2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly
= 1;
80 int sysctl_tcp_window_scaling __read_mostly
= 1;
81 int sysctl_tcp_sack __read_mostly
= 1;
82 int sysctl_tcp_fack __read_mostly
= 1;
83 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
84 int sysctl_tcp_max_reordering __read_mostly
= 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering
);
86 int sysctl_tcp_dsack __read_mostly
= 1;
87 int sysctl_tcp_app_win __read_mostly
= 31;
88 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit
= 1000;
94 int sysctl_tcp_stdurg __read_mostly
;
95 int sysctl_tcp_rfc1337 __read_mostly
;
96 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
97 int sysctl_tcp_frto __read_mostly
= 2;
98 int sysctl_tcp_min_rtt_wlen __read_mostly
= 300;
100 int sysctl_tcp_thin_dupack __read_mostly
;
102 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
103 int sysctl_tcp_early_retrans __read_mostly
= 3;
104 int sysctl_tcp_invalid_ratelimit __read_mostly
= HZ
/2;
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
114 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
115 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
116 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
117 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
119 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
121 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
124 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
129 /* Adapt the MSS value used to make delayed ack decision to the
132 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
134 struct inet_connection_sock
*icsk
= inet_csk(sk
);
135 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
138 icsk
->icsk_ack
.last_seg_size
= 0;
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
143 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
144 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
145 icsk
->icsk_ack
.rcv_mss
= len
;
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
150 * "len" is invariant segment length, including TCP header.
152 len
+= skb
->data
- skb_transport_header(skb
);
153 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
159 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
160 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
165 len
-= tcp_sk(sk
)->tcp_header_len
;
166 icsk
->icsk_ack
.last_seg_size
= len
;
168 icsk
->icsk_ack
.rcv_mss
= len
;
172 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
173 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
174 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
178 static void tcp_incr_quickack(struct sock
*sk
)
180 struct inet_connection_sock
*icsk
= inet_csk(sk
);
181 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
185 if (quickacks
> icsk
->icsk_ack
.quick
)
186 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
189 static void tcp_enter_quickack_mode(struct sock
*sk
)
191 struct inet_connection_sock
*icsk
= inet_csk(sk
);
192 tcp_incr_quickack(sk
);
193 icsk
->icsk_ack
.pingpong
= 0;
194 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
197 /* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
201 static bool tcp_in_quickack_mode(struct sock
*sk
)
203 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
204 const struct dst_entry
*dst
= __sk_dst_get(sk
);
206 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
207 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
210 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
212 if (tp
->ecn_flags
& TCP_ECN_OK
)
213 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
216 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
218 if (tcp_hdr(skb
)->cwr
)
219 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
222 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
224 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
227 static void __tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
229 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
230 case INET_ECN_NOT_ECT
:
231 /* Funny extension: if ECT is not set on a segment,
232 * and we already seen ECT on a previous segment,
233 * it is probably a retransmit.
235 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
236 tcp_enter_quickack_mode((struct sock
*)tp
);
239 if (tcp_ca_needs_ecn((struct sock
*)tp
))
240 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_IS_CE
);
242 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
243 /* Better not delay acks, sender can have a very low cwnd */
244 tcp_enter_quickack_mode((struct sock
*)tp
);
245 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
247 tp
->ecn_flags
|= TCP_ECN_SEEN
;
250 if (tcp_ca_needs_ecn((struct sock
*)tp
))
251 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_NO_CE
);
252 tp
->ecn_flags
|= TCP_ECN_SEEN
;
257 static void tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
259 if (tp
->ecn_flags
& TCP_ECN_OK
)
260 __tcp_ecn_check_ce(tp
, skb
);
263 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
265 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
266 tp
->ecn_flags
&= ~TCP_ECN_OK
;
269 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
271 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
272 tp
->ecn_flags
&= ~TCP_ECN_OK
;
275 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
277 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
282 /* Buffer size and advertised window tuning.
284 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287 static void tcp_sndbuf_expand(struct sock
*sk
)
289 const struct tcp_sock
*tp
= tcp_sk(sk
);
293 /* Worst case is non GSO/TSO : each frame consumes one skb
294 * and skb->head is kmalloced using power of two area of memory
296 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
298 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
300 per_mss
= roundup_pow_of_two(per_mss
) +
301 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
303 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
304 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
306 /* Fast Recovery (RFC 5681 3.2) :
307 * Cubic needs 1.7 factor, rounded to 2 to include
308 * extra cushion (application might react slowly to POLLOUT)
310 sndmem
= 2 * nr_segs
* per_mss
;
312 if (sk
->sk_sndbuf
< sndmem
)
313 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
316 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
318 * All tcp_full_space() is split to two parts: "network" buffer, allocated
319 * forward and advertised in receiver window (tp->rcv_wnd) and
320 * "application buffer", required to isolate scheduling/application
321 * latencies from network.
322 * window_clamp is maximal advertised window. It can be less than
323 * tcp_full_space(), in this case tcp_full_space() - window_clamp
324 * is reserved for "application" buffer. The less window_clamp is
325 * the smoother our behaviour from viewpoint of network, but the lower
326 * throughput and the higher sensitivity of the connection to losses. 8)
328 * rcv_ssthresh is more strict window_clamp used at "slow start"
329 * phase to predict further behaviour of this connection.
330 * It is used for two goals:
331 * - to enforce header prediction at sender, even when application
332 * requires some significant "application buffer". It is check #1.
333 * - to prevent pruning of receive queue because of misprediction
334 * of receiver window. Check #2.
336 * The scheme does not work when sender sends good segments opening
337 * window and then starts to feed us spaghetti. But it should work
338 * in common situations. Otherwise, we have to rely on queue collapsing.
341 /* Slow part of check#2. */
342 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
344 struct tcp_sock
*tp
= tcp_sk(sk
);
346 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
347 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
349 while (tp
->rcv_ssthresh
<= window
) {
350 if (truesize
<= skb
->len
)
351 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
359 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
361 struct tcp_sock
*tp
= tcp_sk(sk
);
364 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
365 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
366 !tcp_under_memory_pressure(sk
)) {
369 /* Check #2. Increase window, if skb with such overhead
370 * will fit to rcvbuf in future.
372 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
373 incr
= 2 * tp
->advmss
;
375 incr
= __tcp_grow_window(sk
, skb
);
378 incr
= max_t(int, incr
, 2 * skb
->len
);
379 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
381 inet_csk(sk
)->icsk_ack
.quick
|= 1;
386 /* 3. Tuning rcvbuf, when connection enters established state. */
387 static void tcp_fixup_rcvbuf(struct sock
*sk
)
389 u32 mss
= tcp_sk(sk
)->advmss
;
392 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
393 tcp_default_init_rwnd(mss
);
395 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
396 * Allow enough cushion so that sender is not limited by our window
398 if (sysctl_tcp_moderate_rcvbuf
)
401 if (sk
->sk_rcvbuf
< rcvmem
)
402 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
405 /* 4. Try to fixup all. It is made immediately after connection enters
408 void tcp_init_buffer_space(struct sock
*sk
)
410 struct tcp_sock
*tp
= tcp_sk(sk
);
413 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
414 tcp_fixup_rcvbuf(sk
);
415 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
416 tcp_sndbuf_expand(sk
);
418 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
419 tp
->rcvq_space
.time
= tcp_time_stamp
;
420 tp
->rcvq_space
.seq
= tp
->copied_seq
;
422 maxwin
= tcp_full_space(sk
);
424 if (tp
->window_clamp
>= maxwin
) {
425 tp
->window_clamp
= maxwin
;
427 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
428 tp
->window_clamp
= max(maxwin
-
429 (maxwin
>> sysctl_tcp_app_win
),
433 /* Force reservation of one segment. */
434 if (sysctl_tcp_app_win
&&
435 tp
->window_clamp
> 2 * tp
->advmss
&&
436 tp
->window_clamp
+ tp
->advmss
> maxwin
)
437 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
439 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
440 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
443 /* 5. Recalculate window clamp after socket hit its memory bounds. */
444 static void tcp_clamp_window(struct sock
*sk
)
446 struct tcp_sock
*tp
= tcp_sk(sk
);
447 struct inet_connection_sock
*icsk
= inet_csk(sk
);
449 icsk
->icsk_ack
.quick
= 0;
451 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
452 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
453 !tcp_under_memory_pressure(sk
) &&
454 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
455 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
458 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
459 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
462 /* Initialize RCV_MSS value.
463 * RCV_MSS is an our guess about MSS used by the peer.
464 * We haven't any direct information about the MSS.
465 * It's better to underestimate the RCV_MSS rather than overestimate.
466 * Overestimations make us ACKing less frequently than needed.
467 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
469 void tcp_initialize_rcv_mss(struct sock
*sk
)
471 const struct tcp_sock
*tp
= tcp_sk(sk
);
472 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
474 hint
= min(hint
, tp
->rcv_wnd
/ 2);
475 hint
= min(hint
, TCP_MSS_DEFAULT
);
476 hint
= max(hint
, TCP_MIN_MSS
);
478 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
480 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
482 /* Receiver "autotuning" code.
484 * The algorithm for RTT estimation w/o timestamps is based on
485 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
486 * <http://public.lanl.gov/radiant/pubs.html#DRS>
488 * More detail on this code can be found at
489 * <http://staff.psc.edu/jheffner/>,
490 * though this reference is out of date. A new paper
493 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
495 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
501 if (new_sample
!= 0) {
502 /* If we sample in larger samples in the non-timestamp
503 * case, we could grossly overestimate the RTT especially
504 * with chatty applications or bulk transfer apps which
505 * are stalled on filesystem I/O.
507 * Also, since we are only going for a minimum in the
508 * non-timestamp case, we do not smooth things out
509 * else with timestamps disabled convergence takes too
513 m
-= (new_sample
>> 3);
521 /* No previous measure. */
525 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
526 tp
->rcv_rtt_est
.rtt
= new_sample
;
529 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
531 if (tp
->rcv_rtt_est
.time
== 0)
533 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
535 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
538 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
539 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
542 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
543 const struct sk_buff
*skb
)
545 struct tcp_sock
*tp
= tcp_sk(sk
);
546 if (tp
->rx_opt
.rcv_tsecr
&&
547 (TCP_SKB_CB(skb
)->end_seq
-
548 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
549 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
553 * This function should be called every time data is copied to user space.
554 * It calculates the appropriate TCP receive buffer space.
556 void tcp_rcv_space_adjust(struct sock
*sk
)
558 struct tcp_sock
*tp
= tcp_sk(sk
);
562 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
563 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
566 /* Number of bytes copied to user in last RTT */
567 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
568 if (copied
<= tp
->rcvq_space
.space
)
572 * copied = bytes received in previous RTT, our base window
573 * To cope with packet losses, we need a 2x factor
574 * To cope with slow start, and sender growing its cwin by 100 %
575 * every RTT, we need a 4x factor, because the ACK we are sending
576 * now is for the next RTT, not the current one :
577 * <prev RTT . ><current RTT .. ><next RTT .... >
580 if (sysctl_tcp_moderate_rcvbuf
&&
581 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
582 int rcvwin
, rcvmem
, rcvbuf
;
584 /* minimal window to cope with packet losses, assuming
585 * steady state. Add some cushion because of small variations.
587 rcvwin
= (copied
<< 1) + 16 * tp
->advmss
;
589 /* If rate increased by 25%,
590 * assume slow start, rcvwin = 3 * copied
591 * If rate increased by 50%,
592 * assume sender can use 2x growth, rcvwin = 4 * copied
595 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 2)) {
597 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 1))
600 rcvwin
+= (rcvwin
>> 1);
603 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
604 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
607 rcvbuf
= min(rcvwin
/ tp
->advmss
* rcvmem
, sysctl_tcp_rmem
[2]);
608 if (rcvbuf
> sk
->sk_rcvbuf
) {
609 sk
->sk_rcvbuf
= rcvbuf
;
611 /* Make the window clamp follow along. */
612 tp
->window_clamp
= rcvwin
;
615 tp
->rcvq_space
.space
= copied
;
618 tp
->rcvq_space
.seq
= tp
->copied_seq
;
619 tp
->rcvq_space
.time
= tcp_time_stamp
;
622 /* There is something which you must keep in mind when you analyze the
623 * behavior of the tp->ato delayed ack timeout interval. When a
624 * connection starts up, we want to ack as quickly as possible. The
625 * problem is that "good" TCP's do slow start at the beginning of data
626 * transmission. The means that until we send the first few ACK's the
627 * sender will sit on his end and only queue most of his data, because
628 * he can only send snd_cwnd unacked packets at any given time. For
629 * each ACK we send, he increments snd_cwnd and transmits more of his
632 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
634 struct tcp_sock
*tp
= tcp_sk(sk
);
635 struct inet_connection_sock
*icsk
= inet_csk(sk
);
638 inet_csk_schedule_ack(sk
);
640 tcp_measure_rcv_mss(sk
, skb
);
642 tcp_rcv_rtt_measure(tp
);
644 now
= tcp_time_stamp
;
646 if (!icsk
->icsk_ack
.ato
) {
647 /* The _first_ data packet received, initialize
648 * delayed ACK engine.
650 tcp_incr_quickack(sk
);
651 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
653 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
655 if (m
<= TCP_ATO_MIN
/ 2) {
656 /* The fastest case is the first. */
657 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
658 } else if (m
< icsk
->icsk_ack
.ato
) {
659 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
660 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
661 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
662 } else if (m
> icsk
->icsk_rto
) {
663 /* Too long gap. Apparently sender failed to
664 * restart window, so that we send ACKs quickly.
666 tcp_incr_quickack(sk
);
670 icsk
->icsk_ack
.lrcvtime
= now
;
672 tcp_ecn_check_ce(tp
, skb
);
675 tcp_grow_window(sk
, skb
);
678 /* Called to compute a smoothed rtt estimate. The data fed to this
679 * routine either comes from timestamps, or from segments that were
680 * known _not_ to have been retransmitted [see Karn/Partridge
681 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
682 * piece by Van Jacobson.
683 * NOTE: the next three routines used to be one big routine.
684 * To save cycles in the RFC 1323 implementation it was better to break
685 * it up into three procedures. -- erics
687 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
689 struct tcp_sock
*tp
= tcp_sk(sk
);
690 long m
= mrtt_us
; /* RTT */
691 u32 srtt
= tp
->srtt_us
;
693 /* The following amusing code comes from Jacobson's
694 * article in SIGCOMM '88. Note that rtt and mdev
695 * are scaled versions of rtt and mean deviation.
696 * This is designed to be as fast as possible
697 * m stands for "measurement".
699 * On a 1990 paper the rto value is changed to:
700 * RTO = rtt + 4 * mdev
702 * Funny. This algorithm seems to be very broken.
703 * These formulae increase RTO, when it should be decreased, increase
704 * too slowly, when it should be increased quickly, decrease too quickly
705 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
706 * does not matter how to _calculate_ it. Seems, it was trap
707 * that VJ failed to avoid. 8)
710 m
-= (srtt
>> 3); /* m is now error in rtt est */
711 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
713 m
= -m
; /* m is now abs(error) */
714 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
715 /* This is similar to one of Eifel findings.
716 * Eifel blocks mdev updates when rtt decreases.
717 * This solution is a bit different: we use finer gain
718 * for mdev in this case (alpha*beta).
719 * Like Eifel it also prevents growth of rto,
720 * but also it limits too fast rto decreases,
721 * happening in pure Eifel.
726 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
728 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
729 if (tp
->mdev_us
> tp
->mdev_max_us
) {
730 tp
->mdev_max_us
= tp
->mdev_us
;
731 if (tp
->mdev_max_us
> tp
->rttvar_us
)
732 tp
->rttvar_us
= tp
->mdev_max_us
;
734 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
735 if (tp
->mdev_max_us
< tp
->rttvar_us
)
736 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
737 tp
->rtt_seq
= tp
->snd_nxt
;
738 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
741 /* no previous measure. */
742 srtt
= m
<< 3; /* take the measured time to be rtt */
743 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
744 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
745 tp
->mdev_max_us
= tp
->rttvar_us
;
746 tp
->rtt_seq
= tp
->snd_nxt
;
748 tp
->srtt_us
= max(1U, srtt
);
751 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
752 * Note: TCP stack does not yet implement pacing.
753 * FQ packet scheduler can be used to implement cheap but effective
754 * TCP pacing, to smooth the burst on large writes when packets
755 * in flight is significantly lower than cwnd (or rwin)
757 int sysctl_tcp_pacing_ss_ratio __read_mostly
= 200;
758 int sysctl_tcp_pacing_ca_ratio __read_mostly
= 120;
760 static void tcp_update_pacing_rate(struct sock
*sk
)
762 const struct tcp_sock
*tp
= tcp_sk(sk
);
765 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
766 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
768 /* current rate is (cwnd * mss) / srtt
769 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
770 * In Congestion Avoidance phase, set it to 120 % the current rate.
772 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
773 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
774 * end of slow start and should slow down.
776 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
777 rate
*= sysctl_tcp_pacing_ss_ratio
;
779 rate
*= sysctl_tcp_pacing_ca_ratio
;
781 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
783 if (likely(tp
->srtt_us
))
784 do_div(rate
, tp
->srtt_us
);
786 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
787 * without any lock. We want to make sure compiler wont store
788 * intermediate values in this location.
790 ACCESS_ONCE(sk
->sk_pacing_rate
) = min_t(u64
, rate
,
791 sk
->sk_max_pacing_rate
);
794 /* Calculate rto without backoff. This is the second half of Van Jacobson's
795 * routine referred to above.
797 static void tcp_set_rto(struct sock
*sk
)
799 const struct tcp_sock
*tp
= tcp_sk(sk
);
800 /* Old crap is replaced with new one. 8)
803 * 1. If rtt variance happened to be less 50msec, it is hallucination.
804 * It cannot be less due to utterly erratic ACK generation made
805 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
806 * to do with delayed acks, because at cwnd>2 true delack timeout
807 * is invisible. Actually, Linux-2.4 also generates erratic
808 * ACKs in some circumstances.
810 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
812 /* 2. Fixups made earlier cannot be right.
813 * If we do not estimate RTO correctly without them,
814 * all the algo is pure shit and should be replaced
815 * with correct one. It is exactly, which we pretend to do.
818 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
819 * guarantees that rto is higher.
