3 What is RCU? -- "Read, Copy, Update"
4 ======================================
6 Please note that the "What is RCU?" LWN series is an excellent place
7 to start learning about RCU:
9 | 1. What is RCU, Fundamentally? http://lwn.net/Articles/262464/
10 | 2. What is RCU? Part 2: Usage http://lwn.net/Articles/263130/
11 | 3. RCU part 3: the RCU API http://lwn.net/Articles/264090/
12 | 4. The RCU API, 2010 Edition http://lwn.net/Articles/418853/
13 | 2010 Big API Table http://lwn.net/Articles/419086/
14 | 5. The RCU API, 2014 Edition http://lwn.net/Articles/609904/
15 | 2014 Big API Table http://lwn.net/Articles/609973/
20 RCU is a synchronization mechanism that was added to the Linux kernel
21 during the 2.5 development effort that is optimized for read-mostly
22 situations. Although RCU is actually quite simple once you understand it,
23 getting there can sometimes be a challenge. Part of the problem is that
24 most of the past descriptions of RCU have been written with the mistaken
25 assumption that there is "one true way" to describe RCU. Instead,
26 the experience has been that different people must take different paths
27 to arrive at an understanding of RCU. This document provides several
28 different paths, as follows:
30 :ref:`1. RCU OVERVIEW <1_whatisRCU>`
32 :ref:`2. WHAT IS RCU'S CORE API? <2_whatisRCU>`
34 :ref:`3. WHAT ARE SOME EXAMPLE USES OF CORE RCU API? <3_whatisRCU>`
36 :ref:`4. WHAT IF MY UPDATING THREAD CANNOT BLOCK? <4_whatisRCU>`
38 :ref:`5. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU? <5_whatisRCU>`
40 :ref:`6. ANALOGY WITH READER-WRITER LOCKING <6_whatisRCU>`
42 :ref:`7. FULL LIST OF RCU APIs <7_whatisRCU>`
44 :ref:`8. ANSWERS TO QUICK QUIZZES <8_whatisRCU>`
46 People who prefer starting with a conceptual overview should focus on
47 Section 1, though most readers will profit by reading this section at
48 some point. People who prefer to start with an API that they can then
49 experiment with should focus on Section 2. People who prefer to start
50 with example uses should focus on Sections 3 and 4. People who need to
51 understand the RCU implementation should focus on Section 5, then dive
52 into the kernel source code. People who reason best by analogy should
53 focus on Section 6. Section 7 serves as an index to the docbook API
54 documentation, and Section 8 is the traditional answer key.
56 So, start with the section that makes the most sense to you and your
57 preferred method of learning. If you need to know everything about
58 everything, feel free to read the whole thing -- but if you are really
59 that type of person, you have perused the source code and will therefore
60 never need this document anyway. ;-)
67 The basic idea behind RCU is to split updates into "removal" and
68 "reclamation" phases. The removal phase removes references to data items
69 within a data structure (possibly by replacing them with references to
70 new versions of these data items), and can run concurrently with readers.
71 The reason that it is safe to run the removal phase concurrently with
72 readers is the semantics of modern CPUs guarantee that readers will see
73 either the old or the new version of the data structure rather than a
74 partially updated reference. The reclamation phase does the work of reclaiming
75 (e.g., freeing) the data items removed from the data structure during the
76 removal phase. Because reclaiming data items can disrupt any readers
77 concurrently referencing those data items, the reclamation phase must
78 not start until readers no longer hold references to those data items.
80 Splitting the update into removal and reclamation phases permits the
81 updater to perform the removal phase immediately, and to defer the
82 reclamation phase until all readers active during the removal phase have
83 completed, either by blocking until they finish or by registering a
84 callback that is invoked after they finish. Only readers that are active
85 during the removal phase need be considered, because any reader starting
86 after the removal phase will be unable to gain a reference to the removed
87 data items, and therefore cannot be disrupted by the reclamation phase.
89 So the typical RCU update sequence goes something like the following:
91 a. Remove pointers to a data structure, so that subsequent
92 readers cannot gain a reference to it.
94 b. Wait for all previous readers to complete their RCU read-side
97 c. At this point, there cannot be any readers who hold references
98 to the data structure, so it now may safely be reclaimed
101 Step (b) above is the key idea underlying RCU's deferred destruction.
102 The ability to wait until all readers are done allows RCU readers to
103 use much lighter-weight synchronization, in some cases, absolutely no
104 synchronization at all. In contrast, in more conventional lock-based
105 schemes, readers must use heavy-weight synchronization in order to
106 prevent an updater from deleting the data structure out from under them.
