2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
7 * Released under the GPL v2. (and only v2, not any later version)
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
26 #include "callchain.h"
33 #include "thread_map.h"
35 #include "perf_regs.h"
37 #include "trace-event.h"
40 #include "util/parse-branch-options.h"
42 #include "sane_ctype.h"
44 struct perf_missing_features perf_missing_features
;
46 static clockid_t clockid
;
48 static int perf_evsel__no_extra_init(struct perf_evsel
*evsel __maybe_unused
)
53 void __weak
test_attr__ready(void) { }
55 static void perf_evsel__no_extra_fini(struct perf_evsel
*evsel __maybe_unused
)
61 int (*init
)(struct perf_evsel
*evsel
);
62 void (*fini
)(struct perf_evsel
*evsel
);
63 } perf_evsel__object
= {
64 .size
= sizeof(struct perf_evsel
),
65 .init
= perf_evsel__no_extra_init
,
66 .fini
= perf_evsel__no_extra_fini
,
69 int perf_evsel__object_config(size_t object_size
,
70 int (*init
)(struct perf_evsel
*evsel
),
71 void (*fini
)(struct perf_evsel
*evsel
))
77 if (perf_evsel__object
.size
> object_size
)
80 perf_evsel__object
.size
= object_size
;
84 perf_evsel__object
.init
= init
;
87 perf_evsel__object
.fini
= fini
;
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
94 int __perf_evsel__sample_size(u64 sample_type
)
96 u64 mask
= sample_type
& PERF_SAMPLE_MASK
;
100 for (i
= 0; i
< 64; i
++) {
101 if (mask
& (1ULL << i
))
111 * __perf_evsel__calc_id_pos - calculate id_pos.
112 * @sample_type: sample type
114 * This function returns the position of the event id (PERF_SAMPLE_ID or
115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
118 static int __perf_evsel__calc_id_pos(u64 sample_type
)
122 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
125 if (!(sample_type
& PERF_SAMPLE_ID
))
128 if (sample_type
& PERF_SAMPLE_IP
)
131 if (sample_type
& PERF_SAMPLE_TID
)
134 if (sample_type
& PERF_SAMPLE_TIME
)
137 if (sample_type
& PERF_SAMPLE_ADDR
)
144 * __perf_evsel__calc_is_pos - calculate is_pos.
145 * @sample_type: sample type
147 * This function returns the position (counting backwards) of the event id
148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149 * sample_id_all is used there is an id sample appended to non-sample events.
151 static int __perf_evsel__calc_is_pos(u64 sample_type
)
155 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
158 if (!(sample_type
& PERF_SAMPLE_ID
))
161 if (sample_type
& PERF_SAMPLE_CPU
)
164 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
170 void perf_evsel__calc_id_pos(struct perf_evsel
*evsel
)
172 evsel
->id_pos
= __perf_evsel__calc_id_pos(evsel
->attr
.sample_type
);
173 evsel
->is_pos
= __perf_evsel__calc_is_pos(evsel
->attr
.sample_type
);
176 void __perf_evsel__set_sample_bit(struct perf_evsel
*evsel
,
177 enum perf_event_sample_format bit
)
179 if (!(evsel
->attr
.sample_type
& bit
)) {
180 evsel
->attr
.sample_type
|= bit
;
181 evsel
->sample_size
+= sizeof(u64
);
182 perf_evsel__calc_id_pos(evsel
);
186 void __perf_evsel__reset_sample_bit(struct perf_evsel
*evsel
,
187 enum perf_event_sample_format bit
)
189 if (evsel
->attr
.sample_type
& bit
) {
190 evsel
->attr
.sample_type
&= ~bit
;
191 evsel
->sample_size
-= sizeof(u64
);
192 perf_evsel__calc_id_pos(evsel
);
196 void perf_evsel__set_sample_id(struct perf_evsel
*evsel
,
197 bool can_sample_identifier
)
199 if (can_sample_identifier
) {
200 perf_evsel__reset_sample_bit(evsel
, ID
);
201 perf_evsel__set_sample_bit(evsel
, IDENTIFIER
);
203 perf_evsel__set_sample_bit(evsel
, ID
);
205 evsel
->attr
.read_format
|= PERF_FORMAT_ID
;
209 * perf_evsel__is_function_event - Return whether given evsel is a function
212 * @evsel - evsel selector to be tested
214 * Return %true if event is function trace event
216 bool perf_evsel__is_function_event(struct perf_evsel
*evsel
)
218 #define FUNCTION_EVENT "ftrace:function"
220 return evsel
->name
&&
221 !strncmp(FUNCTION_EVENT
, evsel
->name
, sizeof(FUNCTION_EVENT
));
223 #undef FUNCTION_EVENT
226 void perf_evsel__init(struct perf_evsel
*evsel
,
227 struct perf_event_attr
*attr
, int idx
)
230 evsel
->tracking
= !idx
;
232 evsel
->leader
= evsel
;
235 evsel
->evlist
= NULL
;
237 INIT_LIST_HEAD(&evsel
->node
);
238 INIT_LIST_HEAD(&evsel
->config_terms
);
239 perf_evsel__object
.init(evsel
);
240 evsel
->sample_size
= __perf_evsel__sample_size(attr
->sample_type
);
241 perf_evsel__calc_id_pos(evsel
);
242 evsel
->cmdline_group_boundary
= false;
243 evsel
->metric_expr
= NULL
;
244 evsel
->metric_name
= NULL
;
245 evsel
->metric_events
= NULL
;
246 evsel
->collect_stat
= false;
247 evsel
->pmu_name
= NULL
;
250 struct perf_evsel
*perf_evsel__new_idx(struct perf_event_attr
*attr
, int idx
)
252 struct perf_evsel
*evsel
= zalloc(perf_evsel__object
.size
);
255 perf_evsel__init(evsel
, attr
, idx
);
257 if (perf_evsel__is_bpf_output(evsel
)) {
258 evsel
->attr
.sample_type
|= (PERF_SAMPLE_RAW
| PERF_SAMPLE_TIME
|
259 PERF_SAMPLE_CPU
| PERF_SAMPLE_PERIOD
),
260 evsel
->attr
.sample_period
= 1;
266 static bool perf_event_can_profile_kernel(void)
268 return geteuid() == 0 || perf_event_paranoid() == -1;
271 struct perf_evsel
*perf_evsel__new_cycles(bool precise
)
273 struct perf_event_attr attr
= {
274 .type
= PERF_TYPE_HARDWARE
,
275 .config
= PERF_COUNT_HW_CPU_CYCLES
,
276 .exclude_kernel
= !perf_event_can_profile_kernel(),
278 struct perf_evsel
*evsel
;
280 event_attr_init(&attr
);
285 * Unnamed union member, not supported as struct member named
286 * initializer in older compilers such as gcc 4.4.7
288 * Just for probing the precise_ip:
290 attr
.sample_period
= 1;
292 perf_event_attr__set_max_precise_ip(&attr
);
294 * Now let the usual logic to set up the perf_event_attr defaults
295 * to kick in when we return and before perf_evsel__open() is called.
297 attr
.sample_period
= 0;
299 evsel
= perf_evsel__new(&attr
);
303 /* use asprintf() because free(evsel) assumes name is allocated */
304 if (asprintf(&evsel
->name
, "cycles%s%s%.*s",
305 (attr
.precise_ip
|| attr
.exclude_kernel
) ? ":" : "",
306 attr
.exclude_kernel
? "u" : "",
307 attr
.precise_ip
? attr
.precise_ip
+ 1 : 0, "ppp") < 0)
312 perf_evsel__delete(evsel
);
318 * Returns pointer with encoded error via <linux/err.h> interface.
320 struct perf_evsel
*perf_evsel__newtp_idx(const char *sys
, const char *name
, int idx
)
322 struct perf_evsel
*evsel
= zalloc(perf_evsel__object
.size
);
328 struct perf_event_attr attr
= {
329 .type
= PERF_TYPE_TRACEPOINT
,
330 .sample_type
= (PERF_SAMPLE_RAW
| PERF_SAMPLE_TIME
|
331 PERF_SAMPLE_CPU
| PERF_SAMPLE_PERIOD
),
334 if (asprintf(&evsel
->name
, "%s:%s", sys
, name
) < 0)
337 evsel
->tp_format
= trace_event__tp_format(sys
, name
);
338 if (IS_ERR(evsel
->tp_format
)) {
339 err
= PTR_ERR(evsel
->tp_format
);
343 event_attr_init(&attr
);
344 attr
.config
= evsel
->tp_format
->id
;
345 attr
.sample_period
= 1;
346 perf_evsel__init(evsel
, &attr
, idx
);
358 const char *perf_evsel__hw_names
[PERF_COUNT_HW_MAX
] = {
366 "stalled-cycles-frontend",
367 "stalled-cycles-backend",
371 static const char *__perf_evsel__hw_name(u64 config
)
373 if (config
< PERF_COUNT_HW_MAX
&& perf_evsel__hw_names
[config
])
374 return perf_evsel__hw_names
[config
];
376 return "unknown-hardware";
379 static int perf_evsel__add_modifiers(struct perf_evsel
*evsel
, char *bf
, size_t size
)
381 int colon
= 0, r
= 0;
382 struct perf_event_attr
*attr
= &evsel
->attr
;
383 bool exclude_guest_default
= false;
385 #define MOD_PRINT(context, mod) do { \
386 if (!attr->exclude_##context) { \
387 if (!colon) colon = ++r; \
388 r += scnprintf(bf + r, size - r, "%c", mod); \
391 if (attr
->exclude_kernel
|| attr
->exclude_user
|| attr
->exclude_hv
) {
392 MOD_PRINT(kernel
, 'k');
393 MOD_PRINT(user
, 'u');
395 exclude_guest_default
= true;
398 if (attr
->precise_ip
) {
401 r
+= scnprintf(bf
+ r
, size
- r
, "%.*s", attr
->precise_ip
, "ppp");
402 exclude_guest_default
= true;
405 if (attr
->exclude_host
|| attr
->exclude_guest
== exclude_guest_default
) {
406 MOD_PRINT(host
, 'H');
407 MOD_PRINT(guest
, 'G');
415 static int perf_evsel__hw_name(struct perf_evsel
*evsel
, char *bf
, size_t size
)
417 int r
= scnprintf(bf
, size
, "%s", __perf_evsel__hw_name(evsel
->attr
.config
));
418 return r
+ perf_evsel__add_modifiers(evsel
, bf
+ r
, size
- r
);
421 const char *perf_evsel__sw_names
[PERF_COUNT_SW_MAX
] = {
434 static const char *__perf_evsel__sw_name(u64 config
)
436 if (config
< PERF_COUNT_SW_MAX
&& perf_evsel__sw_names
[config
])
437 return perf_evsel__sw_names
[config
];
438 return "unknown-software";
441 static int perf_evsel__sw_name(struct perf_evsel
*evsel
, char *bf
, size_t size
)
443 int r
= scnprintf(bf
, size
, "%s", __perf_evsel__sw_name(evsel
->attr
.config
));
444 return r
+ perf_evsel__add_modifiers(evsel
, bf
+ r
, size
- r
);
447 static int __perf_evsel__bp_name(char *bf
, size_t size
, u64 addr
, u64 type
)
451 r
= scnprintf(bf
, size
, "mem:0x%" PRIx64
":", addr
);
453 if (type
& HW_BREAKPOINT_R
)
454 r
+= scnprintf(bf
+ r
, size
- r
, "r");
456 if (type
& HW_BREAKPOINT_W
)
457 r
+= scnprintf(bf
+ r
, size
- r
, "w");
459 if (type
& HW_BREAKPOINT_X
)
460 r
+= scnprintf(bf
+ r
, size
- r
, "x");
465 static int perf_evsel__bp_name(struct perf_evsel
