode and we shouldn't modify ->i_io_list.
370 if (unlikely(inode->i_state & I_FREEING))
371 goto skip_switch;
374 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
375 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
376 * pages actually under underwriteback.
378 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
379 PAGECACHE_TAG_DIRTY) {
380 struct page *page = radix_tree_deref_slot_protected(slot,
381 &mapping->tree_lock);
382 if (likely(page) && PageDirty(page)) {
383 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
384 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
388 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
389 PAGECACHE_TAG_WRITEBACK) {
390 struct page *page = radix_tree_deref_slot_protected(slot,
391 &mapping->tree_lock);
392 if (likely(page)) {
393 WARN_ON_ONCE(!PageWriteback(page));
394 __dec_wb_stat(old_wb, WB_WRITEBACK);
395 __inc_wb_stat(new_wb, WB_WRITEBACK);
399 wb_get(new_wb);
402 * Transfer to @new_wb's IO list if necessary. The specific list
403 * @inode was on is ignored and the inode is put on ->b_dirty which
404 * is always correct including from ->b_dirty_time. The transfer
405 * preserves @inode->dirtied_when ordering.
407 if (!list_empty(&inode->i_io_list)) {
408 struct inode *pos;
410 inode_io_list_del_locked(inode, old_wb);
411 inode->i_wb = new_wb;
412 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
413 if (time_after_eq(inode->dirtied_when,
414 pos->dirtied_when))
415 break;
416 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
417 } else {
418 inode->i_wb = new_wb;
421 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
422 inode->i_wb_frn_winner = 0;
423 inode->i_wb_frn_avg_time = 0;
424 inode->i_wb_frn_history = 0;
425 switched = true;
426 skip_switch:
428 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
429 * ensures that the new wb is visible if they see !I_WB_SWITCH.
431 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
433 spin_unlock_irq(&mapping->tree_lock);
434 spin_unlock(&inode->i_lock);
435 spin_unlock(&new_wb->list_lock);
436 spin_unlock(&old_wb->list_lock);
438 if (switched) {
439 wb_wakeup(new_wb);
440 wb_put(old_wb);
442 wb_put(new_wb);
444 iput(inode);
445 kfree(isw);
447 atomic_dec(&isw_nr_in_flight);
450 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
452 struct inode_switch_wbs_context *isw = container_of(rcu_head,
453 struct inode_switch_wbs_context, rcu_head);
455 /* needs to grab bh-unsafe locks, bounce to work item */
456 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
457 queue_work(isw_wq, &isw->work);
461 * inode_switch_wbs - change the wb association of an inode
462 * @inode: target inode
463 * @new_wb_id: ID of the new wb
465 * Switch @inode's wb association to the wb identified by @new_wb_id. The
466 * switching is performed asynchronously and may fail silently.
468 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
470 struct backing_dev_info *bdi = inode_to_bdi(inode);
471 struct cgroup_subsys_state *memcg_css;
472 struct inode_switch_wbs_context *isw;
474 /* noop if seems to be already in progress */
475 if (inode->i_state & I_WB_SWITCH)
476 return;
478 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
479 if (!isw)
480 return;
482 /* find and pin the new wb */
483 rcu_read_lock();
484 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
485 if (memcg_css)
486 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
487 rcu_read_unlock();
488 if (!isw->new_wb)
489 goto out_free;
491 /* while holding I_WB_SWITCH, no one else can update the association */
492 spin_lock(&inode->i_lock);
493 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
494 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
495 inode_to_wb(inode) == isw->new_wb) {
496 spin_unlock(&inode->i_lock);
497 goto out_free;
499 inode->i_state |= I_WB_SWITCH;
500 spin_unlock(&inode->i_lock);
502 ihold(inode);
503 isw->inode = inode;
505 atomic_inc(&isw_nr_in_flight);
508 * In addition to synchronizing among switchers, I_WB_SWITCH tells
509 * the RCU protected stat update paths to grab the mapping's
510 * tree_lock so that stat transfer can synchronize against them.
511 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
513 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
514 return;
516 out_free:
517 if (isw->new_wb)
518 wb_put(isw->new_wb);
519 kfree(isw);
523 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
524 * @wbc: writeback_control of interest
525 * @inode: target inode
527 * @inode is locked and about to be written back under the control of @wbc.
528 * Record @inode's writeback context into @wbc and unlock the i_lock. On
529 * writeback completion, wbc_detach_inode() should be called. This is used
530 * to track the cgroup writeback context.
532 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
533 struct inode *inode)
535 if (!inode_cgwb_enabled(inode)) {
536 spin_unlock(&inode->i_lock);
537 return;
540 wbc->wb = inode_to_wb(inode);
541 wbc->inode = inode;
543 wbc->wb_id = wbc->wb->memcg_css->id;
544 wbc->wb_lcand_id = inode->i_wb_frn_winner;
545 wbc->wb_tcand_id = 0;
546 wbc->wb_bytes = 0;
547 wbc->wb_lcand_bytes = 0;
548 wbc->wb_tcand_bytes = 0;
550 wb_get(wbc->wb);
551 spin_unlock(&inode->i_lock);
554 * A dying wb indicates that the memcg-blkcg mapping has changed
555 * and a new wb is already serving the memcg. Switch immediately.
557 if (unlikely(wb_dying(wbc->wb)))
558 inode_switch_wbs(inode, wbc->wb_id);
562 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
563 * @wbc: writeback_control of the just finished writeback
565 * To be called after a writeback attempt of an inode finishes and undoes
566 * wbc_attach_and_unlock_inode(). Can be called under any context.
568 * As concurrent write sharing of an inode is expected to be very rare and
569 * memcg only tracks page ownership on first-use basis severely confining
570 * the usefulness of such sharing, cgroup writeback tracks ownership
571 * per-inode. While the support for concurrent write sharing of an inode
572 * is deemed unnecessary, an inode being written to by different cgroups at
573 * different points in time is a lot more common, and, more importantly,
574 * charging only by first-use can too readily lead to grossly incorrect
575 * behaviors (single foreign page can lead to gigabytes of writeback to be
576 * incorrectly attributed).
578 * To resolve this issue, cgroup writeback detects the majority dirtier of
579 * an inode and transfers the ownership to it. To avoid unnnecessary
580 * oscillation, the detection mechanism keeps track of history and gives
581 * out the switch verdict only if the foreign usage pattern is stable over
582 * a certain amount of time and/or writeback attempts.
584 * On each writeback attempt, @wbc tries to detect the majority writer
585 * using Boyer-Moore majority vote algorithm. In addition to the byte
586 * count from the majority voting, it also counts the bytes written for the
587 * current wb and the last round's winner wb (max of last round's current
588 * wb, the winner from two rounds ago, and the last round's majority
589 * candidate). Keeping track of the historical winner helps the algorithm
590 * to semi-reliably detect the most active writer even when it's not the
591 * absolute majority.
593 * Once the winner of the round is determined, whether the winner is
594 * foreign or not and how much IO time the round consumed is recorded in
595 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
596 * over a certain threshold, the switch verdict is given.
