2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_private2: identifies the last component page
28 * PG_owner_priv_1: indentifies the huge component page
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/sched.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/wait.h>
56 #include <linux/pagemap.h>
58 #define ZSPAGE_MAGIC 0x58
61 * This must be power of 2 and greater than of equal to sizeof(link_free).
62 * These two conditions ensure that any 'struct link_free' itself doesn't
63 * span more than 1 page which avoids complex case of mapping 2 pages simply
64 * to restore link_free pointer values.
69 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
70 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 #define ZS_MAX_ZSPAGE_ORDER 2
73 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
78 * Object location (<PFN>, <obj_idx>) is encoded as
79 * as single (unsigned long) handle value.
81 * Note that object index <obj_idx> starts from 0.
83 * This is made more complicated by various memory models and PAE.
86 #ifndef MAX_PHYSMEM_BITS
87 #ifdef CONFIG_HIGHMEM64G
88 #define MAX_PHYSMEM_BITS 36
89 #else /* !CONFIG_HIGHMEM64G */
91 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
94 #define MAX_PHYSMEM_BITS BITS_PER_LONG
97 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
100 * Memory for allocating for handle keeps object position by
101 * encoding <page, obj_idx> and the encoded value has a room
102 * in least bit(ie, look at obj_to_location).
103 * We use the bit to synchronize between object access by
104 * user and migration.
106 #define HANDLE_PIN_BIT 0
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
115 #define OBJ_ALLOCATED_TAG 1
116 #define OBJ_TAG_BITS 1
117 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
118 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
121 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
122 #define ZS_MIN_ALLOC_SIZE \
123 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
124 /* each chunk includes extra space to keep handle */
125 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
128 * On systems with 4K page size, this gives 255 size classes! There is a
130 * - Large number of size classes is potentially wasteful as free page are
131 * spread across these classes
132 * - Small number of size classes causes large internal fragmentation
133 * - Probably its better to use specific size classes (empirically
134 * determined). NOTE: all those class sizes must be set as multiple of
135 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
137 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
140 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
142 enum fullness_group
{
160 struct zs_size_stat
{
161 unsigned long objs
[NR_ZS_STAT_TYPE
];
164 #ifdef CONFIG_ZSMALLOC_STAT
165 static struct dentry
*zs_stat_root
;
168 #ifdef CONFIG_COMPACTION
169 static struct vfsmount
*zsmalloc_mnt
;
173 * number of size_classes
175 static int zs_size_classes
;
178 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180 * n = number of allocated objects
181 * N = total number of objects zspage can store
182 * f = fullness_threshold_frac
184 * Similarly, we assign zspage to:
185 * ZS_ALMOST_FULL when n > N / f
186 * ZS_EMPTY when n == 0
187 * ZS_FULL when n == N
189 * (see: fix_fullness_group())
191 static const int fullness_threshold_frac
= 4;
195 struct list_head fullness_list
[NR_ZS_FULLNESS
];
197 * Size of objects stored in this class. Must be multiple
202 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
203 int pages_per_zspage
;
206 struct zs_size_stat stats
;
209 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
210 static void SetPageHugeObject(struct page
*page
)
212 SetPageOwnerPriv1(page
);
215 static void ClearPageHugeObject(struct page
*page
)
217 ClearPageOwnerPriv1(page
);
220 static int PageHugeObject(struct page
*page
)
222 return PageOwnerPriv1(page
);
226 * Placed within free objects to form a singly linked list.
227 * For every zspage, zspage->freeobj gives head of this list.
229 * This must be power of 2 and less than or equal to ZS_ALIGN
235 * It's valid for non-allocated object
239 * Handle of allocated object.
241 unsigned long handle
;
248 struct size_class
**size_class
;
249 struct kmem_cache
*handle_cachep
;
250 struct kmem_cache
*zspage_cachep
;
252 atomic_long_t pages_allocated
;
254 struct zs_pool_stats stats
;
256 /* Compact classes */
257 struct shrinker shrinker
;
259 * To signify that register_shrinker() was successful
260 * and unregister_shrinker() will not Oops.
262 bool shrinker_enabled
;
263 #ifdef CONFIG_ZSMALLOC_STAT
264 struct dentry
*stat_dentry
;
266 #ifdef CONFIG_COMPACTION
268 struct work_struct free_work
;
269 /* A wait queue for when migration races with async_free_zspage() */
270 wait_queue_head_t migration_wait
;
271 atomic_long_t isolated_pages
;
277 * A zspage's class index and fullness group
278 * are encoded in its (first)page->mapping
280 #define FULLNESS_BITS 2
282 #define ISOLATED_BITS 3
283 #define MAGIC_VAL_BITS 8
287 unsigned int fullness
:FULLNESS_BITS
;
288 unsigned int class:CLASS_BITS
+ 1;
289 unsigned int isolated
:ISOLATED_BITS
;
290 unsigned int magic
:MAGIC_VAL_BITS
;
293 unsigned int freeobj
;
294 struct page
*first_page
;
295 struct list_head list
; /* fullness list */
296 #ifdef CONFIG_COMPACTION
301 struct mapping_area
{
302 #ifdef CONFIG_PGTABLE_MAPPING
303 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
305 char *vm_buf
; /* copy buffer for objects that span pages */
307 char *vm_addr
; /* address of kmap_atomic()'ed pages */
308 enum zs_mapmode vm_mm
; /* mapping mode */
311 #ifdef CONFIG_COMPACTION
312 static int zs_register_migration(struct zs_pool
*pool
);
313 static void zs_unregister_migration(struct zs_pool
*pool
);
314 static void migrate_lock_init(struct zspage
*zspage
);
315 static void migrate_read_lock(struct zspage
*zspage
);
316 static void migrate_read_unlock(struct zspage
*zspage
);
317 static void kick_deferred_free(struct zs_pool
*pool
);
318 static void init_deferred_free(struct zs_pool
*pool
);
319 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
321 static int zsmalloc_mount(void) { return 0; }
322 static void zsmalloc_unmount(void) {}
323 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
324 static void zs_unregister_migration(struct zs_pool
*pool
) {}
325 static void migrate_lock_init(struct zspage
*zspage
) {}
326 static void migrate_read_lock(struct zspage
*zspage
) {}
327 static void migrate_read_unlock(struct zspage
*zspage
) {}
328 static void kick_deferred_free(struct zs_pool
*pool
) {}
329 static void init_deferred_free(struct zs_pool
*pool
) {}
330 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
333 static int create_cache(struct zs_pool
*pool
)
335 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
337 if (!pool
->handle_cachep
)
340 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
342 if (!pool
->zspage_cachep
) {
343 kmem_cache_destroy(pool
->handle_cachep
);
344 pool
->handle_cachep
= NULL
;
351 static void destroy_cache(struct zs_pool
*pool
)
353 kmem_cache_destroy(pool
->handle_cachep
);
354 kmem_cache_destroy(pool
->zspage_cachep
);
357 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
359 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
360 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
363 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
365 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
368 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
370 return kmem_cache_alloc(pool
->zspage_cachep
,
371 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
374 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
376 kmem_cache_free(pool
->zspage_cachep
, zspage
);
379 static void record_obj(unsigned long handle
, unsigned long obj
)
382 * lsb of @obj represents handle lock while other bits
383 * represent object value the handle is pointing so
384 * updating shouldn't do store tearing.