824 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
826 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
829 cwnd
= TCP_INIT_CWND
;
830 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
834 * Packet counting of FACK is based on in-order assumptions, therefore TCP
835 * disables it when reordering is detected
837 void tcp_disable_fack(struct tcp_sock
*tp
)
839 /* RFC3517 uses different metric in lost marker => reset on change */
841 tp
->lost_skb_hint
= NULL
;
842 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
845 /* Take a notice that peer is sending D-SACKs */
846 static void tcp_dsack_seen(struct tcp_sock
*tp
)
848 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
851 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
854 struct tcp_sock
*tp
= tcp_sk(sk
);
855 if (metric
> tp
->reordering
) {
858 tp
->reordering
= min(sysctl_tcp_max_reordering
, metric
);
860 /* This exciting event is worth to be remembered. 8) */
862 mib_idx
= LINUX_MIB_TCPTSREORDER
;
863 else if (tcp_is_reno(tp
))
864 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
865 else if (tcp_is_fack(tp
))
866 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
868 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
870 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
871 #if FASTRETRANS_DEBUG > 1
872 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
873 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
877 tp
->undo_marker
? tp
->undo_retrans
: 0);
879 tcp_disable_fack(tp
);
883 tcp_disable_early_retrans(tp
);
887 /* This must be called before lost_out is incremented */
888 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
890 if (!tp
->retransmit_skb_hint
||
891 before(TCP_SKB_CB(skb
)->seq
,
892 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
893 tp
->retransmit_skb_hint
= skb
;
896 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
897 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
900 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
902 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
903 tcp_verify_retransmit_hint(tp
, skb
);
905 tp
->lost_out
+= tcp_skb_pcount(skb
);
906 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
910 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
912 tcp_verify_retransmit_hint(tp
, skb
);
914 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
915 tp
->lost_out
+= tcp_skb_pcount(skb
);
916 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
920 /* This procedure tags the retransmission queue when SACKs arrive.
922 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
923 * Packets in queue with these bits set are counted in variables
924 * sacked_out, retrans_out and lost_out, correspondingly.
926 * Valid combinations are:
927 * Tag InFlight Description
928 * 0 1 - orig segment is in flight.
929 * S 0 - nothing flies, orig reached receiver.
930 * L 0 - nothing flies, orig lost by net.
931 * R 2 - both orig and retransmit are in flight.
932 * L|R 1 - orig is lost, retransmit is in flight.
933 * S|R 1 - orig reached receiver, retrans is still in flight.
934 * (L|S|R is logically valid, it could occur when L|R is sacked,
935 * but it is equivalent to plain S and code short-curcuits it to S.
936 * L|S is logically invalid, it would mean -1 packet in flight 8))
938 * These 6 states form finite state machine, controlled by the following events:
939 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
940 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
941 * 3. Loss detection event of two flavors:
942 * A. Scoreboard estimator decided the packet is lost.
943 * A'. Reno "three dupacks" marks head of queue lost.
944 * A''. Its FACK modification, head until snd.fack is lost.
945 * B. SACK arrives sacking SND.NXT at the moment, when the
946 * segment was retransmitted.
947 * 4. D-SACK added new rule: D-SACK changes any tag to S.
949 * It is pleasant to note, that state diagram turns out to be commutative,
950 * so that we are allowed not to be bothered by order of our actions,
951 * when multiple events arrive simultaneously. (see the function below).
953 * Reordering detection.
954 * --------------------
955 * Reordering metric is maximal distance, which a packet can be displaced
956 * in packet stream. With SACKs we can estimate it:
958 * 1. SACK fills old hole and the corresponding segment was not
959 * ever retransmitted -> reordering. Alas, we cannot use it
960 * when segment was retransmitted.
961 * 2. The last flaw is solved with D-SACK. D-SACK arrives
962 * for retransmitted and already SACKed segment -> reordering..
963 * Both of these heuristics are not used in Loss state, when we cannot
964 * account for retransmits accurately.
966 * SACK block validation.
967 * ----------------------
969 * SACK block range validation checks that the received SACK block fits to
970 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
971 * Note that SND.UNA is not included to the range though being valid because
972 * it means that the receiver is rather inconsistent with itself reporting
973 * SACK reneging when it should advance SND.UNA. Such SACK block this is
974 * perfectly valid, however, in light of RFC2018 which explicitly states
975 * that "SACK block MUST reflect the newest segment. Even if the newest
976 * segment is going to be discarded ...", not that it looks very clever
977 * in case of head skb. Due to potentional receiver driven attacks, we
978 * choose to avoid immediate execution of a walk in write queue due to
979 * reneging and defer head skb's loss recovery to standard loss recovery
980 * procedure that will eventually trigger (nothing forbids us doing this).
982 * Implements also blockage to start_seq wrap-around. Problem lies in the
983 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
984 * there's no guarantee that it will be before snd_nxt (n). The problem
985 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
988 * <- outs wnd -> <- wrapzone ->
989 * u e n u_w e_w s n_w
991 * |<------------+------+----- TCP seqno space --------------+---------->|
992 * ...-- <2^31 ->| |<--------...
993 * ...---- >2^31 ------>| |<--------...
995 * Current code wouldn't be vulnerable but it's better still to discard such
996 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
997 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
998 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
999 * equal to the ideal case (infinite seqno space without wrap caused issues).
1001 * With D-SACK the lower bound is extended to cover sequence space below
1002 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1003 * again, D-SACK block must not to go across snd_una (for the same reason as
1004 * for the normal SACK blocks, explained above). But there all simplicity
1005 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1006 * fully below undo_marker they do not affect behavior in anyway and can
1007 * therefore be safely ignored. In rare cases (which are more or less
1008 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1009 * fragmentation and packet reordering past skb's retransmission. To consider
1010 * them correctly, the acceptable range must be extended even more though
1011 * the exact amount is rather hard to quantify. However, tp->max_window can
1012 * be used as an exaggerated estimate.
1014 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1015 u32 start_seq
, u32 end_seq
)
1017 /* Too far in future, or reversed (interpretation is ambiguous) */
1018 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1021 /* Nasty start_seq wrap-around check (see comments above) */
1022 if (!before(start_seq
, tp
->snd_nxt
))
1025 /* In outstanding window? ...This is valid exit for D-SACKs too.
1026 * start_seq == snd_una is non-sensical (see comments above)
1028 if (after(start_seq
, tp
->snd_una
))
1031 if (!is_dsack
|| !tp
->undo_marker
)
1034 /* ...Then it's D-SACK, and must reside below snd_una completely */
1035 if (after(end_seq
, tp
->snd_una
))
1038 if (!before(start_seq
, tp
->undo_marker
))
1042 if (!after(end_seq
, tp
->undo_marker
))
1045 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1046 * start_seq < undo_marker and end_seq >= undo_marker.
1048 return !before(start_seq
, end_seq
- tp
->max_window
);
1051 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1052 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1055 struct tcp_sock
*tp
= tcp_sk(sk
);
1056 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1057 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1058 bool dup_sack
= false;
1060 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1063 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1064 } else if (num_sacks
> 1) {
1065 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1066 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1068 if (!after(end_seq_0
, end_seq_1
) &&
1069 !before(start_seq_0
, start_seq_1
)) {
1072 NET_INC_STATS_BH(sock_net(sk
),
1073 LINUX_MIB_TCPDSACKOFORECV
);
1077 /* D-SACK for already forgotten data... Do dumb counting. */
1078 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1079 !after(end_seq_0
, prior_snd_una
) &&
1080 after(end_seq_0
, tp
->undo_marker
))
1086 struct tcp_sacktag_state
{
1089 /* Timestamps for earliest and latest never-retransmitted segment
1090 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1091 * but congestion control should still get an accurate delay signal.
1093 struct skb_mstamp first_sackt
;
1094 struct skb_mstamp last_sackt
;
1098 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1099 * the incoming SACK may not exactly match but we can find smaller MSS
1100 * aligned portion of it that matches. Therefore we might need to fragment
1101 * which may fail and creates some hassle (caller must handle error case
1104 * FIXME: this could be merged to shift decision code
1106 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1107 u32 start_seq
, u32 end_seq
)
1111 unsigned int pkt_len
;
1114 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1115 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1117 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1118 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1119 mss
= tcp_skb_mss(skb
);
1120 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1123 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1127 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1132 /* Round if necessary so that SACKs cover only full MSSes
1133 * and/or the remaining small portion (if present)
1135 if (pkt_len
> mss
) {
1136 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1137 if (!in_sack
&& new_len
< pkt_len
)
1142 if (pkt_len
>= skb
->len
&& !in_sack
)
1145 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
, GFP_ATOMIC
);
1153 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1154 static u8
tcp_sacktag_one(struct sock
*sk
,
1155 struct tcp_sacktag_state
*state
, u8 sacked
,
1156 u32 start_seq
, u32 end_seq
,
1157 int dup_sack
, int pcount
,
1158 const struct skb_mstamp
*xmit_time
)
1160 struct tcp_sock
*tp
= tcp_sk(sk
);
1161 int fack_count
= state
->fack_count
;
1163 /* Account D-SACK for retransmitted packet. */
1164 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1165 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1166 after(end_seq
, tp
->undo_marker
))
1168 if (sacked
& TCPCB_SACKED_ACKED
)
1169 state
->reord
= min(fack_count
, state
->reord
);
1172 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1173 if (!after(end_seq
, tp
->snd_una
))
1176 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1177 tcp_rack_advance(tp
, xmit_time
, sacked
);
1179 if (sacked
& TCPCB_SACKED_RETRANS
) {
1180 /* If the segment is not tagged as lost,
1181 * we do not clear RETRANS, believing
1182 * that retransmission is still in flight.
1184 if (sacked
& TCPCB_LOST
) {
1185 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1186 tp
->lost_out
-= pcount
;
1187 tp
->retrans_out
-= pcount
;
1190 if (!(sacked
& TCPCB_RETRANS
)) {
1191 /* New sack for not retransmitted frame,
1192 * which was in hole. It is reordering.
1194 if (before(start_seq
,
1195 tcp_highest_sack_seq(tp
)))
1196 state
->reord
= min(fack_count
,
1198 if (!after(end_seq
, tp
->high_seq
))
1199 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1200 if (state
->first_sackt
.v64
== 0)
1201 state
->first_sackt
= *xmit_time
;
1202 state
->last_sackt
= *xmit_time
;
1205 if (sacked
& TCPCB_LOST
) {
1206 sacked
&= ~TCPCB_LOST
;
1207 tp
->lost_out
-= pcount
;
1211 sacked
|= TCPCB_SACKED_ACKED
;
1212 state
->flag
|= FLAG_DATA_SACKED
;
1213 tp
->sacked_out
+= pcount
;
1215 fack_count
+= pcount
;
1217 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1218 if (!tcp_is_fack(tp
) && tp
->lost_skb_hint
&&
1219 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1220 tp
->lost_cnt_hint
+= pcount
;
1222 if (fack_count
> tp
->fackets_out
)
1223 tp
->fackets_out
= fack_count
;
1226 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1227 * frames and clear it. undo_retrans is decreased above, L|R frames
1228 * are accounted above as well.
1230 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1231 sacked
&= ~TCPCB_SACKED_RETRANS
;
1232 tp
->retrans_out
-= pcount
;
1238 /* Shift newly-SACKed bytes from this skb to the immediately previous
1239 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1241 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1242 struct tcp_sacktag_state
*state
,
1243 unsigned int pcount
, int shifted
, int mss
,
1246 struct tcp_sock
*tp
= tcp_sk(sk
);
1247 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1248 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1249 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1253 /* Adjust counters and hints for the newly sacked sequence
1254 * range but discard the return value since prev is already
1255 * marked. We must tag the range first because the seq
1256 * advancement below implicitly advances
1257 * tcp_highest_sack_seq() when skb is highest_sack.
1259 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1260 start_seq
, end_seq
, dup_sack
, pcount
,
1263 if (skb
== tp
->lost_skb_hint
)
1264 tp
->lost_cnt_hint
+= pcount
;
1266 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1267 TCP_SKB_CB(skb
)->seq
+= shifted
;
1269 tcp_skb_pcount_add(prev
, pcount
);
1270 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1271 tcp_skb_pcount_add(skb
, -pcount
);
1273 /* When we're adding to gso_segs == 1, gso_size will be zero,
1274 * in theory this shouldn't be necessary but as long as DSACK
1275 * code can come after this skb later on it's better to keep
1276 * setting gso_size to something.
1278 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1279 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1281 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1282 if (tcp_skb_pcount(skb
) <= 1)
1283 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1285 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1286 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1289 BUG_ON(!tcp_skb_pcount(skb
));
1290 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1294 /* Whole SKB was eaten :-) */
1296 if (skb
== tp
->retransmit_skb_hint
)
1297 tp
->retransmit_skb_hint
= prev
;
1298 if (skb
== tp
->lost_skb_hint
) {
1299 tp
->lost_skb_hint
= prev
;
1300 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1303 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1304 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1305 TCP_SKB_CB(prev
)->end_seq
++;
1307 if (skb
== tcp_highest_sack(sk
))
1308 tcp_advance_highest_sack(sk
, skb
);
1310 tcp_unlink_write_queue(skb
, sk
);
1311 sk_wmem_free_skb(sk
, skb
);
1313 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1318 /* I wish gso_size would have a bit more sane initialization than
1319 * something-or-zero which complicates things
1321 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1323 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1326 /* Shifting pages past head area doesn't work */
1327 static int skb_can_shift(const struct sk_buff
*skb
)
1329 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1332 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1335 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1336 struct tcp_sacktag_state
*state
,
1337 u32 start_seq
, u32 end_seq
,
1340 struct tcp_sock
*tp
= tcp_sk(sk
);
1341 struct sk_buff
*prev
;
1347 if (!sk_can_gso(sk
))
1350 /* Normally R but no L won't result in plain S */
1352 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1354 if (!skb_can_shift(skb
))
1356 /* This frame is about to be dropped (was ACKed). */
1357 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1360 /* Can only happen with delayed DSACK + discard craziness */
1361 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1363 prev
= tcp_write_queue_prev(sk
, skb
);
1365 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1368 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1369 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1373 pcount
= tcp_skb_pcount(skb
);
1374 mss
= tcp_skb_seglen(skb
);
1376 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1377 * drop this restriction as unnecessary
1379 if (mss
!= tcp_skb_seglen(prev
))
1382 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1384 /* CHECKME: This is non-MSS split case only?, this will
1385 * cause skipped skbs due to advancing loop btw, original
1386 * has that feature too
1388 if (tcp_skb_pcount(skb
) <= 1)
1391 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1393 /* TODO: head merge to next could be attempted here
1394 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1395 * though it might not be worth of the additional hassle
1397 * ...we can probably just fallback to what was done
1398 * previously. We could try merging non-SACKed ones
1399 * as well but it probably isn't going to buy off
1400 * because later SACKs might again split them, and
1401 * it would make skb timestamp tracking considerably
1407 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1409 BUG_ON(len
> skb
->len
);
1411 /* MSS boundaries should be honoured or else pcount will
1412 * severely break even though it makes things bit trickier.
1413 * Optimize common case to avoid most of the divides
1415 mss
= tcp_skb_mss(skb
);
1417 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1418 * drop this restriction as unnecessary
1420 if (mss
!= tcp_skb_seglen(prev
))
1425 } else if (len
< mss
) {
1433 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1434 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1437 if (!skb_shift(prev
, skb
, len
))
1439 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1442 /* Hole filled allows collapsing with the next as well, this is very
1443 * useful when hole on every nth skb pattern happens
1445 if (prev
== tcp_write_queue_tail(sk
))
1447 skb
= tcp_write_queue_next(sk
, prev
);
1449 if (!skb_can_shift(skb
) ||
1450 (skb
== tcp_send_head(sk
)) ||
1451 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1452 (mss
!= tcp_skb_seglen(skb
)))
1456 if (skb_shift(prev
, skb
, len
)) {
1457 pcount
+= tcp_skb_pcount(skb
);
1458 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1462 state
->fack_count
+= pcount
;
1469 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1473 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1474 struct tcp_sack_block
*next_dup
,
1475 struct tcp_sacktag_state
*state
,
1476 u32 start_seq
, u32 end_seq
,
1479 struct tcp_sock
*tp
= tcp_sk(sk
);
1480 struct sk_buff
*tmp
;
1482 tcp_for_write_queue_from(skb
, sk
) {
1484 bool dup_sack
= dup_sack_in
;
1486 if (skb
== tcp_send_head(sk
))
1489 /* queue is in-order => we can short-circuit the walk early */
1490 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1494 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1495 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1496 next_dup
->start_seq
,
1502 /* skb reference here is a bit tricky to get right, since
1503 * shifting can eat and free both this skb and the next,
1504 * so not even _safe variant of the loop is enough.
1507 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1508 start_seq
, end_seq
, dup_sack
);
1517 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1523 if (unlikely(in_sack
< 0))
1527 TCP_SKB_CB(skb
)->sacked
=
1530 TCP_SKB_CB(skb
)->sacked
,
1531 TCP_SKB_CB(skb
)->seq
,
1532 TCP_SKB_CB(skb
)->end_seq
,
1534 tcp_skb_pcount(skb
),
1537 if (!before(TCP_SKB_CB(skb
)->seq
,
1538 tcp_highest_sack_seq(tp
)))
1539 tcp_advance_highest_sack(sk
, skb
);
1542 state
->fack_count
+= tcp_skb_pcount(skb
);
1547 /* Avoid all extra work that is being done by sacktag while walking in
1550 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1551 struct tcp_sacktag_state
*state
,
1554 tcp_for_write_queue_from(skb
, sk
) {
1555 if (skb
== tcp_send_head(sk
))
1558 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1561 state
->fack_count
+= tcp_skb_pcount(skb
);
1566 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1568 struct tcp_sack_block
*next_dup
,
1569 struct tcp_sacktag_state
*state
,
1575 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1576 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1577 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1578 next_dup
->start_seq
, next_dup
->end_seq
,
1585 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1587 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1591 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1592 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1594 struct tcp_sock
*tp
= tcp_sk(sk
);
1595 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1596 TCP_SKB_CB(ack_skb
)->sacked
);
1597 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1598 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1599 struct tcp_sack_block
*cache
;
1600 struct sk_buff
*skb
;
1601 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1603 bool found_dup_sack
= false;
1605 int first_sack_index
;
1608 state
->reord
= tp
->packets_out
;
1610 if (!tp
->sacked_out
) {
1611 if (WARN_ON(tp
->fackets_out
))
1612 tp
->fackets_out
= 0;
1613 tcp_highest_sack_reset(sk
);
1616 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1617 num_sacks
, prior_snd_una
);
1619 state
->flag
|= FLAG_DSACKING_ACK
;
1621 /* Eliminate too old ACKs, but take into
1622 * account more or less fresh ones, they can
1623 * contain valid SACK info.
