2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly
;
113 unsigned int sysctl_net_busy_poll __read_mostly
;
116 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
117 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
118 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
120 static int sock_close(struct inode
*inode
, struct file
*file
);
121 static __poll_t
sock_poll(struct file
*file
,
122 struct poll_table_struct
*wait
);
123 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
125 static long compat_sock_ioctl(struct file
*file
,
126 unsigned int cmd
, unsigned long arg
);
128 static int sock_fasync(int fd
, struct file
*filp
, int on
);
129 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
130 int offset
, size_t size
, loff_t
*ppos
, int more
);
131 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
132 struct pipe_inode_info
*pipe
, size_t len
,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops
= {
141 .owner
= THIS_MODULE
,
143 .read_iter
= sock_read_iter
,
144 .write_iter
= sock_write_iter
,
146 .unlocked_ioctl
= sock_ioctl
,
148 .compat_ioctl
= compat_sock_ioctl
,
151 .release
= sock_close
,
152 .fasync
= sock_fasync
,
153 .sendpage
= sock_sendpage
,
154 .splice_write
= generic_splice_sendpage
,
155 .splice_read
= sock_splice_read
,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock
);
163 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
184 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
188 if (copy_from_user(kaddr
, uaddr
, ulen
))
190 return audit_sockaddr(ulen
, kaddr
);
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
210 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
211 void __user
*uaddr
, int __user
*ulen
)
216 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
217 err
= get_user(len
, ulen
);
225 if (audit_sockaddr(klen
, kaddr
))
227 if (copy_to_user(uaddr
, kaddr
, len
))
231 * "fromlen shall refer to the value before truncation.."
234 return __put_user(klen
, ulen
);
237 static struct kmem_cache
*sock_inode_cachep __ro_after_init
;
239 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
241 struct socket_alloc
*ei
;
242 struct socket_wq
*wq
;
244 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
247 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
249 kmem_cache_free(sock_inode_cachep
, ei
);
252 init_waitqueue_head(&wq
->wait
);
253 wq
->fasync_list
= NULL
;
257 ei
->socket
.state
= SS_UNCONNECTED
;
258 ei
->socket
.flags
= 0;
259 ei
->socket
.ops
= NULL
;
260 ei
->socket
.sk
= NULL
;
261 ei
->socket
.file
= NULL
;
263 return &ei
->vfs_inode
;
266 static void sock_destroy_inode(struct inode
*inode
)
268 struct socket_alloc
*ei
;
270 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
271 kfree_rcu(ei
->socket
.wq
, rcu
);
272 kmem_cache_free(sock_inode_cachep
, ei
);
275 static void init_once(void *foo
)
277 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
279 inode_init_once(&ei
->vfs_inode
);
282 static void init_inodecache(void)
284 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
285 sizeof(struct socket_alloc
),
287 (SLAB_HWCACHE_ALIGN
|
288 SLAB_RECLAIM_ACCOUNT
|
289 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
291 BUG_ON(sock_inode_cachep
== NULL
);
294 static const struct super_operations sockfs_ops
= {
295 .alloc_inode
= sock_alloc_inode
,
296 .destroy_inode
= sock_destroy_inode
,
297 .statfs
= simple_statfs
,
301 * sockfs_dname() is called from d_path().
303 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
305 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
306 d_inode(dentry
)->i_ino
);
309 static const struct dentry_operations sockfs_dentry_operations
= {
310 .d_dname
= sockfs_dname
,
313 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
314 struct dentry
*dentry
, struct inode
*inode
,
315 const char *suffix
, void *value
, size_t size
)
318 if (dentry
->d_name
.len
+ 1 > size
)
320 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
322 return dentry
->d_name
.len
+ 1;
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329 static const struct xattr_handler sockfs_xattr_handler
= {
330 .name
= XATTR_NAME_SOCKPROTONAME
,
331 .get
= sockfs_xattr_get
,
334 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
335 struct dentry
*dentry
, struct inode
*inode
,
336 const char *suffix
, const void *value
,
337 size_t size
, int flags
)
339 /* Handled by LSM. */
343 static const struct xattr_handler sockfs_security_xattr_handler
= {
344 .prefix
= XATTR_SECURITY_PREFIX
,
345 .set
= sockfs_security_xattr_set
,
348 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
349 &sockfs_xattr_handler
,
350 &sockfs_security_xattr_handler
,
354 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
355 int flags
, const char *dev_name
, void *data
)
357 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
358 sockfs_xattr_handlers
,
359 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
362 static struct vfsmount
*sock_mnt __read_mostly
;
364 static struct file_system_type sock_fs_type
= {
366 .mount
= sockfs_mount
,
367 .kill_sb
= kill_anon_super
,
371 * Obtains the first available file descriptor and sets it up for use.
373 * These functions create file structures and maps them to fd space
374 * of the current process. On success it returns file descriptor
375 * and file struct implicitly stored in sock->file.
376 * Note that another thread may close file descriptor before we return
377 * from this function. We use the fact that now we do not refer
378 * to socket after mapping. If one day we will need it, this
379 * function will increment ref. count on file by 1.
381 * In any case returned fd MAY BE not valid!
382 * This race condition is unavoidable
383 * with shared fd spaces, we cannot solve it inside kernel,
384 * but we take care of internal coherence yet.
387 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
392 dname
= sock
->sk
? sock
->sk
->sk_prot_creator
->name
: "";
394 file
= alloc_file_pseudo(SOCK_INODE(sock
), sock_mnt
, dname
,
395 O_RDWR
| (flags
& O_NONBLOCK
),
403 file
->private_data
= sock
;
406 EXPORT_SYMBOL(sock_alloc_file
);
408 static int sock_map_fd(struct socket
*sock
, int flags
)
410 struct file
*newfile
;
411 int fd
= get_unused_fd_flags(flags
);
412 if (unlikely(fd
< 0)) {
417 newfile
= sock_alloc_file(sock
, flags
, NULL
);
418 if (likely(!IS_ERR(newfile
))) {
419 fd_install(fd
, newfile
);
424 return PTR_ERR(newfile
);
427 struct socket
*sock_from_file(struct file
*file
, int *err
)
429 if (file
->f_op
== &socket_file_ops
)
430 return file
->private_data
; /* set in sock_map_fd */
435 EXPORT_SYMBOL(sock_from_file
);
438 * sockfd_lookup - Go from a file number to its socket slot
440 * @err: pointer to an error code return
442 * The file handle passed in is locked and the socket it is bound
443 * to is returned. If an error occurs the err pointer is overwritten
444 * with a negative errno code and NULL is returned. The function checks
445 * for both invalid handles and passing a handle which is not a socket.
447 * On a success the socket object pointer is returned.
450 struct socket
*sockfd_lookup(int fd
, int *err
)
461 sock
= sock_from_file(file
, err
);
466 EXPORT_SYMBOL(sockfd_lookup
);
468 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
470 struct fd f
= fdget(fd
);
475 sock
= sock_from_file(f
.file
, err
);
477 *fput_needed
= f
.flags
;
485 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
491 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
501 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
506 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
513 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
515 int err
= simple_setattr(dentry
, iattr
);
517 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
518 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
521 sock
->sk
->sk_uid
= iattr
->ia_uid
;
529 static const struct inode_operations sockfs_inode_ops
= {
530 .listxattr
= sockfs_listxattr
,
531 .setattr
= sockfs_setattr
,
535 * sock_alloc - allocate a socket
537 * Allocate a new inode and socket object. The two are bound together
538 * and initialised. The socket is then returned. If we are out of inodes
542 struct socket
*sock_alloc(void)
547 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
551 sock
= SOCKET_I(inode
);
553 inode
->i_ino
= get_next_ino();
554 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
555 inode
->i_uid
= current_fsuid();
556 inode
->i_gid
= current_fsgid();
557 inode
->i_op
= &sockfs_inode_ops
;
561 EXPORT_SYMBOL(sock_alloc
);
564 * sock_release - close a socket
565 * @sock: socket to close
567 * The socket is released from the protocol stack if it has a release
568 * callback, and the inode is then released if the socket is bound to
569 * an inode not a file.
