2 * Driver for Alauda-based card readers
4 * Current development and maintenance by:
5 * (c) 2005 Daniel Drake <dsd@gentoo.org>
7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9 * Alauda implements a vendor-specific command set to access two media reader
10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11 * which are accepted by these devices.
13 * The driver was developed through reverse-engineering, with the help of the
14 * sddr09 driver which has many similarities, and with some help from the
15 * (very old) vendor-supplied GPL sma03 driver.
17 * For protocol info, see http://alauda.sourceforge.net
19 * This program is free software; you can redistribute it and/or modify it
20 * under the terms of the GNU General Public License as published by the
21 * Free Software Foundation; either version 2, or (at your option) any
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * General Public License for more details.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/slab.h>
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
42 #include "transport.h"
47 #define DRV_NAME "ums-alauda"
49 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
50 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
51 MODULE_LICENSE("GPL");
56 #define ALAUDA_STATUS_ERROR 0x01
57 #define ALAUDA_STATUS_READY 0x40
60 * Control opcodes (for request field)
62 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08
63 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98
64 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
65 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
66 #define ALAUDA_GET_XD_MEDIA_SIG 0x86
67 #define ALAUDA_GET_SM_MEDIA_SIG 0x96
70 * Bulk command identity (byte 0)
72 #define ALAUDA_BULK_CMD 0x40
75 * Bulk opcodes (byte 1)
77 #define ALAUDA_BULK_GET_REDU_DATA 0x85
78 #define ALAUDA_BULK_READ_BLOCK 0x94
79 #define ALAUDA_BULK_ERASE_BLOCK 0xa3
80 #define ALAUDA_BULK_WRITE_BLOCK 0xb4
81 #define ALAUDA_BULK_GET_STATUS2 0xb7
82 #define ALAUDA_BULK_RESET_MEDIA 0xe0
85 * Port to operate on (byte 8)
87 #define ALAUDA_PORT_XD 0x00
88 #define ALAUDA_PORT_SM 0x01
91 * LBA and PBA are unsigned ints. Special values.
95 #define UNUSABLE 0xfffd
97 struct alauda_media_info
{
98 unsigned long capacity
; /* total media size in bytes */
99 unsigned int pagesize
; /* page size in bytes */
100 unsigned int blocksize
; /* number of pages per block */
101 unsigned int uzonesize
; /* number of usable blocks per zone */
102 unsigned int zonesize
; /* number of blocks per zone */
103 unsigned int blockmask
; /* mask to get page from address */
105 unsigned char pageshift
;
106 unsigned char blockshift
;
107 unsigned char zoneshift
;
109 u16
**lba_to_pba
; /* logical to physical block map */
110 u16
**pba_to_lba
; /* physical to logical block map */
114 struct alauda_media_info port
[2];
115 int wr_ep
; /* endpoint to write data out of */
117 unsigned char sense_key
;
118 unsigned long sense_asc
; /* additional sense code */
119 unsigned long sense_ascq
; /* additional sense code qualifier */
122 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
123 #define LSB_of(s) ((s)&0xFF)
124 #define MSB_of(s) ((s)>>8)
126 #define MEDIA_PORT(us) us->srb->device->lun
127 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
129 #define PBA_LO(pba) ((pba & 0xF) << 5)
130 #define PBA_HI(pba) (pba >> 3)
131 #define PBA_ZONE(pba) (pba >> 11)
133 static int init_alauda(struct us_data
*us
);
137 * The table of devices
139 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
140 vendorName, productName, useProtocol, useTransport, \
141 initFunction, flags) \
142 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
143 .driver_info = (flags) }
145 static struct usb_device_id alauda_usb_ids
[] = {
146 # include "unusual_alauda.h"
147 { } /* Terminating entry */
149 MODULE_DEVICE_TABLE(usb
, alauda_usb_ids
);
156 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
157 vendor_name, product_name, use_protocol, use_transport, \
158 init_function, Flags) \
160 .vendorName = vendor_name, \
161 .productName = product_name, \
162 .useProtocol = use_protocol, \
163 .useTransport = use_transport, \
164 .initFunction = init_function, \
167 static struct us_unusual_dev alauda_unusual_dev_list
[] = {
168 # include "unusual_alauda.h"
169 { } /* Terminating entry */
179 struct alauda_card_info
{
180 unsigned char id
; /* id byte */
181 unsigned char chipshift
; /* 1<<cs bytes total capacity */
182 unsigned char pageshift
; /* 1<<ps bytes in a page */
183 unsigned char blockshift
; /* 1<<bs pages per block */
184 unsigned char zoneshift
; /* 1<<zs blocks per zone */
187 static struct alauda_card_info alauda_card_ids
[] = {