1625 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1628 if (!tp
->packets_out
)
1632 first_sack_index
= 0;
1633 for (i
= 0; i
< num_sacks
; i
++) {
1634 bool dup_sack
= !i
&& found_dup_sack
;
1636 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1637 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1639 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1640 sp
[used_sacks
].start_seq
,
1641 sp
[used_sacks
].end_seq
)) {
1645 if (!tp
->undo_marker
)
1646 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1648 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1650 /* Don't count olds caused by ACK reordering */
1651 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1652 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1654 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1657 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1659 first_sack_index
= -1;
1663 /* Ignore very old stuff early */
1664 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1670 /* order SACK blocks to allow in order walk of the retrans queue */
1671 for (i
= used_sacks
- 1; i
> 0; i
--) {
1672 for (j
= 0; j
< i
; j
++) {
1673 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1674 swap(sp
[j
], sp
[j
+ 1]);
1676 /* Track where the first SACK block goes to */
1677 if (j
== first_sack_index
)
1678 first_sack_index
= j
+ 1;
1683 skb
= tcp_write_queue_head(sk
);
1684 state
->fack_count
= 0;
1687 if (!tp
->sacked_out
) {
1688 /* It's already past, so skip checking against it */
1689 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1691 cache
= tp
->recv_sack_cache
;
1692 /* Skip empty blocks in at head of the cache */
1693 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1698 while (i
< used_sacks
) {
1699 u32 start_seq
= sp
[i
].start_seq
;
1700 u32 end_seq
= sp
[i
].end_seq
;
1701 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1702 struct tcp_sack_block
*next_dup
= NULL
;
1704 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1705 next_dup
= &sp
[i
+ 1];
1707 /* Skip too early cached blocks */
1708 while (tcp_sack_cache_ok(tp
, cache
) &&
1709 !before(start_seq
, cache
->end_seq
))
1712 /* Can skip some work by looking recv_sack_cache? */
1713 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1714 after(end_seq
, cache
->start_seq
)) {
1717 if (before(start_seq
, cache
->start_seq
)) {
1718 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1720 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1727 /* Rest of the block already fully processed? */
1728 if (!after(end_seq
, cache
->end_seq
))
1731 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1735 /* ...tail remains todo... */
1736 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1737 /* ...but better entrypoint exists! */
1738 skb
= tcp_highest_sack(sk
);
1741 state
->fack_count
= tp
->fackets_out
;
1746 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1747 /* Check overlap against next cached too (past this one already) */
1752 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1753 skb
= tcp_highest_sack(sk
);
1756 state
->fack_count
= tp
->fackets_out
;
1758 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1761 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1762 start_seq
, end_seq
, dup_sack
);
1768 /* Clear the head of the cache sack blocks so we can skip it next time */
1769 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1770 tp
->recv_sack_cache
[i
].start_seq
= 0;
1771 tp
->recv_sack_cache
[i
].end_seq
= 0;
1773 for (j
= 0; j
< used_sacks
; j
++)
1774 tp
->recv_sack_cache
[i
++] = sp
[j
];
1776 if ((state
->reord
< tp
->fackets_out
) &&
1777 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1778 tcp_update_reordering(sk
, tp
->fackets_out
- state
->reord
, 0);
1780 tcp_verify_left_out(tp
);
1783 #if FASTRETRANS_DEBUG > 0
1784 WARN_ON((int)tp
->sacked_out
< 0);
1785 WARN_ON((int)tp
->lost_out
< 0);
1786 WARN_ON((int)tp
->retrans_out
< 0);
1787 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1792 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1793 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1795 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1799 holes
= max(tp
->lost_out
, 1U);
1800 holes
= min(holes
, tp
->packets_out
);
1802 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1803 tp
->sacked_out
= tp
->packets_out
- holes
;
1809 /* If we receive more dupacks than we expected counting segments
1810 * in assumption of absent reordering, interpret this as reordering.
1811 * The only another reason could be bug in receiver TCP.
1813 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1815 struct tcp_sock
*tp
= tcp_sk(sk
);
1816 if (tcp_limit_reno_sacked(tp
))
1817 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1820 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1822 static void tcp_add_reno_sack(struct sock
*sk
)
1824 struct tcp_sock
*tp
= tcp_sk(sk
);
1826 tcp_check_reno_reordering(sk
, 0);
1827 tcp_verify_left_out(tp
);
1830 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1832 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1834 struct tcp_sock
*tp
= tcp_sk(sk
);
1837 /* One ACK acked hole. The rest eat duplicate ACKs. */
1838 if (acked
- 1 >= tp
->sacked_out
)
1841 tp
->sacked_out
-= acked
- 1;
1843 tcp_check_reno_reordering(sk
, acked
);
1844 tcp_verify_left_out(tp
);
1847 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1852 void tcp_clear_retrans(struct tcp_sock
*tp
)
1854 tp
->retrans_out
= 0;
1856 tp
->undo_marker
= 0;
1857 tp
->undo_retrans
= -1;
1858 tp
->fackets_out
= 0;
1862 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1864 tp
->undo_marker
= tp
->snd_una
;
1865 /* Retransmission still in flight may cause DSACKs later. */
1866 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1869 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1870 * and reset tags completely, otherwise preserve SACKs. If receiver
1871 * dropped its ofo queue, we will know this due to reneging detection.
1873 void tcp_enter_loss(struct sock
*sk
)
1875 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1876 struct tcp_sock
*tp
= tcp_sk(sk
);
1877 struct sk_buff
*skb
;
1878 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1879 bool is_reneg
; /* is receiver reneging on SACKs? */
1881 /* Reduce ssthresh if it has not yet been made inside this window. */
1882 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1883 !after(tp
->high_seq
, tp
->snd_una
) ||
1884 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1885 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1886 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1887 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1891 tp
->snd_cwnd_cnt
= 0;
1892 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1894 tp
->retrans_out
= 0;
1897 if (tcp_is_reno(tp
))
1898 tcp_reset_reno_sack(tp
);
1900 skb
= tcp_write_queue_head(sk
);
1901 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1903 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1905 tp
->fackets_out
= 0;
1907 tcp_clear_all_retrans_hints(tp
);
1909 tcp_for_write_queue(skb
, sk
) {
1910 if (skb
== tcp_send_head(sk
))
1913 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1914 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || is_reneg
) {
1915 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1916 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1917 tp
->lost_out
+= tcp_skb_pcount(skb
);
1918 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1921 tcp_verify_left_out(tp
);
1923 /* Timeout in disordered state after receiving substantial DUPACKs
1924 * suggests that the degree of reordering is over-estimated.
1926 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1927 tp
->sacked_out
>= sysctl_tcp_reordering
)
1928 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1929 sysctl_tcp_reordering
);
1930 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1931 tp
->high_seq
= tp
->snd_nxt
;
1932 tcp_ecn_queue_cwr(tp
);
1934 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1935 * loss recovery is underway except recurring timeout(s) on
1936 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1938 tp
->frto
= sysctl_tcp_frto
&&
1939 (new_recovery
|| icsk
->icsk_retransmits
) &&
1940 !inet_csk(sk
)->icsk_mtup
.probe_size
;
1943 /* If ACK arrived pointing to a remembered SACK, it means that our
1944 * remembered SACKs do not reflect real state of receiver i.e.
1945 * receiver _host_ is heavily congested (or buggy).
1947 * To avoid big spurious retransmission bursts due to transient SACK
1948 * scoreboard oddities that look like reneging, we give the receiver a
1949 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1950 * restore sanity to the SACK scoreboard. If the apparent reneging
1951 * persists until this RTO then we'll clear the SACK scoreboard.
1953 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
1955 if (flag
& FLAG_SACK_RENEGING
) {
1956 struct tcp_sock
*tp
= tcp_sk(sk
);
1957 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
1958 msecs_to_jiffies(10));
1960 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1961 delay
, TCP_RTO_MAX
);
1967 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
1969 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
1972 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1973 * counter when SACK is enabled (without SACK, sacked_out is used for
1976 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1977 * segments up to the highest received SACK block so far and holes in
1980 * With reordering, holes may still be in flight, so RFC3517 recovery
1981 * uses pure sacked_out (total number of SACKed segments) even though
1982 * it violates the RFC that uses duplicate ACKs, often these are equal
1983 * but when e.g. out-of-window ACKs or packet duplication occurs,
1984 * they differ. Since neither occurs due to loss, TCP should really
1987 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
1989 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
1992 static bool tcp_pause_early_retransmit(struct sock
*sk
, int flag
)
1994 struct tcp_sock
*tp
= tcp_sk(sk
);
1995 unsigned long delay
;
1997 /* Delay early retransmit and entering fast recovery for
1998 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1999 * available, or RTO is scheduled to fire first.
2001 if (sysctl_tcp_early_retrans
< 2 || sysctl_tcp_early_retrans
> 3 ||
2002 (flag
& FLAG_ECE
) || !tp
->srtt_us
)
2005 delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 5),
2006 msecs_to_jiffies(2));
2008 if (!time_after(inet_csk(sk
)->icsk_timeout
, (jiffies
+ delay
)))
2011 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_EARLY_RETRANS
, delay
,
2016 /* Linux NewReno/SACK/FACK/ECN state machine.
2017 * --------------------------------------
2019 * "Open" Normal state, no dubious events, fast path.
2020 * "Disorder" In all the respects it is "Open",
2021 * but requires a bit more attention. It is entered when
2022 * we see some SACKs or dupacks. It is split of "Open"
2023 * mainly to move some processing from fast path to slow one.
2024 * "CWR" CWND was reduced due to some Congestion Notification event.
2025 * It can be ECN, ICMP source quench, local device congestion.
2026 * "Recovery" CWND was reduced, we are fast-retransmitting.
2027 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2029 * tcp_fastretrans_alert() is entered:
2030 * - each incoming ACK, if state is not "Open"
2031 * - when arrived ACK is unusual, namely:
2036 * Counting packets in flight is pretty simple.
2038 * in_flight = packets_out - left_out + retrans_out
2040 * packets_out is SND.NXT-SND.UNA counted in packets.
2042 * retrans_out is number of retransmitted segments.
2044 * left_out is number of segments left network, but not ACKed yet.
2046 * left_out = sacked_out + lost_out
2048 * sacked_out: Packets, which arrived to receiver out of order
2049 * and hence not ACKed. With SACKs this number is simply
2050 * amount of SACKed data. Even without SACKs
2051 * it is easy to give pretty reliable estimate of this number,
2052 * counting duplicate ACKs.
2054 * lost_out: Packets lost by network. TCP has no explicit
2055 * "loss notification" feedback from network (for now).
2056 * It means that this number can be only _guessed_.
2057 * Actually, it is the heuristics to predict lossage that
2058 * distinguishes different algorithms.
2060 * F.e. after RTO, when all the queue is considered as lost,
2061 * lost_out = packets_out and in_flight = retrans_out.
2063 * Essentially, we have now two algorithms counting
2066 * FACK: It is the simplest heuristics. As soon as we decided
2067 * that something is lost, we decide that _all_ not SACKed
2068 * packets until the most forward SACK are lost. I.e.
2069 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2070 * It is absolutely correct estimate, if network does not reorder
2071 * packets. And it loses any connection to reality when reordering
2072 * takes place. We use FACK by default until reordering
2073 * is suspected on the path to this destination.
2075 * NewReno: when Recovery is entered, we assume that one segment
2076 * is lost (classic Reno). While we are in Recovery and
2077 * a partial ACK arrives, we assume that one more packet
2078 * is lost (NewReno). This heuristics are the same in NewReno
2081 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2082 * deflation etc. CWND is real congestion window, never inflated, changes
2083 * only according to classic VJ rules.
2085 * Really tricky (and requiring careful tuning) part of algorithm
2086 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2087 * The first determines the moment _when_ we should reduce CWND and,
2088 * hence, slow down forward transmission. In fact, it determines the moment
2089 * when we decide that hole is caused by loss, rather than by a reorder.
2091 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2092 * holes, caused by lost packets.
2094 * And the most logically complicated part of algorithm is undo
2095 * heuristics. We detect false retransmits due to both too early
2096 * fast retransmit (reordering) and underestimated RTO, analyzing
2097 * timestamps and D-SACKs. When we detect that some segments were
2098 * retransmitted by mistake and CWND reduction was wrong, we undo
2099 * window reduction and abort recovery phase. This logic is hidden
2100 * inside several functions named tcp_try_undo_<something>.
2103 /* This function decides, when we should leave Disordered state
2104 * and enter Recovery phase, reducing congestion window.
2106 * Main question: may we further continue forward transmission
2107 * with the same cwnd?
2109 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2111 struct tcp_sock
*tp
= tcp_sk(sk
);
2114 /* Trick#1: The loss is proven. */
2118 /* Not-A-Trick#2 : Classic rule... */
2119 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2122 /* Trick#4: It is still not OK... But will it be useful to delay
2125 packets_out
= tp
->packets_out
;
2126 if (packets_out
<= tp
->reordering
&&
2127 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2128 !tcp_may_send_now(sk
)) {
2129 /* We have nothing to send. This connection is limited
2130 * either by receiver window or by application.
2135 /* If a thin stream is detected, retransmit after first
2136 * received dupack. Employ only if SACK is supported in order
2137 * to avoid possible corner-case series of spurious retransmissions
2138 * Use only if there are no unsent data.
2140 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2141 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2142 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2145 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2146 * retransmissions due to small network reorderings, we implement
2147 * Mitigation A.3 in the RFC and delay the retransmission for a short
2148 * interval if appropriate.
2150 if (tp
->do_early_retrans
&& !tp
->retrans_out
&& tp
->sacked_out
&&
2151 (tp
->packets_out
>= (tp
->sacked_out
+ 1) && tp
->packets_out
< 4) &&
2152 !tcp_may_send_now(sk
))
2153 return !tcp_pause_early_retransmit(sk
, flag
);
2158 /* Detect loss in event "A" above by marking head of queue up as lost.
2159 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2160 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2161 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2162 * the maximum SACKed segments to pass before reaching this limit.
2164 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2166 struct tcp_sock
*tp
= tcp_sk(sk
);
2167 struct sk_buff
*skb
;
2168 int cnt
, oldcnt
, lost
;
2170 /* Use SACK to deduce losses of new sequences sent during recovery */
2171 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2173 WARN_ON(packets
> tp
->packets_out
);
2174 if (tp
->lost_skb_hint
) {
2175 skb
= tp
->lost_skb_hint
;
2176 cnt
= tp
->lost_cnt_hint
;
2177 /* Head already handled? */
2178 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2181 skb
= tcp_write_queue_head(sk
);
2185 tcp_for_write_queue_from(skb
, sk
) {
2186 if (skb
== tcp_send_head(sk
))
2188 /* TODO: do this better */
2189 /* this is not the most efficient way to do this... */
2190 tp
->lost_skb_hint
= skb
;
2191 tp
->lost_cnt_hint
= cnt
;
2193 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2197 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2198 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2199 cnt
+= tcp_skb_pcount(skb
);
2201 if (cnt
> packets
) {
2202 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2203 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2204 (oldcnt
>= packets
))
2207 mss
= tcp_skb_mss(skb
);
2208 /* If needed, chop off the prefix to mark as lost. */
2209 lost
= (packets
- oldcnt
) * mss
;
2210 if (lost
< skb
->len
&&
2211 tcp_fragment(sk
, skb
, lost
, mss
, GFP_ATOMIC
) < 0)
2216 tcp_skb_mark_lost(tp
, skb
);
2221 tcp_verify_left_out(tp
);
2224 /* Account newly detected lost packet(s) */
2226 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2228 struct tcp_sock
*tp
= tcp_sk(sk
);
2230 if (tcp_is_reno(tp
)) {
2231 tcp_mark_head_lost(sk
, 1, 1);
2232 } else if (tcp_is_fack(tp
)) {
2233 int lost
= tp
->fackets_out
- tp
->reordering
;
2236 tcp_mark_head_lost(sk
, lost
, 0);
2238 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2239 if (sacked_upto
>= 0)
2240 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2241 else if (fast_rexmit
)
2242 tcp_mark_head_lost(sk
, 1, 1);
2246 /* CWND moderation, preventing bursts due to too big ACKs
2247 * in dubious situations.
2249 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2251 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2252 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2253 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2256 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2258 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2259 before(tp
->rx_opt
.rcv_tsecr
, when
);
2262 /* skb is spurious retransmitted if the returned timestamp echo
2263 * reply is prior to the skb transmission time
2265 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2266 const struct sk_buff
*skb
)
2268 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2269 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2272 /* Nothing was retransmitted or returned timestamp is less
2273 * than timestamp of the first retransmission.
2275 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2277 return !tp
->retrans_stamp
||
2278 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2281 /* Undo procedures. */
2283 /* We can clear retrans_stamp when there are no retransmissions in the
2284 * window. It would seem that it is trivially available for us in
2285 * tp->retrans_out, however, that kind of assumptions doesn't consider
2286 * what will happen if errors occur when sending retransmission for the
2287 * second time. ...It could the that such segment has only
2288 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2289 * the head skb is enough except for some reneging corner cases that
2290 * are not worth the effort.
2292 * Main reason for all this complexity is the fact that connection dying
2293 * time now depends on the validity of the retrans_stamp, in particular,
2294 * that successive retransmissions of a segment must not advance
2295 * retrans_stamp under any conditions.