598 void wbc_detach_inode(struct writeback_control *wbc)
600 struct bdi_writeback *wb = wbc->wb;
601 struct inode *inode = wbc->inode;
602 unsigned long avg_time, max_bytes, max_time;
603 u16 history;
604 int max_id;
606 if (!wb)
607 return;
609 history = inode->i_wb_frn_history;
610 avg_time = inode->i_wb_frn_avg_time;
612 /* pick the winner of this round */
613 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
614 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
615 max_id = wbc->wb_id;
616 max_bytes = wbc->wb_bytes;
617 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
618 max_id = wbc->wb_lcand_id;
619 max_bytes = wbc->wb_lcand_bytes;
620 } else {
621 max_id = wbc->wb_tcand_id;
622 max_bytes = wbc->wb_tcand_bytes;
626 * Calculate the amount of IO time the winner consumed and fold it
627 * into the running average kept per inode. If the consumed IO
628 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
629 * deciding whether to switch or not. This is to prevent one-off
630 * small dirtiers from skewing the verdict.
632 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
633 wb->avg_write_bandwidth);
634 if (avg_time)
635 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
636 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
637 else
638 avg_time = max_time; /* immediate catch up on first run */
640 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
641 int slots;
644 * The switch verdict is reached if foreign wb's consume
645 * more than a certain proportion of IO time in a
646 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
647 * history mask where each bit represents one sixteenth of
648 * the period. Determine the number of slots to shift into
649 * history from @max_time.
651 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
652 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
653 history <<= slots;
654 if (wbc->wb_id != max_id)
655 history |= (1U << slots) - 1;
658 * Switch if the current wb isn't the consistent winner.
659 * If there are multiple closely competing dirtiers, the
660 * inode may switch across them repeatedly over time, which
661 * is okay. The main goal is avoiding keeping an inode on
662 * the wrong wb for an extended period of time.
664 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
665 inode_switch_wbs(inode, max_id);
669 * Multiple instances of this function may race to update the
670 * following fields but we don't mind occassional inaccuracies.
672 inode->i_wb_frn_winner = max_id;
673 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
674 inode->i_wb_frn_history = history;
676 wb_put(wbc->wb);
677 wbc->wb = NULL;
681 * wbc_account_io - account IO issued during writeback
682 * @wbc: writeback_control of the writeback in progress
683 * @page: page being written out
684 * @bytes: number of bytes being written out
686 * @bytes from @page are about to written out during the writeback
687 * controlled by @wbc. Keep the book for foreign inode detection. See
688 * wbc_detach_inode().
690 void wbc_account_io(struct writeback_control *wbc, struct page *page,
691 size_t bytes)
693 int id;
696 * pageout() path doesn't attach @wbc to the inode being written
697 * out. This is intentional as we don't want the function to block
698 * behind a slow cgroup. Ultimately, we want pageout() to kick off
699 * regular writeback instead of writing things out itself.
701 if (!wbc->wb)
702 return;
704 rcu_read_lock();
705 id = mem_cgroup_css_from_page(page)->id;
706 rcu_read_unlock();
708 if (id == wbc->wb_id) {
709 wbc->wb_bytes += bytes;
710 return;
713 if (id == wbc->wb_lcand_id)
714 wbc->wb_lcand_bytes += bytes;
716 /* Boyer-Moore majority vote algorithm */
717 if (!wbc->wb_tcand_bytes)
718 wbc->wb_tcand_id = id;
719 if (id == wbc->wb_tcand_id)
720 wbc->wb_tcand_bytes += bytes;
721 else
722 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
724 EXPORT_SYMBOL_GPL(wbc_account_io);
727 * inode_congested - test whether an inode is congested
728 * @inode: inode to test for congestion (may be NULL)
729 * @cong_bits: mask of WB_[a]sync_congested bits to test
731 * Tests whether @inode is congested. @cong_bits is the mask of congestion
732 * bits to test and the return value is the mask of set bits.
734 * If cgroup writeback is enabled for @inode, the congestion state is
735 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
736 * associated with @inode is congested; otherwise, the root wb's congestion
737 * state is used.
739 * @inode is allowed to be NULL as this function is often called on
740 * mapping->host which is NULL for the swapper space.
742 int inode_congested(struct inode *inode, int cong_bits)
745 * Once set, ->i_wb never becomes NULL while the inode is alive.
746 * Start transaction iff ->i_wb is visible.
748 if (inode && inode_to_wb_is_valid(inode)) {
749 struct bdi_writeback *wb;
750 bool locked, congested;
752 wb = unlocked_inode_to_wb_begin(inode, &locked);
753 congested = wb_congested(wb, cong_bits);
754 unlocked_inode_to_wb_end(inode, locked);
755 return congested;
758 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
760 EXPORT_SYMBOL_GPL(inode_congested);
763 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
764 * @wb: target bdi_writeback to split @nr_pages to
765 * @nr_pages: number of pages to write for the whole bdi
767 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
768 * relation to the total write bandwidth of all wb's w/ dirty inodes on
769 * @wb->bdi.
771 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
773 unsigned long this_bw = wb->avg_write_bandwidth;
774 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
776 if (nr_pages == LONG_MAX)
777 return LONG_MAX;
780 * This may be called on clean wb's and proportional distribution
781 * may not make sense, just use the original @nr_pages in those
782 * cases. In general, we wanna err on the side of writing more.
784 if (!tot_bw || this_bw >= tot_bw)
785 return nr_pages;
786 else
787 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
791 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
792 * @bdi: target backing_dev_info
793 * @base_work: wb_writeback_work to issue
794 * @skip_if_busy: skip wb's which already have writeback in progress
796 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
797 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
798 * distributed to the busy wbs according to each wb's proportion in the
799 * total active write bandwidth of @bdi.
801 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
802 struct wb_writeback_work *base_work,
803 bool skip_if_busy)
805 struct bdi_writeback *last_wb = NULL;
806 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
807 struct bdi_writeback, bdi_node);
809 might_sleep();
810 restart:
811 rcu_read_lock();
812 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
813 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
814 struct wb_writeback_work fallback_work;
815 struct wb_writeback_work *work;
816 long nr_pages;
818 if (last_wb) {
819 wb_put(last_wb);
820 last_wb = NULL;
823 /* SYNC_ALL writes out I_DIRTY_TIME too */
824 if (!wb_has_dirty_io(wb) &&
825 (base_work->sync_mode == WB_SYNC_NONE ||
826 list_empty(&wb->b_dirty_time)))
827 continue;
828 if (skip_if_busy && writeback_in_progress(wb))
829 continue;
831 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
833 work = kmalloc(sizeof(*work), GFP_ATOMIC);
834 if (work) {
835 *work = *base_work;
836 work->nr_pages = nr_pages;
837 work->auto_free = 1;
838 wb_queue_work(wb, work);
839 continue;
842 /* alloc failed, execute synchronously using on-stack fallback */
843 work = &fallback_work;
844 *work = *base_work;
845 work->nr_pages = nr_pages;
846 work->auto_free = 0;
847 work->done = &fallback_work_done;
849 wb_queue_work(wb, work);
852 * Pin @wb so that it stays on @bdi->wb_list. This allows
853 * continuing iteration from @wb after dropping and
854 * regrabbing rcu read lock.
856 wb_get(wb);
857 last_wb = wb;
859 rcu_read_unlock();
860 wb_wait_for_completion(bdi, &fallback_work_done);
861 goto restart;
863 rcu_read_unlock();
865 if (last_wb)
866 wb_put(last_wb);
870 * cgroup_writeback_umount - flush inode wb switches for umount
872 * This function is called when a super_block is about to be destroyed and
873 * flushes in-flight inode wb switches. An inode wb switch goes through
874 * RCU and then workqueue, so the two need to be flushed in order to ensure
875 * that all previously scheduled switches are finished. As wb switches are
876 * rare occurrences and synchronize_rcu() can take a while, perform
877 * flushing iff wb switches are in flight.