189 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
190 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
191 { 0xec, 20, 8, 4, 8}, /* 1 MB */
192 { 0x64, 21, 8, 4, 9}, /* 2 MB */
193 { 0xea, 21, 8, 4, 9}, /* 2 MB */
194 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
195 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
196 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
197 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
198 { 0x73, 24, 9, 5, 10}, /* 16 MB */
199 { 0x75, 25, 9, 5, 10}, /* 32 MB */
200 { 0x76, 26, 9, 5, 10}, /* 64 MB */
201 { 0x79, 27, 9, 5, 10}, /* 128 MB */
202 { 0x71, 28, 9, 5, 10}, /* 256 MB */
205 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
206 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
207 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
208 { 0x57, 24, 9, 4, 11}, /* 16 MB */
209 { 0x58, 25, 9, 4, 12}, /* 32 MB */
213 static struct alauda_card_info
*alauda_card_find_id(unsigned char id
)
217 for (i
= 0; alauda_card_ids
[i
].id
!= 0; i
++)
218 if (alauda_card_ids
[i
].id
== id
)
219 return &(alauda_card_ids
[i
]);
227 static unsigned char parity
[256];
228 static unsigned char ecc2
[256];
230 static void nand_init_ecc(void)
235 for (i
= 1; i
< 256; i
++)
236 parity
[i
] = (parity
[i
&(i
-1)] ^ 1);
238 for (i
= 0; i
< 256; i
++) {
240 for (j
= 0; j
< 8; j
++) {
250 ecc2
[i
] = ~(a
^ (a
<<1) ^ (parity
[i
] ? 0xa8 : 0));
254 /* compute 3-byte ecc on 256 bytes */
255 static void nand_compute_ecc(unsigned char *data
, unsigned char *ecc
)
258 unsigned char par
= 0, bit
, bits
[8] = {0};
260 /* collect 16 checksum bits */
261 for (i
= 0; i
< 256; i
++) {
263 bit
= parity
[data
[i
]];
264 for (j
= 0; j
< 8; j
++)
265 if ((i
& (1<<j
)) == 0)
269 /* put 4+4+4 = 12 bits in the ecc */
270 a
= (bits
[3] << 6) + (bits
[2] << 4) + (bits
[1] << 2) + bits
[0];
271 ecc
[0] = ~(a
^ (a
<<1) ^ (parity
[par
] ? 0xaa : 0));
273 a
= (bits
[7] << 6) + (bits
[6] << 4) + (bits
[5] << 2) + bits
[4];
274 ecc
[1] = ~(a
^ (a
<<1) ^ (parity
[par
] ? 0xaa : 0));
279 static int nand_compare_ecc(unsigned char *data
, unsigned char *ecc
)
281 return (data
[0] == ecc
[0] && data
[1] == ecc
[1] && data
[2] == ecc
[2]);
284 static void nand_store_ecc(unsigned char *data
, unsigned char *ecc
)
286 memcpy(data
, ecc
, 3);
294 * Forget our PBA <---> LBA mappings for a particular port
296 static void alauda_free_maps (struct alauda_media_info
*media_info
)
298 unsigned int shift
= media_info
->zoneshift
299 + media_info
->blockshift
+ media_info
->pageshift
;
300 unsigned int num_zones
= media_info
->capacity
>> shift
;
303 if (media_info
->lba_to_pba
!= NULL
)
304 for (i
= 0; i
< num_zones
; i
++) {
305 kfree(media_info
->lba_to_pba
[i
]);
306 media_info
->lba_to_pba
[i
] = NULL
;
309 if (media_info
->pba_to_lba
!= NULL
)
310 for (i
= 0; i
< num_zones
; i
++) {
311 kfree(media_info
->pba_to_lba
[i
]);
312 media_info
->pba_to_lba
[i
] = NULL
;
317 * Returns 2 bytes of status data
318 * The first byte describes media status, and second byte describes door status
320 static int alauda_get_media_status(struct us_data
*us
, unsigned char *data
)
323 unsigned char command
;
325 if (MEDIA_PORT(us
) == ALAUDA_PORT_XD
)
326 command
= ALAUDA_GET_XD_MEDIA_STATUS
;
328 command
= ALAUDA_GET_SM_MEDIA_STATUS
;
330 rc
= usb_stor_ctrl_transfer(us
, us
->recv_ctrl_pipe
,
331 command
, 0xc0, 0, 1, data
, 2);
333 usb_stor_dbg(us
, "Media status %02X %02X\n", data
[0], data
[1]);
339 * Clears the "media was changed" bit so that we know when it changes again
342 static int alauda_ack_media(struct us_data
*us
)
344 unsigned char command
;
346 if (MEDIA_PORT(us
) == ALAUDA_PORT_XD
)
347 command
= ALAUDA_ACK_XD_MEDIA_CHANGE
;
349 command
= ALAUDA_ACK_SM_MEDIA_CHANGE
;
351 return usb_stor_ctrl_transfer(us
, us
->send_ctrl_pipe
,
352 command
, 0x40, 0, 1, NULL
, 0);
356 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
357 * and some other details.
359 static int alauda_get_media_signature(struct us_data
*us
, unsigned char *data
)
361 unsigned char command
;
363 if (MEDIA_PORT(us
) == ALAUDA_PORT_XD
)
364 command
= ALAUDA_GET_XD_MEDIA_SIG
;
366 command
= ALAUDA_GET_SM_MEDIA_SIG
;
368 return usb_stor_ctrl_transfer(us
, us
->recv_ctrl_pipe
,
369 command
, 0xc0, 0, 0, data
, 4);
373 * Resets the media status (but not the whole device?)
375 static int alauda_reset_media(struct us_data
*us
)
377 unsigned char *command
= us
->iobuf
;
379 memset(command
, 0, 9);
380 command
[0] = ALAUDA_BULK_CMD
;
381 command
[1] = ALAUDA_BULK_RESET_MEDIA
;
382 command
[8] = MEDIA_PORT(us
);
384 return usb_stor_bulk_transfer_buf(us
, us
->send_bulk_pipe
,
389 * Examines the media and deduces capacity, etc.