2297 static bool tcp_any_retrans_done(const struct sock
*sk
)
2299 const struct tcp_sock
*tp
= tcp_sk(sk
);
2300 struct sk_buff
*skb
;
2302 if (tp
->retrans_out
)
2305 skb
= tcp_write_queue_head(sk
);
2306 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2312 #if FASTRETRANS_DEBUG > 1
2313 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2315 struct tcp_sock
*tp
= tcp_sk(sk
);
2316 struct inet_sock
*inet
= inet_sk(sk
);
2318 if (sk
->sk_family
== AF_INET
) {
2319 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2321 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2322 tp
->snd_cwnd
, tcp_left_out(tp
),
2323 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2326 #if IS_ENABLED(CONFIG_IPV6)
2327 else if (sk
->sk_family
== AF_INET6
) {
2328 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2330 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2331 tp
->snd_cwnd
, tcp_left_out(tp
),
2332 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2338 #define DBGUNDO(x...) do { } while (0)
2341 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2343 struct tcp_sock
*tp
= tcp_sk(sk
);
2346 struct sk_buff
*skb
;
2348 tcp_for_write_queue(skb
, sk
) {
2349 if (skb
== tcp_send_head(sk
))
2351 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2354 tcp_clear_all_retrans_hints(tp
);
2357 if (tp
->prior_ssthresh
) {
2358 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2360 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2361 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2363 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2365 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2366 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2367 tcp_ecn_withdraw_cwr(tp
);
2370 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2372 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2373 tp
->undo_marker
= 0;
2376 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2378 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2381 /* People celebrate: "We love our President!" */
2382 static bool tcp_try_undo_recovery(struct sock
*sk
)
2384 struct tcp_sock
*tp
= tcp_sk(sk
);
2386 if (tcp_may_undo(tp
)) {
2389 /* Happy end! We did not retransmit anything
2390 * or our original transmission succeeded.
2392 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2393 tcp_undo_cwnd_reduction(sk
, false);
2394 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2395 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2397 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2399 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2401 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2402 /* Hold old state until something *above* high_seq
2403 * is ACKed. For Reno it is MUST to prevent false
2404 * fast retransmits (RFC2582). SACK TCP is safe. */
2405 tcp_moderate_cwnd(tp
);
2406 if (!tcp_any_retrans_done(sk
))
2407 tp
->retrans_stamp
= 0;
2410 tcp_set_ca_state(sk
, TCP_CA_Open
);
2414 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2415 static bool tcp_try_undo_dsack(struct sock
*sk
)
2417 struct tcp_sock
*tp
= tcp_sk(sk
);
2419 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2420 DBGUNDO(sk
, "D-SACK");
2421 tcp_undo_cwnd_reduction(sk
, false);
2422 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2428 /* Undo during loss recovery after partial ACK or using F-RTO. */
2429 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2431 struct tcp_sock
*tp
= tcp_sk(sk
);
2433 if (frto_undo
|| tcp_may_undo(tp
)) {
2434 tcp_undo_cwnd_reduction(sk
, true);
2436 DBGUNDO(sk
, "partial loss");
2437 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2439 NET_INC_STATS_BH(sock_net(sk
),
2440 LINUX_MIB_TCPSPURIOUSRTOS
);
2441 inet_csk(sk
)->icsk_retransmits
= 0;
2442 if (frto_undo
|| tcp_is_sack(tp
))
2443 tcp_set_ca_state(sk
, TCP_CA_Open
);
2449 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2450 * It computes the number of packets to send (sndcnt) based on packets newly
2452 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2453 * cwnd reductions across a full RTT.
2454 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2455 * But when the retransmits are acked without further losses, PRR
2456 * slow starts cwnd up to ssthresh to speed up the recovery.
2458 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2460 struct tcp_sock
*tp
= tcp_sk(sk
);
2462 tp
->high_seq
= tp
->snd_nxt
;
2463 tp
->tlp_high_seq
= 0;
2464 tp
->snd_cwnd_cnt
= 0;
2465 tp
->prior_cwnd
= tp
->snd_cwnd
;
2466 tp
->prr_delivered
= 0;
2468 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2469 tcp_ecn_queue_cwr(tp
);
2472 static void tcp_cwnd_reduction(struct sock
*sk
, const int prior_unsacked
,
2473 int fast_rexmit
, int flag
)
2475 struct tcp_sock
*tp
= tcp_sk(sk
);
2477 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2478 int newly_acked_sacked
= prior_unsacked
-
2479 (tp
->packets_out
- tp
->sacked_out
);
2481 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2484 tp
->prr_delivered
+= newly_acked_sacked
;
2486 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2488 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2489 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2490 !(flag
& FLAG_LOST_RETRANS
)) {
2491 sndcnt
= min_t(int, delta
,
2492 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2493 newly_acked_sacked
) + 1);
2495 sndcnt
= min(delta
, newly_acked_sacked
);
2497 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
2498 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2501 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2503 struct tcp_sock
*tp
= tcp_sk(sk
);
2505 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2506 if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
&&
2507 (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
|| tp
->undo_marker
)) {
2508 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2509 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2511 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2514 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2515 void tcp_enter_cwr(struct sock
*sk
)
2517 struct tcp_sock
*tp
= tcp_sk(sk
);
2519 tp
->prior_ssthresh
= 0;
2520 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2521 tp
->undo_marker
= 0;
2522 tcp_init_cwnd_reduction(sk
);
2523 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2526 EXPORT_SYMBOL(tcp_enter_cwr
);
2528 static void tcp_try_keep_open(struct sock
*sk
)
2530 struct tcp_sock
*tp
= tcp_sk(sk
);
2531 int state
= TCP_CA_Open
;
2533 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2534 state
= TCP_CA_Disorder
;
2536 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2537 tcp_set_ca_state(sk
, state
);
2538 tp
->high_seq
= tp
->snd_nxt
;
2542 static void tcp_try_to_open(struct sock
*sk
, int flag
, const int prior_unsacked
)
2544 struct tcp_sock
*tp
= tcp_sk(sk
);
2546 tcp_verify_left_out(tp
);
2548 if (!tcp_any_retrans_done(sk
))
2549 tp
->retrans_stamp
= 0;
2551 if (flag
& FLAG_ECE
)
2554 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2555 tcp_try_keep_open(sk
);
2557 tcp_cwnd_reduction(sk
, prior_unsacked
, 0, flag
);
2561 static void tcp_mtup_probe_failed(struct sock
*sk
)
2563 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2565 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2566 icsk
->icsk_mtup
.probe_size
= 0;
2567 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2570 static void tcp_mtup_probe_success(struct sock
*sk
)
2572 struct tcp_sock
*tp
= tcp_sk(sk
);
2573 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2575 /* FIXME: breaks with very large cwnd */
2576 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2577 tp
->snd_cwnd
= tp
->snd_cwnd
*
2578 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2579 icsk
->icsk_mtup
.probe_size
;
2580 tp
->snd_cwnd_cnt
= 0;
2581 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2582 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2584 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2585 icsk
->icsk_mtup
.probe_size
= 0;
2586 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2587 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2590 /* Do a simple retransmit without using the backoff mechanisms in
2591 * tcp_timer. This is used for path mtu discovery.
2592 * The socket is already locked here.
2594 void tcp_simple_retransmit(struct sock
*sk
)
2596 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2597 struct tcp_sock
*tp
= tcp_sk(sk
);
2598 struct sk_buff
*skb
;
2599 unsigned int mss
= tcp_current_mss(sk
);
2600 u32 prior_lost
= tp
->lost_out
;
2602 tcp_for_write_queue(skb
, sk
) {
2603 if (skb
== tcp_send_head(sk
))
2605 if (tcp_skb_seglen(skb
) > mss
&&
2606 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2607 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2608 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2609 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2611 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2615 tcp_clear_retrans_hints_partial(tp
);
2617 if (prior_lost
== tp
->lost_out
)
2620 if (tcp_is_reno(tp
))
2621 tcp_limit_reno_sacked(tp
);
2623 tcp_verify_left_out(tp
);
2625 /* Don't muck with the congestion window here.
2626 * Reason is that we do not increase amount of _data_
2627 * in network, but units changed and effective
2628 * cwnd/ssthresh really reduced now.
2630 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2631 tp
->high_seq
= tp
->snd_nxt
;
2632 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2633 tp
->prior_ssthresh
= 0;
2634 tp
->undo_marker
= 0;
2635 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2637 tcp_xmit_retransmit_queue(sk
);
2639 EXPORT_SYMBOL(tcp_simple_retransmit
);
2641 static void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2643 struct tcp_sock
*tp
= tcp_sk(sk
);
2646 if (tcp_is_reno(tp
))
2647 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2649 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2651 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2653 tp
->prior_ssthresh
= 0;
2656 if (!tcp_in_cwnd_reduction(sk
)) {
2658 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2659 tcp_init_cwnd_reduction(sk
);
2661 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2664 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2665 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2667 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
)
2669 struct tcp_sock
*tp
= tcp_sk(sk
);
2670 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2672 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2673 tcp_try_undo_loss(sk
, false))
2676 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2677 /* Step 3.b. A timeout is spurious if not all data are
2678 * lost, i.e., never-retransmitted data are (s)acked.
2680 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2681 tcp_try_undo_loss(sk
, true))
2684 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2685 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2686 tp
->frto
= 0; /* Step 3.a. loss was real */
2687 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2688 tp
->high_seq
= tp
->snd_nxt
;
2689 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
2691 if (after(tp
->snd_nxt
, tp
->high_seq
))
2692 return; /* Step 2.b */
2698 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2699 tcp_try_undo_recovery(sk
);
2702 if (tcp_is_reno(tp
)) {
2703 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2704 * delivered. Lower inflight to clock out (re)tranmissions.
2706 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2707 tcp_add_reno_sack(sk
);
2708 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2709 tcp_reset_reno_sack(tp
);
2711 tcp_xmit_retransmit_queue(sk
);
2714 /* Undo during fast recovery after partial ACK. */
2715 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
,
2716 const int prior_unsacked
, int flag
)
2718 struct tcp_sock
*tp
= tcp_sk(sk
);
2720 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2721 /* Plain luck! Hole if filled with delayed
2722 * packet, rather than with a retransmit.
2724 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2726 /* We are getting evidence that the reordering degree is higher
2727 * than we realized. If there are no retransmits out then we
2728 * can undo. Otherwise we clock out new packets but do not
2729 * mark more packets lost or retransmit more.
2731 if (tp
->retrans_out
) {
2732 tcp_cwnd_reduction(sk
, prior_unsacked
, 0, flag
);
2736 if (!tcp_any_retrans_done(sk
))
2737 tp
->retrans_stamp
= 0;
2739 DBGUNDO(sk
, "partial recovery");
2740 tcp_undo_cwnd_reduction(sk
, true);
2741 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2742 tcp_try_keep_open(sk
);
2748 /* Process an event, which can update packets-in-flight not trivially.
2749 * Main goal of this function is to calculate new estimate for left_out,
2750 * taking into account both packets sitting in receiver's buffer and
2751 * packets lost by network.
2753 * Besides that it does CWND reduction, when packet loss is detected
2754 * and changes state of machine.
2756 * It does _not_ decide what to send, it is made in function
2757 * tcp_xmit_retransmit_queue().
2759 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2760 const int prior_unsacked
,
2761 bool is_dupack
, int flag
)
2763 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2764 struct tcp_sock
*tp
= tcp_sk(sk
);
2765 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2766 (tcp_fackets_out(tp
) > tp
->reordering
));
2767 int fast_rexmit
= 0;
2769 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2771 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2772 tp
->fackets_out
= 0;
2774 /* Now state machine starts.
2775 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2776 if (flag
& FLAG_ECE
)
2777 tp
->prior_ssthresh
= 0;
2779 /* B. In all the states check for reneging SACKs. */
2780 if (tcp_check_sack_reneging(sk
, flag
))
2783 /* C. Check consistency of the current state. */
2784 tcp_verify_left_out(tp
);
2786 /* D. Check state exit conditions. State can be terminated
2787 * when high_seq is ACKed. */
2788 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2789 WARN_ON(tp
->retrans_out
!= 0);
2790 tp
->retrans_stamp
= 0;
2791 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2792 switch (icsk
->icsk_ca_state
) {
2794 /* CWR is to be held something *above* high_seq
2795 * is ACKed for CWR bit to reach receiver. */
2796 if (tp
->snd_una
!= tp
->high_seq
) {
2797 tcp_end_cwnd_reduction(sk
);
2798 tcp_set_ca_state(sk
, TCP_CA_Open
);
2802 case TCP_CA_Recovery
:
2803 if (tcp_is_reno(tp
))
2804 tcp_reset_reno_sack(tp
);
2805 if (tcp_try_undo_recovery(sk
))
2807 tcp_end_cwnd_reduction(sk
);
2812 /* Use RACK to detect loss */
2813 if (sysctl_tcp_recovery
& TCP_RACK_LOST_RETRANS
&&
2814 tcp_rack_mark_lost(sk
))
2815 flag
|= FLAG_LOST_RETRANS
;
2817 /* E. Process state. */
2818 switch (icsk
->icsk_ca_state
) {
2819 case TCP_CA_Recovery
:
2820 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2821 if (tcp_is_reno(tp
) && is_dupack
)
2822 tcp_add_reno_sack(sk
);
2824 if (tcp_try_undo_partial(sk
, acked
, prior_unsacked
, flag
))
2826 /* Partial ACK arrived. Force fast retransmit. */
2827 do_lost
= tcp_is_reno(tp
) ||
2828 tcp_fackets_out(tp
) > tp
->reordering
;
2830 if (tcp_try_undo_dsack(sk
)) {
2831 tcp_try_keep_open(sk
);
2836 tcp_process_loss(sk
, flag
, is_dupack
);
2837 if (icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2838 !(flag
& FLAG_LOST_RETRANS
))
2840 /* Change state if cwnd is undone or retransmits are lost */
2842 if (tcp_is_reno(tp
)) {
2843 if (flag
& FLAG_SND_UNA_ADVANCED
)
2844 tcp_reset_reno_sack(tp
);
2846 tcp_add_reno_sack(sk
);
2849 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2850 tcp_try_undo_dsack(sk
);
2852 if (!tcp_time_to_recover(sk
, flag
)) {
2853 tcp_try_to_open(sk
, flag
, prior_unsacked
);
2857 /* MTU probe failure: don't reduce cwnd */
2858 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2859 icsk
->icsk_mtup
.probe_size
&&
2860 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2861 tcp_mtup_probe_failed(sk
);
2862 /* Restores the reduction we did in tcp_mtup_probe() */
2864 tcp_simple_retransmit(sk
);
2868 /* Otherwise enter Recovery state */
2869 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2874 tcp_update_scoreboard(sk
, fast_rexmit
);
2875 tcp_cwnd_reduction(sk
, prior_unsacked
, fast_rexmit
, flag
);
2876 tcp_xmit_retransmit_queue(sk
);
2879 /* Kathleen Nichols' algorithm for tracking the minimum value of
2880 * a data stream over some fixed time interval. (E.g., the minimum
2881 * RTT over the past five minutes.) It uses constant space and constant
2882 * time per update yet almost always delivers the same minimum as an
2883 * implementation that has to keep all the data in the window.
2885 * The algorithm keeps track of the best, 2nd best & 3rd best min
2886 * values, maintaining an invariant that the measurement time of the
2887 * n'th best >= n-1'th best. It also makes sure that the three values
2888 * are widely separated in the time window since that bounds the worse
2889 * case error when that data is monotonically increasing over the window.
2891 * Upon getting a new min, we can forget everything earlier because it
2892 * has no value - the new min is <= everything else in the window by
2893 * definition and it's the most recent. So we restart fresh on every new min
2894 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2897 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
)
2899 const u32 now
= tcp_time_stamp
, wlen
= sysctl_tcp_min_rtt_wlen
* HZ
;
2900 struct rtt_meas
*m
= tcp_sk(sk
)->rtt_min
;
2901 struct rtt_meas rttm
= { .rtt
= (rtt_us
? : 1), .ts
= now
};
2904 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2905 if (unlikely(rttm
.rtt
<= m
[0].rtt
))
2906 m
[0] = m
[1] = m
[2] = rttm
;
2907 else if (rttm
.rtt
<= m
[1].rtt
)
2909 else if (rttm
.rtt
<= m
[2].rtt
)
2912 elapsed
= now
- m
[0].ts
;
2913 if (unlikely(elapsed
> wlen
)) {
2914 /* Passed entire window without a new min so make 2nd choice
2915 * the new min & 3rd choice the new 2nd. So forth and so on.
2920 if (now
- m
[0].ts
> wlen
) {
2923 if (now
- m
[0].ts
> wlen
)
2926 } else if (m
[1].ts
== m
[0].ts
&& elapsed
> wlen
/ 4) {
2927 /* Passed a quarter of the window without a new min so
2928 * take 2nd choice from the 2nd quarter of the window.
2931 } else if (m
[2].ts
== m
[1].ts
&& elapsed
> wlen
/ 2) {
2932 /* Passed half the window without a new min so take the 3rd
2933 * choice from the last half of the window.
2939 static inline bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2940 long seq_rtt_us
, long sack_rtt_us
,
2943 const struct tcp_sock
*tp
= tcp_sk(sk
);
2945 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2946 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2947 * Karn's algorithm forbids taking RTT if some retransmitted data
2948 * is acked (RFC6298).
2951 seq_rtt_us
= sack_rtt_us
;
2953 /* RTTM Rule: A TSecr value received in a segment is used to
2954 * update the averaged RTT measurement only if the segment
2955 * acknowledges some new data, i.e., only if it advances the
2956 * left edge of the send window.
2957 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2959 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2961 seq_rtt_us
= ca_rtt_us
= jiffies_to_usecs(tcp_time_stamp
-
2962 tp
->rx_opt
.rcv_tsecr
);
2966 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2967 * always taken together with ACK, SACK, or TS-opts. Any negative
2968 * values will be skipped with the seq_rtt_us < 0 check above.
2970 tcp_update_rtt_min(sk
, ca_rtt_us
);
2971 tcp_rtt_estimator(sk
, seq_rtt_us
);
2974 /* RFC6298: only reset backoff on valid RTT measurement. */
2975 inet_csk(sk
)->icsk_backoff
= 0;
2979 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2980 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2984 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
.v64
) {
2985 struct skb_mstamp now
;
2987 skb_mstamp_get(&now
);
2988 rtt_us
= skb_mstamp_us_delta(&now
, &tcp_rsk(req
)->snt_synack
);
2991 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
);
2995 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2997 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2999 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
3000 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3003 /* Restart timer after forward progress on connection.
3004 * RFC2988 recommends to restart timer to now+rto.
3006 void tcp_rearm_rto(struct sock
*sk
)
3008 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3009 struct tcp_sock
*tp
= tcp_sk(sk
);
3011 /* If the retrans timer is currently being used by Fast Open
3012 * for SYN-ACK retrans purpose, stay put.