879 void cgroup_writeback_umount(void)
881 if (atomic_read(&isw_nr_in_flight)) {
882 synchronize_rcu();
883 flush_workqueue(isw_wq);
887 static int __init cgroup_writeback_init(void)
889 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
890 if (!isw_wq)
891 return -ENOMEM;
892 return 0;
894 fs_initcall(cgroup_writeback_init);
896 #else /* CONFIG_CGROUP_WRITEBACK */
898 static struct bdi_writeback *
899 locked_inode_to_wb_and_lock_list(struct inode *inode)
900 __releases(&inode->i_lock)
901 __acquires(&wb->list_lock)
903 struct bdi_writeback *wb = inode_to_wb(inode);
905 spin_unlock(&inode->i_lock);
906 spin_lock(&wb->list_lock);
907 return wb;
910 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
911 __acquires(&wb->list_lock)
913 struct bdi_writeback *wb = inode_to_wb(inode);
915 spin_lock(&wb->list_lock);
916 return wb;
919 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
921 return nr_pages;
924 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
925 struct wb_writeback_work *base_work,
926 bool skip_if_busy)
928 might_sleep();
930 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
931 base_work->auto_free = 0;
932 wb_queue_work(&bdi->wb, base_work);
936 #endif /* CONFIG_CGROUP_WRITEBACK */
938 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
939 bool range_cyclic, enum wb_reason reason)
941 struct wb_writeback_work *work;
943 if (!wb_has_dirty_io(wb))
944 return;
947 * This is WB_SYNC_NONE writeback, so if allocation fails just
948 * wakeup the thread for old dirty data writeback
950 work = kzalloc(sizeof(*work), GFP_ATOMIC);
951 if (!work) {
952 trace_writeback_nowork(wb);
953 wb_wakeup(wb);
954 return;
957 work->sync_mode = WB_SYNC_NONE;
958 work->nr_pages = nr_pages;
959 work->range_cyclic = range_cyclic;
960 work->reason = reason;
961 work->auto_free = 1;
963 wb_queue_work(wb, work);
967 * wb_start_background_writeback - start background writeback
968 * @wb: bdi_writback to write from
970 * Description:
971 * This makes sure WB_SYNC_NONE background writeback happens. When
972 * this function returns, it is only guaranteed that for given wb
973 * some IO is happening if we are over background dirty threshold.
974 * Caller need not hold sb s_umount semaphore.
976 void wb_start_background_writeback(struct bdi_writeback *wb)
979 * We just wake up the flusher thread. It will perform background
980 * writeback as soon as there is no other work to do.
982 trace_writeback_wake_background(wb);
983 wb_wakeup(wb);
987 * Remove the inode from the writeback list it is on.
989 void inode_io_list_del(struct inode *inode)
991 struct bdi_writeback *wb;
993 wb = inode_to_wb_and_lock_list(inode);
994 inode_io_list_del_locked(inode, wb);
995 spin_unlock(&wb->list_lock);
999 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1000 * furthest end of its superblock's dirty-inode list.
1002 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1003 * already the most-recently-dirtied inode on the b_dirty list. If that is
1004 * the case then the inode must have been redirtied while it was being written
1005 * out and we don't reset its dirtied_when.
1007 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1009 if (!list_empty(&wb->b_dirty)) {
1010 struct inode *tail;
1012 tail = wb_inode(wb->b_dirty.next);
1013 if (time_before(inode->dirtied_when, tail->dirtied_when))
1014 inode->dirtied_when = jiffies;
1016 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1020 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1022 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1024 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1027 static void inode_sync_complete(struct inode *inode)
1029 inode->i_state &= ~I_SYNC;
1030 /* If inode is clean an unused, put it into LRU now... */
1031 inode_add_lru(inode);
1032 /* Waiters must see I_SYNC cleared before being woken up */
1033 smp_mb();
1034 wake_up_bit(&inode->i_state, __I_SYNC);
1037 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1039 bool ret = time_after(inode->dirtied_when, t);
1040 #ifndef CONFIG_64BIT
1042 * For inodes being constantly redirtied, dirtied_when can get stuck.
1043 * It _appears_ to be in the future, but is actually in distant past.
1044 * This test is necessary to prevent such wrapped-around relative times
1045 * from permanently stopping the whole bdi writeback.
1047 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1048 #endif
1049 return ret;
1052 #define EXPIRE_DIRTY_ATIME 0x0001
1055 * Move expired (dirtied before work->older_than_this) dirty inodes from
1056 * @delaying_queue to @dispatch_queue.
1058 static int move_expired_inodes(struct list_head *delaying_queue,
1059 struct list_head *dispatch_queue,
1060 int flags,
1061 struct wb_writeback_work *work)
1063 unsigned long *older_than_this = NULL;
1064 unsigned long expire_time;
1065 LIST_HEAD(tmp);
1066 struct list_head *pos, *node;
1067 struct super_block *sb = NULL;
1068 struct inode *inode;
1069 int do_sb_sort = 0;
1070 int moved = 0;
1072 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1073 older_than_this = work->older_than_this;
1074 else if (!work->for_sync) {
1075 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1076 older_than_this = &expire_time;
1078 while (!list_empty(delaying_queue)) {
1079 inode = wb_inode(delaying_queue->prev);
1080 if (older_than_this &&
1081 inode_dirtied_after(inode, *older_than_this))
1082 break;
1083 list_move(&inode->i_io_list, &tmp);
1084 moved++;
1085 if (flags & EXPIRE_DIRTY_ATIME)
1086 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1087 if (sb_is_blkdev_sb(inode->i_sb))
1088 continue;
1089 if (sb && sb != inode->i_sb)
1090 do_sb_sort = 1;
1091 sb = inode->i_sb;
1094 /* just one sb in list, splice to dispatch_queue and we're done */
1095 if (!do_sb_sort) {
1096 list_splice(&tmp, dispatch_queue);
1097 goto out;
1100 /* Move inodes from one superblock together */
1101 while (!list_empty(&tmp)) {
1102 sb = wb_inode(tmp.prev)->i_sb;
1103 list_for_each_prev_safe(pos, node, &tmp) {
1104 inode = wb_inode(pos);
1105 if (inode->i_sb == sb)
1106 list_move(&inode->i_io_list, dispatch_queue);
1109 out:
1110 return moved;
1114 * Queue all expired dirty inodes for io, eldest first.
1115 * Before
1116 * newly dirtied b_dirty b_io b_more_io
1117 * =============> gf edc BA
1118 * After
1119 * newly dirtied b_dirty b_io b_more_io
1120 * =============> g fBAedc
1122 * +--> dequeue for IO
1124 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1126 int moved;
1128 assert_spin_locked(&wb->list_lock);
1129 list_splice_init(&wb->b_more_io, &wb->b_io);
1130 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1131 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1132 EXPIRE_DIRTY_ATIME, work);
1133 if (moved)
1134 wb_io_lists_populated(wb);
1135 trace_writeback_queue_io(wb, work, moved);
1138 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1140 int ret;
1142 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1143 trace_writeback_write_inode_start(inode, wbc);
1144 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1145 trace_writeback_write_inode(inode, wbc);
1146 return ret;
1148 return 0;
1152 * Wait for writeback on an inode to complete. Called with i_lock held.