386 WRITE_ONCE(*(unsigned long *)handle
, obj
);
393 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
394 const struct zpool_ops
*zpool_ops
,
398 * Ignore global gfp flags: zs_malloc() may be invoked from
399 * different contexts and its caller must provide a valid
402 return zs_create_pool(name
);
405 static void zs_zpool_destroy(void *pool
)
407 zs_destroy_pool(pool
);
410 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
411 unsigned long *handle
)
413 *handle
= zs_malloc(pool
, size
, gfp
);
414 return *handle
? 0 : -1;
416 static void zs_zpool_free(void *pool
, unsigned long handle
)
418 zs_free(pool
, handle
);
421 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
422 unsigned int *reclaimed
)
427 static void *zs_zpool_map(void *pool
, unsigned long handle
,
428 enum zpool_mapmode mm
)
430 enum zs_mapmode zs_mm
;
439 case ZPOOL_MM_RW
: /* fallthru */
445 return zs_map_object(pool
, handle
, zs_mm
);
447 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
449 zs_unmap_object(pool
, handle
);
452 static u64
zs_zpool_total_size(void *pool
)
454 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
457 static struct zpool_driver zs_zpool_driver
= {
459 .owner
= THIS_MODULE
,
460 .create
= zs_zpool_create
,
461 .destroy
= zs_zpool_destroy
,
462 .malloc
= zs_zpool_malloc
,
463 .free
= zs_zpool_free
,
464 .shrink
= zs_zpool_shrink
,
466 .unmap
= zs_zpool_unmap
,
467 .total_size
= zs_zpool_total_size
,
470 MODULE_ALIAS("zpool-zsmalloc");
471 #endif /* CONFIG_ZPOOL */
473 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
474 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
476 static bool is_zspage_isolated(struct zspage
*zspage
)
478 return zspage
->isolated
;
481 static __maybe_unused
int is_first_page(struct page
*page
)
483 return PagePrivate(page
);
486 /* Protected by class->lock */
487 static inline int get_zspage_inuse(struct zspage
*zspage
)
489 return zspage
->inuse
;
492 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
497 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
499 zspage
->inuse
+= val
;
502 static inline struct page
*get_first_page(struct zspage
*zspage
)
504 struct page
*first_page
= zspage
->first_page
;
506 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
510 static inline int get_first_obj_offset(struct page
*page
)
515 static inline void set_first_obj_offset(struct page
*page
, int offset
)
517 page
->units
= offset
;
520 static inline unsigned int get_freeobj(struct zspage
*zspage
)
522 return zspage
->freeobj
;
525 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
527 zspage
->freeobj
= obj
;
530 static void get_zspage_mapping(struct zspage
*zspage
,
531 unsigned int *class_idx
,
532 enum fullness_group
*fullness
)
534 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
536 *fullness
= zspage
->fullness
;
537 *class_idx
= zspage
->class;
540 static void set_zspage_mapping(struct zspage
*zspage
,
541 unsigned int class_idx
,
542 enum fullness_group fullness
)
544 zspage
->class = class_idx
;
545 zspage
->fullness
= fullness
;
549 * zsmalloc divides the pool into various size classes where each
550 * class maintains a list of zspages where each zspage is divided
551 * into equal sized chunks. Each allocation falls into one of these
552 * classes depending on its size. This function returns index of the
553 * size class which has chunk size big enough to hold the give size.
555 static int get_size_class_index(int size
)
559 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
560 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
561 ZS_SIZE_CLASS_DELTA
);
563 return min(zs_size_classes
- 1, idx
);
566 /* type can be of enum type zs_stat_type or fullness_group */
567 static inline void zs_stat_inc(struct size_class
*class,
568 int type
, unsigned long cnt
)
570 class->stats
.objs
[type
] += cnt
;
573 /* type can be of enum type zs_stat_type or fullness_group */
574 static inline void zs_stat_dec(struct size_class
*class,
575 int type
, unsigned long cnt
)
577 class->stats
.objs
[type
] -= cnt
;
580 /* type can be of enum type zs_stat_type or fullness_group */
581 static inline unsigned long zs_stat_get(struct size_class
*class,
584 return class->stats
.objs
[type
];
587 #ifdef CONFIG_ZSMALLOC_STAT
589 static void __init
zs_stat_init(void)
591 if (!debugfs_initialized()) {
592 pr_warn("debugfs not available, stat dir not created\n");
596 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
598 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
601 static void __exit
zs_stat_exit(void)
603 debugfs_remove_recursive(zs_stat_root
);
606 static unsigned long zs_can_compact(struct size_class
*class);
608 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
611 struct zs_pool
*pool
= s
->private;
612 struct size_class
*class;
614 unsigned long class_almost_full
, class_almost_empty
;
615 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
616 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
617 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
618 unsigned long total_freeable
= 0;
620 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
621 "class", "size", "almost_full", "almost_empty",
622 "obj_allocated", "obj_used", "pages_used",
623 "pages_per_zspage", "freeable");
625 for (i
= 0; i
< zs_size_classes
; i
++) {
626 class = pool
->size_class
[i
];
628 if (class->index
!= i
)
631 spin_lock(&class->lock
);
632 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
633 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
634 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
635 obj_used
= zs_stat_get(class, OBJ_USED
);
636 freeable
= zs_can_compact(class);
637 spin_unlock(&class->lock
);
639 objs_per_zspage
= class->objs_per_zspage
;
640 pages_used
= obj_allocated
/ objs_per_zspage
*
641 class->pages_per_zspage
;
643 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
644 " %10lu %10lu %16d %8lu\n",
645 i
, class->size
, class_almost_full
, class_almost_empty
,
646 obj_allocated
, obj_used
, pages_used
,
647 class->pages_per_zspage
, freeable
);
649 total_class_almost_full
+= class_almost_full
;
650 total_class_almost_empty
+= class_almost_empty
;
651 total_objs
+= obj_allocated
;
652 total_used_objs
+= obj_used
;
653 total_pages
+= pages_used
;
654 total_freeable
+= freeable
;
658 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
659 "Total", "", total_class_almost_full
,
660 total_class_almost_empty
, total_objs
,
661 total_used_objs
, total_pages
, "", total_freeable
);
666 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
668 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
671 static const struct file_operations zs_stat_size_ops
= {
672 .open
= zs_stats_size_open
,
675 .release
= single_release
,
678 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
680 struct dentry
*entry
;
683 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
687 entry
= debugfs_create_dir(name
, zs_stat_root
);
689 pr_warn("debugfs dir <%s> creation failed\n", name
);
692 pool
->stat_dentry
= entry
;
694 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
695 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
697 pr_warn("%s: debugfs file entry <%s> creation failed\n",
699 debugfs_remove_recursive(pool
->stat_dentry
);
700 pool
->stat_dentry
= NULL
;
704 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
706 debugfs_remove_recursive(pool
->stat_dentry
);
709 #else /* CONFIG_ZSMALLOC_STAT */
710 static void __init
zs_stat_init(void)
714 static void __exit
zs_stat_exit(void)
718 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
722 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
729 * For each size class, zspages are divided into different groups
730 * depending on how "full" they are. This was done so that we could
731 * easily find empty or nearly empty zspages when we try to shrink
732 * the pool (not yet implemented). This function returns fullness
733 * status of the given page.