*evsel
, char *bf
, size_t size
)
467 struct perf_event_attr
*attr
= &evsel
->attr
;
468 int r
= __perf_evsel__bp_name(bf
, size
, attr
->bp_addr
, attr
->bp_type
);
469 return r
+ perf_evsel__add_modifiers(evsel
, bf
+ r
, size
- r
);
472 const char *perf_evsel__hw_cache
[PERF_COUNT_HW_CACHE_MAX
]
473 [PERF_EVSEL__MAX_ALIASES
] = {
474 { "L1-dcache", "l1-d", "l1d", "L1-data", },
475 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
477 { "dTLB", "d-tlb", "Data-TLB", },
478 { "iTLB", "i-tlb", "Instruction-TLB", },
479 { "branch", "branches", "bpu", "btb", "bpc", },
483 const char *perf_evsel__hw_cache_op
[PERF_COUNT_HW_CACHE_OP_MAX
]
484 [PERF_EVSEL__MAX_ALIASES
] = {
485 { "load", "loads", "read", },
486 { "store", "stores", "write", },
487 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
490 const char *perf_evsel__hw_cache_result
[PERF_COUNT_HW_CACHE_RESULT_MAX
]
491 [PERF_EVSEL__MAX_ALIASES
] = {
492 { "refs", "Reference", "ops", "access", },
493 { "misses", "miss", },
496 #define C(x) PERF_COUNT_HW_CACHE_##x
497 #define CACHE_READ (1 << C(OP_READ))
498 #define CACHE_WRITE (1 << C(OP_WRITE))
499 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
500 #define COP(x) (1 << x)
503 * cache operartion stat
504 * L1I : Read and prefetch only
505 * ITLB and BPU : Read-only
507 static unsigned long perf_evsel__hw_cache_stat
[C(MAX
)] = {
508 [C(L1D
)] = (CACHE_READ
| CACHE_WRITE
| CACHE_PREFETCH
),
509 [C(L1I
)] = (CACHE_READ
| CACHE_PREFETCH
),
510 [C(LL
)] = (CACHE_READ
| CACHE_WRITE
| CACHE_PREFETCH
),
511 [C(DTLB
)] = (CACHE_READ
| CACHE_WRITE
| CACHE_PREFETCH
),
512 [C(ITLB
)] = (CACHE_READ
),
513 [C(BPU
)] = (CACHE_READ
),
514 [C(NODE
)] = (CACHE_READ
| CACHE_WRITE
| CACHE_PREFETCH
),
517 bool perf_evsel__is_cache_op_valid(u8 type
, u8 op
)
519 if (perf_evsel__hw_cache_stat
[type
] & COP(op
))
520 return true; /* valid */
522 return false; /* invalid */
525 int __perf_evsel__hw_cache_type_op_res_name(u8 type
, u8 op
, u8 result
,
526 char *bf
, size_t size
)
529 return scnprintf(bf
, size
, "%s-%s-%s", perf_evsel__hw_cache
[type
][0],
530 perf_evsel__hw_cache_op
[op
][0],
531 perf_evsel__hw_cache_result
[result
][0]);
534 return scnprintf(bf
, size
, "%s-%s", perf_evsel__hw_cache
[type
][0],
535 perf_evsel__hw_cache_op
[op
][1]);
538 static int __perf_evsel__hw_cache_name(u64 config
, char *bf
, size_t size
)
540 u8 op
, result
, type
= (config
>> 0) & 0xff;
541 const char *err
= "unknown-ext-hardware-cache-type";
543 if (type
>= PERF_COUNT_HW_CACHE_MAX
)
546 op
= (config
>> 8) & 0xff;
547 err
= "unknown-ext-hardware-cache-op";
548 if (op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
551 result
= (config
>> 16) & 0xff;
552 err
= "unknown-ext-hardware-cache-result";
553 if (result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
556 err
= "invalid-cache";
557 if (!perf_evsel__is_cache_op_valid(type
, op
))
560 return __perf_evsel__hw_cache_type_op_res_name(type
, op
, result
, bf
, size
);
562 return scnprintf(bf
, size
, "%s", err
);
565 static int perf_evsel__hw_cache_name(struct perf_evsel
*evsel
, char *bf
, size_t size
)
567 int ret
= __perf_evsel__hw_cache_name(evsel
->attr
.config
, bf
, size
);
568 return ret
+ perf_evsel__add_modifiers(evsel
, bf
+ ret
, size
- ret
);
571 static int perf_evsel__raw_name(struct perf_evsel
*evsel
, char *bf
, size_t size
)
573 int ret
= scnprintf(bf
, size
, "raw 0x%" PRIx64
, evsel
->attr
.config
);
574 return ret
+ perf_evsel__add_modifiers(evsel
, bf
+ ret
, size
- ret
);
577 const char *perf_evsel__name(struct perf_evsel
*evsel
)
584 switch (evsel
->attr
.type
) {
586 perf_evsel__raw_name(evsel
, bf
, sizeof(bf
));
589 case PERF_TYPE_HARDWARE
:
590 perf_evsel__hw_name(evsel
, bf
, sizeof(bf
));
593 case PERF_TYPE_HW_CACHE
:
594 perf_evsel__hw_cache_name(evsel
, bf
, sizeof(bf
));
597 case PERF_TYPE_SOFTWARE
:
598 perf_evsel__sw_name(evsel
, bf
, sizeof(bf
));
601 case PERF_TYPE_TRACEPOINT
:
602 scnprintf(bf
, sizeof(bf
), "%s", "unknown tracepoint");
605 case PERF_TYPE_BREAKPOINT
:
606 perf_evsel__bp_name(evsel
, bf
, sizeof(bf
));
610 scnprintf(bf
, sizeof(bf
), "unknown attr type: %d",
615 evsel
->name
= strdup(bf
);
617 return evsel
->name
?: "unknown";
620 const char *perf_evsel__group_name(struct perf_evsel
*evsel
)
622 return evsel
->group_name
?: "anon group";
626 * Returns the group details for the specified leader,
627 * with following rules.
629 * For record -e '{cycles,instructions}'
630 * 'anon group { cycles:u, instructions:u }'
632 * For record -e 'cycles,instructions' and report --group
633 * 'cycles:u, instructions:u'
635 int perf_evsel__group_desc(struct perf_evsel
*evsel
, char *buf
, size_t size
)
638 struct perf_evsel
*pos
;
639 const char *group_name
= perf_evsel__group_name(evsel
);
641 if (!evsel
->forced_leader
)
642 ret
= scnprintf(buf
, size
, "%s { ", group_name
);
644 ret
+= scnprintf(buf
+ ret
, size
- ret
, "%s",
645 perf_evsel__name(evsel
));
647 for_each_group_member(pos
, evsel
)
648 ret
+= scnprintf(buf
+ ret
, size
- ret
, ", %s",
649 perf_evsel__name(pos
));
651 if (!evsel
->forced_leader
)
652 ret
+= scnprintf(buf
+ ret
, size
- ret
, " }");
657 static void __perf_evsel__config_callchain(struct perf_evsel
*evsel
,
658 struct record_opts
*opts
,
659 struct callchain_param
*param
)
661 bool function
= perf_evsel__is_function_event(evsel
);
662 struct perf_event_attr
*attr
= &evsel
->attr
;
664 perf_evsel__set_sample_bit(evsel
, CALLCHAIN
);
666 attr
->sample_max_stack
= param
->max_stack
;
668 if (param
->record_mode
== CALLCHAIN_LBR
) {
669 if (!opts
->branch_stack
) {
670 if (attr
->exclude_user
) {
671 pr_warning("LBR callstack option is only available "
672 "to get user callchain information. "
673 "Falling back to framepointers.\n");
675 perf_evsel__set_sample_bit(evsel
, BRANCH_STACK
);
676 attr
->branch_sample_type
= PERF_SAMPLE_BRANCH_USER
|
677 PERF_SAMPLE_BRANCH_CALL_STACK
|
678 PERF_SAMPLE_BRANCH_NO_CYCLES
|
679 PERF_SAMPLE_BRANCH_NO_FLAGS
;
682 pr_warning("Cannot use LBR callstack with branch stack. "
683 "Falling back to framepointers.\n");
686 if (param
->record_mode
== CALLCHAIN_DWARF
) {
688 perf_evsel__set_sample_bit(evsel
, REGS_USER
);
689 perf_evsel__set_sample_bit(evsel
, STACK_USER
);
690 attr
->sample_regs_user
|= PERF_REGS_MASK
;
691 attr
->sample_stack_user
= param
->dump_size
;
692 attr
->exclude_callchain_user
= 1;
694 pr_info("Cannot use DWARF unwind for function trace event,"
695 " falling back to framepointers.\n");
700 pr_info("Disabling user space callchains for function trace event.\n");
701 attr
->exclude_callchain_user
= 1;
705 void perf_evsel__config_callchain(struct perf_evsel
*evsel
,
706 struct record_opts
*opts
,
707 struct callchain_param
*param
)
710 return __perf_evsel__config_callchain(evsel
, opts
, param
);
714 perf_evsel__reset_callgraph(struct perf_evsel
*evsel
,
715 struct callchain_param
*param
)
717 struct perf_event_attr
*attr
= &evsel
->attr
;
719 perf_evsel__reset_sample_bit(evsel
, CALLCHAIN
);
720 if (param
->record_mode
== CALLCHAIN_LBR
) {
721 perf_evsel__reset_sample_bit(evsel
, BRANCH_STACK
);
722 attr
->branch_sample_type
&= ~(PERF_SAMPLE_BRANCH_USER
|
723 PERF_SAMPLE_BRANCH_CALL_STACK
);
725 if (param
->record_mode
== CALLCHAIN_DWARF
) {
726 perf_evsel__reset_sample_bit(evsel
, REGS_USER
);
727 perf_evsel__reset_sample_bit(evsel
, STACK_USER
);
731 static void apply_config_terms(struct perf_evsel
*evsel
,
732 struct record_opts
*opts
, bool track
)
734 struct perf_evsel_config_term
*term
;
735 struct list_head
*config_terms
= &evsel
->config_terms
;
736 struct perf_event_attr
*attr
= &evsel
->attr
;
737 /* callgraph default */
738 struct callchain_param param
= {
739 .record_mode
= callchain_param
.record_mode
,
743 const char *callgraph_buf
= NULL
;
745 list_for_each_entry(term
, config_terms
, list
) {
746 switch (term
->type
) {
747 case PERF_EVSEL__CONFIG_TERM_PERIOD
:
748 if (!(term
->weak
&& opts
->user_interval
!= ULLONG_MAX
)) {
749 attr
->sample_period
= term
->val
.period
;
751 perf_evsel__reset_sample_bit(evsel
, PERIOD
);
754 case PERF_EVSEL__CONFIG_TERM_FREQ
:
755 if (!(term
->weak
&& opts
->user_freq
!= UINT_MAX
)) {
756 attr
->sample_freq
= term
->val
.freq
;
758 perf_evsel__set_sample_bit(evsel
, PERIOD
);
761 case PERF_EVSEL__CONFIG_TERM_TIME
:
763 perf_evsel__set_sample_bit(evsel
, TIME
);
765 perf_evsel__reset_sample_bit(evsel
, TIME
);
767 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH
:
768 callgraph_buf
= term
->val
.callgraph
;
770 case PERF_EVSEL__CONFIG_TERM_BRANCH
:
771 if (term
->val
.branch
&& strcmp(term
->val
.branch
, "no")) {
772 perf_evsel__set_sample_bit(evsel
, BRANCH_STACK
);
773 parse_branch_str(term
->val
.branch
,
774 &attr
->branch_sample_type
);
776 perf_evsel__reset_sample_bit(evsel
, BRANCH_STACK
);
778 case PERF_EVSEL__CONFIG_TERM_STACK_USER
:
779 dump_size
= term
->val
.stack_user
;
781 case PERF_EVSEL__CONFIG_TERM_MAX_STACK
:
782 max_stack
= term
->val
.max_stack
;
784 case PERF_EVSEL__CONFIG_TERM_INHERIT
:
786 * attr->inherit should has already been set by
787 * perf_evsel__config. If user explicitly set
788 * inherit using config terms, override global
789 * opt->no_inherit setting.