1153 * Caller must make sure inode cannot go away when we drop i_lock.
1155 static void __inode_wait_for_writeback(struct inode *inode)
1156 __releases(inode->i_lock)
1157 __acquires(inode->i_lock)
1159 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1160 wait_queue_head_t *wqh;
1162 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1163 while (inode->i_state & I_SYNC) {
1164 spin_unlock(&inode->i_lock);
1165 __wait_on_bit(wqh, &wq, bit_wait,
1166 TASK_UNINTERRUPTIBLE);
1167 spin_lock(&inode->i_lock);
1172 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1174 void inode_wait_for_writeback(struct inode *inode)
1176 spin_lock(&inode->i_lock);
1177 __inode_wait_for_writeback(inode);
1178 spin_unlock(&inode->i_lock);
1182 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1183 * held and drops it. It is aimed for callers not holding any inode reference
1184 * so once i_lock is dropped, inode can go away.
1186 static void inode_sleep_on_writeback(struct inode *inode)
1187 __releases(inode->i_lock)
1189 DEFINE_WAIT(wait);
1190 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1191 int sleep;
1193 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1194 sleep = inode->i_state & I_SYNC;
1195 spin_unlock(&inode->i_lock);
1196 if (sleep)
1197 schedule();
1198 finish_wait(wqh, &wait);
1202 * Find proper writeback list for the inode depending on its current state and
1203 * possibly also change of its state while we were doing writeback. Here we
1204 * handle things such as livelock prevention or fairness of writeback among
1205 * inodes. This function can be called only by flusher thread - noone else
1206 * processes all inodes in writeback lists and requeueing inodes behind flusher
1207 * thread's back can have unexpected consequences.
1209 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1210 struct writeback_control *wbc)
1212 if (inode->i_state & I_FREEING)
1213 return;
1216 * Sync livelock prevention. Each inode is tagged and synced in one
1217 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1218 * the dirty time to prevent enqueue and sync it again.
1220 if ((inode->i_state & I_DIRTY) &&
1221 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1222 inode->dirtied_when = jiffies;
1224 if (wbc->pages_skipped) {
1226 * writeback is not making progress due to locked
1227 * buffers. Skip this inode for now.
1229 redirty_tail(inode, wb);
1230 return;
1233 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1235 * We didn't write back all the pages. nfs_writepages()
1236 * sometimes bales out without doing anything.
1238 if (wbc->nr_to_write <= 0) {
1239 /* Slice used up. Queue for next turn. */
1240 requeue_io(inode, wb);
1241 } else {
1243 * Writeback blocked by something other than
1244 * congestion. Delay the inode for some time to
1245 * avoid spinning on the CPU (100% iowait)
1246 * retrying writeback of the dirty page/inode
1247 * that cannot be performed immediately.
1249 redirty_tail(inode, wb);
1251 } else if (inode->i_state & I_DIRTY) {
1253 * Filesystems can dirty the inode during writeback operations,
1254 * such as delayed allocation during submission or metadata
1255 * updates after data IO completion.
1257 redirty_tail(inode, wb);
1258 } else if (inode->i_state & I_DIRTY_TIME) {
1259 inode->dirtied_when = jiffies;
1260 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1261 } else {
1262 /* The inode is clean. Remove from writeback lists. */
1263 inode_io_list_del_locked(inode, wb);
1268 * Write out an inode and its dirty pages. Do not update the writeback list
1269 * linkage. That is left to the caller. The caller is also responsible for
1270 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1272 static int
1273 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1275 struct address_space *mapping = inode->i_mapping;
1276 long nr_to_write = wbc->nr_to_write;
1277 unsigned dirty;
1278 int ret;
1280 WARN_ON(!(inode->i_state & I_SYNC));
1282 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1284 ret = do_writepages(mapping, wbc);
1287 * Make sure to wait on the data before writing out the metadata.
1288 * This is important for filesystems that modify metadata on data
1289 * I/O completion. We don't do it for sync(2) writeback because it has a
1290 * separate, external IO completion path and ->sync_fs for guaranteeing
1291 * inode metadata is written back correctly.
1293 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1294 int err = filemap_fdatawait(mapping);
1295 if (ret == 0)
1296 ret = err;
1300 * Some filesystems may redirty the inode during the writeback
1301 * due to delalloc, clear dirty metadata flags right before
1302 * write_inode()
1304 spin_lock(&inode->i_lock);
1306 dirty = inode->i_state & I_DIRTY;
1307 if (inode->i_state & I_DIRTY_TIME) {
1308 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1309 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1310 unlikely(time_after(jiffies,
1311 (inode->dirtied_time_when +
1312 dirtytime_expire_interval * HZ)))) {
1313 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1314 trace_writeback_lazytime(inode);
1316 } else
1317 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1318 inode->i_state &= ~dirty;
1321 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1322 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1323 * either they see the I_DIRTY bits cleared or we see the dirtied
1324 * inode.
1326 * I_DIRTY_PAGES is always cleared together above even if @mapping
1327 * still has dirty pages. The flag is reinstated after smp_mb() if
1328 * necessary. This guarantees that either __mark_inode_dirty()
1329 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1331 smp_mb();
1333 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1334 inode->i_state |= I_DIRTY_PAGES;
1336 spin_unlock(&inode->i_lock);
1338 if (dirty & I_DIRTY_TIME)
1339 mark_inode_dirty_sync(inode);
1340 /* Don't write the inode if only I_DIRTY_PAGES was set */
1341 if (dirty & ~I_DIRTY_PAGES) {
1342 int err = write_inode(inode, wbc);
1343 if (ret == 0)
1344 ret = err;
1346 trace_writeback_single_inode(inode, wbc, nr_to_write);
1347 return ret;
1351 * Write out an inode's dirty pages. Either the caller has an active reference
1352 * on the inode or the inode has I_WILL_FREE set.
1354 * This function is designed to be called for writing back one inode which
1355 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1356 * and does more profound writeback list handling in writeback_sb_inodes().
1358 static int writeback_single_inode(struct inode *inode,
1359 struct writeback_control *wbc)
1361 struct bdi_writeback *wb;
1362 int ret = 0;
1364 spin_lock(&inode->i_lock);
1365 if (!atomic_read(&inode->i_count))
1366 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1367 else
1368 WARN_ON(inode->i_state & I_WILL_FREE);
1370 if (inode->i_state & I_SYNC) {
1371 if (wbc->sync_mode != WB_SYNC_ALL)
1372 goto out;
1374 * It's a data-integrity sync. We must wait. Since callers hold
1375 * inode reference or inode has I_WILL_FREE set, it cannot go
1376 * away under us.
1378 __inode_wait_for_writeback(inode);
1380 WARN_ON(inode->i_state & I_SYNC);
1382 * Skip inode if it is clean and we have no outstanding writeback in
1383 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1384 * function since flusher thread may be doing for example sync in
1385 * parallel and if we move the inode, it could get skipped. So here we
1386 * make sure inode is on some writeback list and leave it there unless
1387 * we have completely cleaned the inode.