735 static enum fullness_group
get_fullness_group(struct size_class
*class,
736 struct zspage
*zspage
)
738 int inuse
, objs_per_zspage
;
739 enum fullness_group fg
;
741 inuse
= get_zspage_inuse(zspage
);
742 objs_per_zspage
= class->objs_per_zspage
;
746 else if (inuse
== objs_per_zspage
)
748 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
749 fg
= ZS_ALMOST_EMPTY
;
757 * Each size class maintains various freelists and zspages are assigned
758 * to one of these freelists based on the number of live objects they
759 * have. This functions inserts the given zspage into the freelist
760 * identified by <class, fullness_group>.
762 static void insert_zspage(struct size_class
*class,
763 struct zspage
*zspage
,
764 enum fullness_group fullness
)
768 zs_stat_inc(class, fullness
, 1);
769 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
770 struct zspage
, list
);
772 * We want to see more ZS_FULL pages and less almost empty/full.
773 * Put pages with higher ->inuse first.
776 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
777 list_add(&zspage
->list
, &head
->list
);
781 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
785 * This function removes the given zspage from the freelist identified
786 * by <class, fullness_group>.
788 static void remove_zspage(struct size_class
*class,
789 struct zspage
*zspage
,
790 enum fullness_group fullness
)
792 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
793 VM_BUG_ON(is_zspage_isolated(zspage
));
795 list_del_init(&zspage
->list
);
796 zs_stat_dec(class, fullness
, 1);
800 * Each size class maintains zspages in different fullness groups depending
801 * on the number of live objects they contain. When allocating or freeing
802 * objects, the fullness status of the page can change, say, from ALMOST_FULL
803 * to ALMOST_EMPTY when freeing an object. This function checks if such
804 * a status change has occurred for the given page and accordingly moves the
805 * page from the freelist of the old fullness group to that of the new
808 static enum fullness_group
fix_fullness_group(struct size_class
*class,
809 struct zspage
*zspage
)
812 enum fullness_group currfg
, newfg
;
814 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
815 newfg
= get_fullness_group(class, zspage
);
819 if (!is_zspage_isolated(zspage
)) {
820 remove_zspage(class, zspage
, currfg
);
821 insert_zspage(class, zspage
, newfg
);
824 set_zspage_mapping(zspage
, class_idx
, newfg
);
831 * We have to decide on how many pages to link together
832 * to form a zspage for each size class. This is important
833 * to reduce wastage due to unusable space left at end of
834 * each zspage which is given as:
835 * wastage = Zp % class_size
836 * usage = Zp - wastage
837 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
839 * For example, for size class of 3/8 * PAGE_SIZE, we should
840 * link together 3 PAGE_SIZE sized pages to form a zspage
841 * since then we can perfectly fit in 8 such objects.
843 static int get_pages_per_zspage(int class_size
)
845 int i
, max_usedpc
= 0;
846 /* zspage order which gives maximum used size per KB */
847 int max_usedpc_order
= 1;
849 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
853 zspage_size
= i
* PAGE_SIZE
;
854 waste
= zspage_size
% class_size
;
855 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
857 if (usedpc
> max_usedpc
) {
859 max_usedpc_order
= i
;
863 return max_usedpc_order
;
866 static struct zspage
*get_zspage(struct page
*page
)
868 struct zspage
*zspage
= (struct zspage
*)page
->private;
870 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
874 static struct page
*get_next_page(struct page
*page
)
876 if (unlikely(PageHugeObject(page
)))
879 return page
->freelist
;
883 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
884 * @page: page object resides in zspage
885 * @obj_idx: object index
887 static void obj_to_location(unsigned long obj
, struct page
**page
,
888 unsigned int *obj_idx
)
890 obj
>>= OBJ_TAG_BITS
;
891 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
892 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
896 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
897 * @page: page object resides in zspage
898 * @obj_idx: object index
900 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
904 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
905 obj
|= obj_idx
& OBJ_INDEX_MASK
;
906 obj
<<= OBJ_TAG_BITS
;
911 static unsigned long handle_to_obj(unsigned long handle
)
913 return *(unsigned long *)handle
;
916 static unsigned long obj_to_head(struct page
*page
, void *obj
)
918 if (unlikely(PageHugeObject(page
))) {
919 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
922 return *(unsigned long *)obj
;
925 static inline int testpin_tag(unsigned long handle
)
927 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
930 static inline int trypin_tag(unsigned long handle
)
932 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
935 static void pin_tag(unsigned long handle
)
937 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
940 static void unpin_tag(unsigned long handle
)
942 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
945 static void reset_page(struct page
*page
)
947 __ClearPageMovable(page
);
948 ClearPagePrivate(page
);
949 ClearPagePrivate2(page
);
950 set_page_private(page
, 0);
951 page_mapcount_reset(page
);
952 ClearPageHugeObject(page
);
953 page
->freelist
= NULL
;
957 * To prevent zspage destroy during migration, zspage freeing should
958 * hold locks of all pages in the zspage.
960 void lock_zspage(struct zspage
*zspage
)
962 struct page
*page
= get_first_page(zspage
);
966 } while ((page
= get_next_page(page
)) != NULL
);
969 int trylock_zspage(struct zspage
*zspage
)
971 struct page
*cursor
, *fail
;
973 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
974 get_next_page(cursor
)) {
975 if (!trylock_page(cursor
)) {
983 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
984 get_next_page(cursor
))
990 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
991 struct zspage
*zspage
)
993 struct page
*page
, *next
;
994 enum fullness_group fg
;
995 unsigned int class_idx
;
997 get_zspage_mapping(zspage
, &class_idx
, &fg
);
999 assert_spin_locked(&class->lock
);
1001 VM_BUG_ON(get_zspage_inuse(zspage
));
1002 VM_BUG_ON(fg
!= ZS_EMPTY
);
1004 next
= page
= get_first_page(zspage
);
1006 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1007 next
= get_next_page(page
);
1010 dec_zone_page_state(page
, NR_ZSPAGES
);
1013 } while (page
!= NULL
);
1015 cache_free_zspage(pool
, zspage
);
1017 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1018 atomic_long_sub(class->pages_per_zspage
,
1019 &pool
->pages_allocated
);
1022 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
1023 struct zspage
*zspage
)
1025 VM_BUG_ON(get_zspage_inuse(zspage
));
1026 VM_BUG_ON(list_empty(&zspage
->list
));
1028 if (!trylock_zspage(zspage
)) {
1029 kick_deferred_free(pool
);
1033 remove_zspage(class, zspage
, ZS_EMPTY
);
1034 __free_zspage(pool
, class, zspage
);
1037 /* Initialize a newly allocated zspage */
1038 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
1040 unsigned int freeobj
= 1;
1041 unsigned long off
= 0;
1042 struct page
*page
= get_first_page(zspage
);
1045 struct page
*next_page
;
1046 struct link_free
*link
;
1049 set_first_obj_offset(page
, off
);
1051 vaddr
= kmap_atomic(page
);
1052 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1054 while ((off
+= class->size
) < PAGE_SIZE
) {
1055 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1056 link
+= class->size
/ sizeof(*link
);
1060 * We now come to the last (full or partial) object on this
1061 * page, which must point to the first object on the next
1064 next_page
= get_next_page(page
);
1066 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1069 * Reset OBJ_TAG_BITS bit to last link to tell
1070 * whether it's allocated object or not.
1072 link
->next
= -1 << OBJ_TAG_BITS
;
1074 kunmap_atomic(vaddr
);
1079 set_freeobj(zspage
, 0);
1082 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1083 struct page
*pages
[])
1087 struct page
*prev_page
= NULL
;
1088 int nr_pages
= class->pages_per_zspage
;
1091 * Allocate individual pages and link them together as:
1092 * 1. all pages are linked together using page->freelist
1093 * 2. each sub-page point to zspage using page->private
1095 * we set PG_private to identify the first page (i.e. no other sub-page
1096 * has this flag set) and PG_private_2 to identify the last page.