391 static int alauda_init_media(struct us_data
*us
)
393 unsigned char *data
= us
->iobuf
;
395 struct alauda_card_info
*media_info
;
396 unsigned int num_zones
;
401 if (alauda_get_media_status(us
, data
) != USB_STOR_XFER_GOOD
)
402 return USB_STOR_TRANSPORT_ERROR
;
408 usb_stor_dbg(us
, "We are ready for action!\n");
410 if (alauda_ack_media(us
) != USB_STOR_XFER_GOOD
)
411 return USB_STOR_TRANSPORT_ERROR
;
415 if (alauda_get_media_status(us
, data
) != USB_STOR_XFER_GOOD
)
416 return USB_STOR_TRANSPORT_ERROR
;
418 if (data
[0] != 0x14) {
419 usb_stor_dbg(us
, "Media not ready after ack\n");
420 return USB_STOR_TRANSPORT_ERROR
;
423 if (alauda_get_media_signature(us
, data
) != USB_STOR_XFER_GOOD
)
424 return USB_STOR_TRANSPORT_ERROR
;
426 usb_stor_dbg(us
, "Media signature: %4ph\n", data
);
427 media_info
= alauda_card_find_id(data
[1]);
428 if (media_info
== NULL
) {
429 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
431 return USB_STOR_TRANSPORT_ERROR
;
434 MEDIA_INFO(us
).capacity
= 1 << media_info
->chipshift
;
435 usb_stor_dbg(us
, "Found media with capacity: %ldMB\n",
436 MEDIA_INFO(us
).capacity
>> 20);
438 MEDIA_INFO(us
).pageshift
= media_info
->pageshift
;
439 MEDIA_INFO(us
).blockshift
= media_info
->blockshift
;
440 MEDIA_INFO(us
).zoneshift
= media_info
->zoneshift
;
442 MEDIA_INFO(us
).pagesize
= 1 << media_info
->pageshift
;
443 MEDIA_INFO(us
).blocksize
= 1 << media_info
->blockshift
;
444 MEDIA_INFO(us
).zonesize
= 1 << media_info
->zoneshift
;
446 MEDIA_INFO(us
).uzonesize
= ((1 << media_info
->zoneshift
) / 128) * 125;
447 MEDIA_INFO(us
).blockmask
= MEDIA_INFO(us
).blocksize
- 1;
449 num_zones
= MEDIA_INFO(us
).capacity
>> (MEDIA_INFO(us
).zoneshift
450 + MEDIA_INFO(us
).blockshift
+ MEDIA_INFO(us
).pageshift
);
451 MEDIA_INFO(us
).pba_to_lba
= kcalloc(num_zones
, sizeof(u16
*), GFP_NOIO
);
452 MEDIA_INFO(us
).lba_to_pba
= kcalloc(num_zones
, sizeof(u16
*), GFP_NOIO
);
454 if (alauda_reset_media(us
) != USB_STOR_XFER_GOOD
)
455 return USB_STOR_TRANSPORT_ERROR
;
457 return USB_STOR_TRANSPORT_GOOD
;
461 * Examines the media status and does the right thing when the media has gone,
462 * appeared, or changed.
464 static int alauda_check_media(struct us_data
*us
)
466 struct alauda_info
*info
= (struct alauda_info
*) us
->extra
;
467 unsigned char status
[2];
470 rc
= alauda_get_media_status(us
, status
);
472 /* Check for no media or door open */
473 if ((status
[0] & 0x80) || ((status
[0] & 0x1F) == 0x10)
474 || ((status
[1] & 0x01) == 0)) {
475 usb_stor_dbg(us
, "No media, or door open\n");
476 alauda_free_maps(&MEDIA_INFO(us
));
477 info
->sense_key
= 0x02;
478 info
->sense_asc
= 0x3A;
479 info
->sense_ascq
= 0x00;
480 return USB_STOR_TRANSPORT_FAILED
;
483 /* Check for media change */
484 if (status
[0] & 0x08) {
485 usb_stor_dbg(us
, "Media change detected\n");
486 alauda_free_maps(&MEDIA_INFO(us
));
487 alauda_init_media(us
);
489 info
->sense_key
= UNIT_ATTENTION
;
490 info
->sense_asc
= 0x28;
491 info
->sense_ascq
= 0x00;
492 return USB_STOR_TRANSPORT_FAILED
;
495 return USB_STOR_TRANSPORT_GOOD
;
499 * Checks the status from the 2nd status register
500 * Returns 3 bytes of status data, only the first is known
502 static int alauda_check_status2(struct us_data
*us
)
505 unsigned char command
[] = {
506 ALAUDA_BULK_CMD
, ALAUDA_BULK_GET_STATUS2
,
507 0, 0, 0, 0, 3, 0, MEDIA_PORT(us
)
509 unsigned char data
[3];
511 rc
= usb_stor_bulk_transfer_buf(us
, us
->send_bulk_pipe
,
513 if (rc
!= USB_STOR_XFER_GOOD
)
516 rc
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
518 if (rc
!= USB_STOR_XFER_GOOD
)
521 usb_stor_dbg(us
, "%3ph\n", data
);
522 if (data
[0] & ALAUDA_STATUS_ERROR
)
523 return USB_STOR_XFER_ERROR
;
525 return USB_STOR_XFER_GOOD
;
529 * Gets the redundancy data for the first page of a PBA
532 static int alauda_get_redu_data(struct us_data
*us
, u16 pba
, unsigned char *data
)
535 unsigned char command
[] = {
536 ALAUDA_BULK_CMD
, ALAUDA_BULK_GET_REDU_DATA
,
537 PBA_HI(pba
), PBA_ZONE(pba
), 0, PBA_LO(pba
), 0, 0, MEDIA_PORT(us
)
540 rc
= usb_stor_bulk_transfer_buf(us
, us
->send_bulk_pipe
,
542 if (rc
!= USB_STOR_XFER_GOOD
)
545 return usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
550 * Finds the first unused PBA in a zone
551 * Returns the absolute PBA of an unused PBA, or 0 if none found.