572 static void __sock_release(struct socket
*sock
, struct inode
*inode
)
575 struct module
*owner
= sock
->ops
->owner
;
579 sock
->ops
->release(sock
);
586 if (sock
->wq
->fasync_list
)
587 pr_err("%s: fasync list not empty!\n", __func__
);
590 iput(SOCK_INODE(sock
));
596 void sock_release(struct socket
*sock
)
598 __sock_release(sock
, NULL
);
600 EXPORT_SYMBOL(sock_release
);
602 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
604 u8 flags
= *tx_flags
;
606 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
607 flags
|= SKBTX_HW_TSTAMP
;
609 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
610 flags
|= SKBTX_SW_TSTAMP
;
612 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
613 flags
|= SKBTX_SCHED_TSTAMP
;
617 EXPORT_SYMBOL(__sock_tx_timestamp
);
619 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
621 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
622 BUG_ON(ret
== -EIOCBQUEUED
);
626 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
628 int err
= security_socket_sendmsg(sock
, msg
,
631 return err
?: sock_sendmsg_nosec(sock
, msg
);
633 EXPORT_SYMBOL(sock_sendmsg
);
635 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
636 struct kvec
*vec
, size_t num
, size_t size
)
638 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
639 return sock_sendmsg(sock
, msg
);
641 EXPORT_SYMBOL(kernel_sendmsg
);
643 int kernel_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
,
644 struct kvec
*vec
, size_t num
, size_t size
)
646 struct socket
*sock
= sk
->sk_socket
;
648 if (!sock
->ops
->sendmsg_locked
)
649 return sock_no_sendmsg_locked(sk
, msg
, size
);
651 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
653 return sock
->ops
->sendmsg_locked(sk
, msg
, msg_data_left(msg
));
655 EXPORT_SYMBOL(kernel_sendmsg_locked
);
657 static bool skb_is_err_queue(const struct sk_buff
*skb
)
659 /* pkt_type of skbs enqueued on the error queue are set to
660 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
661 * in recvmsg, since skbs received on a local socket will never
662 * have a pkt_type of PACKET_OUTGOING.
664 return skb
->pkt_type
== PACKET_OUTGOING
;
667 /* On transmit, software and hardware timestamps are returned independently.
668 * As the two skb clones share the hardware timestamp, which may be updated
669 * before the software timestamp is received, a hardware TX timestamp may be
670 * returned only if there is no software TX timestamp. Ignore false software
671 * timestamps, which may be made in the __sock_recv_timestamp() call when the
672 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
673 * hardware timestamp.
675 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
677 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
680 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
)
682 struct scm_ts_pktinfo ts_pktinfo
;
683 struct net_device
*orig_dev
;
685 if (!skb_mac_header_was_set(skb
))
688 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
691 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
693 ts_pktinfo
.if_index
= orig_dev
->ifindex
;
696 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
697 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
698 sizeof(ts_pktinfo
), &ts_pktinfo
);
702 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
704 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
707 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
708 struct scm_timestamping tss
;
709 int empty
= 1, false_tstamp
= 0;
710 struct skb_shared_hwtstamps
*shhwtstamps
=
713 /* Race occurred between timestamp enabling and packet
714 receiving. Fill in the current time for now. */
715 if (need_software_tstamp
&& skb
->tstamp
== 0) {
716 __net_timestamp(skb
);
720 if (need_software_tstamp
) {
721 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
723 skb_get_timestamp(skb
, &tv
);
724 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
728 skb_get_timestampns(skb
, &ts
);
729 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
734 memset(&tss
, 0, sizeof(tss
));
735 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
736 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
739 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
740 !skb_is_swtx_tstamp(skb
, false_tstamp
) &&
741 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2)) {
743 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
744 !skb_is_err_queue(skb
))
745 put_ts_pktinfo(msg
, skb
);
748 put_cmsg(msg
, SOL_SOCKET
,
749 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
751 if (skb_is_err_queue(skb
) && skb
->len
&&
752 SKB_EXT_ERR(skb
)->opt_stats
)
753 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
754 skb
->len
, skb
->data
);
757 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
759 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
764 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
766 if (!skb
->wifi_acked_valid
)
769 ack
= skb
->wifi_acked
;
771 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
773 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
775 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
778 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
779 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
780 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
783 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
786 sock_recv_timestamp(msg
, sk
, skb
);
787 sock_recv_drops(msg
, sk
, skb
);
789 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
791 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
794 return sock
->ops
->recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
797 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
799 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
801 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
803 EXPORT_SYMBOL(sock_recvmsg
);
806 * kernel_recvmsg - Receive a message from a socket (kernel space)
807 * @sock: The socket to receive the message from
808 * @msg: Received message
809 * @vec: Input s/g array for message data
810 * @num: Size of input s/g array
811 * @size: Number of bytes to read
812 * @flags: Message flags (MSG_DONTWAIT, etc...)
814 * On return the msg structure contains the scatter/gather array passed in the
815 * vec argument. The array is modified so that it consists of the unfilled
816 * portion of the original array.
818 * The returned value is the total number of bytes received, or an error.
820 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
821 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
823 mm_segment_t oldfs
= get_fs();
826 iov_iter_kvec(&msg
->msg_iter
, READ
, vec
, num
, size
);
828 result
= sock_recvmsg(sock
, msg
, flags
);
832 EXPORT_SYMBOL(kernel_recvmsg
);
834 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
835 int offset
, size_t size
, loff_t
*ppos
, int more
)
840 sock
= file
->private_data
;
842 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
843 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
846 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
849 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
850 struct pipe_inode_info
*pipe
, size_t len
,
853 struct socket
*sock
= file
->private_data
;
855 if (unlikely(!sock
->ops
->splice_read
))
858 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
861 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
863 struct file
*file
= iocb
->ki_filp
;
864 struct socket
*sock
= file
->private_data
;
865 struct msghdr msg
= {.msg_iter
= *to
,
869 if (file
->f_flags
& O_NONBLOCK
)
870 msg
.msg_flags
= MSG_DONTWAIT
;
872 if (iocb
->ki_pos
!= 0)
875 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
878 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
883 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
885 struct file
*file
= iocb
->ki_filp
;
886 struct socket
*sock
= file
->private_data
;
887 struct msghdr msg
= {.msg_iter
= *from
,
891 if (iocb
->ki_pos
!= 0)
894 if (file
->f_flags
& O_NONBLOCK
)
895 msg
.msg_flags
= MSG_DONTWAIT
;
897 if (sock
->type
== SOCK_SEQPACKET
)
898 msg
.msg_flags
|= MSG_EOR
;
900 res
= sock_sendmsg(sock
, &msg
);
901 *from
= msg
.msg_iter
;
906 * Atomic setting of ioctl hooks to avoid race
907 * with module unload.