1098 for (i
= 0; i
< nr_pages
; i
++) {
1100 set_page_private(page
, (unsigned long)zspage
);
1101 page
->freelist
= NULL
;
1103 zspage
->first_page
= page
;
1104 SetPagePrivate(page
);
1105 if (unlikely(class->objs_per_zspage
== 1 &&
1106 class->pages_per_zspage
== 1))
1107 SetPageHugeObject(page
);
1109 prev_page
->freelist
= page
;
1111 if (i
== nr_pages
- 1)
1112 SetPagePrivate2(page
);
1118 * Allocate a zspage for the given size class
1120 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1121 struct size_class
*class,
1125 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1126 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1131 memset(zspage
, 0, sizeof(struct zspage
));
1132 zspage
->magic
= ZSPAGE_MAGIC
;
1133 migrate_lock_init(zspage
);
1135 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1138 page
= alloc_page(gfp
);
1141 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1142 __free_page(pages
[i
]);
1144 cache_free_zspage(pool
, zspage
);
1148 inc_zone_page_state(page
, NR_ZSPAGES
);
1152 create_page_chain(class, zspage
, pages
);
1153 init_zspage(class, zspage
);
1158 static struct zspage
*find_get_zspage(struct size_class
*class)
1161 struct zspage
*zspage
;
1163 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1164 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1165 struct zspage
, list
);
1173 #ifdef CONFIG_PGTABLE_MAPPING
1174 static inline int __zs_cpu_up(struct mapping_area
*area
)
1177 * Make sure we don't leak memory if a cpu UP notification
1178 * and zs_init() race and both call zs_cpu_up() on the same cpu
1182 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1188 static inline void __zs_cpu_down(struct mapping_area
*area
)
1191 free_vm_area(area
->vm
);
1195 static inline void *__zs_map_object(struct mapping_area
*area
,
1196 struct page
*pages
[2], int off
, int size
)
1198 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1199 area
->vm_addr
= area
->vm
->addr
;
1200 return area
->vm_addr
+ off
;
1203 static inline void __zs_unmap_object(struct mapping_area
*area
,
1204 struct page
*pages
[2], int off
, int size
)
1206 unsigned long addr
= (unsigned long)area
->vm_addr
;
1208 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1211 #else /* CONFIG_PGTABLE_MAPPING */
1213 static inline int __zs_cpu_up(struct mapping_area
*area
)
1216 * Make sure we don't leak memory if a cpu UP notification
1217 * and zs_init() race and both call zs_cpu_up() on the same cpu
1221 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1227 static inline void __zs_cpu_down(struct mapping_area
*area
)
1229 kfree(area
->vm_buf
);
1230 area
->vm_buf
= NULL
;
1233 static void *__zs_map_object(struct mapping_area
*area
,
1234 struct page
*pages
[2], int off
, int size
)
1238 char *buf
= area
->vm_buf
;
1240 /* disable page faults to match kmap_atomic() return conditions */
1241 pagefault_disable();
1243 /* no read fastpath */
1244 if (area
->vm_mm
== ZS_MM_WO
)
1247 sizes
[0] = PAGE_SIZE
- off
;
1248 sizes
[1] = size
- sizes
[0];
1250 /* copy object to per-cpu buffer */
1251 addr
= kmap_atomic(pages
[0]);
1252 memcpy(buf
, addr
+ off
, sizes
[0]);
1253 kunmap_atomic(addr
);
1254 addr
= kmap_atomic(pages
[1]);
1255 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1256 kunmap_atomic(addr
);
1258 return area
->vm_buf
;
1261 static void __zs_unmap_object(struct mapping_area
*area
,
1262 struct page
*pages
[2], int off
, int size
)
1268 /* no write fastpath */
1269 if (area
->vm_mm
== ZS_MM_RO
)
1273 buf
= buf
+ ZS_HANDLE_SIZE
;
1274 size
-= ZS_HANDLE_SIZE
;
1275 off
+= ZS_HANDLE_SIZE
;
1277 sizes
[0] = PAGE_SIZE
- off
;
1278 sizes
[1] = size
- sizes
[0];
1280 /* copy per-cpu buffer to object */
1281 addr
= kmap_atomic(pages
[0]);
1282 memcpy(addr
+ off
, buf
, sizes
[0]);
1283 kunmap_atomic(addr
);
1284 addr
= kmap_atomic(pages
[1]);
1285 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1286 kunmap_atomic(addr
);
1289 /* enable page faults to match kunmap_atomic() return conditions */
1293 #endif /* CONFIG_PGTABLE_MAPPING */
1295 static int zs_cpu_notifier(struct notifier_block
*nb
, unsigned long action
,
1298 int ret
, cpu
= (long)pcpu
;
1299 struct mapping_area
*area
;
1302 case CPU_UP_PREPARE
:
1303 area
= &per_cpu(zs_map_area
, cpu
);
1304 ret
= __zs_cpu_up(area
);
1306 return notifier_from_errno(ret
);
1309 case CPU_UP_CANCELED
:
1310 area
= &per_cpu(zs_map_area
, cpu
);
1311 __zs_cpu_down(area
);
1318 static struct notifier_block zs_cpu_nb
= {
1319 .notifier_call
= zs_cpu_notifier
1322 static int zs_register_cpu_notifier(void)
1324 int cpu
, uninitialized_var(ret
);
1326 cpu_notifier_register_begin();
1328 __register_cpu_notifier(&zs_cpu_nb
);
1329 for_each_online_cpu(cpu
) {
1330 ret
= zs_cpu_notifier(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
1331 if (notifier_to_errno(ret
))
1335 cpu_notifier_register_done();
1336 return notifier_to_errno(ret
);
1339 static void zs_unregister_cpu_notifier(void)
1343 cpu_notifier_register_begin();
1345 for_each_online_cpu(cpu
)
1346 zs_cpu_notifier(NULL
, CPU_DEAD
, (void *)(long)cpu
);
1347 __unregister_cpu_notifier(&zs_cpu_nb
);
1349 cpu_notifier_register_done();
1352 static void __init
init_zs_size_classes(void)
1356 nr
= (ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) / ZS_SIZE_CLASS_DELTA
+ 1;
1357 if ((ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) % ZS_SIZE_CLASS_DELTA
)
1360 zs_size_classes
= nr
;
1363 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1364 int objs_per_zspage
)
1366 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1367 prev
->objs_per_zspage
== objs_per_zspage
)
1373 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1375 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1378 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1380 return atomic_long_read(&pool
->pages_allocated
);
1382 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1385 * zs_map_object - get address of allocated object from handle.
1386 * @pool: pool from which the object was allocated
1387 * @handle: handle returned from zs_malloc
1389 * Before using an object allocated from zs_malloc, it must be mapped using
1390 * this function. When done with the object, it must be unmapped using
1393 * Only one object can be mapped per cpu at a time. There is no protection
1394 * against nested mappings.
1396 * This function returns with preemption and page faults disabled.
1398 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1401 struct zspage
*zspage
;
1403 unsigned long obj
, off
;
1404 unsigned int obj_idx
;
1406 unsigned int class_idx
;
1407 enum fullness_group fg
;
1408 struct size_class
*class;
1409 struct mapping_area
*area
;
1410 struct page
*pages
[2];
1414 * Because we use per-cpu mapping areas shared among the
1415 * pools/users, we can't allow mapping in interrupt context
1416 * because it can corrupt another users mappings.