553 static u16
alauda_find_unused_pba(struct alauda_media_info
*info
,
556 u16
*pba_to_lba
= info
->pba_to_lba
[zone
];
559 for (i
= 0; i
< info
->zonesize
; i
++)
560 if (pba_to_lba
[i
] == UNDEF
)
561 return (zone
<< info
->zoneshift
) + i
;
567 * Reads the redundancy data for all PBA's in a zone
568 * Produces lba <--> pba mappings
570 static int alauda_read_map(struct us_data
*us
, unsigned int zone
)
572 unsigned char *data
= us
->iobuf
;
575 unsigned int zonesize
= MEDIA_INFO(us
).zonesize
;
576 unsigned int uzonesize
= MEDIA_INFO(us
).uzonesize
;
577 unsigned int lba_offset
, lba_real
, blocknum
;
578 unsigned int zone_base_lba
= zone
* uzonesize
;
579 unsigned int zone_base_pba
= zone
* zonesize
;
580 u16
*lba_to_pba
= kcalloc(zonesize
, sizeof(u16
), GFP_NOIO
);
581 u16
*pba_to_lba
= kcalloc(zonesize
, sizeof(u16
), GFP_NOIO
);
582 if (lba_to_pba
== NULL
|| pba_to_lba
== NULL
) {
583 result
= USB_STOR_TRANSPORT_ERROR
;
587 usb_stor_dbg(us
, "Mapping blocks for zone %d\n", zone
);
589 /* 1024 PBA's per zone */
590 for (i
= 0; i
< zonesize
; i
++)
591 lba_to_pba
[i
] = pba_to_lba
[i
] = UNDEF
;
593 for (i
= 0; i
< zonesize
; i
++) {
594 blocknum
= zone_base_pba
+ i
;
596 result
= alauda_get_redu_data(us
, blocknum
, data
);
597 if (result
!= USB_STOR_XFER_GOOD
) {
598 result
= USB_STOR_TRANSPORT_ERROR
;
602 /* special PBAs have control field 0^16 */
603 for (j
= 0; j
< 16; j
++)
606 pba_to_lba
[i
] = UNUSABLE
;
607 usb_stor_dbg(us
, "PBA %d has no logical mapping\n", blocknum
);
611 /* unwritten PBAs have control field FF^16 */
612 for (j
= 0; j
< 16; j
++)
618 /* normal PBAs start with six FFs */
620 usb_stor_dbg(us
, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
622 data
[0], data
[1], data
[2], data
[3],
624 pba_to_lba
[i
] = UNUSABLE
;
628 if ((data
[6] >> 4) != 0x01) {
629 usb_stor_dbg(us
, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
630 blocknum
, data
[6], data
[7],
632 pba_to_lba
[i
] = UNUSABLE
;
636 /* check even parity */
637 if (parity
[data
[6] ^ data
[7]]) {
639 "alauda_read_map: Bad parity in LBA for block %d"
640 " (%02X %02X)\n", i
, data
[6], data
[7]);
641 pba_to_lba
[i
] = UNUSABLE
;
645 lba_offset
= short_pack(data
[7], data
[6]);
646 lba_offset
= (lba_offset
& 0x07FF) >> 1;
647 lba_real
= lba_offset
+ zone_base_lba
;
650 * Every 1024 physical blocks ("zone"), the LBA numbers
651 * go back to zero, but are within a higher block of LBA's.
652 * Also, there is a maximum of 1000 LBA's per zone.
653 * In other words, in PBA 1024-2047 you will find LBA 0-999
654 * which are really LBA 1000-1999. This allows for 24 bad
655 * or special physical blocks per zone.