791 attr
->inherit
= term
->val
.inherit
? 1 : 0;
793 case PERF_EVSEL__CONFIG_TERM_OVERWRITE
:
794 attr
->write_backward
= term
->val
.overwrite
? 1 : 0;
796 case PERF_EVSEL__CONFIG_TERM_DRV_CFG
:
803 /* User explicitly set per-event callgraph, clear the old setting and reset. */
804 if ((callgraph_buf
!= NULL
) || (dump_size
> 0) || max_stack
) {
805 bool sample_address
= false;
808 param
.max_stack
= max_stack
;
809 if (callgraph_buf
== NULL
)
810 callgraph_buf
= "fp";
813 /* parse callgraph parameters */
814 if (callgraph_buf
!= NULL
) {
815 if (!strcmp(callgraph_buf
, "no")) {
816 param
.enabled
= false;
817 param
.record_mode
= CALLCHAIN_NONE
;
819 param
.enabled
= true;
820 if (parse_callchain_record(callgraph_buf
, ¶m
)) {
821 pr_err("per-event callgraph setting for %s failed. "
822 "Apply callgraph global setting for it\n",
826 if (param
.record_mode
== CALLCHAIN_DWARF
)
827 sample_address
= true;
831 dump_size
= round_up(dump_size
, sizeof(u64
));
832 param
.dump_size
= dump_size
;
835 /* If global callgraph set, clear it */
836 if (callchain_param
.enabled
)
837 perf_evsel__reset_callgraph(evsel
, &callchain_param
);
839 /* set perf-event callgraph */
841 if (sample_address
) {
842 perf_evsel__set_sample_bit(evsel
, ADDR
);
843 perf_evsel__set_sample_bit(evsel
, DATA_SRC
);
844 evsel
->attr
.mmap_data
= track
;
846 perf_evsel__config_callchain(evsel
, opts
, ¶m
);
852 * The enable_on_exec/disabled value strategy:
854 * 1) For any type of traced program:
855 * - all independent events and group leaders are disabled
856 * - all group members are enabled
858 * Group members are ruled by group leaders. They need to
859 * be enabled, because the group scheduling relies on that.
861 * 2) For traced programs executed by perf:
862 * - all independent events and group leaders have
864 * - we don't specifically enable or disable any event during
867 * Independent events and group leaders are initially disabled
868 * and get enabled by exec. Group members are ruled by group
869 * leaders as stated in 1).
871 * 3) For traced programs attached by perf (pid/tid):
872 * - we specifically enable or disable all events during
875 * When attaching events to already running traced we
876 * enable/disable events specifically, as there's no
877 * initial traced exec call.
879 void perf_evsel__config(struct perf_evsel
*evsel
, struct record_opts
*opts
,
880 struct callchain_param
*callchain
)
882 struct perf_evsel
*leader
= evsel
->leader
;
883 struct perf_event_attr
*attr
= &evsel
->attr
;
884 int track
= evsel
->tracking
;
885 bool per_cpu
= opts
->target
.default_per_cpu
&& !opts
->target
.per_thread
;
887 attr
->sample_id_all
= perf_missing_features
.sample_id_all
? 0 : 1;
888 attr
->inherit
= !opts
->no_inherit
;
889 attr
->write_backward
= opts
->overwrite
? 1 : 0;
891 perf_evsel__set_sample_bit(evsel
, IP
);
892 perf_evsel__set_sample_bit(evsel
, TID
);
894 if (evsel
->sample_read
) {
895 perf_evsel__set_sample_bit(evsel
, READ
);
898 * We need ID even in case of single event, because
899 * PERF_SAMPLE_READ process ID specific data.
901 perf_evsel__set_sample_id(evsel
, false);
904 * Apply group format only if we belong to group
905 * with more than one members.
907 if (leader
->nr_members
> 1) {
908 attr
->read_format
|= PERF_FORMAT_GROUP
;
914 * We default some events to have a default interval. But keep
915 * it a weak assumption overridable by the user.
917 if (!attr
->sample_period
|| (opts
->user_freq
!= UINT_MAX
||
918 opts
->user_interval
!= ULLONG_MAX
)) {
920 perf_evsel__set_sample_bit(evsel
, PERIOD
);
922 attr
->sample_freq
= opts
->freq
;
924 attr
->sample_period
= opts
->default_interval
;
929 * Disable sampling for all group members other
930 * than leader in case leader 'leads' the sampling.
932 if ((leader
!= evsel
) && leader
->sample_read
) {
934 attr
->sample_freq
= 0;
935 attr
->sample_period
= 0;
936 attr
->write_backward
= 0;
937 attr
->sample_id_all
= 0;
940 if (opts
->no_samples
)
941 attr
->sample_freq
= 0;
943 if (opts
->inherit_stat
) {
944 evsel
->attr
.read_format
|=
945 PERF_FORMAT_TOTAL_TIME_ENABLED
|
946 PERF_FORMAT_TOTAL_TIME_RUNNING
|
948 attr
->inherit_stat
= 1;
951 if (opts
->sample_address
) {
952 perf_evsel__set_sample_bit(evsel
, ADDR
);
953 attr
->mmap_data
= track
;
957 * We don't allow user space callchains for function trace
958 * event, due to issues with page faults while tracing page
959 * fault handler and its overall trickiness nature.
961 if (perf_evsel__is_function_event(evsel
))
962 evsel
->attr
.exclude_callchain_user
= 1;
964 if (callchain
&& callchain
->enabled
&& !evsel
->no_aux_samples
)
965 perf_evsel__config_callchain(evsel
, opts
, callchain
);
967 if (opts
->sample_intr_regs
) {
968 attr
->sample_regs_intr
= opts
->sample_intr_regs
;
969 perf_evsel__set_sample_bit(evsel
, REGS_INTR
);
972 if (opts
->sample_user_regs
) {
973 attr
->sample_regs_user
|= opts
->sample_user_regs
;
974 perf_evsel__set_sample_bit(evsel
, REGS_USER
);
977 if (target__has_cpu(&opts
->target
) || opts
->sample_cpu
)
978 perf_evsel__set_sample_bit(evsel
, CPU
);
981 * When the user explicitly disabled time don't force it here.
983 if (opts
->sample_time
&&
984 (!perf_missing_features
.sample_id_all
&&
985 (!opts
->no_inherit
|| target__has_cpu(&opts
->target
) || per_cpu
||
986 opts
->sample_time_set
)))
987 perf_evsel__set_sample_bit(evsel
, TIME
);
989 if (opts
->raw_samples
&& !evsel
->no_aux_samples
) {
990 perf_evsel__set_sample_bit(evsel
, TIME
);
991 perf_evsel__set_sample_bit(evsel
, RAW
);
992 perf_evsel__set_sample_bit(evsel
, CPU
);
995 if (opts
->sample_address
)
996 perf_evsel__set_sample_bit(evsel
, DATA_SRC
);
998 if (opts
->sample_phys_addr
)
999 perf_evsel__set_sample_bit(evsel
, PHYS_ADDR
);
1001 if (opts
->no_buffering
) {
1002 attr
->watermark
= 0;
1003 attr
->wakeup_events
= 1;
1005 if (opts
->branch_stack
&& !evsel
->no_aux_samples
) {
1006 perf_evsel__set_sample_bit(evsel
, BRANCH_STACK
);
1007 attr
->branch_sample_type
= opts
->branch_stack
;
1010 if (opts
->sample_weight
)
1011 perf_evsel__set_sample_bit(evsel
, WEIGHT
);
1015 attr
->mmap2
= track
&& !perf_missing_features
.mmap2
;
1018 if (opts
->record_namespaces
)
1019 attr
->namespaces
= track
;
1021 if (opts
->record_switch_events
)
1022 attr
->context_switch
= track
;
1024 if (opts
->sample_transaction
)
1025 perf_evsel__set_sample_bit(evsel
, TRANSACTION
);
1027 if (opts
->running_time
) {
1028 evsel
->attr
.read_format
|=
1029 PERF_FORMAT_TOTAL_TIME_ENABLED
|
1030 PERF_FORMAT_TOTAL_TIME_RUNNING
;
1034 * XXX see the function comment above
1036 * Disabling only independent events or group leaders,
1037 * keeping group members enabled.
1039 if (perf_evsel__is_group_leader(evsel
))
1043 * Setting enable_on_exec for independent events and
1044 * group leaders for traced executed by perf.
1046 if (target__none(&opts
->target
) && perf_evsel__is_group_leader(evsel
) &&
1047 !opts
->initial_delay
)
1048 attr
->enable_on_exec
= 1;
1050 if (evsel
->immediate
) {
1052 attr
->enable_on_exec
= 0;
1055 clockid
= opts
->clockid
;
1056 if (opts
->use_clockid
) {
1057 attr
->use_clockid
= 1;
1058 attr
->clockid
= opts
->clockid
;
1061 if (evsel
->precise_max
)
1062 perf_event_attr__set_max_precise_ip(attr
);
1064 if (opts
->all_user
) {
1065 attr
->exclude_kernel
= 1;
1066 attr
->exclude_user
= 0;
1069 if (opts
->all_kernel
) {
1070 attr
->exclude_kernel
= 0;
1071 attr
->exclude_user
= 1;
1075 * Apply event specific term settings,
1076 * it overloads any global configuration.