910 static DEFINE_MUTEX(br_ioctl_mutex
);
911 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
913 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
915 mutex_lock(&br_ioctl_mutex
);
916 br_ioctl_hook
= hook
;
917 mutex_unlock(&br_ioctl_mutex
);
919 EXPORT_SYMBOL(brioctl_set
);
921 static DEFINE_MUTEX(vlan_ioctl_mutex
);
922 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
924 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
926 mutex_lock(&vlan_ioctl_mutex
);
927 vlan_ioctl_hook
= hook
;
928 mutex_unlock(&vlan_ioctl_mutex
);
930 EXPORT_SYMBOL(vlan_ioctl_set
);
932 static DEFINE_MUTEX(dlci_ioctl_mutex
);
933 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
935 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
937 mutex_lock(&dlci_ioctl_mutex
);
938 dlci_ioctl_hook
= hook
;
939 mutex_unlock(&dlci_ioctl_mutex
);
941 EXPORT_SYMBOL(dlci_ioctl_set
);
943 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
944 unsigned int cmd
, unsigned long arg
,
945 unsigned int ifreq_size
)
948 void __user
*argp
= (void __user
*)arg
;
950 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
953 * If this ioctl is unknown try to hand it down
956 if (err
!= -ENOIOCTLCMD
)
959 if (cmd
== SIOCGIFCONF
) {
961 if (copy_from_user(&ifc
, argp
, sizeof(struct ifconf
)))
964 err
= dev_ifconf(net
, &ifc
, sizeof(struct ifreq
));
966 if (!err
&& copy_to_user(argp
, &ifc
, sizeof(struct ifconf
)))
971 if (copy_from_user(&ifr
, argp
, ifreq_size
))
973 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
974 if (!err
&& need_copyout
)
975 if (copy_to_user(argp
, &ifr
, ifreq_size
))
982 * With an ioctl, arg may well be a user mode pointer, but we don't know
983 * what to do with it - that's up to the protocol still.
986 struct ns_common
*get_net_ns(struct ns_common
*ns
)
988 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
990 EXPORT_SYMBOL_GPL(get_net_ns
);
992 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
996 void __user
*argp
= (void __user
*)arg
;
1000 sock
= file
->private_data
;
1003 if (unlikely(cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))) {
1006 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1008 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1009 if (!err
&& need_copyout
)
1010 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1013 #ifdef CONFIG_WEXT_CORE
1014 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1015 err
= wext_handle_ioctl(net
, cmd
, argp
);
1022 if (get_user(pid
, (int __user
*)argp
))
1024 err
= f_setown(sock
->file
, pid
, 1);
1028 err
= put_user(f_getown(sock
->file
),
1029 (int __user
*)argp
);
1037 request_module("bridge");
1039 mutex_lock(&br_ioctl_mutex
);
1041 err
= br_ioctl_hook(net
, cmd
, argp
);
1042 mutex_unlock(&br_ioctl_mutex
);
1047 if (!vlan_ioctl_hook
)
1048 request_module("8021q");
1050 mutex_lock(&vlan_ioctl_mutex
);
1051 if (vlan_ioctl_hook
)
1052 err
= vlan_ioctl_hook(net
, argp
);
1053 mutex_unlock(&vlan_ioctl_mutex
);
1058 if (!dlci_ioctl_hook
)
1059 request_module("dlci");
1061 mutex_lock(&dlci_ioctl_mutex
);
1062 if (dlci_ioctl_hook
)
1063 err
= dlci_ioctl_hook(cmd
, argp
);
1064 mutex_unlock(&dlci_ioctl_mutex
);
1068 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1071 err
= open_related_ns(&net
->ns
, get_net_ns
);
1074 err
= sock_do_ioctl(net
, sock
, cmd
, arg
,
1075 sizeof(struct ifreq
));
1081 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1084 struct socket
*sock
= NULL
;
1086 err
= security_socket_create(family
, type
, protocol
, 1);
1090 sock
= sock_alloc();
1097 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1109 EXPORT_SYMBOL(sock_create_lite
);
1111 /* No kernel lock held - perfect */
1112 static __poll_t
sock_poll(struct file
*file
, poll_table
*wait
)
1114 struct socket
*sock
= file
->private_data
;
1115 __poll_t events
= poll_requested_events(wait
), flag
= 0;
1117 if (!sock
->ops
->poll
)
1120 if (sk_can_busy_loop(sock
->sk
)) {
1121 /* poll once if requested by the syscall */
1122 if (events
& POLL_BUSY_LOOP
)
1123 sk_busy_loop(sock
->sk
, 1);
1125 /* if this socket can poll_ll, tell the system call */
1126 flag
= POLL_BUSY_LOOP
;
1129 return sock
->ops
->poll(file
, sock
, wait
) | flag
;
1132 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1134 struct socket
*sock
= file
->private_data
;
1136 return sock
->ops
->mmap(file
, sock
, vma
);
1139 static int sock_close(struct inode
*inode
, struct file
*filp
)
1141 __sock_release(SOCKET_I(inode
), inode
);
1146 * Update the socket async list
1148 * Fasync_list locking strategy.
1150 * 1. fasync_list is modified only under process context socket lock
1151 * i.e. under semaphore.
1152 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1153 * or under socket lock
1156 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1158 struct socket
*sock
= filp
->private_data
;
1159 struct sock
*sk
= sock
->sk
;
1160 struct socket_wq
*wq
;
1167 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1169 if (!wq
->fasync_list
)
1170 sock_reset_flag(sk
, SOCK_FASYNC
);
1172 sock_set_flag(sk
, SOCK_FASYNC
);
1178 /* This function may be called only under rcu_lock */
1180 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1182 if (!wq
|| !wq
->fasync_list
)
1186 case SOCK_WAKE_WAITD
:
1187 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1190 case SOCK_WAKE_SPACE
:
1191 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1196 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1199 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1204 EXPORT_SYMBOL(sock_wake_async
);
1206 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1207 struct socket
**res
, int kern
)
1210 struct socket
*sock
;
1211 const struct net_proto_family
*pf
;
1214 * Check protocol is in range
1216 if (family
< 0 || family
>= NPROTO
)
1217 return -EAFNOSUPPORT
;
1218 if (type
< 0 || type
>= SOCK_MAX
)
1223 This uglymoron is moved from INET layer to here to avoid
1224 deadlock in module load.
1226 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1227 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1232 err
= security_socket_create(family
, type
, protocol
, kern
);
1237 * Allocate the socket and allow the family to set things up. if
1238 * the protocol is 0, the family is instructed to select an appropriate
1241 sock
= sock_alloc();
1243 net_warn_ratelimited("socket: no more sockets\n");
1244 return -ENFILE
; /* Not exactly a match, but its the
1245 closest posix thing */
1250 #ifdef CONFIG_MODULES
1251 /* Attempt to load a protocol module if the find failed.
1253 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1254 * requested real, full-featured networking support upon configuration.
1255 * Otherwise module support will break!
1257 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1258 request_module("net-pf-%d", family
);
1262 pf
= rcu_dereference(net_families
[family
]);
1263 err
= -EAFNOSUPPORT
;
1268 * We will call the ->create function, that possibly is in a loadable
1269 * module, so we have to bump that loadable module refcnt first.
1271 if (!try_module_get(pf
->owner
))
1274 /* Now protected by module ref count */
1277 err
= pf
->create(net
, sock
, protocol
, kern
);
1279 goto out_module_put
;
1282 * Now to bump the refcnt of the [loadable] module that owns this
1283 * socket at sock_release time we decrement its refcnt.
1285 if (!try_module_get(sock
->ops
->owner
))
1286 goto out_module_busy
;
1289 * Now that we're done with the ->create function, the [loadable]
1290 * module can have its refcnt decremented
1292 module_put(pf
->owner
);
1293 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1295 goto out_sock_release
;
1301 err
= -EAFNOSUPPORT
;
1304 module_put(pf
->owner
);
1311 goto out_sock_release
;
1313 EXPORT_SYMBOL(__sock_create
);
1315 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1317 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1319 EXPORT_SYMBOL(sock_create
);
1321 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1323 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1325 EXPORT_SYMBOL(sock_create_kern
);
1327 int __sys_socket(int family
, int type
, int protocol
)
1330 struct socket
*sock
;
1333 /* Check the SOCK_* constants for consistency. */
1334 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1335 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1336 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1337 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1339 flags
= type
& ~SOCK_TYPE_MASK
;
1340 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1342 type
&= SOCK_TYPE_MASK
;
1344 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1345 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1347 retval
= sock_create(family
, type
, protocol
, &sock
);
1351 return sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1354 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1356 return __sys_socket(family
, type
, protocol
);
1360 * Create a pair of connected sockets.