658 if (lba_offset
>= uzonesize
) {
660 "alauda_read_map: Bad low LBA %d for block %d\n",
665 if (lba_to_pba
[lba_offset
] != UNDEF
) {
668 "LBA %d seen for PBA %d and %d\n",
669 lba_real
, lba_to_pba
[lba_offset
], blocknum
);
673 pba_to_lba
[i
] = lba_real
;
674 lba_to_pba
[lba_offset
] = blocknum
;
678 MEDIA_INFO(us
).lba_to_pba
[zone
] = lba_to_pba
;
679 MEDIA_INFO(us
).pba_to_lba
[zone
] = pba_to_lba
;
691 * Checks to see whether we have already mapped a certain zone
692 * If we haven't, the map is generated
694 static void alauda_ensure_map_for_zone(struct us_data
*us
, unsigned int zone
)
696 if (MEDIA_INFO(us
).lba_to_pba
[zone
] == NULL
697 || MEDIA_INFO(us
).pba_to_lba
[zone
] == NULL
)
698 alauda_read_map(us
, zone
);
702 * Erases an entire block
704 static int alauda_erase_block(struct us_data
*us
, u16 pba
)
707 unsigned char command
[] = {
708 ALAUDA_BULK_CMD
, ALAUDA_BULK_ERASE_BLOCK
, PBA_HI(pba
),
709 PBA_ZONE(pba
), 0, PBA_LO(pba
), 0x02, 0, MEDIA_PORT(us
)
711 unsigned char buf
[2];
713 usb_stor_dbg(us
, "Erasing PBA %d\n", pba
);
715 rc
= usb_stor_bulk_transfer_buf(us
, us
->send_bulk_pipe
,
717 if (rc
!= USB_STOR_XFER_GOOD
)
720 rc
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
722 if (rc
!= USB_STOR_XFER_GOOD
)
725 usb_stor_dbg(us
, "Erase result: %02X %02X\n", buf
[0], buf
[1]);
730 * Reads data from a certain offset page inside a PBA, including interleaved
731 * redundancy data. Returns (pagesize+64)*pages bytes in data.
733 static int alauda_read_block_raw(struct us_data
*us
, u16 pba
,
734 unsigned int page
, unsigned int pages
, unsigned char *data
)
737 unsigned char command
[] = {
738 ALAUDA_BULK_CMD
, ALAUDA_BULK_READ_BLOCK
, PBA_HI(pba
),
739 PBA_ZONE(pba
), 0, PBA_LO(pba
) + page
, pages
, 0, MEDIA_PORT(us
)
742 usb_stor_dbg(us
, "pba %d page %d count %d\n", pba
, page
, pages
);
744 rc
= usb_stor_bulk_transfer_buf(us
, us
->send_bulk_pipe
,
746 if (rc
!= USB_STOR_XFER_GOOD
)
749 return usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
750 data
, (MEDIA_INFO(us
).pagesize
+ 64) * pages
, NULL
);
754 * Reads data from a certain offset page inside a PBA, excluding redundancy
755 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
756 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
757 * trailing bytes outside this function.
759 static int alauda_read_block(struct us_data
*us
, u16 pba
,
760 unsigned int page
, unsigned int pages
, unsigned char *data
)
763 unsigned int pagesize
= MEDIA_INFO(us
).pagesize
;
765 rc
= alauda_read_block_raw(us
, pba
, page
, pages
, data
);
766 if (rc
!= USB_STOR_XFER_GOOD
)
769 /* Cut out the redundancy data */
770 for (i
= 0; i
< pages
; i
++) {
771 int dest_offset
= i
* pagesize
;
772 int src_offset
= i
* (pagesize
+ 64);
773 memmove(data
+ dest_offset
, data
+ src_offset
, pagesize
);
780 * Writes an entire block of data and checks status after write.
781 * Redundancy data must be already included in data. Data should be
782 * (pagesize+64)*blocksize bytes in length.
784 static int alauda_write_block(struct us_data
*us
, u16 pba
, unsigned char *data
)
787 struct alauda_info
*info
= (struct alauda_info
*) us
->extra
;
788 unsigned char command
[] = {
789 ALAUDA_BULK_CMD
, ALAUDA_BULK_WRITE_BLOCK
, PBA_HI(pba
),
790 PBA_ZONE(pba
), 0, PBA_LO(pba
), 32, 0, MEDIA_PORT(us
)
793 usb_stor_dbg(us
, "pba %d\n", pba
);
795 rc
= usb_stor_bulk_transfer_buf(us
, us
->send_bulk_pipe
,
797 if (rc
!= USB_STOR_XFER_GOOD
)
800 rc
= usb_stor_bulk_transfer_buf(us
, info
->wr_ep
, data
,
801 (MEDIA_INFO(us
).pagesize
+ 64) * MEDIA_INFO(us
).blocksize
,
803 if (rc
!= USB_STOR_XFER_GOOD
)
806 return alauda_check_status2(us
);
810 * Write some data to a specific LBA.
812 static int alauda_write_lba(struct us_data
*us
, u16 lba
,
813 unsigned int page
, unsigned int pages
,
814 unsigned char *ptr
, unsigned char *blockbuffer
)
816 u16 pba
, lbap
, new_pba
;
817 unsigned char *bptr
, *cptr
, *xptr
;
818 unsigned char ecc
[3];
820 unsigned int uzonesize
= MEDIA_INFO(us
).uzonesize
;
821 unsigned int zonesize
= MEDIA_INFO(us
).zonesize
;
822 unsigned int pagesize
= MEDIA_INFO(us
).pagesize
;
823 unsigned int blocksize
= MEDIA_INFO(us
).blocksize
;
824 unsigned int lba_offset
= lba
% uzonesize
;
825 unsigned int new_pba_offset
;
826 unsigned int zone
= lba
/ uzonesize
;
828 alauda_ensure_map_for_zone(us
, zone
);
830 pba
= MEDIA_INFO(us
).lba_to_pba
[zone
][lba_offset
];
833 * Maybe it is impossible to write to PBA 1.