1078 apply_config_terms(evsel
, opts
, track
);
1080 evsel
->ignore_missing_thread
= opts
->ignore_missing_thread
;
1082 /* The --period option takes the precedence. */
1083 if (opts
->period_set
) {
1085 perf_evsel__set_sample_bit(evsel
, PERIOD
);
1087 perf_evsel__reset_sample_bit(evsel
, PERIOD
);
1091 static int perf_evsel__alloc_fd(struct perf_evsel
*evsel
, int ncpus
, int nthreads
)
1093 if (evsel
->system_wide
)
1096 evsel
->fd
= xyarray__new(ncpus
, nthreads
, sizeof(int));
1100 for (cpu
= 0; cpu
< ncpus
; cpu
++) {
1101 for (thread
= 0; thread
< nthreads
; thread
++) {
1102 FD(evsel
, cpu
, thread
) = -1;
1107 return evsel
->fd
!= NULL
? 0 : -ENOMEM
;
1110 static int perf_evsel__run_ioctl(struct perf_evsel
*evsel
,
1115 for (cpu
= 0; cpu
< xyarray__max_x(evsel
->fd
); cpu
++) {
1116 for (thread
= 0; thread
< xyarray__max_y(evsel
->fd
); thread
++) {
1117 int fd
= FD(evsel
, cpu
, thread
),
1118 err
= ioctl(fd
, ioc
, arg
);
1128 int perf_evsel__apply_filter(struct perf_evsel
*evsel
, const char *filter
)
1130 return perf_evsel__run_ioctl(evsel
,
1131 PERF_EVENT_IOC_SET_FILTER
,
1135 int perf_evsel__set_filter(struct perf_evsel
*evsel
, const char *filter
)
1137 char *new_filter
= strdup(filter
);
1139 if (new_filter
!= NULL
) {
1140 free(evsel
->filter
);
1141 evsel
->filter
= new_filter
;
1148 static int perf_evsel__append_filter(struct perf_evsel
*evsel
,
1149 const char *fmt
, const char *filter
)
1153 if (evsel
->filter
== NULL
)
1154 return perf_evsel__set_filter(evsel
, filter
);
1156 if (asprintf(&new_filter
, fmt
, evsel
->filter
, filter
) > 0) {
1157 free(evsel
->filter
);
1158 evsel
->filter
= new_filter
;
1165 int perf_evsel__append_tp_filter(struct perf_evsel
*evsel
, const char *filter
)
1167 return perf_evsel__append_filter(evsel
, "(%s) && (%s)", filter
);
1170 int perf_evsel__append_addr_filter(struct perf_evsel
*evsel
, const char *filter
)
1172 return perf_evsel__append_filter(evsel
, "%s,%s", filter
);
1175 int perf_evsel__enable(struct perf_evsel
*evsel
)
1177 return perf_evsel__run_ioctl(evsel
,
1178 PERF_EVENT_IOC_ENABLE
,
1182 int perf_evsel__disable(struct perf_evsel
*evsel
)
1184 return perf_evsel__run_ioctl(evsel
,
1185 PERF_EVENT_IOC_DISABLE
,
1189 int perf_evsel__alloc_id(struct perf_evsel
*evsel
, int ncpus
, int nthreads
)
1191 if (ncpus
== 0 || nthreads
== 0)
1194 if (evsel
->system_wide
)
1197 evsel
->sample_id
= xyarray__new(ncpus
, nthreads
, sizeof(struct perf_sample_id
));
1198 if (evsel
->sample_id
== NULL
)
1201 evsel
->id
= zalloc(ncpus
* nthreads
* sizeof(u64
));
1202 if (evsel
->id
== NULL
) {
1203 xyarray__delete(evsel
->sample_id
);
1204 evsel
->sample_id
= NULL
;
1211 static void perf_evsel__free_fd(struct perf_evsel
*evsel
)
1213 xyarray__delete(evsel
->fd
);
1217 static void perf_evsel__free_id(struct perf_evsel
*evsel
)
1219 xyarray__delete(evsel
->sample_id
);
1220 evsel
->sample_id
= NULL
;
1224 static void perf_evsel__free_config_terms(struct perf_evsel
*evsel
)
1226 struct perf_evsel_config_term
*term
, *h
;
1228 list_for_each_entry_safe(term
, h
, &evsel
->config_terms
, list
) {
1229 list_del(&term
->list
);
1234 void perf_evsel__close_fd(struct perf_evsel
*evsel
)
1238 for (cpu
= 0; cpu
< xyarray__max_x(evsel
->fd
); cpu
++)
1239 for (thread
= 0; thread
< xyarray__max_y(evsel
->fd
); ++thread
) {
1240 close(FD(evsel
, cpu
, thread
));
1241 FD(evsel
, cpu
, thread
) = -1;
1245 void perf_evsel__exit(struct perf_evsel
*evsel
)
1247 assert(list_empty(&evsel
->node
));
1248 assert(evsel
->evlist
== NULL
);
1249 perf_evsel__free_fd(evsel
);
1250 perf_evsel__free_id(evsel
);
1251 perf_evsel__free_config_terms(evsel
);
1252 cgroup__put(evsel
->cgrp
);
1253 cpu_map__put(evsel
->cpus
);
1254 cpu_map__put(evsel
->own_cpus
);
1255 thread_map__put(evsel
->threads
);
1256 zfree(&evsel
->group_name
);
1257 zfree(&evsel
->name
);
1258 perf_evsel__object
.fini(evsel
);
1261 void perf_evsel__delete(struct perf_evsel
*evsel
)
1263 perf_evsel__exit(evsel
);
1267 void perf_evsel__compute_deltas(struct perf_evsel
*evsel
, int cpu
, int thread
,
1268 struct perf_counts_values
*count
)
1270 struct perf_counts_values tmp
;
1272 if (!evsel
->prev_raw_counts
)
1276 tmp
= evsel
->prev_raw_counts
->aggr
;
1277 evsel
->prev_raw_counts
->aggr
= *count
;
1279 tmp
= *perf_counts(evsel
->prev_raw_counts
, cpu
, thread
);
1280 *perf_counts(evsel
->prev_raw_counts
, cpu
, thread
) = *count
;
1283 count
->val
= count
->val
- tmp
.val
;
1284 count
->ena
= count
->ena
- tmp
.ena
;
1285 count
->run
= count
->run
- tmp
.run
;
1288 void perf_counts_values__scale(struct perf_counts_values
*count
,
1289 bool scale
, s8
*pscaled
)
1294 if (count
->run
== 0) {
1297 } else if (count
->run
< count
->ena
) {
1299 count
->val
= (u64
)((double) count
->val
* count
->ena
/ count
->run
+ 0.5);
1302 count
->ena
= count
->run
= 0;
1308 static int perf_evsel__read_size(struct perf_evsel
*evsel
)
1310 u64 read_format
= evsel
->attr
.read_format
;
1311 int entry
= sizeof(u64
); /* value */
1315 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1316 size
+= sizeof(u64
);
1318 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1319 size
+= sizeof(u64
);
1321 if (read_format
& PERF_FORMAT_ID
)
1322 entry
+= sizeof(u64
);
1324 if (read_format
& PERF_FORMAT_GROUP
) {
1325 nr
= evsel
->nr_members
;
1326 size
+= sizeof(u64
);
1333 int perf_evsel__read(struct perf_evsel
*evsel
, int cpu
, int thread
,
1334 struct perf_counts_values
*count
)
1336 size_t size
= perf_evsel__read_size(evsel
);
1338 memset(count
, 0, sizeof(*count
));
1340 if (FD(evsel
, cpu
, thread
) < 0)
1343 if (readn(FD(evsel
, cpu
, thread
), count
->values
, size
) <= 0)
1350 perf_evsel__read_one(struct perf_evsel
*evsel
, int cpu
, int thread
)
1352 struct perf_counts_values
*count
= perf_counts(evsel
->counts
, cpu
, thread
);
1354 return perf_evsel__read(evsel
, cpu
, thread
, count
);
1358 perf_evsel__set_count(struct perf_evsel
*counter
, int cpu
, int thread
,
1359 u64 val
, u64 ena
, u64 run
)
1361 struct perf_counts_values
*count
;
1363 count
= perf_counts(counter
->counts
, cpu
, thread
);
1368 count
->loaded
= true;
1372 perf_evsel__process_group_data(struct perf_evsel
*leader
,
1373 int cpu
, int thread
, u64
*data
)
1375 u64 read_format
= leader
->attr
.read_format
;
1376 struct sample_read_value
*v
;
1377 u64 nr
, ena
= 0, run
= 0, i
;
1381 if (nr
!= (u64
) leader
->nr_members
)
1384 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1387 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1390 v
= (struct sample_read_value
*) data
;
1392 perf_evsel__set_count(leader
, cpu
, thread
,
1393 v
[0].value
, ena
, run
);
1395 for (i
= 1; i
< nr
; i
++) {
1396 struct perf_evsel
*counter
;
1398 counter
= perf_evlist__id2evsel(leader
->evlist
, v
[i
].id
);
1402 perf_evsel__set_count(counter
, cpu
, thread
,
1403 v
[i
].value
, ena
, run
);
1410 perf_evsel__read_group(struct perf_evsel
*leader
, int cpu
, int thread
)
1412 struct perf_stat_evsel
*ps
= leader
->stats
;
1413 u64 read_format
= leader
->attr
.read_format
;
1414 int size
= perf_evsel__read_size(leader
);
1415 u64
*data
= ps
->group_data
;
1417 if (!(read_format
& PERF_FORMAT_ID
))
1420 if (!perf_evsel__is_group_leader(leader
))
1424 data
= zalloc(size
);
1428 ps
->group_data
= data
;
1431 if (FD(leader
, cpu
, thread
) < 0)
1434 if (readn(FD(leader
, cpu
, thread
), data
, size
) <= 0)
1437 return perf_evsel__process_group_data(leader
, cpu
, thread
, data
);
1440 int perf_evsel__read_counter(struct perf_evsel
*evsel
, int cpu
, int thread
)
1442 u64 read_format
= evsel
->attr
.read_format
;
1444 if (read_format
& PERF_FORMAT_GROUP
)
1445 return perf_evsel__read_group(evsel
, cpu
, thread
);
1447 return perf_evsel__read_one(evsel
, cpu
, thread
);
1450 int __perf_evsel__read_on_cpu(struct perf_evsel
*evsel
,
1451 int cpu
, int thread
, bool scale
)
1453 struct perf_counts_values count
;
1454 size_t nv
= scale
? 3 : 1;
1456 if (FD(evsel
, cpu
, thread
) < 0)
1459 if (evsel
->counts
== NULL
&& perf_evsel__alloc_counts(evsel
, cpu
+ 1, thread
+ 1) < 0)
1462 if (readn(FD(evsel
, cpu
, thread
), &count
, nv
* sizeof(u64
)) <= 0)
1465 perf_evsel__compute_deltas(evsel
, cpu
, thread
, &count
);
1466 perf_counts_values__scale(&count
, scale
, NULL
);
1467 *perf_counts(evsel
->counts
, cpu
, thread
) = count
;
1471 static int get_group_fd(struct perf_evsel
*evsel
, int cpu
, int thread
)
1473 struct perf_evsel
*leader
= evsel
->leader
;
1476 if (perf_evsel__is_group_leader(evsel
))
1480 * Leader must be already processed/open,
1481 * if not it's a bug.