1389 if (!(inode->i_state & I_DIRTY_ALL) &&
1390 (wbc->sync_mode != WB_SYNC_ALL ||
1391 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1392 goto out;
1393 inode->i_state |= I_SYNC;
1394 wbc_attach_and_unlock_inode(wbc, inode);
1396 ret = __writeback_single_inode(inode, wbc);
1398 wbc_detach_inode(wbc);
1400 wb = inode_to_wb_and_lock_list(inode);
1401 spin_lock(&inode->i_lock);
1403 * If inode is clean, remove it from writeback lists. Otherwise don't
1404 * touch it. See comment above for explanation.
1406 if (!(inode->i_state & I_DIRTY_ALL))
1407 inode_io_list_del_locked(inode, wb);
1408 spin_unlock(&wb->list_lock);
1409 inode_sync_complete(inode);
1410 out:
1411 spin_unlock(&inode->i_lock);
1412 return ret;
1415 static long writeback_chunk_size(struct bdi_writeback *wb,
1416 struct wb_writeback_work *work)
1418 long pages;
1421 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1422 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1423 * here avoids calling into writeback_inodes_wb() more than once.
1425 * The intended call sequence for WB_SYNC_ALL writeback is:
1427 * wb_writeback()
1428 * writeback_sb_inodes() <== called only once
1429 * write_cache_pages() <== called once for each inode
1430 * (quickly) tag currently dirty pages
1431 * (maybe slowly) sync all tagged pages
1433 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1434 pages = LONG_MAX;
1435 else {
1436 pages = min(wb->avg_write_bandwidth / 2,
1437 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1438 pages = min(pages, work->nr_pages);
1439 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1440 MIN_WRITEBACK_PAGES);
1443 return pages;
1447 * Write a portion of b_io inodes which belong to @sb.
1449 * Return the number of pages and/or inodes written.
1451 * NOTE! This is called with wb->list_lock held, and will
1452 * unlock and relock that for each inode it ends up doing
1453 * IO for.
1455 static long writeback_sb_inodes(struct super_block *sb,
1456 struct bdi_writeback *wb,
1457 struct wb_writeback_work *work)
1459 struct writeback_control wbc = {
1460 .sync_mode = work->sync_mode,
1461 .tagged_writepages = work->tagged_writepages,
1462 .for_kupdate = work->for_kupdate,
1463 .for_background = work->for_background,
1464 .for_sync = work->for_sync,
1465 .range_cyclic = work->range_cyclic,
1466 .range_start = 0,
1467 .range_end = LLONG_MAX,
1469 unsigned long start_time = jiffies;
1470 long write_chunk;
1471 long wrote = 0; /* count both pages and inodes */
1473 while (!list_empty(&wb->b_io)) {
1474 struct inode *inode = wb_inode(wb->b_io.prev);
1475 struct bdi_writeback *tmp_wb;
1477 if (inode->i_sb != sb) {
1478 if (work->sb) {
1480 * We only want to write back data for this
1481 * superblock, move all inodes not belonging
1482 * to it back onto the dirty list.
1484 redirty_tail(inode, wb);
1485 continue;
1489 * The inode belongs to a different superblock.
1490 * Bounce back to the caller to unpin this and
1491 * pin the next superblock.
1493 break;
1497 * Don't bother with new inodes or inodes being freed, first
1498 * kind does not need periodic writeout yet, and for the latter
1499 * kind writeout is handled by the freer.
1501 spin_lock(&inode->i_lock);
1502 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1503 spin_unlock(&inode->i_lock);
1504 redirty_tail(inode, wb);
1505 continue;
1507 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1509 * If this inode is locked for writeback and we are not
1510 * doing writeback-for-data-integrity, move it to
1511 * b_more_io so that writeback can proceed with the
1512 * other inodes on s_io.
1514 * We'll have another go at writing back this inode
1515 * when we completed a full scan of b_io.
1517 spin_unlock(&inode->i_lock);
1518 requeue_io(inode, wb);
1519 trace_writeback_sb_inodes_requeue(inode);
1520 continue;
1522 spin_unlock(&wb->list_lock);
1525 * We already requeued the inode if it had I_SYNC set and we
1526 * are doing WB_SYNC_NONE writeback. So this catches only the
1527 * WB_SYNC_ALL case.
1529 if (inode->i_state & I_SYNC) {
1530 /* Wait for I_SYNC. This function drops i_lock... */
1531 inode_sleep_on_writeback(inode);
1532 /* Inode may be gone, start again */
1533 spin_lock(&wb->list_lock);
1534 continue;
1536 inode->i_state |= I_SYNC;
1537 wbc_attach_and_unlock_inode(&wbc, inode);
1539 write_chunk = writeback_chunk_size(wb, work);
1540 wbc.nr_to_write = write_chunk;
1541 wbc.pages_skipped = 0;
1544 * We use I_SYNC to pin the inode in memory. While it is set
1545 * evict_inode() will wait so the inode cannot be freed.
1547 __writeback_single_inode(inode, &wbc);
1549 wbc_detach_inode(&wbc);
1550 work->nr_pages -= write_chunk - wbc.nr_to_write;
1551 wrote += write_chunk - wbc.nr_to_write;
1553 if (need_resched()) {
1555 * We're trying to balance between building up a nice
1556 * long list of IOs to improve our merge rate, and
1557 * getting those IOs out quickly for anyone throttling
1558 * in balance_dirty_pages(). cond_resched() doesn't
1559 * unplug, so get our IOs out the door before we
1560 * give up the CPU.
1562 blk_flush_plug(current);
1563 cond_resched();
1567 * Requeue @inode if still dirty. Be careful as @inode may
1568 * have been switched to another wb in the meantime.
1570 tmp_wb = inode_to_wb_and_lock_list(inode);
1571 spin_lock(&inode->i_lock);
1572 if (!(inode->i_state & I_DIRTY_ALL))
1573 wrote++;
1574 requeue_inode(inode, tmp_wb, &wbc);
1575 inode_sync_complete(inode);
1576 spin_unlock(&inode->i_lock);
1578 if (unlikely(tmp_wb != wb)) {
1579 spin_unlock(&tmp_wb->list_lock);
1580 spin_lock(&wb->list_lock);
1584 * bail out to wb_writeback() often enough to check
1585 * background threshold and other termination conditions.
1587 if (wrote) {
1588 if (time_is_before_jiffies(start_time + HZ / 10UL))
1589 break;
1590 if (work->nr_pages <= 0)
1591 break;
1594 return wrote;
1597 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1598 struct wb_writeback_work *work)
1600 unsigned long start_time = jiffies;
1601 long wrote = 0;
1603 while (!list_empty(&wb->b_io)) {
1604 struct inode *inode = wb_inode(wb->b_io.prev);
1605 struct super_block *sb = inode->i_sb;
1607 if (!trylock_super(sb)) {
1609 * trylock_super() may fail consistently due to
1610 * s_umount being grabbed by someone else. Don't use
1611 * requeue_io() to avoid busy retrying the inode/sb.