834 * Fake success, but don't do anything.
837 "alauda_write_lba: avoid writing to pba 1\n");
838 return USB_STOR_TRANSPORT_GOOD
;
841 new_pba
= alauda_find_unused_pba(&MEDIA_INFO(us
), zone
);
844 "alauda_write_lba: Out of unused blocks\n");
845 return USB_STOR_TRANSPORT_ERROR
;
848 /* read old contents */
850 result
= alauda_read_block_raw(us
, pba
, 0,
851 blocksize
, blockbuffer
);
852 if (result
!= USB_STOR_XFER_GOOD
)
855 memset(blockbuffer
, 0, blocksize
* (pagesize
+ 64));
858 lbap
= (lba_offset
<< 1) | 0x1000;
859 if (parity
[MSB_of(lbap
) ^ LSB_of(lbap
)])
862 /* check old contents and fill lba */
863 for (i
= 0; i
< blocksize
; i
++) {
864 bptr
= blockbuffer
+ (i
* (pagesize
+ 64));
865 cptr
= bptr
+ pagesize
;
866 nand_compute_ecc(bptr
, ecc
);
867 if (!nand_compare_ecc(cptr
+13, ecc
)) {
868 usb_stor_dbg(us
, "Warning: bad ecc in page %d- of pba %d\n",
870 nand_store_ecc(cptr
+13, ecc
);
872 nand_compute_ecc(bptr
+ (pagesize
/ 2), ecc
);
873 if (!nand_compare_ecc(cptr
+8, ecc
)) {
874 usb_stor_dbg(us
, "Warning: bad ecc in page %d+ of pba %d\n",
876 nand_store_ecc(cptr
+8, ecc
);
878 cptr
[6] = cptr
[11] = MSB_of(lbap
);
879 cptr
[7] = cptr
[12] = LSB_of(lbap
);
882 /* copy in new stuff and compute ECC */
884 for (i
= page
; i
< page
+pages
; i
++) {
885 bptr
= blockbuffer
+ (i
* (pagesize
+ 64));
886 cptr
= bptr
+ pagesize
;
887 memcpy(bptr
, xptr
, pagesize
);
889 nand_compute_ecc(bptr
, ecc
);
890 nand_store_ecc(cptr
+13, ecc
);
891 nand_compute_ecc(bptr
+ (pagesize
/ 2), ecc
);
892 nand_store_ecc(cptr
+8, ecc
);
895 result
= alauda_write_block(us
, new_pba
, blockbuffer
);
896 if (result
!= USB_STOR_XFER_GOOD
)
899 new_pba_offset
= new_pba
- (zone
* zonesize
);
900 MEDIA_INFO(us
).pba_to_lba
[zone
][new_pba_offset
] = lba
;
901 MEDIA_INFO(us
).lba_to_pba
[zone
][lba_offset
] = new_pba
;
902 usb_stor_dbg(us
, "Remapped LBA %d to PBA %d\n", lba
, new_pba
);
905 unsigned int pba_offset
= pba
- (zone
* zonesize
);
906 result
= alauda_erase_block(us
, pba
);
907 if (result
!= USB_STOR_XFER_GOOD
)
909 MEDIA_INFO(us
).pba_to_lba
[zone
][pba_offset
] = UNDEF
;
912 return USB_STOR_TRANSPORT_GOOD
;
916 * Read data from a specific sector address
918 static int alauda_read_data(struct us_data
*us
, unsigned long address
,
919 unsigned int sectors
)
921 unsigned char *buffer
;
923 unsigned int page
, len
, offset
;
924 unsigned int blockshift
= MEDIA_INFO(us
).blockshift
;
925 unsigned int pageshift
= MEDIA_INFO(us
).pageshift
;
926 unsigned int blocksize
= MEDIA_INFO(us
).blocksize
;
927 unsigned int pagesize
= MEDIA_INFO(us
).pagesize
;
928 unsigned int uzonesize
= MEDIA_INFO(us
).uzonesize
;
929 struct scatterlist
*sg
;
933 * Since we only read in one block at a time, we have to create
934 * a bounce buffer and move the data a piece at a time between the
935 * bounce buffer and the actual transfer buffer.
936 * We make this buffer big enough to hold temporary redundancy data,
937 * which we use when reading the data blocks.
940 len
= min(sectors
, blocksize
) * (pagesize
+ 64);
941 buffer
= kmalloc(len
, GFP_NOIO
);
943 return USB_STOR_TRANSPORT_ERROR
;
945 /* Figure out the initial LBA and page */
946 lba
= address
>> blockshift
;
947 page
= (address
& MEDIA_INFO(us
).blockmask
);
948 max_lba
= MEDIA_INFO(us
).capacity
>> (blockshift
+ pageshift
);
950 result
= USB_STOR_TRANSPORT_GOOD
;
954 while (sectors
> 0) {
955 unsigned int zone
= lba
/ uzonesize
; /* integer division */
956 unsigned int lba_offset
= lba
- (zone
* uzonesize
);
959 alauda_ensure_map_for_zone(us
, zone
);
961 /* Not overflowing capacity? */
962 if (lba
>= max_lba
) {
963 usb_stor_dbg(us
, "Error: Requested lba %u exceeds maximum %u\n",
965 result
= USB_STOR_TRANSPORT_ERROR
;
969 /* Find number of pages we can read in this block */
970 pages
= min(sectors
, blocksize
- page
);
971 len
= pages
<< pageshift
;
973 /* Find where this lba lives on disk */
974 pba
= MEDIA_INFO(us
).lba_to_pba
[zone
][lba_offset
];
976 if (pba
== UNDEF
) { /* this lba was never written */
977 usb_stor_dbg(us
, "Read %d zero pages (LBA %d) page %d\n",
981 * This is not really an error. It just means
982 * that the block has never been written.