1483 BUG_ON(!leader
->fd
);
1485 fd
= FD(leader
, cpu
, thread
);
1496 static void __p_bits(char *buf
, size_t size
, u64 value
, struct bit_names
*bits
)
1498 bool first_bit
= true;
1502 if (value
& bits
[i
].bit
) {
1503 buf
+= scnprintf(buf
, size
, "%s%s", first_bit
? "" : "|", bits
[i
].name
);
1506 } while (bits
[++i
].name
!= NULL
);
1509 static void __p_sample_type(char *buf
, size_t size
, u64 value
)
1511 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1512 struct bit_names bits
[] = {
1513 bit_name(IP
), bit_name(TID
), bit_name(TIME
), bit_name(ADDR
),
1514 bit_name(READ
), bit_name(CALLCHAIN
), bit_name(ID
), bit_name(CPU
),
1515 bit_name(PERIOD
), bit_name(STREAM_ID
), bit_name(RAW
),
1516 bit_name(BRANCH_STACK
), bit_name(REGS_USER
), bit_name(STACK_USER
),
1517 bit_name(IDENTIFIER
), bit_name(REGS_INTR
), bit_name(DATA_SRC
),
1518 bit_name(WEIGHT
), bit_name(PHYS_ADDR
),
1522 __p_bits(buf
, size
, value
, bits
);
1525 static void __p_branch_sample_type(char *buf
, size_t size
, u64 value
)
1527 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1528 struct bit_names bits
[] = {
1529 bit_name(USER
), bit_name(KERNEL
), bit_name(HV
), bit_name(ANY
),
1530 bit_name(ANY_CALL
), bit_name(ANY_RETURN
), bit_name(IND_CALL
),
1531 bit_name(ABORT_TX
), bit_name(IN_TX
), bit_name(NO_TX
),
1532 bit_name(COND
), bit_name(CALL_STACK
), bit_name(IND_JUMP
),
1533 bit_name(CALL
), bit_name(NO_FLAGS
), bit_name(NO_CYCLES
),
1537 __p_bits(buf
, size
, value
, bits
);
1540 static void __p_read_format(char *buf
, size_t size
, u64 value
)
1542 #define bit_name(n) { PERF_FORMAT_##n, #n }
1543 struct bit_names bits
[] = {
1544 bit_name(TOTAL_TIME_ENABLED
), bit_name(TOTAL_TIME_RUNNING
),
1545 bit_name(ID
), bit_name(GROUP
),
1549 __p_bits(buf
, size
, value
, bits
);
1552 #define BUF_SIZE 1024
1554 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1555 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1556 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1557 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1558 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1559 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1561 #define PRINT_ATTRn(_n, _f, _p) \
1565 ret += attr__fprintf(fp, _n, buf, priv);\
1569 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1571 int perf_event_attr__fprintf(FILE *fp
, struct perf_event_attr
*attr
,
1572 attr__fprintf_f attr__fprintf
, void *priv
)
1577 PRINT_ATTRf(type
, p_unsigned
);
1578 PRINT_ATTRf(size
, p_unsigned
);
1579 PRINT_ATTRf(config
, p_hex
);
1580 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period
, p_unsigned
);
1581 PRINT_ATTRf(sample_type
, p_sample_type
);
1582 PRINT_ATTRf(read_format
, p_read_format
);
1584 PRINT_ATTRf(disabled
, p_unsigned
);
1585 PRINT_ATTRf(inherit
, p_unsigned
);
1586 PRINT_ATTRf(pinned
, p_unsigned
);
1587 PRINT_ATTRf(exclusive
, p_unsigned
);
1588 PRINT_ATTRf(exclude_user
, p_unsigned
);
1589 PRINT_ATTRf(exclude_kernel
, p_unsigned
);
1590 PRINT_ATTRf(exclude_hv
, p_unsigned
);
1591 PRINT_ATTRf(exclude_idle
, p_unsigned
);
1592 PRINT_ATTRf(mmap
, p_unsigned
);
1593 PRINT_ATTRf(comm
, p_unsigned
);
1594 PRINT_ATTRf(freq
, p_unsigned
);
1595 PRINT_ATTRf(inherit_stat
, p_unsigned
);
1596 PRINT_ATTRf(enable_on_exec
, p_unsigned
);
1597 PRINT_ATTRf(task
, p_unsigned
);
1598 PRINT_ATTRf(watermark
, p_unsigned
);
1599 PRINT_ATTRf(precise_ip
, p_unsigned
);
1600 PRINT_ATTRf(mmap_data
, p_unsigned
);
1601 PRINT_ATTRf(sample_id_all
, p_unsigned
);
1602 PRINT_ATTRf(exclude_host
, p_unsigned
);
1603 PRINT_ATTRf(exclude_guest
, p_unsigned
);
1604 PRINT_ATTRf(exclude_callchain_kernel
, p_unsigned
);
1605 PRINT_ATTRf(exclude_callchain_user
, p_unsigned
);
1606 PRINT_ATTRf(mmap2
, p_unsigned
);
1607 PRINT_ATTRf(comm_exec
, p_unsigned
);
1608 PRINT_ATTRf(use_clockid
, p_unsigned
);
1609 PRINT_ATTRf(context_switch
, p_unsigned
);
1610 PRINT_ATTRf(write_backward
, p_unsigned
);
1611 PRINT_ATTRf(namespaces
, p_unsigned
);
1613 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events
, p_unsigned
);
1614 PRINT_ATTRf(bp_type
, p_unsigned
);
1615 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr
, p_hex
);
1616 PRINT_ATTRn("{ bp_len, config2 }", bp_len
, p_hex
);
1617 PRINT_ATTRf(branch_sample_type
, p_branch_sample_type
);
1618 PRINT_ATTRf(sample_regs_user
, p_hex
);
1619 PRINT_ATTRf(sample_stack_user
, p_unsigned
);
1620 PRINT_ATTRf(clockid
, p_signed
);
1621 PRINT_ATTRf(sample_regs_intr
, p_hex
);
1622 PRINT_ATTRf(aux_watermark
, p_unsigned
);
1623 PRINT_ATTRf(sample_max_stack
, p_unsigned
);
1628 static int __open_attr__fprintf(FILE *fp
, const char *name
, const char *val
,
1629 void *priv __maybe_unused
)
1631 return fprintf(fp
, " %-32s %s\n", name
, val
);
1634 static void perf_evsel__remove_fd(struct perf_evsel
*pos
,
1635 int nr_cpus
, int nr_threads
,
1638 for (int cpu
= 0; cpu
< nr_cpus
; cpu
++)
1639 for (int thread
= thread_idx
; thread
< nr_threads
- 1; thread
++)
1640 FD(pos
, cpu
, thread
) = FD(pos
, cpu
, thread
+ 1);
1643 static int update_fds(struct perf_evsel
*evsel
,
1644 int nr_cpus
, int cpu_idx
,
1645 int nr_threads
, int thread_idx
)
1647 struct perf_evsel
*pos
;
1649 if (cpu_idx
>= nr_cpus
|| thread_idx
>= nr_threads
)
1652 evlist__for_each_entry(evsel
->evlist
, pos
) {
1653 nr_cpus
= pos
!= evsel
? nr_cpus
: cpu_idx
;
1655 perf_evsel__remove_fd(pos
, nr_cpus
, nr_threads
, thread_idx
);
1658 * Since fds for next evsel has not been created,
1659 * there is no need to iterate whole event list.
1667 static bool ignore_missing_thread(struct perf_evsel
*evsel
,
1668 int nr_cpus
, int cpu
,
1669 struct thread_map
*threads
,
1670 int thread
, int err
)
1672 pid_t ignore_pid
= thread_map__pid(threads
, thread
);
1674 if (!evsel
->ignore_missing_thread
)
1677 /* The system wide setup does not work with threads. */
1678 if (evsel
->system_wide
)
1681 /* The -ESRCH is perf event syscall errno for pid's not found. */
1685 /* If there's only one thread, let it fail. */
1686 if (threads
->nr
== 1)
1690 * We should remove fd for missing_thread first
1691 * because thread_map__remove() will decrease threads->nr.
1693 if (update_fds(evsel
, nr_cpus
, cpu
, threads
->nr
, thread
))
1696 if (thread_map__remove(threads
, thread
))
1699 pr_warning("WARNING: Ignored open failure for pid %d\n",
1704 int perf_evsel__open(struct perf_evsel
*evsel
, struct cpu_map
*cpus
,
1705 struct thread_map
*threads
)
1707 int cpu
, thread
, nthreads
;
1708 unsigned long flags
= PERF_FLAG_FD_CLOEXEC
;
1710 enum { NO_CHANGE
, SET_TO_MAX
, INCREASED_MAX
} set_rlimit
= NO_CHANGE
;
1712 if (perf_missing_features
.write_backward
&& evsel
->attr
.write_backward
)
1716 static struct cpu_map
*empty_cpu_map
;
1718 if (empty_cpu_map
== NULL
) {
1719 empty_cpu_map
= cpu_map__dummy_new();
1720 if (empty_cpu_map
== NULL
)
1724 cpus
= empty_cpu_map
;
1727 if (threads
== NULL
) {
1728 static struct thread_map
*empty_thread_map
;
1730 if (empty_thread_map
== NULL
) {
1731 empty_thread_map
= thread_map__new_by_tid(-1);
1732 if (empty_thread_map
== NULL
)
1736 threads
= empty_thread_map
;
1739 if (evsel
->system_wide
)
1742 nthreads
= threads
->nr
;
1744 if (evsel
->fd
== NULL
&&
1745 perf_evsel__alloc_fd(evsel
, cpus
->nr
, nthreads
) < 0)
1749 flags
|= PERF_FLAG_PID_CGROUP
;
1750 pid
= evsel
->cgrp
->fd
;
1753 fallback_missing_features
:
1754 if (perf_missing_features
.clockid_wrong
)
1755 evsel
->attr
.clockid
= CLOCK_MONOTONIC
; /* should always work */
1756 if (perf_missing_features
.clockid
) {
1757 evsel
->attr
.use_clockid
= 0;
1758 evsel
->attr
.clockid
= 0;
1760 if (perf_missing_features
.cloexec
)
1761 flags
&= ~(unsigned long)PERF_FLAG_FD_CLOEXEC
;
1762 if (perf_missing_features
.mmap2
)
1763 evsel
->attr
.mmap2
= 0;
1764 if (perf_missing_features
.exclude_guest
)
1765 evsel
->attr
.exclude_guest
= evsel
->attr
.exclude_host
= 0;
1766 if (perf_missing_features
.lbr_flags
)
1767 evsel
->attr
.branch_sample_type
&= ~(PERF_SAMPLE_BRANCH_NO_FLAGS
|
1768 PERF_SAMPLE_BRANCH_NO_CYCLES
);
1769 if (perf_missing_features
.group_read
&& evsel
->attr
.inherit
)
1770 evsel
->attr
.read_format
&= ~(PERF_FORMAT_GROUP
|PERF_FORMAT_ID
);
1772 if (perf_missing_features
.sample_id_all
)
1773 evsel
->attr
.sample_id_all
= 0;
1776 fprintf(stderr
, "%.60s\n", graph_dotted_line
);
1777 fprintf(stderr
, "perf_event_attr:\n");
1778 perf_event_attr__fprintf(stderr
, &evsel
->attr
, __open_attr__fprintf
, NULL
);
1779 fprintf(stderr
, "%.60s\n", graph_dotted_line
);
1782 for (cpu
= 0; cpu
< cpus
->nr
; cpu
++) {
1784 for (thread
= 0; thread
< nthreads
; thread
++) {
1787 if (!evsel
->cgrp
&& !evsel
->system_wide
)
1788 pid
= thread_map__pid(threads
, thread
);
1790 group_fd
= get_group_fd(evsel
, cpu
, thread
);
1792 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1793 pid
, cpus
->map
[cpu
], group_fd
, flags
);
1797 fd
= sys_perf_event_open(&evsel
->attr
, pid
, cpus
->map
[cpu
],
1800 FD(evsel
, cpu
, thread
) = fd
;
1805 if (ignore_missing_thread(evsel
, cpus
->nr
, cpu
, threads
, thread
, err
)) {
1807 * We just removed 1 thread, so take a step
1808 * back on thread index and lower the upper
1814 /* ... and pretend like nothing have happened. */
1819 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1824 pr_debug2(" = %d\n", fd
);
1826 if (evsel
->bpf_fd
>= 0) {
1828 int bpf_fd
= evsel
->bpf_fd
;
1831 PERF_EVENT_IOC_SET_BPF
,
1833 if (err
&& errno
!= EEXIST
) {
1834 pr_err("failed to attach bpf fd %d: %s\n",
1835 bpf_fd
, strerror(errno
));
1841 set_rlimit
= NO_CHANGE
;
1844 * If we succeeded but had to kill clockid, fail and
1845 * have perf_evsel__open_strerror() print us a nice
1848 if (perf_missing_features
.clockid
||
1849 perf_missing_features
.clockid_wrong
) {
1860 * perf stat needs between 5 and 22 fds per CPU. When we run out
1861 * of them try to increase the limits.