1613 redirty_tail(inode, wb);
1614 continue;
1616 wrote += writeback_sb_inodes(sb, wb, work);
1617 up_read(&sb->s_umount);
1619 /* refer to the same tests at the end of writeback_sb_inodes */
1620 if (wrote) {
1621 if (time_is_before_jiffies(start_time + HZ / 10UL))
1622 break;
1623 if (work->nr_pages <= 0)
1624 break;
1627 /* Leave any unwritten inodes on b_io */
1628 return wrote;
1631 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1632 enum wb_reason reason)
1634 struct wb_writeback_work work = {
1635 .nr_pages = nr_pages,
1636 .sync_mode = WB_SYNC_NONE,
1637 .range_cyclic = 1,
1638 .reason = reason,
1640 struct blk_plug plug;
1642 blk_start_plug(&plug);
1643 spin_lock(&wb->list_lock);
1644 if (list_empty(&wb->b_io))
1645 queue_io(wb, &work);
1646 __writeback_inodes_wb(wb, &work);
1647 spin_unlock(&wb->list_lock);
1648 blk_finish_plug(&plug);
1650 return nr_pages - work.nr_pages;
1654 * Explicit flushing or periodic writeback of "old" data.
1656 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1657 * dirtying-time in the inode's address_space. So this periodic writeback code
1658 * just walks the superblock inode list, writing back any inodes which are
1659 * older than a specific point in time.
1661 * Try to run once per dirty_writeback_interval. But if a writeback event
1662 * takes longer than a dirty_writeback_interval interval, then leave a
1663 * one-second gap.
1665 * older_than_this takes precedence over nr_to_write. So we'll only write back
1666 * all dirty pages if they are all attached to "old" mappings.
1668 static long wb_writeback(struct bdi_writeback *wb,
1669 struct wb_writeback_work *work)
1671 unsigned long wb_start = jiffies;
1672 long nr_pages = work->nr_pages;
1673 unsigned long oldest_jif;
1674 struct inode *inode;
1675 long progress;
1676 struct blk_plug plug;
1678 oldest_jif = jiffies;
1679 work->older_than_this = &oldest_jif;
1681 blk_start_plug(&plug);
1682 spin_lock(&wb->list_lock);
1683 for (;;) {
1685 * Stop writeback when nr_pages has been consumed
1687 if (work->nr_pages <= 0)
1688 break;
1691 * Background writeout and kupdate-style writeback may
1692 * run forever. Stop them if there is other work to do
1693 * so that e.g. sync can proceed. They'll be restarted
1694 * after the other works are all done.
1696 if ((work->for_background || work->for_kupdate) &&
1697 !list_empty(&wb->work_list))
1698 break;
1701 * For background writeout, stop when we are below the
1702 * background dirty threshold
1704 if (work->for_background && !wb_over_bg_thresh(wb))
1705 break;
1708 * Kupdate and background works are special and we want to
1709 * include all inodes that need writing. Livelock avoidance is
1710 * handled by these works yielding to any other work so we are
1711 * safe.
1713 if (work->for_kupdate) {
1714 oldest_jif = jiffies -
1715 msecs_to_jiffies(dirty_expire_interval * 10);
1716 } else if (work->for_background)
1717 oldest_jif = jiffies;
1719 trace_writeback_start(wb, work);
1720 if (list_empty(&wb->b_io))
1721 queue_io(wb, work);
1722 if (work->sb)
1723 progress = writeback_sb_inodes(work->sb, wb, work);
1724 else
1725 progress = __writeback_inodes_wb(wb, work);
1726 trace_writeback_written(wb, work);
1728 wb_update_bandwidth(wb, wb_start);
1731 * Did we write something? Try for more
1733 * Dirty inodes are moved to b_io for writeback in batches.
1734 * The completion of the current batch does not necessarily
1735 * mean the overall work is done. So we keep looping as long
1736 * as made some progress on cleaning pages or inodes.
1738 if (progress)
1739 continue;
1741 * No more inodes for IO, bail
1743 if (list_empty(&wb->b_more_io))
1744 break;
1746 * Nothing written. Wait for some inode to
1747 * become available for writeback. Otherwise
1748 * we'll just busyloop.
1750 if (!list_empty(&wb->b_more_io)) {
1751 trace_writeback_wait(wb, work);
1752 inode = wb_inode(wb->b_more_io.prev);
1753 spin_lock(&inode->i_lock);
1754 spin_unlock(&wb->list_lock);
1755 /* This function drops i_lock... */
1756 inode_sleep_on_writeback(inode);
1757 spin_lock(&wb->list_lock);
1760 spin_unlock(&wb->list_lock);
1761 blk_finish_plug(&plug);
1763 return nr_pages - work->nr_pages;
1767 * Return the next wb_writeback_work struct that hasn't been processed yet.
1769 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1771 struct wb_writeback_work *work = NULL;
1773 spin_lock_bh(&wb->work_lock);
1774 if (!list_empty(&wb->work_list)) {
1775 work = list_entry(wb->work_list.next,
1776 struct wb_writeback_work, list);
1777 list_del_init(&work->list);
1779 spin_unlock_bh(&wb->work_lock);
1780 return work;
1784 * Add in the number of potentially dirty inodes, because each inode
1785 * write can dirty pagecache in the underlying blockdev.
1787 static unsigned long get_nr_dirty_pages(void)
1789 return global_page_state(NR_FILE_DIRTY) +
1790 global_page_state(NR_UNSTABLE_NFS) +
1791 get_nr_dirty_inodes();
1794 static long wb_check_background_flush(struct bdi_writeback *wb)
1796 if (wb_over_bg_thresh(wb)) {
1798 struct wb_writeback_work work = {
1799 .nr_pages = LONG_MAX,
1800 .sync_mode = WB_SYNC_NONE,
1801 .for_background = 1,
1802 .range_cyclic = 1,
1803 .reason = WB_REASON_BACKGROUND,
1806 return wb_writeback(wb, &work);
1809 return 0;
1812 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1814 unsigned long expired;
1815 long nr_pages;
1818 * When set to zero, disable periodic writeback
1820 if (!dirty_writeback_interval)
1821 return 0;
1823 expired = wb->last_old_flush +
1824 msecs_to_jiffies(dirty_writeback_interval * 10);
1825 if (time_before(jiffies, expired))
1826 return 0;
1828 wb->last_old_flush = jiffies;
1829 nr_pages = get_nr_dirty_pages();
1831 if (nr_pages) {
1832 struct wb_writeback_work work = {
1833 .nr_pages = nr_pages,
1834 .sync_mode = WB_SYNC_NONE,
1835 .for_kupdate = 1,
1836 .range_cyclic = 1,
1837 .reason = WB_REASON_PERIODIC,
1840 return wb_writeback(wb, &work);
1843 return 0;
1847 * Retrieve work items and do the writeback they describe
1849 static long wb_do_writeback(struct bdi_writeback *wb)
1851 struct wb_writeback_work *work;
1852 long wrote = 0;
1854 set_bit(WB_writeback_running, &wb->state);
1855 while ((work = get_next_work_item(wb)) != NULL) {
1856 trace_writeback_exec(wb, work);
1857 wrote += wb_writeback(wb, work);
1858 finish_writeback_work(wb, work);
1862 * Check for periodic writeback, kupdated() style
1864 wrote += wb_check_old_data_flush(wb);
1865 wrote += wb_check_background_flush(wb);
1866 clear_bit(WB_writeback_running, &wb->state);
1868 return wrote;
1872 * Handle writeback of dirty data for the device backed by this bdi. Also
1873 * reschedules periodically and does kupdated style flushing.
1875 void wb_workfn(struct work_struct *work)
1877 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1878 struct bdi_writeback, dwork);
1879 long pages_written;
1881 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1882 current->flags |= PF_SWAPWRITE;
1884 if (likely(!current_is_workqueue_rescuer() ||
1885 !test_bit(WB_registered, &wb->state))) {
1887 * The normal path. Keep writing back @wb until its
1888 * work_list is empty. Note that this path is also taken
1889 * if @wb is shutting down even when we're running off the
1890 * rescuer as work_list needs to be drained.