1363 int __sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1365 struct socket
*sock1
, *sock2
;
1367 struct file
*newfile1
, *newfile2
;
1370 flags
= type
& ~SOCK_TYPE_MASK
;
1371 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1373 type
&= SOCK_TYPE_MASK
;
1375 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1376 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1379 * reserve descriptors and make sure we won't fail
1380 * to return them to userland.
1382 fd1
= get_unused_fd_flags(flags
);
1383 if (unlikely(fd1
< 0))
1386 fd2
= get_unused_fd_flags(flags
);
1387 if (unlikely(fd2
< 0)) {
1392 err
= put_user(fd1
, &usockvec
[0]);
1396 err
= put_user(fd2
, &usockvec
[1]);
1401 * Obtain the first socket and check if the underlying protocol
1402 * supports the socketpair call.
1405 err
= sock_create(family
, type
, protocol
, &sock1
);
1406 if (unlikely(err
< 0))
1409 err
= sock_create(family
, type
, protocol
, &sock2
);
1410 if (unlikely(err
< 0)) {
1411 sock_release(sock1
);
1415 err
= security_socket_socketpair(sock1
, sock2
);
1416 if (unlikely(err
)) {
1417 sock_release(sock2
);
1418 sock_release(sock1
);
1422 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1423 if (unlikely(err
< 0)) {
1424 sock_release(sock2
);
1425 sock_release(sock1
);
1429 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1430 if (IS_ERR(newfile1
)) {
1431 err
= PTR_ERR(newfile1
);
1432 sock_release(sock2
);
1436 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1437 if (IS_ERR(newfile2
)) {
1438 err
= PTR_ERR(newfile2
);
1443 audit_fd_pair(fd1
, fd2
);
1445 fd_install(fd1
, newfile1
);
1446 fd_install(fd2
, newfile2
);
1455 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1456 int __user
*, usockvec
)
1458 return __sys_socketpair(family
, type
, protocol
, usockvec
);
1462 * Bind a name to a socket. Nothing much to do here since it's
1463 * the protocol's responsibility to handle the local address.
1465 * We move the socket address to kernel space before we call
1466 * the protocol layer (having also checked the address is ok).
1469 int __sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1471 struct socket
*sock
;
1472 struct sockaddr_storage address
;
1473 int err
, fput_needed
;
1475 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1477 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1479 err
= security_socket_bind(sock
,
1480 (struct sockaddr
*)&address
,
1483 err
= sock
->ops
->bind(sock
,
1487 fput_light(sock
->file
, fput_needed
);
1492 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1494 return __sys_bind(fd
, umyaddr
, addrlen
);
1498 * Perform a listen. Basically, we allow the protocol to do anything
1499 * necessary for a listen, and if that works, we mark the socket as
1500 * ready for listening.
1503 int __sys_listen(int fd
, int backlog
)
1505 struct socket
*sock
;
1506 int err
, fput_needed
;
1509 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1511 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1512 if ((unsigned int)backlog
> somaxconn
)
1513 backlog
= somaxconn
;
1515 err
= security_socket_listen(sock
, backlog
);
1517 err
= sock
->ops
->listen(sock
, backlog
);
1519 fput_light(sock
->file
, fput_needed
);
1524 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1526 return __sys_listen(fd
, backlog
);
1530 * For accept, we attempt to create a new socket, set up the link
1531 * with the client, wake up the client, then return the new
1532 * connected fd. We collect the address of the connector in kernel
1533 * space and move it to user at the very end. This is unclean because
1534 * we open the socket then return an error.
1536 * 1003.1g adds the ability to recvmsg() to query connection pending
1537 * status to recvmsg. We need to add that support in a way thats
1538 * clean when we restructure accept also.
1541 int __sys_accept4(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1542 int __user
*upeer_addrlen
, int flags
)
1544 struct socket
*sock
, *newsock
;
1545 struct file
*newfile
;
1546 int err
, len
, newfd
, fput_needed
;
1547 struct sockaddr_storage address
;
1549 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1552 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1553 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1555 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1560 newsock
= sock_alloc();
1564 newsock
->type
= sock
->type
;
1565 newsock
->ops
= sock
->ops
;
1568 * We don't need try_module_get here, as the listening socket (sock)
1569 * has the protocol module (sock->ops->owner) held.
1571 __module_get(newsock
->ops
->owner
);
1573 newfd
= get_unused_fd_flags(flags
);
1574 if (unlikely(newfd
< 0)) {
1576 sock_release(newsock
);
1579 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1580 if (IS_ERR(newfile
)) {
1581 err
= PTR_ERR(newfile
);
1582 put_unused_fd(newfd
);
1586 err
= security_socket_accept(sock
, newsock
);
1590 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
, false);
1594 if (upeer_sockaddr
) {
1595 len
= newsock
->ops
->getname(newsock
,
1596 (struct sockaddr
*)&address
, 2);
1598 err
= -ECONNABORTED
;
1601 err
= move_addr_to_user(&address
,
1602 len
, upeer_sockaddr
, upeer_addrlen
);
1607 /* File flags are not inherited via accept() unlike another OSes. */
1609 fd_install(newfd
, newfile
);
1613 fput_light(sock
->file
, fput_needed
);
1618 put_unused_fd(newfd
);
1622 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1623 int __user
*, upeer_addrlen
, int, flags
)
1625 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, flags
);
1628 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1629 int __user
*, upeer_addrlen
)
1631 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1635 * Attempt to connect to a socket with the server address. The address
1636 * is in user space so we verify it is OK and move it to kernel space.
1638 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1641 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1642 * other SEQPACKET protocols that take time to connect() as it doesn't
1643 * include the -EINPROGRESS status for such sockets.
1646 int __sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1648 struct socket
*sock
;
1649 struct sockaddr_storage address
;
1650 int err
, fput_needed
;
1652 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1655 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1660 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1664 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1665 sock
->file
->f_flags
);
1667 fput_light(sock
->file
, fput_needed
);
1672 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1675 return __sys_connect(fd
, uservaddr
, addrlen
);
1679 * Get the local address ('name') of a socket object. Move the obtained
1680 * name to user space.
1683 int __sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1684 int __user
*usockaddr_len
)
1686 struct socket
*sock
;
1687 struct sockaddr_storage address
;
1688 int err
, fput_needed
;
1690 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1694 err
= security_socket_getsockname(sock
);
1698 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 0);
1701 /* "err" is actually length in this case */
1702 err
= move_addr_to_user(&address
, err
, usockaddr
, usockaddr_len
);
1705 fput_light(sock
->file
, fput_needed
);
1710 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1711 int __user
*, usockaddr_len
)
1713 return __sys_getsockname(fd
, usockaddr
, usockaddr_len
);
1717 * Get the remote address ('name') of a socket object. Move the obtained
1718 * name to user space.
1721 int __sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1722 int __user
*usockaddr_len
)
1724 struct socket
*sock
;
1725 struct sockaddr_storage address
;
1726 int err
, fput_needed
;
1728 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1730 err
= security_socket_getpeername(sock
);
1732 fput_light(sock
->file
, fput_needed
);
1736 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 1);
1738 /* "err" is actually length in this case */
1739 err
= move_addr_to_user(&address
, err
, usockaddr
,
1741 fput_light(sock
->file
, fput_needed
);
1746 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1747 int __user
*, usockaddr_len
)
1749 return __sys_getpeername(fd
, usockaddr
, usockaddr_len
);
1753 * Send a datagram to a given address. We move the address into kernel
1754 * space and check the user space data area is readable before invoking
1757 int __sys_sendto(int fd
, void __user
*buff
, size_t len
, unsigned int flags
,
1758 struct sockaddr __user
*addr
, int addr_len
)
1760 struct socket
*sock
;
1761 struct sockaddr_storage address
;
1767 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1770 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1774 msg
.msg_name
= NULL
;
1775 msg
.msg_control
= NULL
;
1776 msg
.msg_controllen
= 0;
1777 msg
.msg_namelen
= 0;
1779 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1782 msg
.msg_name
= (struct sockaddr
*)&address
;
1783 msg
.msg_namelen
= addr_len
;
1785 if (sock
->file
->f_flags
& O_NONBLOCK
)
1786 flags
|= MSG_DONTWAIT
;
1787 msg
.msg_flags
= flags
;
1788 err
= sock_sendmsg(sock
, &msg
);
1791 fput_light(sock
->file
, fput_needed
);
1796 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1797 unsigned int, flags
, struct sockaddr __user
*, addr
,
1800 return __sys_sendto(fd
, buff
, len
, flags
, addr
, addr_len
);
1804 * Send a datagram down a socket.