1863 if (err
== -EMFILE
&& set_rlimit
< INCREASED_MAX
) {
1865 int old_errno
= errno
;
1867 if (getrlimit(RLIMIT_NOFILE
, &l
) == 0) {
1868 if (set_rlimit
== NO_CHANGE
)
1869 l
.rlim_cur
= l
.rlim_max
;
1871 l
.rlim_cur
= l
.rlim_max
+ 1000;
1872 l
.rlim_max
= l
.rlim_cur
;
1874 if (setrlimit(RLIMIT_NOFILE
, &l
) == 0) {
1883 if (err
!= -EINVAL
|| cpu
> 0 || thread
> 0)
1887 * Must probe features in the order they were added to the
1888 * perf_event_attr interface.
1890 if (!perf_missing_features
.write_backward
&& evsel
->attr
.write_backward
) {
1891 perf_missing_features
.write_backward
= true;
1892 pr_debug2("switching off write_backward\n");
1894 } else if (!perf_missing_features
.clockid_wrong
&& evsel
->attr
.use_clockid
) {
1895 perf_missing_features
.clockid_wrong
= true;
1896 pr_debug2("switching off clockid\n");
1897 goto fallback_missing_features
;
1898 } else if (!perf_missing_features
.clockid
&& evsel
->attr
.use_clockid
) {
1899 perf_missing_features
.clockid
= true;
1900 pr_debug2("switching off use_clockid\n");
1901 goto fallback_missing_features
;
1902 } else if (!perf_missing_features
.cloexec
&& (flags
& PERF_FLAG_FD_CLOEXEC
)) {
1903 perf_missing_features
.cloexec
= true;
1904 pr_debug2("switching off cloexec flag\n");
1905 goto fallback_missing_features
;
1906 } else if (!perf_missing_features
.mmap2
&& evsel
->attr
.mmap2
) {
1907 perf_missing_features
.mmap2
= true;
1908 pr_debug2("switching off mmap2\n");
1909 goto fallback_missing_features
;
1910 } else if (!perf_missing_features
.exclude_guest
&&
1911 (evsel
->attr
.exclude_guest
|| evsel
->attr
.exclude_host
)) {
1912 perf_missing_features
.exclude_guest
= true;
1913 pr_debug2("switching off exclude_guest, exclude_host\n");
1914 goto fallback_missing_features
;
1915 } else if (!perf_missing_features
.sample_id_all
) {
1916 perf_missing_features
.sample_id_all
= true;
1917 pr_debug2("switching off sample_id_all\n");
1918 goto retry_sample_id
;
1919 } else if (!perf_missing_features
.lbr_flags
&&
1920 (evsel
->attr
.branch_sample_type
&
1921 (PERF_SAMPLE_BRANCH_NO_CYCLES
|
1922 PERF_SAMPLE_BRANCH_NO_FLAGS
))) {
1923 perf_missing_features
.lbr_flags
= true;
1924 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1925 goto fallback_missing_features
;
1926 } else if (!perf_missing_features
.group_read
&&
1927 evsel
->attr
.inherit
&&
1928 (evsel
->attr
.read_format
& PERF_FORMAT_GROUP
) &&
1929 perf_evsel__is_group_leader(evsel
)) {
1930 perf_missing_features
.group_read
= true;
1931 pr_debug2("switching off group read\n");
1932 goto fallback_missing_features
;
1936 threads
->err_thread
= thread
;
1939 while (--thread
>= 0) {
1940 close(FD(evsel
, cpu
, thread
));
1941 FD(evsel
, cpu
, thread
) = -1;
1944 } while (--cpu
>= 0);
1948 void perf_evsel__close(struct perf_evsel
*evsel
)
1950 if (evsel
->fd
== NULL
)
1953 perf_evsel__close_fd(evsel
);
1954 perf_evsel__free_fd(evsel
);
1957 int perf_evsel__open_per_cpu(struct perf_evsel
*evsel
,
1958 struct cpu_map
*cpus
)
1960 return perf_evsel__open(evsel
, cpus
, NULL
);
1963 int perf_evsel__open_per_thread(struct perf_evsel
*evsel
,
1964 struct thread_map
*threads
)
1966 return perf_evsel__open(evsel
, NULL
, threads
);
1969 static int perf_evsel__parse_id_sample(const struct perf_evsel
*evsel
,
1970 const union perf_event
*event
,
1971 struct perf_sample
*sample
)
1973 u64 type
= evsel
->attr
.sample_type
;
1974 const u64
*array
= event
->sample
.array
;
1975 bool swapped
= evsel
->needs_swap
;
1978 array
+= ((event
->header
.size
-
1979 sizeof(event
->header
)) / sizeof(u64
)) - 1;
1981 if (type
& PERF_SAMPLE_IDENTIFIER
) {
1982 sample
->id
= *array
;
1986 if (type
& PERF_SAMPLE_CPU
) {
1989 /* undo swap of u64, then swap on individual u32s */
1990 u
.val64
= bswap_64(u
.val64
);
1991 u
.val32
[0] = bswap_32(u
.val32
[0]);
1994 sample
->cpu
= u
.val32
[0];
1998 if (type
& PERF_SAMPLE_STREAM_ID
) {
1999 sample
->stream_id
= *array
;
2003 if (type
& PERF_SAMPLE_ID
) {
2004 sample
->id
= *array
;
2008 if (type
& PERF_SAMPLE_TIME
) {
2009 sample
->time
= *array
;
2013 if (type
& PERF_SAMPLE_TID
) {
2016 /* undo swap of u64, then swap on individual u32s */
2017 u
.val64
= bswap_64(u
.val64
);
2018 u
.val32
[0] = bswap_32(u
.val32
[0]);
2019 u
.val32
[1] = bswap_32(u
.val32
[1]);
2022 sample
->pid
= u
.val32
[0];
2023 sample
->tid
= u
.val32
[1];
2030 static inline bool overflow(const void *endp
, u16 max_size
, const void *offset
,
2033 return size
> max_size
|| offset
+ size
> endp
;
2036 #define OVERFLOW_CHECK(offset, size, max_size) \
2038 if (overflow(endp, (max_size), (offset), (size))) \
2042 #define OVERFLOW_CHECK_u64(offset) \
2043 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2046 perf_event__check_size(union perf_event
*event
, unsigned int sample_size
)
2049 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2050 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2051 * check the format does not go past the end of the event.
2053 if (sample_size
+ sizeof(event
->header
) > event
->header
.size
)
2059 int perf_evsel__parse_sample(struct perf_evsel
*evsel
, union perf_event
*event
,
2060 struct perf_sample
*data
)
2062 u64 type
= evsel
->attr
.sample_type
;
2063 bool swapped
= evsel
->needs_swap
;
2065 u16 max_size
= event
->header
.size
;
2066 const void *endp
= (void *)event
+ max_size
;
2070 * used for cross-endian analysis. See git commit 65014ab3
2071 * for why this goofiness is needed.