983 * Instead of returning USB_STOR_TRANSPORT_ERROR
984 * it is better to return all zero data.
987 memset(buffer
, 0, len
);
989 usb_stor_dbg(us
, "Read %d pages, from PBA %d (LBA %d) page %d\n",
990 pages
, pba
, lba
, page
);
992 result
= alauda_read_block(us
, pba
, page
, pages
, buffer
);
993 if (result
!= USB_STOR_TRANSPORT_GOOD
)
997 /* Store the data in the transfer buffer */
998 usb_stor_access_xfer_buf(buffer
, len
, us
->srb
,
999 &sg
, &offset
, TO_XFER_BUF
);
1011 * Write data to a specific sector address
1013 static int alauda_write_data(struct us_data
*us
, unsigned long address
,
1014 unsigned int sectors
)
1016 unsigned char *buffer
, *blockbuffer
;
1017 unsigned int page
, len
, offset
;
1018 unsigned int blockshift
= MEDIA_INFO(us
).blockshift
;
1019 unsigned int pageshift
= MEDIA_INFO(us
).pageshift
;
1020 unsigned int blocksize
= MEDIA_INFO(us
).blocksize
;
1021 unsigned int pagesize
= MEDIA_INFO(us
).pagesize
;
1022 struct scatterlist
*sg
;
1027 * Since we don't write the user data directly to the device,
1028 * we have to create a bounce buffer and move the data a piece
1029 * at a time between the bounce buffer and the actual transfer buffer.
1032 len
= min(sectors
, blocksize
) * pagesize
;
1033 buffer
= kmalloc(len
, GFP_NOIO
);
1035 return USB_STOR_TRANSPORT_ERROR
;
1038 * We also need a temporary block buffer, where we read in the old data,
1039 * overwrite parts with the new data, and manipulate the redundancy data
1041 blockbuffer
= kmalloc((pagesize
+ 64) * blocksize
, GFP_NOIO
);
1044 return USB_STOR_TRANSPORT_ERROR
;
1047 /* Figure out the initial LBA and page */
1048 lba
= address
>> blockshift
;
1049 page
= (address
& MEDIA_INFO(us
).blockmask
);
1050 max_lba
= MEDIA_INFO(us
).capacity
>> (pageshift
+ blockshift
);
1052 result
= USB_STOR_TRANSPORT_GOOD
;
1056 while (sectors
> 0) {
1057 /* Write as many sectors as possible in this block */
1058 unsigned int pages
= min(sectors
, blocksize
- page
);
1059 len
= pages
<< pageshift
;
1061 /* Not overflowing capacity? */
1062 if (lba
>= max_lba
) {
1063 usb_stor_dbg(us
, "Requested lba %u exceeds maximum %u\n",
1065 result
= USB_STOR_TRANSPORT_ERROR
;
1069 /* Get the data from the transfer buffer */
1070 usb_stor_access_xfer_buf(buffer
, len
, us
->srb
,
1071 &sg
, &offset
, FROM_XFER_BUF
);
1073 result
= alauda_write_lba(us
, lba
, page
, pages
, buffer
,
1075 if (result
!= USB_STOR_TRANSPORT_GOOD
)
1089 * Our interface with the rest of the world
1092 static void alauda_info_destructor(void *extra
)
1094 struct alauda_info
*info
= (struct alauda_info
*) extra
;
1100 for (port
= 0; port
< 2; port
++) {
1101 struct alauda_media_info
*media_info
= &info
->port
[port
];
1103 alauda_free_maps(media_info
);
1104 kfree(media_info
->lba_to_pba
);
1105 kfree(media_info
->pba_to_lba
);
1110 * Initialize alauda_info struct and find the data-write endpoint
1112 static int init_alauda(struct us_data
*us
)
1114 struct alauda_info
*info
;
1115 struct usb_host_interface
*altsetting
= us
->pusb_intf
->cur_altsetting
;
1118 us
->extra
= kzalloc(sizeof(struct alauda_info
), GFP_NOIO
);
1120 return USB_STOR_TRANSPORT_ERROR
;
1122 info
= (struct alauda_info
*) us
->extra
;
1123 us
->extra_destructor
= alauda_info_destructor
;
1125 info
->wr_ep
= usb_sndbulkpipe(us
->pusb_dev
,
1126 altsetting
->endpoint
[0].desc
.bEndpointAddress
1127 & USB_ENDPOINT_NUMBER_MASK
);
1129 return USB_STOR_TRANSPORT_GOOD
;
1132 static int alauda_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
1135 struct alauda_info
*info
= (struct alauda_info
*) us
->extra
;
1136 unsigned char *ptr
= us
->iobuf
;