1807 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1808 unsigned int, flags
)
1810 return __sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1814 * Receive a frame from the socket and optionally record the address of the
1815 * sender. We verify the buffers are writable and if needed move the
1816 * sender address from kernel to user space.
1818 int __sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
, unsigned int flags
,
1819 struct sockaddr __user
*addr
, int __user
*addr_len
)
1821 struct socket
*sock
;
1824 struct sockaddr_storage address
;
1828 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1831 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1835 msg
.msg_control
= NULL
;
1836 msg
.msg_controllen
= 0;
1837 /* Save some cycles and don't copy the address if not needed */
1838 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1839 /* We assume all kernel code knows the size of sockaddr_storage */
1840 msg
.msg_namelen
= 0;
1841 msg
.msg_iocb
= NULL
;
1843 if (sock
->file
->f_flags
& O_NONBLOCK
)
1844 flags
|= MSG_DONTWAIT
;
1845 err
= sock_recvmsg(sock
, &msg
, flags
);
1847 if (err
>= 0 && addr
!= NULL
) {
1848 err2
= move_addr_to_user(&address
,
1849 msg
.msg_namelen
, addr
, addr_len
);
1854 fput_light(sock
->file
, fput_needed
);
1859 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1860 unsigned int, flags
, struct sockaddr __user
*, addr
,
1861 int __user
*, addr_len
)
1863 return __sys_recvfrom(fd
, ubuf
, size
, flags
, addr
, addr_len
);
1867 * Receive a datagram from a socket.
1870 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1871 unsigned int, flags
)
1873 return __sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1877 * Set a socket option. Because we don't know the option lengths we have
1878 * to pass the user mode parameter for the protocols to sort out.
1881 static int __sys_setsockopt(int fd
, int level
, int optname
,
1882 char __user
*optval
, int optlen
)
1884 int err
, fput_needed
;
1885 struct socket
*sock
;
1890 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1892 err
= security_socket_setsockopt(sock
, level
, optname
);
1896 if (level
== SOL_SOCKET
)
1898 sock_setsockopt(sock
, level
, optname
, optval
,
1902 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1905 fput_light(sock
->file
, fput_needed
);
1910 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1911 char __user
*, optval
, int, optlen
)
1913 return __sys_setsockopt(fd
, level
, optname
, optval
, optlen
);
1917 * Get a socket option. Because we don't know the option lengths we have
1918 * to pass a user mode parameter for the protocols to sort out.
1921 static int __sys_getsockopt(int fd
, int level
, int optname
,
1922 char __user
*optval
, int __user
*optlen
)
1924 int err
, fput_needed
;
1925 struct socket
*sock
;
1927 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1929 err
= security_socket_getsockopt(sock
, level
, optname
);
1933 if (level
== SOL_SOCKET
)
1935 sock_getsockopt(sock
, level
, optname
, optval
,
1939 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1942 fput_light(sock
->file
, fput_needed
);
1947 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1948 char __user
*, optval
, int __user
*, optlen
)
1950 return __sys_getsockopt(fd
, level
, optname
, optval
, optlen
);
1954 * Shutdown a socket.
1957 int __sys_shutdown(int fd
, int how
)
1959 int err
, fput_needed
;
1960 struct socket
*sock
;
1962 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1964 err
= security_socket_shutdown(sock
, how
);
1966 err
= sock
->ops
->shutdown(sock
, how
);
1967 fput_light(sock
->file
, fput_needed
);
1972 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1974 return __sys_shutdown(fd
, how
);
1977 /* A couple of helpful macros for getting the address of the 32/64 bit
1978 * fields which are the same type (int / unsigned) on our platforms.
1980 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1981 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1982 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1984 struct used_address
{
1985 struct sockaddr_storage name
;
1986 unsigned int name_len
;
1989 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1990 struct user_msghdr __user
*umsg
,
1991 struct sockaddr __user
**save_addr
,
1994 struct user_msghdr msg
;
1997 if (copy_from_user(&msg
, umsg
, sizeof(*umsg
)))
2000 kmsg
->msg_control
= (void __force
*)msg
.msg_control
;
2001 kmsg
->msg_controllen
= msg
.msg_controllen
;
2002 kmsg
->msg_flags
= msg
.msg_flags
;
2004 kmsg
->msg_namelen
= msg
.msg_namelen
;
2006 kmsg
->msg_namelen
= 0;
2008 if (kmsg
->msg_namelen
< 0)
2011 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2012 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2015 *save_addr
= msg
.msg_name
;
2017 if (msg
.msg_name
&& kmsg
->msg_namelen
) {
2019 err
= move_addr_to_kernel(msg
.msg_name
,
2026 kmsg
->msg_name
= NULL
;
2027 kmsg
->msg_namelen
= 0;
2030 if (msg
.msg_iovlen
> UIO_MAXIOV
)
2033 kmsg
->msg_iocb
= NULL
;
2035 return import_iovec(save_addr
? READ
: WRITE
,
2036 msg
.msg_iov
, msg
.msg_iovlen
,
2037 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
2040 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2041 struct msghdr
*msg_sys
, unsigned int flags
,
2042 struct used_address
*used_address
,
2043 unsigned int allowed_msghdr_flags
)
2045 struct compat_msghdr __user
*msg_compat
=
2046 (struct compat_msghdr __user
*)msg
;
2047 struct sockaddr_storage address
;
2048 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2049 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2050 __aligned(sizeof(__kernel_size_t
));
2051 /* 20 is size of ipv6_pktinfo */
2052 unsigned char *ctl_buf
= ctl
;
2056 msg_sys
->msg_name
= &address
;
2058 if (MSG_CMSG_COMPAT
& flags
)
2059 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
2061 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
2067 if (msg_sys
->msg_controllen
> INT_MAX
)
2069 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
2070 ctl_len
= msg_sys
->msg_controllen
;
2071 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2073 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2077 ctl_buf
= msg_sys
->msg_control
;
2078 ctl_len
= msg_sys
->msg_controllen
;
2079 } else if (ctl_len
) {
2080 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2081 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2082 if (ctl_len
> sizeof(ctl
)) {
2083 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2084 if (ctl_buf
== NULL
)
2089 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2090 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2091 * checking falls down on this.
2093 if (copy_from_user(ctl_buf
,
2094 (void __user __force
*)msg_sys
->msg_control
,
2097 msg_sys
->msg_control
= ctl_buf
;
2099 msg_sys
->msg_flags
= flags
;
2101 if (sock
->file
->f_flags
& O_NONBLOCK
)
2102 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2104 * If this is sendmmsg() and current destination address is same as
2105 * previously succeeded address, omit asking LSM's decision.
2106 * used_address->name_len is initialized to UINT_MAX so that the first
2107 * destination address never matches.
2109 if (used_address
&& msg_sys
->msg_name
&&
2110 used_address
->name_len
== msg_sys
->msg_namelen
&&
2111 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2112 used_address
->name_len
)) {
2113 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2116 err
= sock_sendmsg(sock
, msg_sys
);
2118 * If this is sendmmsg() and sending to current destination address was
2119 * successful, remember it.