1418 BUG_ON(in_interrupt());
1420 /* From now on, migration cannot move the object */
1423 obj
= handle_to_obj(handle
);
1424 obj_to_location(obj
, &page
, &obj_idx
);
1425 zspage
= get_zspage(page
);
1427 /* migration cannot move any subpage in this zspage */
1428 migrate_read_lock(zspage
);
1430 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1431 class = pool
->size_class
[class_idx
];
1432 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1434 area
= &get_cpu_var(zs_map_area
);
1436 if (off
+ class->size
<= PAGE_SIZE
) {
1437 /* this object is contained entirely within a page */
1438 area
->vm_addr
= kmap_atomic(page
);
1439 ret
= area
->vm_addr
+ off
;
1443 /* this object spans two pages */
1445 pages
[1] = get_next_page(page
);
1448 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1450 if (likely(!PageHugeObject(page
)))
1451 ret
+= ZS_HANDLE_SIZE
;
1455 EXPORT_SYMBOL_GPL(zs_map_object
);
1457 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1459 struct zspage
*zspage
;
1461 unsigned long obj
, off
;
1462 unsigned int obj_idx
;
1464 unsigned int class_idx
;
1465 enum fullness_group fg
;
1466 struct size_class
*class;
1467 struct mapping_area
*area
;
1469 obj
= handle_to_obj(handle
);
1470 obj_to_location(obj
, &page
, &obj_idx
);
1471 zspage
= get_zspage(page
);
1472 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1473 class = pool
->size_class
[class_idx
];
1474 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1476 area
= this_cpu_ptr(&zs_map_area
);
1477 if (off
+ class->size
<= PAGE_SIZE
)
1478 kunmap_atomic(area
->vm_addr
);
1480 struct page
*pages
[2];
1483 pages
[1] = get_next_page(page
);
1486 __zs_unmap_object(area
, pages
, off
, class->size
);
1488 put_cpu_var(zs_map_area
);
1490 migrate_read_unlock(zspage
);
1493 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1495 static unsigned long obj_malloc(struct size_class
*class,
1496 struct zspage
*zspage
, unsigned long handle
)
1498 int i
, nr_page
, offset
;
1500 struct link_free
*link
;
1502 struct page
*m_page
;
1503 unsigned long m_offset
;
1506 handle
|= OBJ_ALLOCATED_TAG
;
1507 obj
= get_freeobj(zspage
);
1509 offset
= obj
* class->size
;
1510 nr_page
= offset
>> PAGE_SHIFT
;
1511 m_offset
= offset
& ~PAGE_MASK
;
1512 m_page
= get_first_page(zspage
);
1514 for (i
= 0; i
< nr_page
; i
++)
1515 m_page
= get_next_page(m_page
);
1517 vaddr
= kmap_atomic(m_page
);
1518 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1519 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1520 if (likely(!PageHugeObject(m_page
)))
1521 /* record handle in the header of allocated chunk */
1522 link
->handle
= handle
;
1524 /* record handle to page->index */
1525 zspage
->first_page
->index
= handle
;
1527 kunmap_atomic(vaddr
);
1528 mod_zspage_inuse(zspage
, 1);
1529 zs_stat_inc(class, OBJ_USED
, 1);
1531 obj
= location_to_obj(m_page
, obj
);
1538 * zs_malloc - Allocate block of given size from pool.
1539 * @pool: pool to allocate from
1540 * @size: size of block to allocate
1541 * @gfp: gfp flags when allocating object
1543 * On success, handle to the allocated object is returned,
1545 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1547 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1549 unsigned long handle
, obj
;
1550 struct size_class
*class;
1551 enum fullness_group newfg
;
1552 struct zspage
*zspage
;
1554 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1557 handle
= cache_alloc_handle(pool
, gfp
);
1561 /* extra space in chunk to keep the handle */
1562 size
+= ZS_HANDLE_SIZE
;
1563 class = pool
->size_class
[get_size_class_index(size
)];
1565 spin_lock(&class->lock
);
1566 zspage
= find_get_zspage(class);
1567 if (likely(zspage
)) {
1568 obj
= obj_malloc(class, zspage
, handle
);
1569 /* Now move the zspage to another fullness group, if required */
1570 fix_fullness_group(class, zspage
);
1571 record_obj(handle
, obj
);
1572 spin_unlock(&class->lock
);
1577 spin_unlock(&class->lock
);
1579 zspage
= alloc_zspage(pool
, class, gfp
);
1581 cache_free_handle(pool
, handle
);
1585 spin_lock(&class->lock
);
1586 obj
= obj_malloc(class, zspage
, handle
);
1587 newfg
= get_fullness_group(class, zspage
);
1588 insert_zspage(class, zspage
, newfg
);
1589 set_zspage_mapping(zspage
, class->index
, newfg
);
1590 record_obj(handle
, obj
);
1591 atomic_long_add(class->pages_per_zspage
,
1592 &pool
->pages_allocated
);
1593 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1595 /* We completely set up zspage so mark them as movable */
1596 SetZsPageMovable(pool
, zspage
);
1597 spin_unlock(&class->lock
);
1601 EXPORT_SYMBOL_GPL(zs_malloc
);
1603 static void obj_free(struct size_class
*class, unsigned long obj
)
1605 struct link_free
*link
;
1606 struct zspage
*zspage
;
1607 struct page
*f_page
;
1608 unsigned long f_offset
;
1609 unsigned int f_objidx
;
1612 obj
&= ~OBJ_ALLOCATED_TAG
;
1613 obj_to_location(obj
, &f_page
, &f_objidx
);
1614 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1615 zspage
= get_zspage(f_page
);
1617 vaddr
= kmap_atomic(f_page
);
1619 /* Insert this object in containing zspage's freelist */
1620 link
= (struct link_free
*)(vaddr
+ f_offset
);
1621 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1622 kunmap_atomic(vaddr
);
1623 set_freeobj(zspage
, f_objidx
);
1624 mod_zspage_inuse(zspage
, -1);
1625 zs_stat_dec(class, OBJ_USED
, 1);
1628 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1630 struct zspage
*zspage
;
1631 struct page
*f_page
;
1633 unsigned int f_objidx
;
1635 struct size_class
*class;
1636 enum fullness_group fullness
;
1639 if (unlikely(!handle
))
1643 obj
= handle_to_obj(handle
);
1644 obj_to_location(obj
, &f_page
, &f_objidx
);
1645 zspage
= get_zspage(f_page
);
1647 migrate_read_lock(zspage
);
1649 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1650 class = pool
->size_class
[class_idx
];
1652 spin_lock(&class->lock
);
1653 obj_free(class, obj
);
1654 fullness
= fix_fullness_group(class, zspage
);
1655 if (fullness
!= ZS_EMPTY
) {
1656 migrate_read_unlock(zspage
);
1660 isolated
= is_zspage_isolated(zspage
);
1661 migrate_read_unlock(zspage
);
1662 /* If zspage is isolated, zs_page_putback will free the zspage */
1663 if (likely(!isolated
))
1664 free_zspage(pool