1137 static unsigned char inquiry_response
[36] = {
1138 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1141 if (srb
->cmnd
[0] == INQUIRY
) {
1142 usb_stor_dbg(us
, "INQUIRY - Returning bogus response\n");
1143 memcpy(ptr
, inquiry_response
, sizeof(inquiry_response
));
1144 fill_inquiry_response(us
, ptr
, 36);
1145 return USB_STOR_TRANSPORT_GOOD
;
1148 if (srb
->cmnd
[0] == TEST_UNIT_READY
) {
1149 usb_stor_dbg(us
, "TEST_UNIT_READY\n");
1150 return alauda_check_media(us
);
1153 if (srb
->cmnd
[0] == READ_CAPACITY
) {
1154 unsigned int num_zones
;
1155 unsigned long capacity
;
1157 rc
= alauda_check_media(us
);
1158 if (rc
!= USB_STOR_TRANSPORT_GOOD
)
1161 num_zones
= MEDIA_INFO(us
).capacity
>> (MEDIA_INFO(us
).zoneshift
1162 + MEDIA_INFO(us
).blockshift
+ MEDIA_INFO(us
).pageshift
);
1164 capacity
= num_zones
* MEDIA_INFO(us
).uzonesize
1165 * MEDIA_INFO(us
).blocksize
;
1167 /* Report capacity and page size */
1168 ((__be32
*) ptr
)[0] = cpu_to_be32(capacity
- 1);
1169 ((__be32
*) ptr
)[1] = cpu_to_be32(512);
1171 usb_stor_set_xfer_buf(ptr
, 8, srb
);
1172 return USB_STOR_TRANSPORT_GOOD
;
1175 if (srb
->cmnd
[0] == READ_10
) {
1176 unsigned int page
, pages
;
1178 rc
= alauda_check_media(us
);
1179 if (rc
!= USB_STOR_TRANSPORT_GOOD
)
1182 page
= short_pack(srb
->cmnd
[3], srb
->cmnd
[2]);
1184 page
|= short_pack(srb
->cmnd
[5], srb
->cmnd
[4]);
1185 pages
= short_pack(srb
->cmnd
[8], srb
->cmnd
[7]);
1187 usb_stor_dbg(us
, "READ_10: page %d pagect %d\n", page
, pages
);
1189 return alauda_read_data(us
, page
, pages
);
1192 if (srb
->cmnd
[0] == WRITE_10
) {
1193 unsigned int page
, pages
;
1195 rc
= alauda_check_media(us
);
1196 if (rc
!= USB_STOR_TRANSPORT_GOOD
)
1199 page
= short_pack(srb
->cmnd
[3], srb
->cmnd
[2]);
1201 page
|= short_pack(srb
->cmnd
[5], srb
->cmnd
[4]);
1202 pages
= short_pack(srb
->cmnd
[8], srb
->cmnd
[7]);
1204 usb_stor_dbg(us
, "WRITE_10: page %d pagect %d\n", page
, pages
);
1206 return alauda_write_data(us
, page
, pages
);
1209 if (srb
->cmnd
[0] == REQUEST_SENSE
) {
1210 usb_stor_dbg(us
, "REQUEST_SENSE\n");
1214 ptr
[2] = info
->sense_key
;
1216 ptr
[12] = info
->sense_asc
;
1217 ptr
[13] = info
->sense_ascq
;
1218 usb_stor_set_xfer_buf(ptr
, 18, srb
);
1220 return USB_STOR_TRANSPORT_GOOD
;
1223 if (srb
->cmnd
[0] == ALLOW_MEDIUM_REMOVAL
) {
1225 * sure. whatever. not like we can stop the user from popping
1226 * the media out of the device (no locking doors, etc)
1228 return USB_STOR_TRANSPORT_GOOD
;
1231 usb_stor_dbg(us
, "Gah! Unknown command: %d (0x%x)\n",
1232 srb
->cmnd
[0], srb
->cmnd
[0]);
1233 info
->sense_key
= 0x05;
1234 info
->sense_asc
= 0x20;
1235 info
->sense_ascq
= 0x00;
1236 return USB_STOR_TRANSPORT_FAILED
;
1239 static struct scsi_host_template alauda_host_template
;
1241 static int alauda_probe(struct usb_interface
*intf
,
1242 const struct usb_device_id
*id
)
1247 result
= usb_stor_probe1(&us
, intf
, id
,
1248 (id
- alauda_usb_ids
) + alauda_unusual_dev_list
,
1249 &alauda_host_template
);
1253 us
->transport_name
= "Alauda Control/Bulk";
1254 us
->transport
= alauda_transport
;
1255 us
->transport_reset
= usb_stor_Bulk_reset
;
1258 result
= usb_stor_probe2(us
);
1262 static struct usb_driver alauda_driver
= {
1264 .probe
= alauda_probe
,
1265 .disconnect
= usb_stor_disconnect
,
1266 .suspend
= usb_stor_suspend
,
1267 .resume
= usb_stor_resume
,
1268 .reset_resume
= usb_stor_reset_resume
,
1269 .pre_reset
= usb_stor_pre_reset
,
1270 .post_reset
= usb_stor_post_reset
,
1271 .id_table
= alauda_usb_ids
,
1276 module_usb_stor_driver(alauda_driver
, alauda_host_template
, DRV_NAME
);