2121 if (used_address
&& err
>= 0) {
2122 used_address
->name_len
= msg_sys
->msg_namelen
;
2123 if (msg_sys
->msg_name
)
2124 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2125 used_address
->name_len
);
2130 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2137 * BSD sendmsg interface
2140 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2141 bool forbid_cmsg_compat
)
2143 int fput_needed
, err
;
2144 struct msghdr msg_sys
;
2145 struct socket
*sock
;
2147 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2150 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2154 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2156 fput_light(sock
->file
, fput_needed
);
2161 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2163 return __sys_sendmsg(fd
, msg
, flags
, true);
2167 * Linux sendmmsg interface
2170 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2171 unsigned int flags
, bool forbid_cmsg_compat
)
2173 int fput_needed
, err
, datagrams
;
2174 struct socket
*sock
;
2175 struct mmsghdr __user
*entry
;
2176 struct compat_mmsghdr __user
*compat_entry
;
2177 struct msghdr msg_sys
;
2178 struct used_address used_address
;
2179 unsigned int oflags
= flags
;
2181 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2184 if (vlen
> UIO_MAXIOV
)
2189 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2193 used_address
.name_len
= UINT_MAX
;
2195 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2199 while (datagrams
< vlen
) {
2200 if (datagrams
== vlen
- 1)
2203 if (MSG_CMSG_COMPAT
& flags
) {
2204 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2205 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2208 err
= __put_user(err
, &compat_entry
->msg_len
);
2211 err
= ___sys_sendmsg(sock
,
2212 (struct user_msghdr __user
*)entry
,
2213 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2216 err
= put_user(err
, &entry
->msg_len
);
2223 if (msg_data_left(&msg_sys
))
2228 fput_light(sock
->file
, fput_needed
);
2230 /* We only return an error if no datagrams were able to be sent */
2237 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2238 unsigned int, vlen
, unsigned int, flags
)
2240 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
, true);
2243 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2244 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2246 struct compat_msghdr __user
*msg_compat
=
2247 (struct compat_msghdr __user
*)msg
;
2248 struct iovec iovstack
[UIO_FASTIOV
];
2249 struct iovec
*iov
= iovstack
;
2250 unsigned long cmsg_ptr
;
2254 /* kernel mode address */
2255 struct sockaddr_storage addr
;
2257 /* user mode address pointers */
2258 struct sockaddr __user
*uaddr
;
2259 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2261 msg_sys
->msg_name
= &addr
;
2263 if (MSG_CMSG_COMPAT
& flags
)
2264 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2266 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2270 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2271 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2273 /* We assume all kernel code knows the size of sockaddr_storage */
2274 msg_sys
->msg_namelen
= 0;
2276 if (sock
->file
->f_flags
& O_NONBLOCK
)
2277 flags
|= MSG_DONTWAIT
;
2278 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2283 if (uaddr
!= NULL
) {
2284 err
= move_addr_to_user(&addr
,
2285 msg_sys
->msg_namelen
, uaddr
,
2290 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2294 if (MSG_CMSG_COMPAT
& flags
)
2295 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2296 &msg_compat
->msg_controllen
);
2298 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2299 &msg
->msg_controllen
);
2310 * BSD recvmsg interface
2313 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2314 bool forbid_cmsg_compat
)
2316 int fput_needed
, err
;
2317 struct msghdr msg_sys
;
2318 struct socket
*sock
;
2320 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2323 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2327 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2329 fput_light(sock
->file
, fput_needed
);
2334 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2335 unsigned int, flags
)
2337 return __sys_recvmsg(fd
, msg
, flags
, true);
2341 * Linux recvmmsg interface
2344 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2345 unsigned int flags
, struct timespec64
*timeout
)
2347 int fput_needed
, err
, datagrams
;
2348 struct socket
*sock
;
2349 struct mmsghdr __user
*entry
;
2350 struct compat_mmsghdr __user
*compat_entry
;
2351 struct msghdr msg_sys
;
2352 struct timespec64 end_time
;
2353 struct timespec64 timeout64
;
2356 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2362 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2366 if (likely(!(flags
& MSG_ERRQUEUE
))) {
2367 err
= sock_error(sock
->sk
);
2375 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2377 while (datagrams
< vlen
) {
2379 * No need to ask LSM for more than the first datagram.
2381 if (MSG_CMSG_COMPAT
& flags
) {
2382 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2383 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2387 err
= __put_user(err
, &compat_entry
->msg_len
);
2390 err
= ___sys_recvmsg(sock
,
2391 (struct user_msghdr __user
*)entry
,
2392 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2396 err
= put_user(err
, &entry
->msg_len
);
2404 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2405 if (flags
& MSG_WAITFORONE
)
2406 flags
|= MSG_DONTWAIT
;
2409 ktime_get_ts64(&timeout64
);
2410 *timeout
= timespec64_sub(end_time
, timeout64
);
2411 if (timeout
->tv_sec
< 0) {
2412 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2416 /* Timeout, return less than vlen datagrams */
2417 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2421 /* Out of band data, return right away */
2422 if (msg_sys
.msg_flags
& MSG_OOB
)
2430 if (datagrams
== 0) {
2436 * We may return less entries than requested (vlen) if the
2437 * sock is non block and there aren't enough datagrams...
2439 if (err
!= -EAGAIN
) {
2441 * ... or if recvmsg returns an error after we
2442 * received some datagrams, where we record the
2443 * error to return on the next call or if the
2444 * app asks about it using getsockopt(SO_ERROR).
2446 sock
->sk
->sk_err
= -err
;
2449 fput_light(sock
->file
, fput_needed
);
2454 static int do_sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2455 unsigned int vlen
, unsigned int flags
,
2456 struct __kernel_timespec __user
*timeout
)
2459 struct timespec64 timeout_sys
;
2461 if (flags
& MSG_CMSG_COMPAT
)
2465 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2467 if (get_timespec64(&timeout_sys
, timeout
))
2470 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2472 if (datagrams
> 0 && put_timespec64(&timeout_sys
, timeout
))
2473 datagrams
= -EFAULT
;
2478 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2479 unsigned int, vlen
, unsigned int, flags
,
2480 struct __kernel_timespec __user
*, timeout
)
2482 return do_sys_recvmmsg(fd
, mmsg
, vlen
, flags
, timeout
);
2485 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2486 /* Argument list sizes for sys_socketcall */
2487 #define AL(x) ((x) * sizeof(unsigned long))
2488 static const unsigned char nargs
[21] = {
2489 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2490 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2491 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2498 * System call vectors.
2500 * Argument checking cleaned up. Saved 20% in size.
2501 * This function doesn't need to set the kernel lock because
2502 * it is set by the callees.
2505 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2507 unsigned long a
[AUDITSC_ARGS
];
2508 unsigned long a0
, a1
;
2512 if (call
< 1 || call
> SYS_SENDMMSG
)
2514 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2517 if (len
> sizeof(a
))
2520 /* copy_from_user should be SMP safe. */
2521 if (copy_from_user(a
, args
, len
))
2524 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2533 err
= __sys_socket(a0
, a1
, a
[2]);
2536 err
= __sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2539 err
= __sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2542 err
= __sys_listen(a0
, a1
);
2545 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2546 (int __user
*)a
[2], 0);
2548 case SYS_GETSOCKNAME
:
2550 __sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2551 (int __user
*)a
[2]);
2553 case SYS_GETPEERNAME
:
2555 __sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2556 (int __user
*)a
[2]);
2558 case SYS_SOCKETPAIR
:
2559 err
= __sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2562 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2566 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2567 (struct sockaddr __user
*)a
[4], a
[5]);
2570 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2574 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2575 (struct sockaddr __user
*)a
[4],
2576 (int __user
*)a
[5]);
2579 err
= __sys_shutdown(a0
, a1
);
2581 case SYS_SETSOCKOPT
:
2582 err
= __sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2585 case SYS_GETSOCKOPT
:
2587 __sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2588 (int __user
*)a
[4]);
2591 err
= __sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
,
2595 err
= __sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2599 err
= __sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
,
2603 err
= do_sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2604 a
[3], (struct __kernel_timespec __user
*)a
[4]);
2607 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2608 (int __user
*)a
[2], a
[3]);
2617 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2620 * sock_register - add a socket protocol handler
2621 * @ops: description of protocol
2623 * This function is called by a protocol handler that wants to
2624 * advertise its address family, and have it linked into the
2625 * socket interface. The value ops->family corresponds to the
2626 * socket system call protocol family.