, class, zspage
);
1667 spin_unlock(&class->lock
);
1669 cache_free_handle(pool
, handle
);
1671 EXPORT_SYMBOL_GPL(zs_free
);
1673 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1676 struct page
*s_page
, *d_page
;
1677 unsigned int s_objidx
, d_objidx
;
1678 unsigned long s_off
, d_off
;
1679 void *s_addr
, *d_addr
;
1680 int s_size
, d_size
, size
;
1683 s_size
= d_size
= class->size
;
1685 obj_to_location(src
, &s_page
, &s_objidx
);
1686 obj_to_location(dst
, &d_page
, &d_objidx
);
1688 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1689 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1691 if (s_off
+ class->size
> PAGE_SIZE
)
1692 s_size
= PAGE_SIZE
- s_off
;
1694 if (d_off
+ class->size
> PAGE_SIZE
)
1695 d_size
= PAGE_SIZE
- d_off
;
1697 s_addr
= kmap_atomic(s_page
);
1698 d_addr
= kmap_atomic(d_page
);
1701 size
= min(s_size
, d_size
);
1702 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1705 if (written
== class->size
)
1713 if (s_off
>= PAGE_SIZE
) {
1714 kunmap_atomic(d_addr
);
1715 kunmap_atomic(s_addr
);
1716 s_page
= get_next_page(s_page
);
1717 s_addr
= kmap_atomic(s_page
);
1718 d_addr
= kmap_atomic(d_page
);
1719 s_size
= class->size
- written
;
1723 if (d_off
>= PAGE_SIZE
) {
1724 kunmap_atomic(d_addr
);
1725 d_page
= get_next_page(d_page
);
1726 d_addr
= kmap_atomic(d_page
);
1727 d_size
= class->size
- written
;
1732 kunmap_atomic(d_addr
);
1733 kunmap_atomic(s_addr
);
1737 * Find alloced object in zspage from index object and
1740 static unsigned long find_alloced_obj(struct size_class
*class,
1741 struct page
*page
, int *obj_idx
)
1745 int index
= *obj_idx
;
1746 unsigned long handle
= 0;
1747 void *addr
= kmap_atomic(page
);
1749 offset
= get_first_obj_offset(page
);
1750 offset
+= class->size
* index
;
1752 while (offset
< PAGE_SIZE
) {
1753 head
= obj_to_head(page
, addr
+ offset
);
1754 if (head
& OBJ_ALLOCATED_TAG
) {
1755 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1756 if (trypin_tag(handle
))
1761 offset
+= class->size
;
1765 kunmap_atomic(addr
);
1772 struct zs_compact_control
{
1773 /* Source spage for migration which could be a subpage of zspage */
1774 struct page
*s_page
;
1775 /* Destination page for migration which should be a first page
1777 struct page
*d_page
;
1778 /* Starting object index within @s_page which used for live object
1779 * in the subpage. */
1783 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1784 struct zs_compact_control
*cc
)
1786 unsigned long used_obj
, free_obj
;
1787 unsigned long handle
;
1788 struct page
*s_page
= cc
->s_page
;
1789 struct page
*d_page
= cc
->d_page
;
1790 int obj_idx
= cc
->obj_idx
;
1794 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1796 s_page
= get_next_page(s_page
);
1803 /* Stop if there is no more space */
1804 if (zspage_full(class, get_zspage(d_page
))) {
1810 used_obj
= handle_to_obj(handle
);
1811 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1812 zs_object_copy(class, free_obj
, used_obj
);
1815 * record_obj updates handle's value to free_obj and it will
1816 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1817 * breaks synchronization using pin_tag(e,g, zs_free) so
1818 * let's keep the lock bit.
1820 free_obj
|= BIT(HANDLE_PIN_BIT
);
1821 record_obj(handle
, free_obj
);
1823 obj_free(class, used_obj
);
1826 /* Remember last position in this iteration */
1827 cc
->s_page
= s_page
;
1828 cc
->obj_idx
= obj_idx
;
1833 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1836 struct zspage
*zspage
;
1837 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1840 fg
[0] = ZS_ALMOST_FULL
;
1841 fg
[1] = ZS_ALMOST_EMPTY
;
1844 for (i
= 0; i
< 2; i
++) {
1845 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1846 struct zspage
, list
);
1848 VM_BUG_ON(is_zspage_isolated(zspage
));
1849 remove_zspage(class, zspage
, fg
[i
]);
1858 * putback_zspage - add @zspage into right class's fullness list
1859 * @class: destination class
1860 * @zspage: target page
1862 * Return @zspage's fullness_group
1864 static enum fullness_group
putback_zspage(struct size_class
*class,
1865 struct zspage
*zspage
)
1867 enum fullness_group fullness
;
1869 VM_BUG_ON(is_zspage_isolated(zspage
));
1871 fullness
= get_fullness_group(class, zspage
);
1872 insert_zspage(class, zspage
, fullness
);
1873 set_zspage_mapping(zspage
, class->index
, fullness
);
1878 #ifdef CONFIG_COMPACTION
1879 static struct dentry
*zs_mount(struct file_system_type
*fs_type
,
1880 int flags
, const char *dev_name
, void *data
)
1882 static const struct dentry_operations ops
= {
1883 .d_dname
= simple_dname
,
1886 return mount_pseudo(fs_type
, "zsmalloc:", NULL
, &ops
, ZSMALLOC_MAGIC
);
1889 static struct file_system_type zsmalloc_fs
= {
1892 .kill_sb
= kill_anon_super
,
1895 static int zsmalloc_mount(void)
1899 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1900 if (IS_ERR(zsmalloc_mnt
))
1901 ret
= PTR_ERR(zsmalloc_mnt
);
1906 static void zsmalloc_unmount(void)
1908 kern_unmount(zsmalloc_mnt
);
1911 static void migrate_lock_init(struct zspage
*zspage
)
1913 rwlock_init(&zspage
->lock
);
1916 static void migrate_read_lock(struct zspage
*zspage
)
1918 read_lock(&zspage
->lock
);
1921 static void migrate_read_unlock(struct zspage
*zspage
)
1923 read_unlock(&zspage
->lock
);
1926 static void migrate_write_lock(struct zspage
*zspage
)
1928 write_lock(&zspage
->lock
);
1931 static void migrate_write_unlock(struct zspage
*zspage
)
1933 write_unlock(&zspage
->lock
);
1936 /* Number of isolated subpage for *page migration* in this zspage */
1937 static void inc_zspage_isolation(struct zspage
*zspage
)
1942 static void dec_zspage_isolation(struct zspage
*zspage
)
1947 static void putback_zspage_deferred(struct zs_pool
*pool
,
1948 struct size_class
*class,
1949 struct zspage
*zspage
)
1951 enum fullness_group fg
;
1953 fg
= putback_zspage(class, zspage
);
1955 schedule_work(&pool
->free_work
);
1959 static inline void zs_pool_dec_isolated(struct zs_pool
*pool
)
1961 VM_BUG_ON(atomic_long_read(&pool
->isolated_pages
) <= 0);
1962 atomic_long_dec(&pool
->isolated_pages
);
1964 * There's no possibility of racing, since wait_for_isolated_drain()
1965 * checks the isolated count under &class->lock after enqueuing
1966 * on migration_wait.