3014 if (tp
->fastopen_rsk
)
3017 if (!tp
->packets_out
) {
3018 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3020 u32 rto
= inet_csk(sk
)->icsk_rto
;
3021 /* Offset the time elapsed after installing regular RTO */
3022 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3023 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3024 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
3025 const u32 rto_time_stamp
=
3026 tcp_skb_timestamp(skb
) + rto
;
3027 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3028 /* delta may not be positive if the socket is locked
3029 * when the retrans timer fires and is rescheduled.
3031 rto
= max(delta
, 1);
3033 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3038 /* This function is called when the delayed ER timer fires. TCP enters
3039 * fast recovery and performs fast-retransmit.
3041 void tcp_resume_early_retransmit(struct sock
*sk
)
3043 struct tcp_sock
*tp
= tcp_sk(sk
);
3047 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3048 if (!tp
->do_early_retrans
)
3051 tcp_enter_recovery(sk
, false);
3052 tcp_update_scoreboard(sk
, 1);
3053 tcp_xmit_retransmit_queue(sk
);
3056 /* If we get here, the whole TSO packet has not been acked. */
3057 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3059 struct tcp_sock
*tp
= tcp_sk(sk
);
3062 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3064 packets_acked
= tcp_skb_pcount(skb
);
3065 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3067 packets_acked
-= tcp_skb_pcount(skb
);
3069 if (packets_acked
) {
3070 BUG_ON(tcp_skb_pcount(skb
) == 0);
3071 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3074 return packets_acked
;
3077 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3080 const struct skb_shared_info
*shinfo
;
3082 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3083 if (likely(!(sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_ACK
)))
3086 shinfo
= skb_shinfo(skb
);
3087 if ((shinfo
->tx_flags
& SKBTX_ACK_TSTAMP
) &&
3088 between(shinfo
->tskey
, prior_snd_una
, tcp_sk(sk
)->snd_una
- 1))
3089 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3092 /* Remove acknowledged frames from the retransmission queue. If our packet
3093 * is before the ack sequence we can discard it as it's confirmed to have
3094 * arrived at the other end.
3096 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3098 struct tcp_sacktag_state
*sack
)
3100 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3101 struct skb_mstamp first_ackt
, last_ackt
, now
;
3102 struct tcp_sock
*tp
= tcp_sk(sk
);
3103 u32 prior_sacked
= tp
->sacked_out
;
3104 u32 reord
= tp
->packets_out
;
3105 bool fully_acked
= true;
3106 long sack_rtt_us
= -1L;
3107 long seq_rtt_us
= -1L;
3108 long ca_rtt_us
= -1L;
3109 struct sk_buff
*skb
;
3116 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3117 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3118 u8 sacked
= scb
->sacked
;
3121 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3123 /* Determine how many packets and what bytes were acked, tso and else */
3124 if (after(scb
->end_seq
, tp
->snd_una
)) {
3125 if (tcp_skb_pcount(skb
) == 1 ||
3126 !after(tp
->snd_una
, scb
->seq
))
3129 acked_pcount
= tcp_tso_acked(sk
, skb
);
3133 fully_acked
= false;
3135 /* Speedup tcp_unlink_write_queue() and next loop */
3136 prefetchw(skb
->next
);
3137 acked_pcount
= tcp_skb_pcount(skb
);
3140 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3141 if (sacked
& TCPCB_SACKED_RETRANS
)
3142 tp
->retrans_out
-= acked_pcount
;
3143 flag
|= FLAG_RETRANS_DATA_ACKED
;
3144 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3145 last_ackt
= skb
->skb_mstamp
;
3146 WARN_ON_ONCE(last_ackt
.v64
== 0);
3147 if (!first_ackt
.v64
)
3148 first_ackt
= last_ackt
;
3150 reord
= min(pkts_acked
, reord
);
3151 if (!after(scb
->end_seq
, tp
->high_seq
))
3152 flag
|= FLAG_ORIG_SACK_ACKED
;
3155 if (sacked
& TCPCB_SACKED_ACKED
)
3156 tp
->sacked_out
-= acked_pcount
;
3157 else if (tcp_is_sack(tp
) && !tcp_skb_spurious_retrans(tp
, skb
))
3158 tcp_rack_advance(tp
, &skb
->skb_mstamp
, sacked
);
3159 if (sacked
& TCPCB_LOST
)
3160 tp
->lost_out
-= acked_pcount
;
3162 tp
->packets_out
-= acked_pcount
;
3163 pkts_acked
+= acked_pcount
;
3165 /* Initial outgoing SYN's get put onto the write_queue
3166 * just like anything else we transmit. It is not
3167 * true data, and if we misinform our callers that
3168 * this ACK acks real data, we will erroneously exit
3169 * connection startup slow start one packet too
3170 * quickly. This is severely frowned upon behavior.
3172 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3173 flag
|= FLAG_DATA_ACKED
;
3175 flag
|= FLAG_SYN_ACKED
;
3176 tp
->retrans_stamp
= 0;
3182 tcp_unlink_write_queue(skb
, sk
);
3183 sk_wmem_free_skb(sk
, skb
);
3184 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3185 tp
->retransmit_skb_hint
= NULL
;
3186 if (unlikely(skb
== tp
->lost_skb_hint
))
3187 tp
->lost_skb_hint
= NULL
;
3190 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3191 tp
->snd_up
= tp
->snd_una
;
3193 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3194 flag
|= FLAG_SACK_RENEGING
;
3196 skb_mstamp_get(&now
);
3197 if (likely(first_ackt
.v64
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3198 seq_rtt_us
= skb_mstamp_us_delta(&now
, &first_ackt
);
3199 ca_rtt_us
= skb_mstamp_us_delta(&now
, &last_ackt
);
3201 if (sack
->first_sackt
.v64
) {
3202 sack_rtt_us
= skb_mstamp_us_delta(&now
, &sack
->first_sackt
);
3203 ca_rtt_us
= skb_mstamp_us_delta(&now
, &sack
->last_sackt
);
3206 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3209 if (flag
& FLAG_ACKED
) {
3211 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3212 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3213 tcp_mtup_probe_success(sk
);
3216 if (tcp_is_reno(tp
)) {
3217 tcp_remove_reno_sacks(sk
, pkts_acked
);
3221 /* Non-retransmitted hole got filled? That's reordering */
3222 if (reord
< prior_fackets
&& reord
<= tp
->fackets_out
)
3223 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3225 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3226 prior_sacked
- tp
->sacked_out
;
3227 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3230 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3232 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3233 sack_rtt_us
> skb_mstamp_us_delta(&now
, &skb
->skb_mstamp
)) {
3234 /* Do not re-arm RTO if the sack RTT is measured from data sent
3235 * after when the head was last (re)transmitted. Otherwise the
3236 * timeout may continue to extend in loss recovery.
3241 if (icsk
->icsk_ca_ops
->pkts_acked
)
3242 icsk
->icsk_ca_ops
->pkts_acked(sk
, pkts_acked
, ca_rtt_us
);
3244 #if FASTRETRANS_DEBUG > 0
3245 WARN_ON((int)tp
->sacked_out
< 0);
3246 WARN_ON((int)tp
->lost_out
< 0);
3247 WARN_ON((int)tp
->retrans_out
< 0);
3248 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3249 icsk
= inet_csk(sk
);
3251 pr_debug("Leak l=%u %d\n",
3252 tp
->lost_out
, icsk
->icsk_ca_state
);
3255 if (tp
->sacked_out
) {
3256 pr_debug("Leak s=%u %d\n",
3257 tp
->sacked_out
, icsk
->icsk_ca_state
);
3260 if (tp
->retrans_out
) {
3261 pr_debug("Leak r=%u %d\n",
3262 tp
->retrans_out
, icsk
->icsk_ca_state
);
3263 tp
->retrans_out
= 0;
3270 static void tcp_ack_probe(struct sock
*sk
)
3272 const struct tcp_sock
*tp
= tcp_sk(sk
);
3273 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3275 /* Was it a usable window open? */
3277 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3278 icsk
->icsk_backoff
= 0;
3279 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3280 /* Socket must be waked up by subsequent tcp_data_snd_check().
3281 * This function is not for random using!
3284 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3286 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3291 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3293 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3294 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3297 /* Decide wheather to run the increase function of congestion control. */
3298 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3300 if (tcp_in_cwnd_reduction(sk
))
3303 /* If reordering is high then always grow cwnd whenever data is
3304 * delivered regardless of its ordering. Otherwise stay conservative
3305 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3306 * new SACK or ECE mark may first advance cwnd here and later reduce
3307 * cwnd in tcp_fastretrans_alert() based on more states.
3309 if (tcp_sk(sk
)->reordering
> sysctl_tcp_reordering
)
3310 return flag
& FLAG_FORWARD_PROGRESS
;
3312 return flag
& FLAG_DATA_ACKED
;
3315 /* Check that window update is acceptable.
3316 * The function assumes that snd_una<=ack<=snd_next.
3318 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3319 const u32 ack
, const u32 ack_seq
,
3322 return after(ack
, tp
->snd_una
) ||
3323 after(ack_seq
, tp
->snd_wl1
) ||
3324 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3327 /* If we update tp->snd_una, also update tp->bytes_acked */
3328 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3330 u32 delta
= ack
- tp
->snd_una
;
3332 u64_stats_update_begin(&tp
->syncp
);
3333 tp
->bytes_acked
+= delta
;
3334 u64_stats_update_end(&tp
->syncp
);
3338 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3339 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3341 u32 delta
= seq
- tp
->rcv_nxt
;
3343 u64_stats_update_begin(&tp
->syncp
);
3344 tp
->bytes_received
+= delta
;
3345 u64_stats_update_end(&tp
->syncp
);
3349 /* Update our send window.
3351 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3352 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3354 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3357 struct tcp_sock
*tp
= tcp_sk(sk
);
3359 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3361 if (likely(!tcp_hdr(skb
)->syn
))
3362 nwin
<<= tp
->rx_opt
.snd_wscale
;
3364 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3365 flag
|= FLAG_WIN_UPDATE
;
3366 tcp_update_wl(tp
, ack_seq
);
3368 if (tp
->snd_wnd
!= nwin
) {
3371 /* Note, it is the only place, where
3372 * fast path is recovered for sending TCP.
3375 tcp_fast_path_check(sk
);
3377 if (tcp_send_head(sk
))
3378 tcp_slow_start_after_idle_check(sk
);
3380 if (nwin
> tp
->max_window
) {
3381 tp
->max_window
= nwin
;
3382 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3387 tcp_snd_una_update(tp
, ack
);
3392 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3393 u32
*last_oow_ack_time
)
3395 if (*last_oow_ack_time
) {
3396 s32 elapsed
= (s32
)(tcp_time_stamp
- *last_oow_ack_time
);
3398 if (0 <= elapsed
&& elapsed
< sysctl_tcp_invalid_ratelimit
) {
3399 NET_INC_STATS_BH(net
, mib_idx
);
3400 return true; /* rate-limited: don't send yet! */
3404 *last_oow_ack_time
= tcp_time_stamp
;
3406 return false; /* not rate-limited: go ahead, send dupack now! */
3409 /* Return true if we're currently rate-limiting out-of-window ACKs and
3410 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3411 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3412 * attacks that send repeated SYNs or ACKs for the same connection. To
3413 * do this, we do not send a duplicate SYNACK or ACK if the remote
3414 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3416 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3417 int mib_idx
, u32
*last_oow_ack_time
)
3419 /* Data packets without SYNs are not likely part of an ACK loop. */
3420 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3424 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3427 /* RFC 5961 7 [ACK Throttling] */
3428 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3430 /* unprotected vars, we dont care of overwrites */
3431 static u32 challenge_timestamp
;
3432 static unsigned int challenge_count
;
3433 struct tcp_sock
*tp
= tcp_sk(sk
);
3436 /* First check our per-socket dupack rate limit. */
3437 if (__tcp_oow_rate_limited(sock_net(sk
),
3438 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3439 &tp
->last_oow_ack_time
))
3442 /* Then check host-wide RFC 5961 rate limit. */
3444 if (now
!= challenge_timestamp
) {
3445 u32 half
= (sysctl_tcp_challenge_ack_limit
+ 1) >> 1;
3447 challenge_timestamp
= now
;
3448 WRITE_ONCE(challenge_count
, half
+
3449 prandom_u32_max(sysctl_tcp_challenge_ack_limit
));
3451 count
= READ_ONCE(challenge_count
);
3453 WRITE_ONCE(challenge_count
, count
- 1);
3454 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3459 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3461 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3462 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3465 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3467 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3468 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3469 * extra check below makes sure this can only happen
3470 * for pure ACK frames. -DaveM
3472 * Not only, also it occurs for expired timestamps.
3475 if (tcp_paws_check(&tp
->rx_opt
, 0))
3476 tcp_store_ts_recent(tp
);
3480 /* This routine deals with acks during a TLP episode.
3481 * We mark the end of a TLP episode on receiving TLP dupack or when
3482 * ack is after tlp_high_seq.
3483 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3485 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3487 struct tcp_sock
*tp
= tcp_sk(sk
);
3489 if (before(ack
, tp
->tlp_high_seq
))
3492 if (flag
& FLAG_DSACKING_ACK
) {
3493 /* This DSACK means original and TLP probe arrived; no loss */
3494 tp
->tlp_high_seq
= 0;
3495 } else if (after(ack
, tp
->tlp_high_seq
)) {
3496 /* ACK advances: there was a loss, so reduce cwnd. Reset
3497 * tlp_high_seq in tcp_init_cwnd_reduction()
3499 tcp_init_cwnd_reduction(sk
);
3500 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3501 tcp_end_cwnd_reduction(sk
);
3502 tcp_try_keep_open(sk
);
3503 NET_INC_STATS_BH(sock_net(sk
),
3504 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3505 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3506 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3507 /* Pure dupack: original and TLP probe arrived; no loss */
3508 tp
->tlp_high_seq
= 0;
3512 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3514 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3516 if (icsk
->icsk_ca_ops
->in_ack_event
)
3517 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3520 /* This routine deals with incoming acks, but not outgoing ones. */
3521 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3523 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3524 struct tcp_sock
*tp
= tcp_sk(sk
);
3525 struct tcp_sacktag_state sack_state
;
3526 u32 prior_snd_una
= tp
->snd_una
;
3527 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3528 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3529 bool is_dupack
= false;
3531 int prior_packets
= tp
->packets_out
;
3532 const int prior_unsacked
= tp
->packets_out
- tp
->sacked_out
;
3533 int acked
= 0; /* Number of packets newly acked */
3535 sack_state
.first_sackt
.v64
= 0;
3537 /* We very likely will need to access write queue head. */
3538 prefetchw(sk
->sk_write_queue
.next
);
3540 /* If the ack is older than previous acks
3541 * then we can probably ignore it.
3543 if (before(ack
, prior_snd_una
)) {
3544 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3545 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3546 tcp_send_challenge_ack(sk
, skb
);
3552 /* If the ack includes data we haven't sent yet, discard
3553 * this segment (RFC793 Section 3.9).
3555 if (after(ack
, tp
->snd_nxt
))
3558 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3559 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
3562 if (after(ack
, prior_snd_una
)) {
3563 flag
|= FLAG_SND_UNA_ADVANCED
;
3564 icsk
->icsk_retransmits
= 0;
3567 prior_fackets
= tp
->fackets_out
;
3569 /* ts_recent update must be made after we are sure that the packet
3572 if (flag
& FLAG_UPDATE_TS_RECENT
)
3573 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3575 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3576 /* Window is constant, pure forward advance.
3577 * No more checks are required.
3578 * Note, we use the fact that SND.UNA>=SND.WL2.
3580 tcp_update_wl(tp
, ack_seq
);
3581 tcp_snd_una_update(tp
, ack
);
3582 flag
|= FLAG_WIN_UPDATE
;
3584 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3586 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3588 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3590 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3593 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3595 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3597 if (TCP_SKB_CB(skb
)->sacked
)
3598 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3601 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3603 ack_ev_flags
|= CA_ACK_ECE
;
3606 if (flag
& FLAG_WIN_UPDATE
)
3607 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3609 tcp_in_ack_event(sk
, ack_ev_flags
);
3612 /* We passed data and got it acked, remove any soft error
3613 * log. Something worked...
3615 sk
->sk_err_soft
= 0;
3616 icsk
->icsk_probes_out
= 0;
3617 tp
->rcv_tstamp
= tcp_time_stamp
;
3621 /* See if we can take anything off of the retransmit queue. */
3622 acked
= tp
->packets_out
;
3623 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
,
3625 acked
-= tp
->packets_out
;
3627 if (tcp_ack_is_dubious(sk
, flag
)) {
3628 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3629 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3632 if (tp
->tlp_high_seq
)
3633 tcp_process_tlp_ack(sk
, ack
, flag
);
3635 /* Advance cwnd if state allows */
3636 if (tcp_may_raise_cwnd(sk
, flag
))
3637 tcp_cong_avoid(sk
, ack
, acked
);
3639 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
)) {
3640 struct dst_entry
*dst
= __sk_dst_get(sk
);
3645 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
)
3646 tcp_schedule_loss_probe(sk
);
3647 tcp_update_pacing_rate(sk
);
3651 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3652 if (flag
& FLAG_DSACKING_ACK
)
3653 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3655 /* If this ack opens up a zero window, clear backoff. It was
3656 * being used to time the probes, and is probably far higher than
3657 * it needs to be for normal retransmission.
3659 if (tcp_send_head(sk
))
3662 if (tp
->tlp_high_seq
)
3663 tcp_process_tlp_ack(sk
, ack
, flag
);
3667 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3671 /* If data was SACKed, tag it and see if we should send more data.
3672 * If data was DSACKed, see if we can undo a cwnd reduction.
3674 if (TCP_SKB_CB(skb
)->sacked
) {
3675 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3677 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3681 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3685 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3686 bool syn
, struct tcp_fastopen_cookie
*foc
,
3689 /* Valid only in SYN or SYN-ACK with an even length. */
3690 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3693 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3694 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3695 memcpy(foc
->val
, cookie
, len
);
3702 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3703 * But, this can also be called on packets in the established flow when
3704 * the fast version below fails.