2075 memset(data
, 0, sizeof(*data
));
2076 data
->cpu
= data
->pid
= data
->tid
= -1;
2077 data
->stream_id
= data
->id
= data
->time
= -1ULL;
2078 data
->period
= evsel
->attr
.sample_period
;
2079 data
->cpumode
= event
->header
.misc
& PERF_RECORD_MISC_CPUMODE_MASK
;
2080 data
->misc
= event
->header
.misc
;
2082 data
->data_src
= PERF_MEM_DATA_SRC_NONE
;
2084 if (event
->header
.type
!= PERF_RECORD_SAMPLE
) {
2085 if (!evsel
->attr
.sample_id_all
)
2087 return perf_evsel__parse_id_sample(evsel
, event
, data
);
2090 array
= event
->sample
.array
;
2092 if (perf_event__check_size(event
, evsel
->sample_size
))
2095 if (type
& PERF_SAMPLE_IDENTIFIER
) {
2100 if (type
& PERF_SAMPLE_IP
) {
2105 if (type
& PERF_SAMPLE_TID
) {
2108 /* undo swap of u64, then swap on individual u32s */
2109 u
.val64
= bswap_64(u
.val64
);
2110 u
.val32
[0] = bswap_32(u
.val32
[0]);
2111 u
.val32
[1] = bswap_32(u
.val32
[1]);
2114 data
->pid
= u
.val32
[0];
2115 data
->tid
= u
.val32
[1];
2119 if (type
& PERF_SAMPLE_TIME
) {
2120 data
->time
= *array
;
2124 if (type
& PERF_SAMPLE_ADDR
) {
2125 data
->addr
= *array
;
2129 if (type
& PERF_SAMPLE_ID
) {
2134 if (type
& PERF_SAMPLE_STREAM_ID
) {
2135 data
->stream_id
= *array
;
2139 if (type
& PERF_SAMPLE_CPU
) {
2143 /* undo swap of u64, then swap on individual u32s */
2144 u
.val64
= bswap_64(u
.val64
);
2145 u
.val32
[0] = bswap_32(u
.val32
[0]);
2148 data
->cpu
= u
.val32
[0];
2152 if (type
& PERF_SAMPLE_PERIOD
) {
2153 data
->period
= *array
;
2157 if (type
& PERF_SAMPLE_READ
) {
2158 u64 read_format
= evsel
->attr
.read_format
;
2160 OVERFLOW_CHECK_u64(array
);
2161 if (read_format
& PERF_FORMAT_GROUP
)
2162 data
->read
.group
.nr
= *array
;
2164 data
->read
.one
.value
= *array
;
2168 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2169 OVERFLOW_CHECK_u64(array
);
2170 data
->read
.time_enabled
= *array
;
2174 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2175 OVERFLOW_CHECK_u64(array
);
2176 data
->read
.time_running
= *array
;
2180 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2181 if (read_format
& PERF_FORMAT_GROUP
) {
2182 const u64 max_group_nr
= UINT64_MAX
/
2183 sizeof(struct sample_read_value
);
2185 if (data
->read
.group
.nr
> max_group_nr
)
2187 sz
= data
->read
.group
.nr
*
2188 sizeof(struct sample_read_value
);
2189 OVERFLOW_CHECK(array
, sz
, max_size
);
2190 data
->read
.group
.values
=
2191 (struct sample_read_value
*)array
;
2192 array
= (void *)array
+ sz
;
2194 OVERFLOW_CHECK_u64(array
);
2195 data
->read
.one
.id
= *array
;
2200 if (type
& PERF_SAMPLE_CALLCHAIN
) {
2201 const u64 max_callchain_nr
= UINT64_MAX
/ sizeof(u64
);
2203 OVERFLOW_CHECK_u64(array
);
2204 data
->callchain
= (struct ip_callchain
*)array
++;
2205 if (data
->callchain
->nr
> max_callchain_nr
)
2207 sz
= data
->callchain
->nr
* sizeof(u64
);
2208 OVERFLOW_CHECK(array
, sz
, max_size
);
2209 array
= (void *)array
+ sz
;
2212 if (type
& PERF_SAMPLE_RAW
) {
2213 OVERFLOW_CHECK_u64(array
);
2217 * Undo swap of u64, then swap on individual u32s,
2218 * get the size of the raw area and undo all of the
2219 * swap. The pevent interface handles endianity by
2223 u
.val64
= bswap_64(u
.val64
);
2224 u
.val32
[0] = bswap_32(u
.val32
[0]);
2225 u
.val32
[1] = bswap_32(u
.val32
[1]);
2227 data
->raw_size
= u
.val32
[0];
2230 * The raw data is aligned on 64bits including the
2231 * u32 size, so it's safe to use mem_bswap_64.
2234 mem_bswap_64((void *) array
, data
->raw_size
);
2236 array
= (void *)array
+ sizeof(u32
);
2238 OVERFLOW_CHECK(array
, data
->raw_size
, max_size
);
2239 data
->raw_data
= (void *)array
;
2240 array
= (void *)array
+ data
->raw_size
;
2243 if (type
& PERF_SAMPLE_BRANCH_STACK
) {
2244 const u64 max_branch_nr
= UINT64_MAX
/
2245 sizeof(struct branch_entry
);
2247 OVERFLOW_CHECK_u64(array
);
2248 data
->branch_stack
= (struct branch_stack
*)array
++;
2250 if (data
->branch_stack
->nr
> max_branch_nr
)
2252 sz
= data
->branch_stack
->nr
* sizeof(struct branch_entry
);
2253 OVERFLOW_CHECK(array
, sz
, max_size
);
2254 array
= (void *)array
+ sz
;
2257 if (type
& PERF_SAMPLE_REGS_USER
) {
2258 OVERFLOW_CHECK_u64(array
);
2259 data
->user_regs
.abi
= *array
;
2262 if (data
->user_regs
.abi
) {
2263 u64 mask
= evsel
->attr
.sample_regs_user
;
2265 sz
= hweight_long(mask
) * sizeof(u64
);
2266 OVERFLOW_CHECK(array
, sz
, max_size
);
2267 data
->user_regs
.mask
= mask
;
2268 data
->user_regs
.regs
= (u64
*)array
;
2269 array
= (void *)array
+ sz
;
2273 if (type
& PERF_SAMPLE_STACK_USER
) {
2274 OVERFLOW_CHECK_u64(array
);
2277 data
->user_stack
.offset
= ((char *)(array
- 1)
2281 data
->user_stack
.size
= 0;
2283 OVERFLOW_CHECK(array
, sz
, max_size
);
2284 data
->user_stack
.data
= (char *)array
;
2285 array
= (void *)array
+ sz
;
2286 OVERFLOW_CHECK_u64(array
);
2287 data
->user_stack
.size
= *array
++;
2288 if (WARN_ONCE(data
->user_stack
.size
> sz
,
2289 "user stack dump failure\n"))
2294 if (type
& PERF_SAMPLE_WEIGHT
) {
2295 OVERFLOW_CHECK_u64(array
);
2296 data
->weight
= *array
;
2300 if (type
& PERF_SAMPLE_DATA_SRC
) {
2301 OVERFLOW_CHECK_u64(array
);
2302 data
->data_src
= *array
;
2306 if (type
& PERF_SAMPLE_TRANSACTION
) {
2307 OVERFLOW_CHECK_u64(array
);
2308 data
->transaction
= *array
;
2312 data
->intr_regs
.abi
= PERF_SAMPLE_REGS_ABI_NONE
;
2313 if (type
& PERF_SAMPLE_REGS_INTR
) {
2314 OVERFLOW_CHECK_u64(array
);
2315 data
->intr_regs
.abi
= *array
;
2318 if (data
->intr_regs
.abi
!= PERF_SAMPLE_REGS_ABI_NONE
) {
2319 u64 mask
= evsel
->attr
.sample_regs_intr
;
2321 sz
= hweight_long(mask
) * sizeof(u64
);
2322 OVERFLOW_CHECK(array
, sz
, max_size
);
2323 data
->intr_regs
.mask
= mask
;
2324 data
->intr_regs
.regs
= (u64
*)array
;
2325 array
= (void *)array
+ sz
;
2329 data
->phys_addr
= 0;
2330 if (type
& PERF_SAMPLE_PHYS_ADDR
) {
2331 data
->phys_addr
= *array
;
2338 int perf_evsel__parse_sample_timestamp(struct perf_evsel
*evsel
,
2339 union perf_event
*event
,
2342 u64 type
= evsel
->attr
.sample_type
;
2345 if (!(type
& PERF_SAMPLE_TIME
))
2348 if (event
->header
.type
!= PERF_RECORD_SAMPLE
) {
2349 struct perf_sample data
= {
2353 if (!evsel
->attr
.sample_id_all
)
2355 if (perf_evsel__parse_id_sample(evsel
, event
, &data
))
2358 *timestamp
= data
.time
;
2362 array
= event
->sample
.array
;
2364 if (perf_event__check_size(event
, evsel
->sample_size
))
2367 if (type
& PERF_SAMPLE_IDENTIFIER
)
2370 if (type
& PERF_SAMPLE_IP
)
2373 if (type
& PERF_SAMPLE_TID
)
2376 if (type
& PERF_SAMPLE_TIME
)
2377 *timestamp
= *array
;
2382 size_t perf_event__sample_event_size(const struct perf_sample
*sample
, u64 type
,
2385 size_t sz
, result
= sizeof(struct sample_event
);
2387 if (type
& PERF_SAMPLE_IDENTIFIER
)
2388 result
+= sizeof(u64
);
2390 if (type
& PERF_SAMPLE_IP
)
2391 result
+= sizeof(u64
);
2393 if (type
& PERF_SAMPLE_TID
)
2394 result
+= sizeof(u64
);
2396 if (type
& PERF_SAMPLE_TIME
)
2397 result
+= sizeof(u64
);
2399 if (type
& PERF_SAMPLE_ADDR
)
2400 result
+= sizeof(u64
);
2402 if (type
& PERF_SAMPLE_ID
)
2403 result
+= sizeof(u64
);
2405 if (type
& PERF_SAMPLE_STREAM_ID
)
2406 result
+= sizeof(u64
);
2408 if (type
& PERF_SAMPLE_CPU
)
2409 result
+= sizeof(u64
);
2411 if (type
& PERF_SAMPLE_PERIOD
)
2412 result
+= sizeof(u64
);
2414 if (type
& PERF_SAMPLE_READ
) {
2415 result
+= sizeof(u64
);
2416 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2417 result
+= sizeof(u64
);
2418 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2419 result
+= sizeof(u64
);
2420 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2421 if (read_format
& PERF_FORMAT_GROUP
) {
2422 sz
= sample
->read
.group
.nr
*
2423 sizeof(struct sample_read_value
);
2426 result
+= sizeof(u64
);
2430 if (type
& PERF_SAMPLE_CALLCHAIN
) {
2431 sz
= (sample
->callchain
->nr
+ 1) * sizeof(u64
);
2435 if (type
& PERF_SAMPLE_RAW
) {
2436 result
+= sizeof(u32
);
2437 result
+= sample
->raw_size
;
2440 if (type
& PERF_SAMPLE_BRANCH_STACK
) {
2441 sz
= sample
->branch_stack
->nr
* sizeof(struct branch_entry
);
2446 if (type
& PERF_SAMPLE_REGS_USER
) {
2447 if (sample
->user_regs
.abi
) {
2448 result
+= sizeof(u64
);
2449 sz
= hweight_long(sample
->user_regs
.mask
) * sizeof(u64
);
2452 result
+= sizeof(u64
);
2456 if (type
& PERF_SAMPLE_STACK_USER
) {
2457 sz
= sample
->user_stack
.size
;
2458 result
+= sizeof(u64
);
2461 result
+= sizeof(u64
);
2465 if (type
& PERF_SAMPLE_WEIGHT
)
2466 result
+= sizeof(u64
);
2468 if (type
& PERF_SAMPLE_DATA_SRC
)
2469 result
+= sizeof(u64
);
2471 if (type
& PERF_SAMPLE_TRANSACTION
)
2472 result
+= sizeof(u64
);
2474 if (type
& PERF_SAMPLE_REGS_INTR
) {
2475 if (sample
->intr_regs
.abi
) {
2476 result
+= sizeof(u64
);
2477 sz
= hweight_long(sample
->intr_regs
.mask
) * sizeof(u64
);
2480 result
+= sizeof(u64
);
2484 if (type
& PERF_SAMPLE_PHYS_ADDR
)
2485 result
+= sizeof(u64
);
2490 int perf_event__synthesize_sample(union perf_event
*event
, u64 type
,
2492 const struct perf_sample
*sample
)
2497 * used for cross-endian analysis. See git commit 65014ab3
2498 * for why this goofiness is needed.