1968 if (atomic_long_read(&pool
->isolated_pages
) == 0 && pool
->destroying
)
1969 wake_up_all(&pool
->migration_wait
);
1972 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1973 struct page
*newpage
, struct page
*oldpage
)
1976 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1979 page
= get_first_page(zspage
);
1981 if (page
== oldpage
)
1982 pages
[idx
] = newpage
;
1986 } while ((page
= get_next_page(page
)) != NULL
);
1988 create_page_chain(class, zspage
, pages
);
1989 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1990 if (unlikely(PageHugeObject(oldpage
)))
1991 newpage
->index
= oldpage
->index
;
1992 __SetPageMovable(newpage
, page_mapping(oldpage
));
1995 bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1997 struct zs_pool
*pool
;
1998 struct size_class
*class;
2000 enum fullness_group fullness
;
2001 struct zspage
*zspage
;
2002 struct address_space
*mapping
;
2005 * Page is locked so zspage couldn't be destroyed. For detail, look at
2006 * lock_zspage in free_zspage.
2008 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2009 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
2011 zspage
= get_zspage(page
);
2014 * Without class lock, fullness could be stale while class_idx is okay
2015 * because class_idx is constant unless page is freed so we should get
2016 * fullness again under class lock.
2018 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2019 mapping
= page_mapping(page
);
2020 pool
= mapping
->private_data
;
2021 class = pool
->size_class
[class_idx
];
2023 spin_lock(&class->lock
);
2024 if (get_zspage_inuse(zspage
) == 0) {
2025 spin_unlock(&class->lock
);
2029 /* zspage is isolated for object migration */
2030 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
2031 spin_unlock(&class->lock
);
2036 * If this is first time isolation for the zspage, isolate zspage from
2037 * size_class to prevent further object allocation from the zspage.
2039 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
2040 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2041 atomic_long_inc(&pool
->isolated_pages
);
2042 remove_zspage(class, zspage
, fullness
);
2045 inc_zspage_isolation(zspage
);
2046 spin_unlock(&class->lock
);
2051 int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
2052 struct page
*page
, enum migrate_mode mode
)
2054 struct zs_pool
*pool
;
2055 struct size_class
*class;
2057 enum fullness_group fullness
;
2058 struct zspage
*zspage
;
2060 void *s_addr
, *d_addr
, *addr
;
2062 unsigned long handle
, head
;
2063 unsigned long old_obj
, new_obj
;
2064 unsigned int obj_idx
;
2067 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2068 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2070 zspage
= get_zspage(page
);
2072 /* Concurrent compactor cannot migrate any subpage in zspage */
2073 migrate_write_lock(zspage
);
2074 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2075 pool
= mapping
->private_data
;
2076 class = pool
->size_class
[class_idx
];
2077 offset
= get_first_obj_offset(page
);
2079 spin_lock(&class->lock
);
2080 if (!get_zspage_inuse(zspage
)) {
2086 s_addr
= kmap_atomic(page
);
2087 while (pos
< PAGE_SIZE
) {
2088 head
= obj_to_head(page
, s_addr
+ pos
);
2089 if (head
& OBJ_ALLOCATED_TAG
) {
2090 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2091 if (!trypin_tag(handle
))
2098 * Here, any user cannot access all objects in the zspage so let's move.
2100 d_addr
= kmap_atomic(newpage
);
2101 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2102 kunmap_atomic(d_addr
);
2104 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2105 addr
+= class->size
) {
2106 head
= obj_to_head(page
, addr
);
2107 if (head
& OBJ_ALLOCATED_TAG
) {
2108 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2109 if (!testpin_tag(handle
))
2112 old_obj
= handle_to_obj(handle
);
2113 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2114 new_obj
= (unsigned long)location_to_obj(newpage
,
2116 new_obj
|= BIT(HANDLE_PIN_BIT
);
2117 record_obj(handle
, new_obj
);
2121 replace_sub_page(class, zspage
, newpage
, page
);
2124 dec_zspage_isolation(zspage
);
2127 * Page migration is done so let's putback isolated zspage to
2128 * the list if @page is final isolated subpage in the zspage.
2130 if (!is_zspage_isolated(zspage
)) {
2132 * We cannot race with zs_destroy_pool() here because we wait
2133 * for isolation to hit zero before we start destroying.
2134 * Also, we ensure that everyone can see pool->destroying before
2137 putback_zspage_deferred(pool
, class, zspage
);
2138 zs_pool_dec_isolated(pool
);
2141 if (page_zone(newpage
) != page_zone(page
)) {
2142 dec_zone_page_state(page
, NR_ZSPAGES
);
2143 inc_zone_page_state(newpage
, NR_ZSPAGES
);
2150 ret
= MIGRATEPAGE_SUCCESS
;
2152 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2153 addr
+= class->size
) {
2154 head
= obj_to_head(page
, addr
);
2155 if (head
& OBJ_ALLOCATED_TAG
) {
2156 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2157 if (!testpin_tag(handle
))
2162 kunmap_atomic(s_addr
);
2164 spin_unlock(&class->lock
);
2165 migrate_write_unlock(zspage
);
2170 void zs_page_putback(struct page
*page
)
2172 struct zs_pool
*pool
;
2173 struct size_class
*class;
2175 enum fullness_group fg
;
2176 struct address_space
*mapping
;
2177 struct zspage
*zspage
;
2179 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2180 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2182 zspage
= get_zspage(page
);
2183 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2184 mapping
= page_mapping(page
);
2185 pool
= mapping
->private_data
;
2186 class = pool
->size_class
[class_idx
];
2188 spin_lock(&class->lock
);
2189 dec_zspage_isolation(zspage
);
2190 if (!is_zspage_isolated(zspage
)) {
2192 * Due to page_lock, we cannot free zspage immediately
2195 putback_zspage_deferred(pool
, class, zspage
);
2196 zs_pool_dec_isolated(pool
);
2198 spin_unlock(&class->lock
);
2201 const struct address_space_operations zsmalloc_aops
= {
2202 .isolate_page
= zs_page_isolate
,
2203 .migratepage
= zs_page_migrate
,
2204 .putback_page
= zs_page_putback
,
2207 static int zs_register_migration(struct zs_pool
*pool
)
2209 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2210 if (IS_ERR(pool
->inode
)) {
2215 pool
->inode
->i_mapping
->private_data
= pool
;
2216 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2220 static bool pool_isolated_are_drained(struct zs_pool
*pool
)
2222 return atomic_long_read(&pool
->isolated_pages
) == 0;
2225 /* Function for resolving migration */
2226 static void wait_for_isolated_drain(struct zs_pool
*pool
)
2230 * We're in the process of destroying the pool, so there are no
2231 * active allocations. zs_page_isolate() fails for completely free
2232 * zspages, so we need only wait for the zs_pool's isolated
2233 * count to hit zero.
2235 wait_event(pool
->migration_wait
,
2236 pool_isolated_are_drained(pool
));
2239 static void zs_unregister_migration(struct zs_pool
*pool
)
2241 pool
->destroying
= true;
2243 * We need a memory barrier here to ensure global visibility of
2244 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2245 * case we don't care, or it will be > 0 and pool->destroying will
2246 * ensure that we wake up once isolation hits 0.
2249 wait_for_isolated_drain(pool
); /* This can block */
2250 flush_work(&pool
->free_work
);
2255 * Caller should hold page_lock of all pages in the zspage
2256 * In here, we cannot use zspage meta data.