2628 int sock_register(const struct net_proto_family
*ops
)
2632 if (ops
->family
>= NPROTO
) {
2633 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2637 spin_lock(&net_family_lock
);
2638 if (rcu_dereference_protected(net_families
[ops
->family
],
2639 lockdep_is_held(&net_family_lock
)))
2642 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2645 spin_unlock(&net_family_lock
);
2647 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2650 EXPORT_SYMBOL(sock_register
);
2653 * sock_unregister - remove a protocol handler
2654 * @family: protocol family to remove
2656 * This function is called by a protocol handler that wants to
2657 * remove its address family, and have it unlinked from the
2658 * new socket creation.
2660 * If protocol handler is a module, then it can use module reference
2661 * counts to protect against new references. If protocol handler is not
2662 * a module then it needs to provide its own protection in
2663 * the ops->create routine.
2665 void sock_unregister(int family
)
2667 BUG_ON(family
< 0 || family
>= NPROTO
);
2669 spin_lock(&net_family_lock
);
2670 RCU_INIT_POINTER(net_families
[family
], NULL
);
2671 spin_unlock(&net_family_lock
);
2675 pr_info("NET: Unregistered protocol family %d\n", family
);
2677 EXPORT_SYMBOL(sock_unregister
);
2679 bool sock_is_registered(int family
)
2681 return family
< NPROTO
&& rcu_access_pointer(net_families
[family
]);
2684 static int __init
sock_init(void)
2688 * Initialize the network sysctl infrastructure.
2690 err
= net_sysctl_init();
2695 * Initialize skbuff SLAB cache
2700 * Initialize the protocols module.
2705 err
= register_filesystem(&sock_fs_type
);
2708 sock_mnt
= kern_mount(&sock_fs_type
);
2709 if (IS_ERR(sock_mnt
)) {
2710 err
= PTR_ERR(sock_mnt
);
2714 /* The real protocol initialization is performed in later initcalls.
2717 #ifdef CONFIG_NETFILTER
2718 err
= netfilter_init();
2723 ptp_classifier_init();
2729 unregister_filesystem(&sock_fs_type
);
2734 core_initcall(sock_init
); /* early initcall */
2736 #ifdef CONFIG_PROC_FS
2737 void socket_seq_show(struct seq_file
*seq
)
2739 seq_printf(seq
, "sockets: used %d\n",
2740 sock_inuse_get(seq
->private));
2742 #endif /* CONFIG_PROC_FS */
2744 #ifdef CONFIG_COMPAT
2745 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2746 unsigned int cmd
, void __user
*up
)
2748 mm_segment_t old_fs
= get_fs();
2753 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
,
2754 sizeof(struct compat_ifreq
));
2757 err
= compat_put_timeval(&ktv
, up
);
2762 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2763 unsigned int cmd
, void __user
*up
)
2765 mm_segment_t old_fs
= get_fs();
2766 struct timespec kts
;
2770 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
,
2771 sizeof(struct compat_ifreq
));
2774 err
= compat_put_timespec(&kts
, up
);
2779 static int compat_dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2781 struct compat_ifconf ifc32
;
2785 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2788 ifc
.ifc_len
= ifc32
.ifc_len
;
2789 ifc
.ifc_req
= compat_ptr(ifc32
.ifcbuf
);
2792 err
= dev_ifconf(net
, &ifc
, sizeof(struct compat_ifreq
));
2797 ifc32
.ifc_len
= ifc
.ifc_len
;
2798 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2804 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2806 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2807 bool convert_in
= false, convert_out
= false;
2808 size_t buf_size
= 0;
2809 struct ethtool_rxnfc __user
*rxnfc
= NULL
;
2811 u32 rule_cnt
= 0, actual_rule_cnt
;
2816 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2819 compat_rxnfc
= compat_ptr(data
);
2821 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2824 /* Most ethtool structures are defined without padding.
2825 * Unfortunately struct ethtool_rxnfc is an exception.
2830 case ETHTOOL_GRXCLSRLALL
:
2831 /* Buffer size is variable */
2832 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2834 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2836 buf_size
+= rule_cnt
* sizeof(u32
);
2838 case ETHTOOL_GRXRINGS
:
2839 case ETHTOOL_GRXCLSRLCNT
:
2840 case ETHTOOL_GRXCLSRULE
:
2841 case ETHTOOL_SRXCLSRLINS
:
2844 case ETHTOOL_SRXCLSRLDEL
:
2845 buf_size
+= sizeof(struct ethtool_rxnfc
);
2847 rxnfc
= compat_alloc_user_space(buf_size
);
2851 if (copy_from_user(&ifr
.ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2854 ifr
.ifr_data
= convert_in
? rxnfc
: (void __user
*)compat_rxnfc
;
2857 /* We expect there to be holes between fs.m_ext and
2858 * fs.ring_cookie and at the end of fs, but nowhere else.
2860 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2861 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2862 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2863 sizeof(rxnfc
->fs
.m_ext
));
2865 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2866 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2867 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2868 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2870 if (copy_in_user(rxnfc
, compat_rxnfc
,
2871 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2872 (void __user
*)rxnfc
) ||
2873 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2874 &compat_rxnfc
->fs
.ring_cookie
,
2875 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2876 (void __user
*)&rxnfc
->fs
.ring_cookie
))
2878 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2879 if (put_user(rule_cnt
, &rxnfc
->rule_cnt
))
2881 } else if (copy_in_user(&rxnfc
->rule_cnt
,
2882 &compat_rxnfc
->rule_cnt
,
2883 sizeof(rxnfc
->rule_cnt
)))
2887 ret
= dev_ioctl(net
, SIOCETHTOOL
, &ifr
, NULL
);
2892 if (copy_in_user(compat_rxnfc
, rxnfc
,
2893 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2894 (const void __user
*)rxnfc
) ||
2895 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2896 &rxnfc
->fs
.ring_cookie
,
2897 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2898 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2899 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2900 sizeof(rxnfc
->rule_cnt
)))
2903 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2904 /* As an optimisation, we only copy the actual
2905 * number of rules that the underlying
2906 * function returned. Since Mallory might
2907 * change the rule count in user memory, we
2908 * check that it is less than the rule count
2909 * originally given (as the user buffer size),
2910 * which has been range-checked.