3706 void tcp_parse_options(const struct sk_buff
*skb
,
3707 struct tcp_options_received
*opt_rx
, int estab
,
3708 struct tcp_fastopen_cookie
*foc
)
3710 const unsigned char *ptr
;
3711 const struct tcphdr
*th
= tcp_hdr(skb
);
3712 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3714 ptr
= (const unsigned char *)(th
+ 1);
3715 opt_rx
->saw_tstamp
= 0;
3717 while (length
> 0) {
3718 int opcode
= *ptr
++;
3724 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3729 if (opsize
< 2) /* "silly options" */
3731 if (opsize
> length
)
3732 return; /* don't parse partial options */
3735 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3736 u16 in_mss
= get_unaligned_be16(ptr
);
3738 if (opt_rx
->user_mss
&&
3739 opt_rx
->user_mss
< in_mss
)
3740 in_mss
= opt_rx
->user_mss
;
3741 opt_rx
->mss_clamp
= in_mss
;
3746 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3747 !estab
&& sysctl_tcp_window_scaling
) {
3748 __u8 snd_wscale
= *(__u8
*)ptr
;
3749 opt_rx
->wscale_ok
= 1;
3750 if (snd_wscale
> 14) {
3751 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3756 opt_rx
->snd_wscale
= snd_wscale
;
3759 case TCPOPT_TIMESTAMP
:
3760 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3761 ((estab
&& opt_rx
->tstamp_ok
) ||
3762 (!estab
&& sysctl_tcp_timestamps
))) {
3763 opt_rx
->saw_tstamp
= 1;
3764 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3765 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3768 case TCPOPT_SACK_PERM
:
3769 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3770 !estab
&& sysctl_tcp_sack
) {
3771 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3772 tcp_sack_reset(opt_rx
);
3777 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3778 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3780 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3783 #ifdef CONFIG_TCP_MD5SIG
3786 * The MD5 Hash has already been
3787 * checked (see tcp_v{4,6}_do_rcv()).
3791 case TCPOPT_FASTOPEN
:
3792 tcp_parse_fastopen_option(
3793 opsize
- TCPOLEN_FASTOPEN_BASE
,
3794 ptr
, th
->syn
, foc
, false);
3798 /* Fast Open option shares code 254 using a
3799 * 16 bits magic number.
3801 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3802 get_unaligned_be16(ptr
) ==
3803 TCPOPT_FASTOPEN_MAGIC
)
3804 tcp_parse_fastopen_option(opsize
-
3805 TCPOLEN_EXP_FASTOPEN_BASE
,
3806 ptr
+ 2, th
->syn
, foc
, true);
3815 EXPORT_SYMBOL(tcp_parse_options
);
3817 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3819 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3821 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3822 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3823 tp
->rx_opt
.saw_tstamp
= 1;
3825 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3828 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3830 tp
->rx_opt
.rcv_tsecr
= 0;
3836 /* Fast parse options. This hopes to only see timestamps.
3837 * If it is wrong it falls back on tcp_parse_options().
3839 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3840 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3842 /* In the spirit of fast parsing, compare doff directly to constant
3843 * values. Because equality is used, short doff can be ignored here.
3845 if (th
->doff
== (sizeof(*th
) / 4)) {
3846 tp
->rx_opt
.saw_tstamp
= 0;
3848 } else if (tp
->rx_opt
.tstamp_ok
&&
3849 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3850 if (tcp_parse_aligned_timestamp(tp
, th
))
3854 tcp_parse_options(skb
, &tp
->rx_opt
, 1, NULL
);
3855 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3856 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3861 #ifdef CONFIG_TCP_MD5SIG
3863 * Parse MD5 Signature option
3865 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3867 int length
= (th
->doff
<< 2) - sizeof(*th
);
3868 const u8
*ptr
= (const u8
*)(th
+ 1);
3870 /* If the TCP option is too short, we can short cut */
3871 if (length
< TCPOLEN_MD5SIG
)
3874 while (length
> 0) {
3875 int opcode
= *ptr
++;
3886 if (opsize
< 2 || opsize
> length
)
3888 if (opcode
== TCPOPT_MD5SIG
)
3889 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3896 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3899 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3901 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3902 * it can pass through stack. So, the following predicate verifies that
3903 * this segment is not used for anything but congestion avoidance or
3904 * fast retransmit. Moreover, we even are able to eliminate most of such
3905 * second order effects, if we apply some small "replay" window (~RTO)
3906 * to timestamp space.
3908 * All these measures still do not guarantee that we reject wrapped ACKs
3909 * on networks with high bandwidth, when sequence space is recycled fastly,
3910 * but it guarantees that such events will be very rare and do not affect
3911 * connection seriously. This doesn't look nice, but alas, PAWS is really
3914 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3915 * states that events when retransmit arrives after original data are rare.
3916 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3917 * the biggest problem on large power networks even with minor reordering.
3918 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3919 * up to bandwidth of 18Gigabit/sec. 8) ]
3922 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3924 const struct tcp_sock
*tp
= tcp_sk(sk
);
3925 const struct tcphdr
*th
= tcp_hdr(skb
);
3926 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3927 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3929 return (/* 1. Pure ACK with correct sequence number. */
3930 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3932 /* 2. ... and duplicate ACK. */
3933 ack
== tp
->snd_una
&&
3935 /* 3. ... and does not update window. */
3936 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3938 /* 4. ... and sits in replay window. */
3939 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3942 static inline bool tcp_paws_discard(const struct sock
*sk
,
3943 const struct sk_buff
*skb
)
3945 const struct tcp_sock
*tp
= tcp_sk(sk
);
3947 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3948 !tcp_disordered_ack(sk
, skb
);
3951 /* Check segment sequence number for validity.
3953 * Segment controls are considered valid, if the segment
3954 * fits to the window after truncation to the window. Acceptability
3955 * of data (and SYN, FIN, of course) is checked separately.
3956 * See tcp_data_queue(), for example.
3958 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3959 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3960 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3961 * (borrowed from freebsd)
3964 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3966 return !before(end_seq
, tp
->rcv_wup
) &&
3967 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3970 /* When we get a reset we do this. */
3971 void tcp_reset(struct sock
*sk
)
3973 /* We want the right error as BSD sees it (and indeed as we do). */
3974 switch (sk
->sk_state
) {
3976 sk
->sk_err
= ECONNREFUSED
;
3978 case TCP_CLOSE_WAIT
:
3984 sk
->sk_err
= ECONNRESET
;
3986 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3989 if (!sock_flag(sk
, SOCK_DEAD
))
3990 sk
->sk_error_report(sk
);
3996 * Process the FIN bit. This now behaves as it is supposed to work
3997 * and the FIN takes effect when it is validly part of sequence
3998 * space. Not before when we get holes.
4000 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4001 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4004 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4005 * close and we go into CLOSING (and later onto TIME-WAIT)
4007 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4009 static void tcp_fin(struct sock
*sk
)
4011 struct tcp_sock
*tp
= tcp_sk(sk
);
4013 inet_csk_schedule_ack(sk
);
4015 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4016 sock_set_flag(sk
, SOCK_DONE
);
4018 switch (sk
->sk_state
) {
4020 case TCP_ESTABLISHED
:
4021 /* Move to CLOSE_WAIT */
4022 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4023 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4026 case TCP_CLOSE_WAIT
:
4028 /* Received a retransmission of the FIN, do
4033 /* RFC793: Remain in the LAST-ACK state. */
4037 /* This case occurs when a simultaneous close
4038 * happens, we must ack the received FIN and
4039 * enter the CLOSING state.
4042 tcp_set_state(sk
, TCP_CLOSING
);
4045 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4047 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4050 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4051 * cases we should never reach this piece of code.
4053 pr_err("%s: Impossible, sk->sk_state=%d\n",
4054 __func__
, sk
->sk_state
);
4058 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4059 * Probably, we should reset in this case. For now drop them.
4061 __skb_queue_purge(&tp
->out_of_order_queue
);
4062 if (tcp_is_sack(tp
))
4063 tcp_sack_reset(&tp
->rx_opt
);
4066 if (!sock_flag(sk
, SOCK_DEAD
)) {
4067 sk
->sk_state_change(sk
);
4069 /* Do not send POLL_HUP for half duplex close. */
4070 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4071 sk
->sk_state
== TCP_CLOSE
)
4072 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4074 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4078 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4081 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4082 if (before(seq
, sp
->start_seq
))
4083 sp
->start_seq
= seq
;
4084 if (after(end_seq
, sp
->end_seq
))
4085 sp
->end_seq
= end_seq
;
4091 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4093 struct tcp_sock
*tp
= tcp_sk(sk
);
4095 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4098 if (before(seq
, tp
->rcv_nxt
))
4099 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4101 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4103 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4105 tp
->rx_opt
.dsack
= 1;
4106 tp
->duplicate_sack
[0].start_seq
= seq
;
4107 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4111 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4113 struct tcp_sock
*tp
= tcp_sk(sk
);
4115 if (!tp
->rx_opt
.dsack
)
4116 tcp_dsack_set(sk
, seq
, end_seq
);
4118 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4121 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4123 struct tcp_sock
*tp
= tcp_sk(sk
);
4125 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4126 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4127 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4128 tcp_enter_quickack_mode(sk
);
4130 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4131 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4133 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4134 end_seq
= tp
->rcv_nxt
;
4135 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4142 /* These routines update the SACK block as out-of-order packets arrive or
4143 * in-order packets close up the sequence space.
4145 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4148 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4149 struct tcp_sack_block
*swalk
= sp
+ 1;
4151 /* See if the recent change to the first SACK eats into
4152 * or hits the sequence space of other SACK blocks, if so coalesce.
4154 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4155 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4158 /* Zap SWALK, by moving every further SACK up by one slot.
4159 * Decrease num_sacks.
4161 tp
->rx_opt
.num_sacks
--;
4162 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4166 this_sack
++, swalk
++;
4170 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4172 struct tcp_sock
*tp
= tcp_sk(sk
);
4173 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4174 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4180 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4181 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4182 /* Rotate this_sack to the first one. */
4183 for (; this_sack
> 0; this_sack
--, sp
--)
4184 swap(*sp
, *(sp
- 1));
4186 tcp_sack_maybe_coalesce(tp
);
4191 /* Could not find an adjacent existing SACK, build a new one,
4192 * put it at the front, and shift everyone else down. We
4193 * always know there is at least one SACK present already here.
4195 * If the sack array is full, forget about the last one.
4197 if (this_sack
>= TCP_NUM_SACKS
) {
4199 tp
->rx_opt
.num_sacks
--;
4202 for (; this_sack
> 0; this_sack
--, sp
--)
4206 /* Build the new head SACK, and we're done. */
4207 sp
->start_seq
= seq
;
4208 sp
->end_seq
= end_seq
;
4209 tp
->rx_opt
.num_sacks
++;
4212 /* RCV.NXT advances, some SACKs should be eaten. */
4214 static void tcp_sack_remove(struct tcp_sock
*tp
)
4216 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4217 int num_sacks
= tp
->rx_opt
.num_sacks
;
4220 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4221 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4222 tp
->rx_opt
.num_sacks
= 0;
4226 for (this_sack
= 0; this_sack
< num_sacks
;) {
4227 /* Check if the start of the sack is covered by RCV.NXT. */
4228 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4231 /* RCV.NXT must cover all the block! */
4232 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4234 /* Zap this SACK, by moving forward any other SACKS. */
4235 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4236 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4243 tp
->rx_opt
.num_sacks
= num_sacks
;
4247 * tcp_try_coalesce - try to merge skb to prior one
4250 * @from: buffer to add in queue
4251 * @fragstolen: pointer to boolean
4253 * Before queueing skb @from after @to, try to merge them
4254 * to reduce overall memory use and queue lengths, if cost is small.
4255 * Packets in ofo or receive queues can stay a long time.
4256 * Better try to coalesce them right now to avoid future collapses.
4257 * Returns true if caller should free @from instead of queueing it
4259 static bool tcp_try_coalesce(struct sock
*sk
,
4261 struct sk_buff
*from
,
4266 *fragstolen
= false;
4268 /* Its possible this segment overlaps with prior segment in queue */
4269 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4272 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4275 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4276 sk_mem_charge(sk
, delta
);
4277 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4278 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4279 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4280 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4284 /* This one checks to see if we can put data from the
4285 * out_of_order queue into the receive_queue.
4287 static void tcp_ofo_queue(struct sock
*sk
)
4289 struct tcp_sock
*tp
= tcp_sk(sk
);
4290 __u32 dsack_high
= tp
->rcv_nxt
;
4291 struct sk_buff
*skb
, *tail
;
4292 bool fragstolen
, eaten
;
4294 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4295 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4298 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4299 __u32 dsack
= dsack_high
;
4300 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4301 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4302 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4305 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4306 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4307 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4311 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4312 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4313 TCP_SKB_CB(skb
)->end_seq
);
4315 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4316 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4317 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4319 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4320 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4323 kfree_skb_partial(skb
, fragstolen
);
4327 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4328 static int tcp_prune_queue(struct sock
*sk
);
4330 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4333 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4334 !sk_rmem_schedule(sk
, skb
, size
)) {
4336 if (tcp_prune_queue(sk
) < 0)
4339 if (!sk_rmem_schedule(sk
, skb
, size
)) {
4340 if (!tcp_prune_ofo_queue(sk
))
4343 if (!sk_rmem_schedule(sk
, skb
, size
))
4350 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4352 struct tcp_sock
*tp
= tcp_sk(sk
);
4353 struct sk_buff
*skb1
;
4356 tcp_ecn_check_ce(tp
, skb
);
4358 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4359 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4364 /* Disable header prediction. */
4366 inet_csk_schedule_ack(sk
);
4368 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4369 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4370 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4372 skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4374 /* Initial out of order segment, build 1 SACK. */
4375 if (tcp_is_sack(tp
)) {
4376 tp
->rx_opt
.num_sacks
= 1;
4377 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4378 tp
->selective_acks
[0].end_seq
=
4379 TCP_SKB_CB(skb
)->end_seq
;
4381 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4385 seq
= TCP_SKB_CB(skb
)->seq
;
4386 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4388 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4391 if (!tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4392 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4394 tcp_grow_window(sk
, skb
);
4395 kfree_skb_partial(skb
, fragstolen
);
4399 if (!tp
->rx_opt
.num_sacks
||
4400 tp
->selective_acks
[0].end_seq
!= seq
)
4403 /* Common case: data arrive in order after hole. */
4404 tp
->selective_acks
[0].end_seq
= end_seq
;
4408 /* Find place to insert this segment. */
4410 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4412 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4416 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4419 /* Do skb overlap to previous one? */
4420 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4421 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4422 /* All the bits are present. Drop. */
4423 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4426 tcp_dsack_set(sk
, seq
, end_seq
);
4429 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4430 /* Partial overlap. */
4431 tcp_dsack_set(sk
, seq
,
4432 TCP_SKB_CB(skb1
)->end_seq
);
4434 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4438 skb1
= skb_queue_prev(
4439 &tp
->out_of_order_queue
,
4444 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4446 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4448 /* And clean segments covered by new one as whole. */
4449 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4450 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4452 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4454 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4455 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4459 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4460 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4461 TCP_SKB_CB(skb1
)->end_seq
);
4462 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4467 if (tcp_is_sack(tp
))
4468 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4471 tcp_grow_window(sk
, skb
);
4472 skb_set_owner_r(skb
, sk
);
4476 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4480 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4482 __skb_pull(skb
, hdrlen
);
4484 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4485 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4487 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4488 skb_set_owner_r(skb
, sk
);
4493 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4495 struct sk_buff
*skb
;
4503 if (size
> PAGE_SIZE
) {
4504 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4506 data_len
= npages
<< PAGE_SHIFT
;
4507 size
= data_len
+ (size
& ~PAGE_MASK
);
4509 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4510 PAGE_ALLOC_COSTLY_ORDER
,
4511 &err
, sk
->sk_allocation
);
4515 skb_put(skb
, size
- data_len
);
4516 skb
->data_len
= data_len
;
4519 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4522 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4526 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4527 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4528 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4530 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4531 WARN_ON_ONCE(fragstolen
); /* should not happen */
4543 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4545 struct tcp_sock
*tp
= tcp_sk(sk
);
4547 bool fragstolen
= false;
4549 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4553 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4555 tcp_ecn_accept_cwr(tp
, skb
);
4557 tp
->rx_opt
.dsack
= 0;
4559 /* Queue data for delivery to the user.
4560 * Packets in sequence go to the receive queue.
4561 * Out of sequence packets to the out_of_order_queue.
4563 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4564 if (tcp_receive_window(tp
) == 0)
4567 /* Ok. In sequence. In window. */
4568 if (tp
->ucopy
.task
== current
&&
4569 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4570 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4571 int chunk
= min_t(unsigned int, skb
->len
,
4574 __set_current_state(TASK_RUNNING
);
4577 if (!skb_copy_datagram_msg(skb
, 0, tp
->ucopy
.msg
, chunk
)) {
4578 tp
->ucopy
.len
-= chunk
;
4579 tp
->copied_seq
+= chunk
;
4580 eaten
= (chunk
== skb
->len
);
4581 tcp_rcv_space_adjust(sk
);
4589 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4590 sk_forced_mem_schedule(sk
, skb
->truesize
);
4591 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4594 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4596 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4598 tcp_event_data_recv(sk
, skb
);
4599 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4602 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4605 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4606 * gap in queue is filled.
4608 if (skb_queue_empty(&tp
->out_of_order_queue
))
4609 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4612 if (tp
->rx_opt
.num_sacks
)
4613 tcp_sack_remove(tp
);
4615 tcp_fast_path_check(sk
);
4618 kfree_skb_partial(skb
, fragstolen
);
4619 if (!sock_flag(sk
, SOCK_DEAD
))
4620 sk
->sk_data_ready(sk
);
4624 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4625 /* A retransmit, 2nd most common case. Force an immediate ack. */
4626 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4627 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4630 tcp_enter_quickack_mode(sk
);
4631 inet_csk_schedule_ack(sk
);
4637 /* Out of window. F.e. zero window probe. */
4638 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4641 tcp_enter_quickack_mode(sk
);
4643 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4644 /* Partial packet, seq < rcv_next < end_seq */
4645 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4646 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4647 TCP_SKB_CB(skb
)->end_seq
);
4649 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4651 /* If window is closed, drop tail of packet. But after
4652 * remembering D-SACK for its head made in previous line.
4654 if (!tcp_receive_window(tp
))
4659 tcp_data_queue_ofo(sk
, skb
);
4662 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4663 struct sk_buff_head
*list
)
4665 struct sk_buff
*next
= NULL
;
4667 if (!skb_queue_is_last(list
, skb
))
4668 next
= skb_queue_next(list
, skb
);
4670 __skb_unlink(skb
, list
);
4672 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4677 /* Collapse contiguous sequence of skbs head..tail with
4678 * sequence numbers start..end.