2258 static void async_free_zspage(struct work_struct
*work
)
2261 struct size_class
*class;
2262 unsigned int class_idx
;
2263 enum fullness_group fullness
;
2264 struct zspage
*zspage
, *tmp
;
2265 LIST_HEAD(free_pages
);
2266 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2269 for (i
= 0; i
< zs_size_classes
; i
++) {
2270 class = pool
->size_class
[i
];
2271 if (class->index
!= i
)
2274 spin_lock(&class->lock
);
2275 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2276 spin_unlock(&class->lock
);
2280 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2281 list_del(&zspage
->list
);
2282 lock_zspage(zspage
);
2284 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2285 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2286 class = pool
->size_class
[class_idx
];
2287 spin_lock(&class->lock
);
2288 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2289 spin_unlock(&class->lock
);
2293 static void kick_deferred_free(struct zs_pool
*pool
)
2295 schedule_work(&pool
->free_work
);
2298 static void init_deferred_free(struct zs_pool
*pool
)
2300 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2303 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2305 struct page
*page
= get_first_page(zspage
);
2308 WARN_ON(!trylock_page(page
));
2309 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2311 } while ((page
= get_next_page(page
)) != NULL
);
2317 * Based on the number of unused allocated objects calculate
2318 * and return the number of pages that we can free.
2320 static unsigned long zs_can_compact(struct size_class
*class)
2322 unsigned long obj_wasted
;
2323 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2324 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2326 if (obj_allocated
<= obj_used
)
2329 obj_wasted
= obj_allocated
- obj_used
;
2330 obj_wasted
/= class->objs_per_zspage
;
2332 return obj_wasted
* class->pages_per_zspage
;
2335 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2337 struct zs_compact_control cc
;
2338 struct zspage
*src_zspage
;
2339 struct zspage
*dst_zspage
= NULL
;
2341 spin_lock(&class->lock
);
2342 while ((src_zspage
= isolate_zspage(class, true))) {
2344 if (!zs_can_compact(class))
2348 cc
.s_page
= get_first_page(src_zspage
);
2350 while ((dst_zspage
= isolate_zspage(class, false))) {
2351 cc
.d_page
= get_first_page(dst_zspage
);
2353 * If there is no more space in dst_page, resched
2354 * and see if anyone had allocated another zspage.
2356 if (!migrate_zspage(pool
, class, &cc
))
2359 putback_zspage(class, dst_zspage
);
2362 /* Stop if we couldn't find slot */
2363 if (dst_zspage
== NULL
)
2366 putback_zspage(class, dst_zspage
);
2367 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2368 free_zspage(pool
, class, src_zspage
);
2369 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2371 spin_unlock(&class->lock
);
2373 spin_lock(&class->lock
);
2377 putback_zspage(class, src_zspage
);
2379 spin_unlock(&class->lock
);
2382 unsigned long zs_compact(struct zs_pool
*pool
)
2385 struct size_class
*class;
2387 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
2388 class = pool
->size_class
[i
];
2391 if (class->index
!= i
)
2393 __zs_compact(pool
, class);
2396 return pool
->stats
.pages_compacted
;
2398 EXPORT_SYMBOL_GPL(zs_compact
);
2400 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2402 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2404 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2406 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2407 struct shrink_control
*sc
)
2409 unsigned long pages_freed
;
2410 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2413 pages_freed
= pool
->stats
.pages_compacted
;
2415 * Compact classes and calculate compaction delta.
2416 * Can run concurrently with a manually triggered
2417 * (by user) compaction.
2419 pages_freed
= zs_compact(pool
) - pages_freed
;
2421 return pages_freed
? pages_freed
: SHRINK_STOP
;
2424 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2425 struct shrink_control
*sc
)
2428 struct size_class
*class;
2429 unsigned long pages_to_free
= 0;
2430 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2433 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
2434 class = pool
->size_class
[i
];
2437 if (class->index
!= i
)
2440 pages_to_free
+= zs_can_compact(class);
2443 return pages_to_free
;
2446 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2448 if (pool
->shrinker_enabled
) {
2449 unregister_shrinker(&pool
->shrinker
);
2450 pool
->shrinker_enabled
= false;
2454 static int zs_register_shrinker(struct zs_pool
*pool
)
2456 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2457 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2458 pool
->shrinker
.batch
= 0;
2459 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2461 return register_shrinker(&pool
->shrinker
);
2465 * zs_create_pool - Creates an allocation pool to work from.
2466 * @name: pool name to be created
2468 * This function must be called before anything when using
2469 * the zsmalloc allocator.
2471 * On success, a pointer to the newly created pool is returned,
2474 struct zs_pool
*zs_create_pool(const char *name
)
2477 struct zs_pool
*pool
;
2478 struct size_class
*prev_class
= NULL
;
2480 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2484 init_deferred_free(pool
);
2485 pool
->size_class
= kcalloc(zs_size_classes
, sizeof(struct size_class
*),
2487 if (!pool
->size_class
) {
2492 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2496 #ifdef CONFIG_COMPACTION
2497 init_waitqueue_head(&pool
->migration_wait
);
2500 if (create_cache(pool
))
2504 * Iterate reversly, because, size of size_class that we want to use
2505 * for merging should be larger or equal to current size.
2507 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
2509 int pages_per_zspage
;
2510 int objs_per_zspage
;
2511 struct size_class
*class;
2514 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2515 if (size
> ZS_MAX_ALLOC_SIZE
)
2516 size
= ZS_MAX_ALLOC_SIZE
;
2517 pages_per_zspage
= get_pages_per_zspage(size
);
2518 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2521 * size_class is used for normal zsmalloc operation such
2522 * as alloc/free for that size. Although it is natural that we
2523 * have one size_class for each size, there is a chance that we
2524 * can get more memory utilization if we use one size_class for
2525 * many different sizes whose size_class have same
2526 * characteristics. So, we makes size_class point to
2527 * previous size_class if possible.
2530 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2531 pool
->size_class
[i
] = prev_class
;
2536 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2542 class->pages_per_zspage
= pages_per_zspage
;
2543 class->objs_per_zspage
= objs_per_zspage
;
2544 spin_lock_init(&class->lock
);
2545 pool
->size_class
[i
] = class;
2546 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2548 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2553 /* debug only, don't abort if it fails */
2554 zs_pool_stat_create(pool
, name
);
2556 if (zs_register_migration(pool
))
2560 * Not critical, we still can use the pool
2561 * and user can trigger compaction manually.
2563 if (zs_register_shrinker(pool
) == 0)
2564 pool
->shrinker_enabled
= true;
2568 zs_destroy_pool(pool
);
2571 EXPORT_SYMBOL_GPL(zs_create_pool
);
2573 void zs_destroy_pool(struct zs_pool
*pool
)
2577 zs_unregister_shrinker(pool
);
2578 zs_unregister_migration(pool
);
2579 zs_pool_stat_destroy(pool
);
2581 for (i
= 0; i
< zs_size_classes
; i
++) {
2583 struct size_class
*class = pool
->size_class
[i
];
2588 if (class->index
!= i
)
2591 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2592 if (!list_empty(&class->fullness_list
[fg
])) {
2593 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2600 destroy_cache(pool
);
2601 kfree(pool
->size_class
);
2605 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2607 static int __init
zs_init(void)
2611 ret
= zsmalloc_mount();
2615 ret
= zs_register_cpu_notifier();
2620 init_zs_size_classes();
2623 zpool_register_driver(&zs_zpool_driver
);
2631 zs_unregister_cpu_notifier();
2637 static void __exit
zs_exit(void)
2640 zpool_unregister_driver(&zs_zpool_driver
);
2643 zs_unregister_cpu_notifier();
2648 module_init(zs_init
);
2649 module_exit(zs_exit
);
2651 MODULE_LICENSE("Dual BSD/GPL");
2652 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");