2502 array
= event
->sample
.array
;
2504 if (type
& PERF_SAMPLE_IDENTIFIER
) {
2505 *array
= sample
->id
;
2509 if (type
& PERF_SAMPLE_IP
) {
2510 *array
= sample
->ip
;
2514 if (type
& PERF_SAMPLE_TID
) {
2515 u
.val32
[0] = sample
->pid
;
2516 u
.val32
[1] = sample
->tid
;
2521 if (type
& PERF_SAMPLE_TIME
) {
2522 *array
= sample
->time
;
2526 if (type
& PERF_SAMPLE_ADDR
) {
2527 *array
= sample
->addr
;
2531 if (type
& PERF_SAMPLE_ID
) {
2532 *array
= sample
->id
;
2536 if (type
& PERF_SAMPLE_STREAM_ID
) {
2537 *array
= sample
->stream_id
;
2541 if (type
& PERF_SAMPLE_CPU
) {
2542 u
.val32
[0] = sample
->cpu
;
2548 if (type
& PERF_SAMPLE_PERIOD
) {
2549 *array
= sample
->period
;
2553 if (type
& PERF_SAMPLE_READ
) {
2554 if (read_format
& PERF_FORMAT_GROUP
)
2555 *array
= sample
->read
.group
.nr
;
2557 *array
= sample
->read
.one
.value
;
2560 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2561 *array
= sample
->read
.time_enabled
;
2565 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2566 *array
= sample
->read
.time_running
;
2570 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2571 if (read_format
& PERF_FORMAT_GROUP
) {
2572 sz
= sample
->read
.group
.nr
*
2573 sizeof(struct sample_read_value
);
2574 memcpy(array
, sample
->read
.group
.values
, sz
);
2575 array
= (void *)array
+ sz
;
2577 *array
= sample
->read
.one
.id
;
2582 if (type
& PERF_SAMPLE_CALLCHAIN
) {
2583 sz
= (sample
->callchain
->nr
+ 1) * sizeof(u64
);
2584 memcpy(array
, sample
->callchain
, sz
);
2585 array
= (void *)array
+ sz
;
2588 if (type
& PERF_SAMPLE_RAW
) {
2589 u
.val32
[0] = sample
->raw_size
;
2591 array
= (void *)array
+ sizeof(u32
);
2593 memcpy(array
, sample
->raw_data
, sample
->raw_size
);
2594 array
= (void *)array
+ sample
->raw_size
;
2597 if (type
& PERF_SAMPLE_BRANCH_STACK
) {
2598 sz
= sample
->branch_stack
->nr
* sizeof(struct branch_entry
);
2600 memcpy(array
, sample
->branch_stack
, sz
);
2601 array
= (void *)array
+ sz
;
2604 if (type
& PERF_SAMPLE_REGS_USER
) {
2605 if (sample
->user_regs
.abi
) {
2606 *array
++ = sample
->user_regs
.abi
;
2607 sz
= hweight_long(sample
->user_regs
.mask
) * sizeof(u64
);
2608 memcpy(array
, sample
->user_regs
.regs
, sz
);
2609 array
= (void *)array
+ sz
;
2615 if (type
& PERF_SAMPLE_STACK_USER
) {
2616 sz
= sample
->user_stack
.size
;
2619 memcpy(array
, sample
->user_stack
.data
, sz
);
2620 array
= (void *)array
+ sz
;
2625 if (type
& PERF_SAMPLE_WEIGHT
) {
2626 *array
= sample
->weight
;
2630 if (type
& PERF_SAMPLE_DATA_SRC
) {
2631 *array
= sample
->data_src
;
2635 if (type
& PERF_SAMPLE_TRANSACTION
) {
2636 *array
= sample
->transaction
;
2640 if (type
& PERF_SAMPLE_REGS_INTR
) {
2641 if (sample
->intr_regs
.abi
) {
2642 *array
++ = sample
->intr_regs
.abi
;
2643 sz
= hweight_long(sample
->intr_regs
.mask
) * sizeof(u64
);
2644 memcpy(array
, sample
->intr_regs
.regs
, sz
);
2645 array
= (void *)array
+ sz
;
2651 if (type
& PERF_SAMPLE_PHYS_ADDR
) {
2652 *array
= sample
->phys_addr
;
2659 struct format_field
*perf_evsel__field(struct perf_evsel
*evsel
, const char *name
)
2661 return pevent_find_field(evsel
->tp_format
, name
);
2664 void *perf_evsel__rawptr(struct perf_evsel
*evsel
, struct perf_sample
*sample
,
2667 struct format_field
*field
= perf_evsel__field(evsel
, name
);
2673 offset
= field
->offset
;
2675 if (field
->flags
& FIELD_IS_DYNAMIC
) {
2676 offset
= *(int *)(sample
->raw_data
+ field
->offset
);
2680 return sample
->raw_data
+ offset
;
2683 u64
format_field__intval(struct format_field
*field
, struct perf_sample
*sample
,
2687 void *ptr
= sample
->raw_data
+ field
->offset
;
2689 switch (field
->size
) {
2693 value
= *(u16
*)ptr
;
2696 value
= *(u32
*)ptr
;
2699 memcpy(&value
, ptr
, sizeof(u64
));
2708 switch (field
->size
) {
2710 return bswap_16(value
);
2712 return bswap_32(value
);
2714 return bswap_64(value
);
2722 u64
perf_evsel__intval(struct perf_evsel
*evsel
, struct perf_sample
*sample
,
2725 struct format_field
*field
= perf_evsel__field(evsel
, name
);
2730 return field
? format_field__intval(field
, sample
, evsel
->needs_swap
) : 0;
2733 bool perf_evsel__fallback(struct perf_evsel
*evsel
, int err
,
2734 char *msg
, size_t msgsize
)
2738 if ((err
== ENOENT
|| err
== ENXIO
|| err
== ENODEV
) &&
2739 evsel
->attr
.type
== PERF_TYPE_HARDWARE
&&
2740 evsel
->attr
.config
== PERF_COUNT_HW_CPU_CYCLES
) {
2742 * If it's cycles then fall back to hrtimer based
2743 * cpu-clock-tick sw counter, which is always available even if
2746 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2749 scnprintf(msg
, msgsize
, "%s",
2750 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2752 evsel
->attr
.type
= PERF_TYPE_SOFTWARE
;
2753 evsel
->attr
.config
= PERF_COUNT_SW_CPU_CLOCK
;
2755 zfree(&evsel
->name
);
2757 } else if (err
== EACCES
&& !evsel
->attr
.exclude_kernel
&&
2758 (paranoid
= perf_event_paranoid()) > 1) {
2759 const char *name
= perf_evsel__name(evsel
);
2761 const char *sep
= ":";
2763 /* Is there already the separator in the name. */
2764 if (strchr(name
, '/') ||
2768 if (asprintf(&new_name
, "%s%su", name
, sep
) < 0)
2773 evsel
->name
= new_name
;
2774 scnprintf(msg
, msgsize
,
2775 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid
);
2776 evsel
->attr
.exclude_kernel
= 1;
2784 static bool find_process(const char *name
)
2786 size_t len
= strlen(name
);
2791 dir
= opendir(procfs__mountpoint());
2795 /* Walk through the directory. */
2796 while (ret
&& (d
= readdir(dir
)) != NULL
) {
2797 char path
[PATH_MAX
];
2801 if ((d
->d_type
!= DT_DIR
) ||
2802 !strcmp(".", d
->d_name
) ||
2803 !strcmp("..", d
->d_name
))
2806 scnprintf(path
, sizeof(path
), "%s/%s/comm",
2807 procfs__mountpoint(), d
->d_name
);
2809 if (filename__read_str(path
, &data
, &size
))
2812 ret
= strncmp(name
, data
, len
);
2817 return ret
? false : true;
2820 int perf_evsel__open_strerror(struct perf_evsel
*evsel
, struct target
*target
,
2821 int err
, char *msg
, size_t size
)
2823 char sbuf
[STRERR_BUFSIZE
];
2830 printed
= scnprintf(msg
, size
,
2831 "No permission to enable %s event.\n\n",
2832 perf_evsel__name(evsel
));
2834 return scnprintf(msg
+ printed
, size
- printed
,
2835 "You may not have permission to collect %sstats.\n\n"
2836 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2837 "which controls use of the performance events system by\n"
2838 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2839 "The current value is %d:\n\n"
2840 " -1: Allow use of (almost) all events by all users\n"
2841 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2842 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2843 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2844 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2845 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2846 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2847 " kernel.perf_event_paranoid = -1\n" ,
2848 target
->system_wide
? "system-wide " : "",
2849 perf_event_paranoid());
2851 return scnprintf(msg
, size
, "The %s event is not supported.",
2852 perf_evsel__name(evsel
));
2854 return scnprintf(msg
, size
, "%s",
2855 "Too many events are opened.\n"
2856 "Probably the maximum number of open file descriptors has been reached.\n"
2857 "Hint: Try again after reducing the number of events.\n"
2858 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2860 if ((evsel
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) != 0 &&
2861 access("/proc/sys/kernel/perf_event_max_stack", F_OK
) == 0)
2862 return scnprintf(msg
, size
,
2863 "Not enough memory to setup event with callchain.\n"
2864 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2865 "Hint: Current value: %d", sysctl__max_stack());
2868 if (target
->cpu_list
)
2869 return scnprintf(msg
, size
, "%s",
2870 "No such device - did you specify an out-of-range profile CPU?");
2873 if (evsel
->attr
.sample_period
!= 0)
2874 return scnprintf(msg
, size
,
2875 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2876 perf_evsel__name(evsel
));
2877 if (evsel
->attr
.precise_ip
)
2878 return scnprintf(msg
, size
, "%s",
2879 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2880 #if defined(__i386__) || defined(__x86_64__)
2881 if (evsel
->attr
.type
== PERF_TYPE_HARDWARE
)
2882 return scnprintf(msg
, size
, "%s",
2883 "No hardware sampling interrupt available.\n");
2887 if (find_process("oprofiled"))
2888 return scnprintf(msg
, size
,
2889 "The PMU counters are busy/taken by another profiler.\n"
2890 "We found oprofile daemon running, please stop it and try again.");
2893 if (evsel
->attr
.write_backward
&& perf_missing_features
.write_backward
)
2894 return scnprintf(msg
, size
, "Reading from overwrite event is not supported by this kernel.");
2895 if (perf_missing_features
.clockid
)
2896 return scnprintf(msg
, size
, "clockid feature not supported.");
2897 if (perf_missing_features
.clockid_wrong
)
2898 return scnprintf(msg
, size
, "wrong clockid (%d).", clockid
);
2904 return scnprintf(msg
, size
,
2905 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2906 "/bin/dmesg | grep -i perf may provide additional information.\n",
2907 err
, str_error_r(err
, sbuf
, sizeof(sbuf
)),
2908 perf_evsel__name(evsel
));
2911 struct perf_env
*perf_evsel__env(struct perf_evsel
*evsel
)
2913 if (evsel
&& evsel
->evlist
)
2914 return evsel
->evlist
->env
;