4680 * If tail is NULL, this means until the end of the list.
4682 * Segments with FIN/SYN are not collapsed (only because this
4686 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4687 struct sk_buff
*head
, struct sk_buff
*tail
,
4690 struct sk_buff
*skb
, *n
;
4693 /* First, check that queue is collapsible and find
4694 * the point where collapsing can be useful. */
4698 skb_queue_walk_from_safe(list
, skb
, n
) {
4701 /* No new bits? It is possible on ofo queue. */
4702 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4703 skb
= tcp_collapse_one(sk
, skb
, list
);
4709 /* The first skb to collapse is:
4711 * - bloated or contains data before "start" or
4712 * overlaps to the next one.
4714 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4715 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4716 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4717 end_of_skbs
= false;
4721 if (!skb_queue_is_last(list
, skb
)) {
4722 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4724 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4725 end_of_skbs
= false;
4730 /* Decided to skip this, advance start seq. */
4731 start
= TCP_SKB_CB(skb
)->end_seq
;
4734 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4737 while (before(start
, end
)) {
4738 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4739 struct sk_buff
*nskb
;
4741 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4745 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4746 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4747 __skb_queue_before(list
, skb
, nskb
);
4748 skb_set_owner_r(nskb
, sk
);
4750 /* Copy data, releasing collapsed skbs. */
4752 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4753 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4757 size
= min(copy
, size
);
4758 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4760 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4764 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4765 skb
= tcp_collapse_one(sk
, skb
, list
);
4768 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4775 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4776 * and tcp_collapse() them until all the queue is collapsed.
4778 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4780 struct tcp_sock
*tp
= tcp_sk(sk
);
4781 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4782 struct sk_buff
*head
;
4788 start
= TCP_SKB_CB(skb
)->seq
;
4789 end
= TCP_SKB_CB(skb
)->end_seq
;
4793 struct sk_buff
*next
= NULL
;
4795 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4796 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4799 /* Segment is terminated when we see gap or when
4800 * we are at the end of all the queue. */
4802 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4803 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4804 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4805 head
, skb
, start
, end
);
4809 /* Start new segment */
4810 start
= TCP_SKB_CB(skb
)->seq
;
4811 end
= TCP_SKB_CB(skb
)->end_seq
;
4813 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4814 start
= TCP_SKB_CB(skb
)->seq
;
4815 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4816 end
= TCP_SKB_CB(skb
)->end_seq
;
4822 * Purge the out-of-order queue.
4823 * Return true if queue was pruned.
4825 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4827 struct tcp_sock
*tp
= tcp_sk(sk
);
4830 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4831 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4832 __skb_queue_purge(&tp
->out_of_order_queue
);
4834 /* Reset SACK state. A conforming SACK implementation will
4835 * do the same at a timeout based retransmit. When a connection
4836 * is in a sad state like this, we care only about integrity
4837 * of the connection not performance.
4839 if (tp
->rx_opt
.sack_ok
)
4840 tcp_sack_reset(&tp
->rx_opt
);
4847 /* Reduce allocated memory if we can, trying to get
4848 * the socket within its memory limits again.
4850 * Return less than zero if we should start dropping frames
4851 * until the socket owning process reads some of the data
4852 * to stabilize the situation.
4854 static int tcp_prune_queue(struct sock
*sk
)
4856 struct tcp_sock
*tp
= tcp_sk(sk
);
4858 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4860 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4862 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4863 tcp_clamp_window(sk
);
4864 else if (tcp_under_memory_pressure(sk
))
4865 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4867 tcp_collapse_ofo_queue(sk
);
4868 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4869 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4870 skb_peek(&sk
->sk_receive_queue
),
4872 tp
->copied_seq
, tp
->rcv_nxt
);
4875 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4878 /* Collapsing did not help, destructive actions follow.
4879 * This must not ever occur. */
4881 tcp_prune_ofo_queue(sk
);
4883 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4886 /* If we are really being abused, tell the caller to silently
4887 * drop receive data on the floor. It will get retransmitted
4888 * and hopefully then we'll have sufficient space.
4890 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4892 /* Massive buffer overcommit. */
4897 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4899 const struct tcp_sock
*tp
= tcp_sk(sk
);
4901 /* If the user specified a specific send buffer setting, do
4904 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4907 /* If we are under global TCP memory pressure, do not expand. */
4908 if (tcp_under_memory_pressure(sk
))
4911 /* If we are under soft global TCP memory pressure, do not expand. */
4912 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4915 /* If we filled the congestion window, do not expand. */
4916 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
4922 /* When incoming ACK allowed to free some skb from write_queue,
4923 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4924 * on the exit from tcp input handler.
4926 * PROBLEM: sndbuf expansion does not work well with largesend.
4928 static void tcp_new_space(struct sock
*sk
)
4930 struct tcp_sock
*tp
= tcp_sk(sk
);
4932 if (tcp_should_expand_sndbuf(sk
)) {
4933 tcp_sndbuf_expand(sk
);
4934 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4937 sk
->sk_write_space(sk
);
4940 static void tcp_check_space(struct sock
*sk
)
4942 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4943 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4944 /* pairs with tcp_poll() */
4946 if (sk
->sk_socket
&&
4947 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4952 static inline void tcp_data_snd_check(struct sock
*sk
)
4954 tcp_push_pending_frames(sk
);
4955 tcp_check_space(sk
);
4959 * Check if sending an ack is needed.
4961 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4963 struct tcp_sock
*tp
= tcp_sk(sk
);
4965 /* More than one full frame received... */
4966 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
4967 /* ... and right edge of window advances far enough.
4968 * (tcp_recvmsg() will send ACK otherwise). Or...
4970 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4971 /* We ACK each frame or... */
4972 tcp_in_quickack_mode(sk
) ||
4973 /* We have out of order data. */
4974 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4975 /* Then ack it now */
4978 /* Else, send delayed ack. */
4979 tcp_send_delayed_ack(sk
);
4983 static inline void tcp_ack_snd_check(struct sock
*sk
)
4985 if (!inet_csk_ack_scheduled(sk
)) {
4986 /* We sent a data segment already. */
4989 __tcp_ack_snd_check(sk
, 1);
4993 * This routine is only called when we have urgent data
4994 * signaled. Its the 'slow' part of tcp_urg. It could be
4995 * moved inline now as tcp_urg is only called from one
4996 * place. We handle URGent data wrong. We have to - as
4997 * BSD still doesn't use the correction from RFC961.
4998 * For 1003.1g we should support a new option TCP_STDURG to permit
4999 * either form (or just set the sysctl tcp_stdurg).
5002 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5004 struct tcp_sock
*tp
= tcp_sk(sk
);
5005 u32 ptr
= ntohs(th
->urg_ptr
);
5007 if (ptr
&& !sysctl_tcp_stdurg
)
5009 ptr
+= ntohl(th
->seq
);
5011 /* Ignore urgent data that we've already seen and read. */
5012 if (after(tp
->copied_seq
, ptr
))
5015 /* Do not replay urg ptr.
5017 * NOTE: interesting situation not covered by specs.
5018 * Misbehaving sender may send urg ptr, pointing to segment,
5019 * which we already have in ofo queue. We are not able to fetch
5020 * such data and will stay in TCP_URG_NOTYET until will be eaten
5021 * by recvmsg(). Seems, we are not obliged to handle such wicked
5022 * situations. But it is worth to think about possibility of some
5023 * DoSes using some hypothetical application level deadlock.
5025 if (before(ptr
, tp
->rcv_nxt
))
5028 /* Do we already have a newer (or duplicate) urgent pointer? */
5029 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5032 /* Tell the world about our new urgent pointer. */
5035 /* We may be adding urgent data when the last byte read was
5036 * urgent. To do this requires some care. We cannot just ignore
5037 * tp->copied_seq since we would read the last urgent byte again
5038 * as data, nor can we alter copied_seq until this data arrives
5039 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5041 * NOTE. Double Dutch. Rendering to plain English: author of comment
5042 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5043 * and expect that both A and B disappear from stream. This is _wrong_.
5044 * Though this happens in BSD with high probability, this is occasional.
5045 * Any application relying on this is buggy. Note also, that fix "works"
5046 * only in this artificial test. Insert some normal data between A and B and we will
5047 * decline of BSD again. Verdict: it is better to remove to trap
5050 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5051 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5052 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5054 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5055 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5060 tp
->urg_data
= TCP_URG_NOTYET
;
5063 /* Disable header prediction. */
5067 /* This is the 'fast' part of urgent handling. */
5068 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5070 struct tcp_sock
*tp
= tcp_sk(sk
);
5072 /* Check if we get a new urgent pointer - normally not. */
5074 tcp_check_urg(sk
, th
);
5076 /* Do we wait for any urgent data? - normally not... */
5077 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5078 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5081 /* Is the urgent pointer pointing into this packet? */
5082 if (ptr
< skb
->len
) {
5084 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5086 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5087 if (!sock_flag(sk
, SOCK_DEAD
))
5088 sk
->sk_data_ready(sk
);
5093 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5095 struct tcp_sock
*tp
= tcp_sk(sk
);
5096 int chunk
= skb
->len
- hlen
;
5100 if (skb_csum_unnecessary(skb
))
5101 err
= skb_copy_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
, chunk
);
5103 err
= skb_copy_and_csum_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
);
5106 tp
->ucopy
.len
-= chunk
;
5107 tp
->copied_seq
+= chunk
;
5108 tcp_rcv_space_adjust(sk
);
5115 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5116 struct sk_buff
*skb
)
5120 if (sock_owned_by_user(sk
)) {
5122 result
= __tcp_checksum_complete(skb
);
5125 result
= __tcp_checksum_complete(skb
);
5130 static inline bool tcp_checksum_complete_user(struct sock
*sk
,
5131 struct sk_buff
*skb
)
5133 return !skb_csum_unnecessary(skb
) &&
5134 __tcp_checksum_complete_user(sk
, skb
);
5137 /* Does PAWS and seqno based validation of an incoming segment, flags will
5138 * play significant role here.
5140 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5141 const struct tcphdr
*th
, int syn_inerr
)
5143 struct tcp_sock
*tp
= tcp_sk(sk
);
5145 /* RFC1323: H1. Apply PAWS check first. */
5146 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5147 tcp_paws_discard(sk
, skb
)) {
5149 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5150 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5151 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5152 &tp
->last_oow_ack_time
))
5153 tcp_send_dupack(sk
, skb
);
5156 /* Reset is accepted even if it did not pass PAWS. */
5159 /* Step 1: check sequence number */
5160 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5161 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5162 * (RST) segments are validated by checking their SEQ-fields."
5163 * And page 69: "If an incoming segment is not acceptable,
5164 * an acknowledgment should be sent in reply (unless the RST
5165 * bit is set, if so drop the segment and return)".
5170 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5171 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5172 &tp
->last_oow_ack_time
))
5173 tcp_send_dupack(sk
, skb
);
5178 /* Step 2: check RST bit */
5181 * If sequence number exactly matches RCV.NXT, then
5182 * RESET the connection
5184 * Send a challenge ACK
5186 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
)
5189 tcp_send_challenge_ack(sk
, skb
);
5193 /* step 3: check security and precedence [ignored] */
5195 /* step 4: Check for a SYN
5196 * RFC 5961 4.2 : Send a challenge ack
5201 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5202 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5203 tcp_send_challenge_ack(sk
, skb
);
5215 * TCP receive function for the ESTABLISHED state.
5217 * It is split into a fast path and a slow path. The fast path is
5219 * - A zero window was announced from us - zero window probing
5220 * is only handled properly in the slow path.
5221 * - Out of order segments arrived.
5222 * - Urgent data is expected.
5223 * - There is no buffer space left
5224 * - Unexpected TCP flags/window values/header lengths are received
5225 * (detected by checking the TCP header against pred_flags)
5226 * - Data is sent in both directions. Fast path only supports pure senders
5227 * or pure receivers (this means either the sequence number or the ack
5228 * value must stay constant)
5229 * - Unexpected TCP option.
5231 * When these conditions are not satisfied it drops into a standard
5232 * receive procedure patterned after RFC793 to handle all cases.
5233 * The first three cases are guaranteed by proper pred_flags setting,
5234 * the rest is checked inline. Fast processing is turned on in
5235 * tcp_data_queue when everything is OK.
5237 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5238 const struct tcphdr
*th
, unsigned int len
)
5240 struct tcp_sock
*tp
= tcp_sk(sk
);
5242 if (unlikely(!sk
->sk_rx_dst
))
5243 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5245 * Header prediction.
5246 * The code loosely follows the one in the famous
5247 * "30 instruction TCP receive" Van Jacobson mail.
5249 * Van's trick is to deposit buffers into socket queue
5250 * on a device interrupt, to call tcp_recv function
5251 * on the receive process context and checksum and copy
5252 * the buffer to user space. smart...
5254 * Our current scheme is not silly either but we take the
5255 * extra cost of the net_bh soft interrupt processing...
5256 * We do checksum and copy also but from device to kernel.
5259 tp
->rx_opt
.saw_tstamp
= 0;
5261 /* pred_flags is 0xS?10 << 16 + snd_wnd
5262 * if header_prediction is to be made
5263 * 'S' will always be tp->tcp_header_len >> 2
5264 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5265 * turn it off (when there are holes in the receive
5266 * space for instance)
5267 * PSH flag is ignored.
5270 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5271 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5272 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5273 int tcp_header_len
= tp
->tcp_header_len
;
5275 /* Timestamp header prediction: tcp_header_len
5276 * is automatically equal to th->doff*4 due to pred_flags
5280 /* Check timestamp */
5281 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5282 /* No? Slow path! */
5283 if (!tcp_parse_aligned_timestamp(tp
, th
))
5286 /* If PAWS failed, check it more carefully in slow path */
5287 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5290 /* DO NOT update ts_recent here, if checksum fails
5291 * and timestamp was corrupted part, it will result
5292 * in a hung connection since we will drop all
5293 * future packets due to the PAWS test.
5297 if (len
<= tcp_header_len
) {
5298 /* Bulk data transfer: sender */
5299 if (len
== tcp_header_len
) {
5300 /* Predicted packet is in window by definition.
5301 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5302 * Hence, check seq<=rcv_wup reduces to:
5304 if (tcp_header_len
==
5305 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5306 tp
->rcv_nxt
== tp
->rcv_wup
)
5307 tcp_store_ts_recent(tp
);
5309 /* We know that such packets are checksummed
5312 tcp_ack(sk
, skb
, 0);
5314 tcp_data_snd_check(sk
);
5316 } else { /* Header too small */
5317 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5322 bool fragstolen
= false;
5324 if (tp
->ucopy
.task
== current
&&
5325 tp
->copied_seq
== tp
->rcv_nxt
&&
5326 len
- tcp_header_len
<= tp
->ucopy
.len
&&
5327 sock_owned_by_user(sk
)) {
5328 __set_current_state(TASK_RUNNING
);
5330 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
5331 /* Predicted packet is in window by definition.
5332 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5333 * Hence, check seq<=rcv_wup reduces to:
5335 if (tcp_header_len
==
5336 (sizeof(struct tcphdr
) +
5337 TCPOLEN_TSTAMP_ALIGNED
) &&
5338 tp
->rcv_nxt
== tp
->rcv_wup
)
5339 tcp_store_ts_recent(tp
);
5341 tcp_rcv_rtt_measure_ts(sk
, skb
);
5343 __skb_pull(skb
, tcp_header_len
);
5344 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
5345 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5350 if (tcp_checksum_complete_user(sk
, skb
))
5353 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5356 /* Predicted packet is in window by definition.
5357 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5358 * Hence, check seq<=rcv_wup reduces to:
5360 if (tcp_header_len
==
5361 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5362 tp
->rcv_nxt
== tp
->rcv_wup
)
5363 tcp_store_ts_recent(tp
);
5365 tcp_rcv_rtt_measure_ts(sk
, skb
);
5367 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5369 /* Bulk data transfer: receiver */
5370 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5374 tcp_event_data_recv(sk
, skb
);
5376 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5377 /* Well, only one small jumplet in fast path... */
5378 tcp_ack(sk
, skb
, FLAG_DATA
);
5379 tcp_data_snd_check(sk
);
5380 if (!inet_csk_ack_scheduled(sk
))
5384 __tcp_ack_snd_check(sk
, 0);
5387 kfree_skb_partial(skb
, fragstolen
);
5388 sk
->sk_data_ready(sk
);
5394 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5397 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5401 * Standard slow path.
5404 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5408 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5411 tcp_rcv_rtt_measure_ts(sk
, skb
);
5413 /* Process urgent data. */
5414 tcp_urg(sk
, skb
, th
);
5416 /* step 7: process the segment text */
5417 tcp_data_queue(sk
, skb
);
5419 tcp_data_snd_check(sk
);
5420 tcp_ack_snd_check(sk
);
5424 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5425 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5430 EXPORT_SYMBOL(tcp_rcv_established
);
5432 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5434 struct tcp_sock
*tp
= tcp_sk(sk
);
5435 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5437 tcp_set_state(sk
, TCP_ESTABLISHED
);
5438 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5441 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5442 security_inet_conn_established(sk
, skb
);
5445 /* Make sure socket is routed, for correct metrics. */
5446 icsk
->icsk_af_ops
->rebuild_header(sk
);
5448 tcp_init_metrics(sk
);
5450 tcp_init_congestion_control(sk
);
5452 /* Prevent spurious tcp_cwnd_restart() on first data
5455 tp
->lsndtime
= tcp_time_stamp
;
5457 tcp_init_buffer_space(sk
);
5459 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5460 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5462 if (!tp
->rx_opt
.snd_wscale
)
5463 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5467 if (!sock_flag(sk
, SOCK_DEAD
)) {
5468 sk
->sk_state_change(sk
);
5469 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5473 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5474 struct tcp_fastopen_cookie
*cookie
)
5476 struct tcp_sock
*tp
= tcp_sk(sk
);
5477 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5478 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5479 bool syn_drop
= false;
5481 if (mss
== tp
->rx_opt
.user_mss
) {
5482 struct tcp_options_received opt
;
5484 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5485 tcp_clear_options(&opt
);
5486 opt
.user_mss
= opt
.mss_clamp
= 0;
5487 tcp_parse_options(synack
, &opt
, 0, NULL
);
5488 mss
= opt
.mss_clamp
;
5491 if (!tp
->syn_fastopen
) {
5492 /* Ignore an unsolicited cookie */
5494 } else if (tp
->total_retrans
) {
5495 /* SYN timed out and the SYN-ACK neither has a cookie nor
5496 * acknowledges data. Presumably the remote received only
5497 * the retransmitted (regular) SYNs: either the original
5498 * SYN-data or the corresponding SYN-ACK was dropped.