1892 do {
1893 pages_written = wb_do_writeback(wb);
1894 trace_writeback_pages_written(pages_written);
1895 } while (!list_empty(&wb->work_list));
1896 } else {
1898 * bdi_wq can't get enough workers and we're running off
1899 * the emergency worker. Don't hog it. Hopefully, 1024 is
1900 * enough for efficient IO.
1902 pages_written = writeback_inodes_wb(wb, 1024,
1903 WB_REASON_FORKER_THREAD);
1904 trace_writeback_pages_written(pages_written);
1907 if (!list_empty(&wb->work_list))
1908 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1909 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1910 wb_wakeup_delayed(wb);
1912 current->flags &= ~PF_SWAPWRITE;
1916 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1917 * the whole world.
1919 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1921 struct backing_dev_info *bdi;
1923 if (!nr_pages)
1924 nr_pages = get_nr_dirty_pages();
1926 rcu_read_lock();
1927 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1928 struct bdi_writeback *wb;
1930 if (!bdi_has_dirty_io(bdi))
1931 continue;
1933 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1934 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1935 false, reason);
1937 rcu_read_unlock();
1941 * Wake up bdi's periodically to make sure dirtytime inodes gets
1942 * written back periodically. We deliberately do *not* check the
1943 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1944 * kernel to be constantly waking up once there are any dirtytime
1945 * inodes on the system. So instead we define a separate delayed work
1946 * function which gets called much more rarely. (By default, only
1947 * once every 12 hours.)
1949 * If there is any other write activity going on in the file system,
1950 * this function won't be necessary. But if the only thing that has
1951 * happened on the file system is a dirtytime inode caused by an atime
1952 * update, we need this infrastructure below to make sure that inode
1953 * eventually gets pushed out to disk.
1955 static void wakeup_dirtytime_writeback(struct work_struct *w);
1956 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1958 static void wakeup_dirtytime_writeback(struct work_struct *w)
1960 struct backing_dev_info *bdi;
1962 rcu_read_lock();
1963 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1964 struct bdi_writeback *wb;
1966 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1967 if (!list_empty(&wb->b_dirty_time))
1968 wb_wakeup(wb);
1970 rcu_read_unlock();
1971 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1974 static int __init start_dirtytime_writeback(void)
1976 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1977 return 0;
1979 __initcall(start_dirtytime_writeback);
1981 int dirtytime_interval_handler(struct ctl_table *table, int write,
1982 void __user *buffer, size_t *lenp, loff_t *ppos)
1984 int ret;
1986 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1987 if (ret == 0 && write)
1988 mod_delayed_work(system_wq, &dirtytime_work, 0);
1989 return ret;
1992 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1994 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1995 struct dentry *dentry;
1996 const char *name = "?";
1998 dentry = d_find_alias(inode);
1999 if (dentry) {
2000 spin_lock(&dentry->d_lock);
2001 name = (const char *) dentry->d_name.name;
2003 printk(KERN_DEBUG
2004 "%s(%d): dirtied inode %lu (%s) on %s\n",
2005 current->comm, task_pid_nr(current), inode->i_ino,
2006 name, inode->i_sb->s_id);
2007 if (dentry) {
2008 spin_unlock(&dentry->d_lock);
2009 dput(dentry);
2015 * __mark_inode_dirty - internal function
2016 * @inode: inode to mark
2017 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2018 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2019 * mark_inode_dirty_sync.
2021 * Put the inode on the super block's dirty list.
2023 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2024 * dirty list only if it is hashed or if it refers to a blockdev.
2025 * If it was not hashed, it will never be added to the dirty list
2026 * even if it is later hashed, as it will have been marked dirty already.
2028 * In short, make sure you hash any inodes _before_ you start marking
2029 * them dirty.
2031 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2032 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2033 * the kernel-internal blockdev inode represents the dirtying time of the
2034 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2035 * page->mapping->host, so the page-dirtying time is recorded in the internal
2036 * blockdev inode.
2038 void __mark_inode_dirty(struct inode *inode, int flags)
2040 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2041 struct super_block *sb = inode->i_sb;
2042 int dirtytime;
2044 trace_writeback_mark_inode_dirty(inode, flags);
2047 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2048 * dirty the inode itself
2050 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2051 trace_writeback_dirty_inode_start(inode, flags);
2053 if (sb->s_op->dirty_inode)
2054 sb->s_op->dirty_inode(inode, flags);
2056 trace_writeback_dirty_inode(inode, flags);
2058 if (flags & I_DIRTY_INODE)
2059 flags &= ~I_DIRTY_TIME;
2060 dirtytime = flags & I_DIRTY_TIME;
2063 * Paired with smp_mb() in __writeback_single_inode() for the
2064 * following lockless i_state test. See there for details.
2066 smp_mb();
2068 if (((inode->i_state & flags) == flags) ||
2069 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2070 return;
2072 if (unlikely(block_dump))
2073 block_dump___mark_inode_dirty(inode);
2075 spin_lock(&inode->i_lock);
2076 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2077 goto out_unlock_inode;
2078 if ((inode->i_state & flags) != flags) {
2079 const int was_dirty = inode->i_state & I_DIRTY;
2081 inode_attach_wb(inode, NULL);
2083 if (flags & I_DIRTY_INODE)
2084 inode->i_state &= ~I_DIRTY_TIME;
2085 inode->i_state |= flags;
2088 * If the inode is being synced, just update its dirty state.
2089 * The unlocker will place the inode on the appropriate
2090 * superblock list, based upon its state.
2092 if (inode->i_state & I_SYNC)
2093 goto out_unlock_inode;
2096 * Only add valid (hashed) inodes to the superblock's
2097 * dirty list. Add blockdev inodes as well.
2099 if (!S_ISBLK(inode->i_mode)) {
2100 if (inode_unhashed(inode))
2101 goto out_unlock_inode;
2103 if (inode->i_state & I_FREEING)
2104 goto out_unlock_inode;
2107 * If the inode was already on b_dirty/b_io/b_more_io, don't
2108 * reposition it (that would break b_dirty time-ordering).
2110 if (!was_dirty) {
2111 struct bdi_writeback *wb;
2112 struct list_head *dirty_list;
2113 bool wakeup_bdi = false;
2115 wb = locked_inode_to_wb_and_lock_list(inode);
2117 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2118 !test_bit(WB_registered, &wb->state),
2119 "bdi-%s not registered\n", wb->bdi->name);
2121 inode->dirtied_when = jiffies;
2122 if (dirtytime)
2123 inode->dirtied_time_when = jiffies;
2125 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2126 dirty_list = &wb->b_dirty;
2127 else
2128 dirty_list = &wb->b_dirty_time;
2130 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2131 dirty_list);
2133 spin_unlock(&wb->list_lock);
2134 trace_writeback_dirty_inode_enqueue(inode);
2137 * If this is the first dirty inode for this bdi,
2138 * we have to wake-up the corresponding bdi thread
2139 * to make sure background write-back happens
2140 * later.