2912 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2914 if (actual_rule_cnt
< rule_cnt
)
2915 rule_cnt
= actual_rule_cnt
;
2916 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2917 &rxnfc
->rule_locs
[0],
2918 rule_cnt
* sizeof(u32
)))
2926 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2928 compat_uptr_t uptr32
;
2933 if (copy_from_user(&ifr
, uifr32
, sizeof(struct compat_ifreq
)))
2936 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2939 saved
= ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
;
2940 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= compat_ptr(uptr32
);
2942 err
= dev_ioctl(net
, SIOCWANDEV
, &ifr
, NULL
);
2944 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= saved
;
2945 if (copy_to_user(uifr32
, &ifr
, sizeof(struct compat_ifreq
)))
2951 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2952 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2953 struct compat_ifreq __user
*u_ifreq32
)
2958 if (copy_from_user(ifreq
.ifr_name
, u_ifreq32
->ifr_name
, IFNAMSIZ
))
2960 if (get_user(data32
, &u_ifreq32
->ifr_data
))
2962 ifreq
.ifr_data
= compat_ptr(data32
);
2964 return dev_ioctl(net
, cmd
, &ifreq
, NULL
);
2967 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2968 struct compat_ifreq __user
*uifr32
)
2971 struct compat_ifmap __user
*uifmap32
;
2974 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2975 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2976 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2977 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2978 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2979 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2980 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2981 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2985 err
= dev_ioctl(net
, cmd
, &ifr
, NULL
);
2987 if (cmd
== SIOCGIFMAP
&& !err
) {
2988 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2989 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2990 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2991 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2992 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2993 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2994 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3003 struct sockaddr rt_dst
; /* target address */
3004 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3005 struct sockaddr rt_genmask
; /* target network mask (IP) */
3006 unsigned short rt_flags
;
3009 unsigned char rt_tos
;
3010 unsigned char rt_class
;
3012 short rt_metric
; /* +1 for binary compatibility! */
3013 /* char * */ u32 rt_dev
; /* forcing the device at add */
3014 u32 rt_mtu
; /* per route MTU/Window */
3015 u32 rt_window
; /* Window clamping */
3016 unsigned short rt_irtt
; /* Initial RTT */
3019 struct in6_rtmsg32
{
3020 struct in6_addr rtmsg_dst
;
3021 struct in6_addr rtmsg_src
;
3022 struct in6_addr rtmsg_gateway
;
3032 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3033 unsigned int cmd
, void __user
*argp
)
3037 struct in6_rtmsg r6
;
3041 mm_segment_t old_fs
= get_fs();
3043 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3044 struct in6_rtmsg32 __user
*ur6
= argp
;
3045 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3046 3 * sizeof(struct in6_addr
));
3047 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3048 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3049 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3050 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3051 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3052 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3053 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3057 struct rtentry32 __user
*ur4
= argp
;
3058 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3059 3 * sizeof(struct sockaddr
));
3060 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3061 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3062 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3063 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3064 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3065 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3067 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3068 r4
.rt_dev
= (char __user __force
*)devname
;
3082 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
,
3083 sizeof(struct compat_ifreq
));
3090 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3091 * for some operations; this forces use of the newer bridge-utils that
3092 * use compatible ioctls
3094 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3098 if (get_user(tmp
, argp
))
3100 if (tmp
== BRCTL_GET_VERSION
)
3101 return BRCTL_VERSION
+ 1;
3105 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3106 unsigned int cmd
, unsigned long arg
)
3108 void __user
*argp
= compat_ptr(arg
);
3109 struct sock
*sk
= sock
->sk
;
3110 struct net
*net
= sock_net(sk
);
3112 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3113 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3118 return old_bridge_ioctl(argp
);
3120 return compat_dev_ifconf(net
, argp
);
3122 return ethtool_ioctl(net
, argp
);
3124 return compat_siocwandev(net
, argp
);
3127 return compat_sioc_ifmap(net
, cmd
, argp
);
3130 return routing_ioctl(net
, sock
, cmd
, argp
);
3132 return do_siocgstamp(net
, sock
, cmd
, argp
);
3134 return do_siocgstampns(net
, sock
, cmd
, argp
);
3135 case SIOCBONDSLAVEINFOQUERY
:
3136 case SIOCBONDINFOQUERY
:
3139 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3152 return sock_ioctl(file
, cmd
, arg
);
3169 case SIOCSIFHWBROADCAST
:
3171 case SIOCGIFBRDADDR
:
3172 case SIOCSIFBRDADDR
:
3173 case SIOCGIFDSTADDR
:
3174 case SIOCSIFDSTADDR
:
3175 case SIOCGIFNETMASK
:
3176 case SIOCSIFNETMASK
:
3191 case SIOCBONDENSLAVE
:
3192 case SIOCBONDRELEASE
:
3193 case SIOCBONDSETHWADDR
:
3194 case SIOCBONDCHANGEACTIVE
:
3196 return sock_do_ioctl(net
, sock
, cmd
, arg
,
3197 sizeof(struct compat_ifreq
));
3200 return -ENOIOCTLCMD
;
3203 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3206 struct socket
*sock
= file
->private_data
;
3207 int ret
= -ENOIOCTLCMD
;
3214 if (sock
->ops
->compat_ioctl
)
3215 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3217 if (ret
== -ENOIOCTLCMD
&&
3218 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3219 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3221 if (ret
== -ENOIOCTLCMD
)
3222 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3228 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3230 return sock
->ops
->bind(sock
, addr
, addrlen
);
3232 EXPORT_SYMBOL(kernel_bind
);
3234 int kernel_listen(struct socket
*sock
, int backlog
)
3236 return sock
->ops
->listen(sock
, backlog
);
3238 EXPORT_SYMBOL(kernel_listen
);
3240 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3242 struct sock
*sk
= sock
->sk
;
3245 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3250 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3252 sock_release(*newsock
);
3257 (*newsock
)->ops
= sock
->ops
;
3258 __module_get((*newsock
)->ops
->owner
);
3263 EXPORT_SYMBOL(kernel_accept
);
3265 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3268 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3270 EXPORT_SYMBOL(kernel_connect
);
3272 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
)
3274 return sock
->ops
->getname(sock
, addr
, 0);
3276 EXPORT_SYMBOL(kernel_getsockname
);
3278 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
)
3280 return sock
->ops
->getname(sock
, addr
, 1);
3282 EXPORT_SYMBOL(kernel_getpeername
);
3284 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3285 char *optval
, int *optlen
)
3287 mm_segment_t oldfs
= get_fs();
3288 char __user
*uoptval
;
3289 int __user
*uoptlen
;
3292 uoptval
= (char __user __force
*) optval
;
3293 uoptlen
= (int __user __force
*) optlen
;
3296 if (level
== SOL_SOCKET
)
3297 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3299 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3304 EXPORT_SYMBOL(kernel_getsockopt
);
3306 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3307 char *optval
, unsigned int optlen
)
3309 mm_segment_t oldfs
= get_fs();
3310 char __user
*uoptval
;
3313 uoptval
= (char __user __force
*) optval
;
3316 if (level
== SOL_SOCKET
)
3317 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3319 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3324 EXPORT_SYMBOL(kernel_setsockopt
);
3326 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3327 size_t size
, int flags
)
3329 if (sock
->ops
->sendpage
)
3330 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3332 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3334 EXPORT_SYMBOL(kernel_sendpage
);
3336 int kernel_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
3337 size_t size
, int flags
)
3339 struct socket
*sock
= sk
->sk_socket
;
3341 if (sock
->ops
->sendpage_locked
)
3342 return sock
->ops
->sendpage_locked(sk
, page
, offset
, size
,
3345 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
3347 EXPORT_SYMBOL(kernel_sendpage_locked
);
3349 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3351 return sock
->ops
->shutdown(sock
, how
);
3353 EXPORT_SYMBOL(kernel_sock_shutdown
);
3355 /* This routine returns the IP overhead imposed by a socket i.e.
3356 * the length of the underlying IP header, depending on whether
3357 * this is an IPv4 or IPv6 socket and the length from IP options turned
3358 * on at the socket. Assumes that the caller has a lock on the socket.
3360 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3362 struct inet_sock
*inet
;
3363 struct ip_options_rcu
*opt
;
3365 #if IS_ENABLED(CONFIG_IPV6)
3366 struct ipv6_pinfo
*np
;
3367 struct ipv6_txoptions
*optv6
= NULL
;
3368 #endif /* IS_ENABLED(CONFIG_IPV6) */
3373 switch (sk
->sk_family
) {
3376 overhead
+= sizeof(struct iphdr
);
3377 opt
= rcu_dereference_protected(inet
->inet_opt
,
3378 sock_owned_by_user(sk
));
3380 overhead
+= opt
->opt
.optlen
;
3382 #if IS_ENABLED(CONFIG_IPV6)
3385 overhead
+= sizeof(struct ipv6hdr
);
3387 optv6
= rcu_dereference_protected(np
->opt
,
3388 sock_owned_by_user(sk
));
3390 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3392 #endif /* IS_ENABLED(CONFIG_IPV6) */
3393 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3397 EXPORT_SYMBOL(kernel_sock_ip_overhead
);