5500 syn_drop
= (cookie
->len
< 0 && data
);
5501 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5502 /* We requested a cookie but didn't get it. If we did not use
5503 * the (old) exp opt format then try so next time (try_exp=1).
5504 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5506 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5509 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5511 if (data
) { /* Retransmit unacked data in SYN */
5512 tcp_for_write_queue_from(data
, sk
) {
5513 if (data
== tcp_send_head(sk
) ||
5514 __tcp_retransmit_skb(sk
, data
))
5518 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5521 tp
->syn_data_acked
= tp
->syn_data
;
5522 if (tp
->syn_data_acked
)
5523 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVE
);
5527 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5528 const struct tcphdr
*th
)
5530 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5531 struct tcp_sock
*tp
= tcp_sk(sk
);
5532 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5533 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5535 tcp_parse_options(skb
, &tp
->rx_opt
, 0, &foc
);
5536 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5537 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5541 * "If the state is SYN-SENT then
5542 * first check the ACK bit
5543 * If the ACK bit is set
5544 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5545 * a reset (unless the RST bit is set, if so drop
5546 * the segment and return)"
5548 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5549 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5550 goto reset_and_undo
;
5552 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5553 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5555 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5556 goto reset_and_undo
;
5559 /* Now ACK is acceptable.
5561 * "If the RST bit is set
5562 * If the ACK was acceptable then signal the user "error:
5563 * connection reset", drop the segment, enter CLOSED state,
5564 * delete TCB, and return."
5573 * "fifth, if neither of the SYN or RST bits is set then
5574 * drop the segment and return."
5580 goto discard_and_undo
;
5583 * "If the SYN bit is on ...
5584 * are acceptable then ...
5585 * (our SYN has been ACKed), change the connection
5586 * state to ESTABLISHED..."
5589 tcp_ecn_rcv_synack(tp
, th
);
5591 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5592 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5594 /* Ok.. it's good. Set up sequence numbers and
5595 * move to established.
5597 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5598 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5600 /* RFC1323: The window in SYN & SYN/ACK segments is
5603 tp
->snd_wnd
= ntohs(th
->window
);
5605 if (!tp
->rx_opt
.wscale_ok
) {
5606 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5607 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5610 if (tp
->rx_opt
.saw_tstamp
) {
5611 tp
->rx_opt
.tstamp_ok
= 1;
5612 tp
->tcp_header_len
=
5613 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5614 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5615 tcp_store_ts_recent(tp
);
5617 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5620 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5621 tcp_enable_fack(tp
);
5624 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5625 tcp_initialize_rcv_mss(sk
);
5627 /* Remember, tcp_poll() does not lock socket!
5628 * Change state from SYN-SENT only after copied_seq
5629 * is initialized. */
5630 tp
->copied_seq
= tp
->rcv_nxt
;
5634 tcp_finish_connect(sk
, skb
);
5636 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5637 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5640 if (sk
->sk_write_pending
||
5641 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5642 icsk
->icsk_ack
.pingpong
) {
5643 /* Save one ACK. Data will be ready after
5644 * several ticks, if write_pending is set.
5646 * It may be deleted, but with this feature tcpdumps
5647 * look so _wonderfully_ clever, that I was not able
5648 * to stand against the temptation 8) --ANK
5650 inet_csk_schedule_ack(sk
);
5651 tcp_enter_quickack_mode(sk
);
5652 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5653 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5664 /* No ACK in the segment */
5668 * "If the RST bit is set
5670 * Otherwise (no ACK) drop the segment and return."
5673 goto discard_and_undo
;
5677 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5678 tcp_paws_reject(&tp
->rx_opt
, 0))
5679 goto discard_and_undo
;
5682 /* We see SYN without ACK. It is attempt of
5683 * simultaneous connect with crossed SYNs.
5684 * Particularly, it can be connect to self.
5686 tcp_set_state(sk
, TCP_SYN_RECV
);
5688 if (tp
->rx_opt
.saw_tstamp
) {
5689 tp
->rx_opt
.tstamp_ok
= 1;
5690 tcp_store_ts_recent(tp
);
5691 tp
->tcp_header_len
=
5692 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5694 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5697 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5698 tp
->copied_seq
= tp
->rcv_nxt
;
5699 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5701 /* RFC1323: The window in SYN & SYN/ACK segments is
5704 tp
->snd_wnd
= ntohs(th
->window
);
5705 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5706 tp
->max_window
= tp
->snd_wnd
;
5708 tcp_ecn_rcv_syn(tp
, th
);
5711 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5712 tcp_initialize_rcv_mss(sk
);
5714 tcp_send_synack(sk
);
5716 /* Note, we could accept data and URG from this segment.
5717 * There are no obstacles to make this (except that we must
5718 * either change tcp_recvmsg() to prevent it from returning data
5719 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5721 * However, if we ignore data in ACKless segments sometimes,
5722 * we have no reasons to accept it sometimes.
5723 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5724 * is not flawless. So, discard packet for sanity.
5725 * Uncomment this return to process the data.
5732 /* "fifth, if neither of the SYN or RST bits is set then
5733 * drop the segment and return."
5737 tcp_clear_options(&tp
->rx_opt
);
5738 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5742 tcp_clear_options(&tp
->rx_opt
);
5743 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5748 * This function implements the receiving procedure of RFC 793 for
5749 * all states except ESTABLISHED and TIME_WAIT.
5750 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5751 * address independent.
5754 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5756 struct tcp_sock
*tp
= tcp_sk(sk
);
5757 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5758 const struct tcphdr
*th
= tcp_hdr(skb
);
5759 struct request_sock
*req
;
5763 tp
->rx_opt
.saw_tstamp
= 0;
5765 switch (sk
->sk_state
) {
5779 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5782 /* Now we have several options: In theory there is
5783 * nothing else in the frame. KA9Q has an option to
5784 * send data with the syn, BSD accepts data with the
5785 * syn up to the [to be] advertised window and
5786 * Solaris 2.1 gives you a protocol error. For now
5787 * we just ignore it, that fits the spec precisely
5788 * and avoids incompatibilities. It would be nice in
5789 * future to drop through and process the data.
5791 * Now that TTCP is starting to be used we ought to
5793 * But, this leaves one open to an easy denial of
5794 * service attack, and SYN cookies can't defend
5795 * against this problem. So, we drop the data
5796 * in the interest of security over speed unless
5797 * it's still in use.
5805 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5809 /* Do step6 onward by hand. */
5810 tcp_urg(sk
, skb
, th
);
5812 tcp_data_snd_check(sk
);
5816 req
= tp
->fastopen_rsk
;
5818 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5819 sk
->sk_state
!= TCP_FIN_WAIT1
);
5821 if (!tcp_check_req(sk
, skb
, req
, true))
5825 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5828 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5831 /* step 5: check the ACK field */
5832 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5833 FLAG_UPDATE_TS_RECENT
) > 0;
5835 switch (sk
->sk_state
) {
5841 tcp_synack_rtt_meas(sk
, req
);
5843 /* Once we leave TCP_SYN_RECV, we no longer need req
5847 tp
->total_retrans
= req
->num_retrans
;
5848 reqsk_fastopen_remove(sk
, req
, false);
5850 /* Make sure socket is routed, for correct metrics. */
5851 icsk
->icsk_af_ops
->rebuild_header(sk
);
5852 tcp_init_congestion_control(sk
);
5855 tp
->copied_seq
= tp
->rcv_nxt
;
5856 tcp_init_buffer_space(sk
);
5859 tcp_set_state(sk
, TCP_ESTABLISHED
);
5860 sk
->sk_state_change(sk
);
5862 /* Note, that this wakeup is only for marginal crossed SYN case.
5863 * Passively open sockets are not waked up, because
5864 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5867 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5869 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5870 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5871 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5873 if (tp
->rx_opt
.tstamp_ok
)
5874 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5877 /* Re-arm the timer because data may have been sent out.
5878 * This is similar to the regular data transmission case
5879 * when new data has just been ack'ed.
5881 * (TFO) - we could try to be more aggressive and
5882 * retransmitting any data sooner based on when they
5887 tcp_init_metrics(sk
);
5889 tcp_update_pacing_rate(sk
);
5891 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5892 tp
->lsndtime
= tcp_time_stamp
;
5894 tcp_initialize_rcv_mss(sk
);
5895 tcp_fast_path_on(tp
);
5898 case TCP_FIN_WAIT1
: {
5899 struct dst_entry
*dst
;
5902 /* If we enter the TCP_FIN_WAIT1 state and we are a
5903 * Fast Open socket and this is the first acceptable
5904 * ACK we have received, this would have acknowledged
5905 * our SYNACK so stop the SYNACK timer.
5908 /* Return RST if ack_seq is invalid.
5909 * Note that RFC793 only says to generate a
5910 * DUPACK for it but for TCP Fast Open it seems
5911 * better to treat this case like TCP_SYN_RECV
5916 /* We no longer need the request sock. */
5917 reqsk_fastopen_remove(sk
, req
, false);
5920 if (tp
->snd_una
!= tp
->write_seq
)
5923 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5924 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5926 dst
= __sk_dst_get(sk
);
5930 if (!sock_flag(sk
, SOCK_DEAD
)) {
5931 /* Wake up lingering close() */
5932 sk
->sk_state_change(sk
);
5936 if (tp
->linger2
< 0 ||
5937 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5938 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5940 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5944 tmo
= tcp_fin_time(sk
);
5945 if (tmo
> TCP_TIMEWAIT_LEN
) {
5946 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5947 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5948 /* Bad case. We could lose such FIN otherwise.
5949 * It is not a big problem, but it looks confusing
5950 * and not so rare event. We still can lose it now,
5951 * if it spins in bh_lock_sock(), but it is really
5954 inet_csk_reset_keepalive_timer(sk
, tmo
);
5956 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5963 if (tp
->snd_una
== tp
->write_seq
) {
5964 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5970 if (tp
->snd_una
== tp
->write_seq
) {
5971 tcp_update_metrics(sk
);
5978 /* step 6: check the URG bit */
5979 tcp_urg(sk
, skb
, th
);
5981 /* step 7: process the segment text */
5982 switch (sk
->sk_state
) {
5983 case TCP_CLOSE_WAIT
:
5986 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5990 /* RFC 793 says to queue data in these states,
5991 * RFC 1122 says we MUST send a reset.
5992 * BSD 4.4 also does reset.
5994 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5995 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5996 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5997 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6003 case TCP_ESTABLISHED
:
6004 tcp_data_queue(sk
, skb
);
6009 /* tcp_data could move socket to TIME-WAIT */
6010 if (sk
->sk_state
!= TCP_CLOSE
) {
6011 tcp_data_snd_check(sk
);
6012 tcp_ack_snd_check(sk
);
6021 EXPORT_SYMBOL(tcp_rcv_state_process
);
6023 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6025 struct inet_request_sock
*ireq
= inet_rsk(req
);
6027 if (family
== AF_INET
)
6028 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6029 &ireq
->ir_rmt_addr
, port
);
6030 #if IS_ENABLED(CONFIG_IPV6)
6031 else if (family
== AF_INET6
)
6032 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6033 &ireq
->ir_v6_rmt_addr
, port
);
6037 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6039 * If we receive a SYN packet with these bits set, it means a
6040 * network is playing bad games with TOS bits. In order to
6041 * avoid possible false congestion notifications, we disable
6042 * TCP ECN negotiation.
6044 * Exception: tcp_ca wants ECN. This is required for DCTCP
6045 * congestion control: Linux DCTCP asserts ECT on all packets,
6046 * including SYN, which is most optimal solution; however,
6047 * others, such as FreeBSD do not.
6049 static void tcp_ecn_create_request(struct request_sock
*req
,
6050 const struct sk_buff
*skb
,
6051 const struct sock
*listen_sk
,
6052 const struct dst_entry
*dst
)
6054 const struct tcphdr
*th
= tcp_hdr(skb
);
6055 const struct net
*net
= sock_net(listen_sk
);
6056 bool th_ecn
= th
->ece
&& th
->cwr
;
6063 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6064 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6065 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6067 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6068 (ecn_ok_dst
& DST_FEATURE_ECN_CA
))
6069 inet_rsk(req
)->ecn_ok
= 1;
6072 static void tcp_openreq_init(struct request_sock
*req
,
6073 const struct tcp_options_received
*rx_opt
,
6074 struct sk_buff
*skb
, const struct sock
*sk
)
6076 struct inet_request_sock
*ireq
= inet_rsk(req
);
6078 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6080 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6081 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6082 skb_mstamp_get(&tcp_rsk(req
)->snt_synack
);
6083 tcp_rsk(req
)->last_oow_ack_time
= 0;
6084 req
->mss
= rx_opt
->mss_clamp
;
6085 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6086 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6087 ireq
->sack_ok
= rx_opt
->sack_ok
;
6088 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6089 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6092 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6093 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6094 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6097 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6098 struct sock
*sk_listener
,
6099 bool attach_listener
)
6101 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6105 struct inet_request_sock
*ireq
= inet_rsk(req
);
6107 kmemcheck_annotate_bitfield(ireq
, flags
);
6108 ireq
->ireq_opt
= NULL
;
6109 atomic64_set(&ireq
->ir_cookie
, 0);
6110 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6111 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6112 ireq
->ireq_family
= sk_listener
->sk_family
;
6117 EXPORT_SYMBOL(inet_reqsk_alloc
);
6120 * Return true if a syncookie should be sent
6122 static bool tcp_syn_flood_action(const struct sock
*sk
,
6123 const struct sk_buff
*skb
,
6126 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6127 const char *msg
= "Dropping request";
6128 bool want_cookie
= false;
6130 #ifdef CONFIG_SYN_COOKIES
6131 if (sysctl_tcp_syncookies
) {
6132 msg
= "Sending cookies";
6134 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6137 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6139 if (!queue
->synflood_warned
&&
6140 sysctl_tcp_syncookies
!= 2 &&
6141 xchg(&queue
->synflood_warned
, 1) == 0)
6142 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6143 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6148 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6149 struct request_sock
*req
,
6150 const struct sk_buff
*skb
)
6152 if (tcp_sk(sk
)->save_syn
) {
6153 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6156 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6159 memcpy(©
[1], skb_network_header(skb
), len
);
6160 req
->saved_syn
= copy
;
6165 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6166 const struct tcp_request_sock_ops
*af_ops
,
6167 struct sock
*sk
, struct sk_buff
*skb
)
6169 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6170 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6171 struct tcp_options_received tmp_opt
;
6172 struct tcp_sock
*tp
= tcp_sk(sk
);
6173 struct sock
*fastopen_sk
= NULL
;
6174 struct dst_entry
*dst
= NULL
;
6175 struct request_sock
*req
;
6176 bool want_cookie
= false;
6179 /* TW buckets are converted to open requests without
6180 * limitations, they conserve resources and peer is
6181 * evidently real one.
6183 if ((sysctl_tcp_syncookies
== 2 ||
6184 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6185 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6191 /* Accept backlog is full. If we have already queued enough
6192 * of warm entries in syn queue, drop request. It is better than
6193 * clogging syn queue with openreqs with exponentially increasing
6196 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1) {
6197 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6201 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6205 tcp_rsk(req
)->af_specific
= af_ops
;
6207 tcp_clear_options(&tmp_opt
);
6208 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6209 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6210 tcp_parse_options(skb
, &tmp_opt
, 0, want_cookie
? NULL
: &foc
);
6212 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6213 tcp_clear_options(&tmp_opt
);
6215 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6216 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6218 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6219 inet_rsk(req
)->ir_iif
= sk
->sk_bound_dev_if
;
6221 af_ops
->init_req(req
, sk
, skb
);
6223 if (security_inet_conn_request(sk
, skb
, req
))
6226 if (!want_cookie
&& !isn
) {
6227 /* VJ's idea. We save last timestamp seen
6228 * from the destination in peer table, when entering
6229 * state TIME-WAIT, and check against it before
6230 * accepting new connection request.
6232 * If "isn" is not zero, this request hit alive
6233 * timewait bucket, so that all the necessary checks
6234 * are made in the function processing timewait state.
6236 if (tcp_death_row
.sysctl_tw_recycle
) {
6239 dst
= af_ops
->route_req(sk
, &fl
, req
, &strict
);
6241 if (dst
&& strict
&&
6242 !tcp_peer_is_proven(req
, dst
, true,
6243 tmp_opt
.saw_tstamp
)) {
6244 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
6245 goto drop_and_release
;
6248 /* Kill the following clause, if you dislike this way. */
6249 else if (!sysctl_tcp_syncookies
&&
6250 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6251 (sysctl_max_syn_backlog
>> 2)) &&
6252 !tcp_peer_is_proven(req
, dst
, false,
6253 tmp_opt
.saw_tstamp
)) {
6254 /* Without syncookies last quarter of
6255 * backlog is filled with destinations,
6256 * proven to be alive.
6257 * It means that we continue to communicate
6258 * to destinations, already remembered
6259 * to the moment of synflood.
6261 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6263 goto drop_and_release
;
6266 isn
= af_ops
->init_seq(skb
);
6269 dst
= af_ops
->route_req(sk
, &fl
, req
, NULL
);
6274 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6277 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6278 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6279 if (!tmp_opt
.tstamp_ok
)
6280 inet_rsk(req
)->ecn_ok
= 0;
6283 tcp_rsk(req
)->snt_isn
= isn
;
6284 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6285 tcp_openreq_init_rwin(req
, sk
, dst
);
6287 tcp_reqsk_record_syn(sk
, req
, skb
);
6288 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6291 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6293 /* Add the child socket directly into the accept queue */
6294 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6295 sk
->sk_data_ready(sk
);
6296 bh_unlock_sock(fastopen_sk
);
6297 sock_put(fastopen_sk
);
6299 tcp_rsk(req
)->tfo_listener
= false;
6301 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
6302 af_ops
->send_synack(sk
, dst
, &fl
, req
,
6303 &foc
, !want_cookie
);
6315 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENDROPS
);
6318 EXPORT_SYMBOL(tcp_conn_request
);