2142 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2143 wb_wakeup_delayed(wb);
2144 return;
2147 out_unlock_inode:
2148 spin_unlock(&inode->i_lock);
2150 #undef I_DIRTY_INODE
2152 EXPORT_SYMBOL(__mark_inode_dirty);
2155 * The @s_sync_lock is used to serialise concurrent sync operations
2156 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2157 * Concurrent callers will block on the s_sync_lock rather than doing contending
2158 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2159 * has been issued up to the time this function is enter is guaranteed to be
2160 * completed by the time we have gained the lock and waited for all IO that is
2161 * in progress regardless of the order callers are granted the lock.
2163 static void wait_sb_inodes(struct super_block *sb)
2165 struct inode *inode, *old_inode = NULL;
2168 * We need to be protected against the filesystem going from
2169 * r/o to r/w or vice versa.
2171 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2173 mutex_lock(&sb->s_sync_lock);
2174 spin_lock(&sb->s_inode_list_lock);
2177 * Data integrity sync. Must wait for all pages under writeback,
2178 * because there may have been pages dirtied before our sync
2179 * call, but which had writeout started before we write it out.
2180 * In which case, the inode may not be on the dirty list, but
2181 * we still have to wait for that writeout.
2183 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2184 struct address_space *mapping = inode->i_mapping;
2186 spin_lock(&inode->i_lock);
2187 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2188 (mapping->nrpages == 0)) {
2189 spin_unlock(&inode->i_lock);
2190 continue;
2192 __iget(inode);
2193 spin_unlock(&inode->i_lock);
2194 spin_unlock(&sb->s_inode_list_lock);
2197 * We hold a reference to 'inode' so it couldn't have been
2198 * removed from s_inodes list while we dropped the
2199 * s_inode_list_lock. We cannot iput the inode now as we can
2200 * be holding the last reference and we cannot iput it under
2201 * s_inode_list_lock. So we keep the reference and iput it
2202 * later.
2204 iput(old_inode);
2205 old_inode = inode;
2208 * We keep the error status of individual mapping so that
2209 * applications can catch the writeback error using fsync(2).
2210 * See filemap_fdatawait_keep_errors() for details.
2212 filemap_fdatawait_keep_errors(mapping);
2214 cond_resched();
2216 spin_lock(&sb->s_inode_list_lock);
2218 spin_unlock(&sb->s_inode_list_lock);
2219 iput(old_inode);
2220 mutex_unlock(&sb->s_sync_lock);
2223 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2224 enum wb_reason reason, bool skip_if_busy)
2226 DEFINE_WB_COMPLETION_ONSTACK(done);
2227 struct wb_writeback_work work = {
2228 .sb = sb,
2229 .sync_mode = WB_SYNC_NONE,
2230 .tagged_writepages = 1,
2231 .done = &done,
2232 .nr_pages = nr,
2233 .reason = reason,
2235 struct backing_dev_info *bdi = sb->s_bdi;
2237 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2238 return;
2239 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2241 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2242 wb_wait_for_completion(bdi, &done);
2246 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2247 * @sb: the superblock
2248 * @nr: the number of pages to write
2249 * @reason: reason why some writeback work initiated
2251 * Start writeback on some inodes on this super_block. No guarantees are made
2252 * on how many (if any) will be written, and this function does not wait
2253 * for IO completion of submitted IO.
2255 void writeback_inodes_sb_nr(struct super_block *sb,
2256 unsigned long nr,
2257 enum wb_reason reason)
2259 __writeback_inodes_sb_nr(sb, nr, reason, false);
2261 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2264 * writeback_inodes_sb - writeback dirty inodes from given super_block
2265 * @sb: the superblock
2266 * @reason: reason why some writeback work was initiated
2268 * Start writeback on some inodes on this super_block. No guarantees are made
2269 * on how many (if any) will be written, and this function does not wait
2270 * for IO completion of submitted IO.
2272 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2274 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2276 EXPORT_SYMBOL(writeback_inodes_sb);
2279 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2280 * @sb: the superblock
2281 * @nr: the number of pages to write
2282 * @reason: the reason of writeback
2284 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2285 * Returns 1 if writeback was started, 0 if not.
2287 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2288 enum wb_reason reason)
2290 if (!down_read_trylock(&sb->s_umount))
2291 return false;
2293 __writeback_inodes_sb_nr(sb, nr, reason, true);
2294 up_read(&sb->s_umount);
2295 return true;
2297 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2300 * try_to_writeback_inodes_sb - try to start writeback if none underway
2301 * @sb: the superblock
2302 * @reason: reason why some writeback work was initiated
2304 * Implement by try_to_writeback_inodes_sb_nr()
2305 * Returns 1 if writeback was started, 0 if not.
2307 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2309 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2311 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2314 * sync_inodes_sb - sync sb inode pages
2315 * @sb: the superblock
2317 * This function writes and waits on any dirty inode belonging to this
2318 * super_block.
2320 void sync_inodes_sb(struct super_block *sb)
2322 DEFINE_WB_COMPLETION_ONSTACK(done);
2323 struct wb_writeback_work work = {
2324 .sb = sb,
2325 .sync_mode = WB_SYNC_ALL,
2326 .nr_pages = LONG_MAX,
2327 .range_cyclic = 0,
2328 .done = &done,
2329 .reason = WB_REASON_SYNC,
2330 .for_sync = 1,
2332 struct backing_dev_info *bdi = sb->s_bdi;
2335 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2336 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2337 * bdi_has_dirty() need to be written out too.
2339 if (bdi == &noop_backing_dev_info)
2340 return;
2341 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2343 bdi_split_work_to_wbs(bdi, &work, false);
2344 wb_wait_for_completion(bdi, &done);
2346 wait_sb_inodes(sb);
2348 EXPORT_SYMBOL(sync_inodes_sb);
2351 * write_inode_now - write an inode to disk
2352 * @inode: inode to write to disk
2353 * @sync: whether the write should be synchronous or not
2355 * This function commits an inode to disk immediately if it is dirty. This is
2356 * primarily needed by knfsd.
2358 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2360 int write_inode_now(struct inode *inode, int sync)
2362 struct writeback_control wbc = {
2363 .nr_to_write = LONG_MAX,
2364 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2365 .range_start = 0,
2366 .range_end = LLONG_MAX,
2369 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2370 wbc.nr_to_write = 0;
2372 might_sleep();
2373 return writeback_single_inode(inode, &wbc);
2375 EXPORT_SYMBOL(write_inode_now);
2378 * sync_inode - write an inode and its pages to disk.
2379 * @inode: the inode to sync
2380 * @wbc: controls the writeback mode
2382 * sync_inode() will write an inode and its pages to disk. It will also
2383 * correctly update the inode on its superblock's dirty inode lists and will
2384 * update inode->i_state.
2386 * The caller must have a ref on the inode.
2388 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2390 return writeback_single_inode(inode, wbc);
2392 EXPORT_SYMBOL(sync_inode);
2395 * sync_inode_metadata - write an inode to disk
2396 * @inode: the inode to sync
2397 * @wait: wait for I/O to complete.
2399 * Write an inode to disk and adjust its dirty state after completion.
2401 * Note: only writes the actual inode, no associated data or other metadata.
2403 int sync_inode_metadata(struct inode *inode, int wait)
2405 struct writeback_control wbc = {
2406 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2407 .nr_to_write = 0, /* metadata-only */
2410 return sync_inode(inode, &wbc);
2412 EXPORT_SYMBOL(sync_inode_metadata);