107 This is because lock-based updaters typically update data items in place,
108 and must therefore exclude readers. In contrast, RCU-based updaters
109 typically take advantage of the fact that writes to single aligned
110 pointers are atomic on modern CPUs, allowing atomic insertion, removal,
111 and replacement of data items in a linked structure without disrupting
112 readers. Concurrent RCU readers can then continue accessing the old
113 versions, and can dispense with the atomic operations, memory barriers,
114 and communications cache misses that are so expensive on present-day
115 SMP computer systems, even in absence of lock contention.
117 In the three-step procedure shown above, the updater is performing both
118 the removal and the reclamation step, but it is often helpful for an
119 entirely different thread to do the reclamation, as is in fact the case
120 in the Linux kernel's directory-entry cache (dcache). Even if the same
121 thread performs both the update step (step (a) above) and the reclamation
122 step (step (c) above), it is often helpful to think of them separately.
123 For example, RCU readers and updaters need not communicate at all,
124 but RCU provides implicit low-overhead communication between readers
125 and reclaimers, namely, in step (b) above.
127 So how the heck can a reclaimer tell when a reader is done, given
128 that readers are not doing any sort of synchronization operations???
129 Read on to learn about how RCU's API makes this easy.
133 2. WHAT IS RCU'S CORE API?
134 ---------------------------
136 The core RCU API is quite small:
140 c. synchronize_rcu() / call_rcu()
141 d. rcu_assign_pointer()
144 There are many other members of the RCU API, but the rest can be
145 expressed in terms of these five, though most implementations instead
146 express synchronize_rcu() in terms of the call_rcu() callback API.
148 The five core RCU APIs are described below, the other 18 will be enumerated
149 later. See the kernel docbook documentation for more info, or look directly
150 at the function header comments.
154 void rcu_read_lock(void);
156 Used by a reader to inform the reclaimer that the reader is
157 entering an RCU read-side critical section. It is illegal
158 to block while in an RCU read-side critical section, though
159 kernels built with CONFIG_PREEMPT_RCU can preempt RCU
160 read-side critical sections. Any RCU-protected data structure
161 accessed during an RCU read-side critical section is guaranteed to
162 remain unreclaimed for the full duration of that critical section.
163 Reference counts may be used in conjunction with RCU to maintain
164 longer-term references to data structures.
168 void rcu_read_unlock(void);
170 Used by a reader to inform the reclaimer that the reader is
171 exiting an RCU read-side critical section. Note that RCU
172 read-side critical sections may be nested and/or overlapping.
176 void synchronize_rcu(void);
178 Marks the end of updater code and the beginning of reclaimer
179 code. It does this by blocking until all pre-existing RCU
180 read-side critical sections on all CPUs have completed.
181 Note that synchronize_rcu() will **not** necessarily wait for
182 any subsequent RCU read-side critical sections to complete.
183 For example, consider the following sequence of events::
186 ----------------- ------------------------- ---------------
188 2. enters synchronize_rcu()
191 5. exits synchronize_rcu()
194 To reiterate, synchronize_rcu() waits only for ongoing RCU
195 read-side critical sections to complete, not necessarily for
196 any that begin after synchronize_rcu() is invoked.
198 Of course, synchronize_rcu() does not necessarily return
199 **immediately** after the last pre-existing RCU read-side critical
200 section completes. For one thing, there might well be scheduling
201 delays. For another thing, many RCU implementations process
202 requests in batches in order to improve efficiencies, which can
203 further delay synchronize_rcu().
205 Since synchronize_rcu() is the API that must figure out when
206 readers are done, its implementation is key to RCU. For RCU
207 to be useful in all but the most read-intensive situations,
208 synchronize_rcu()'s overhead must also be quite small.
210 The call_rcu() API is a callback form of synchronize_rcu(),
211 and is described in more detail in a later section. Instead of
212 blocking, it registers a function and argument which are invoked
213 after all ongoing RCU read-side critical sections have completed.
214 This callback variant is particularly useful in situations where
215 it is illegal to block or where update-side performance is
216 critically important.
218 However, the call_rcu() API should not be used lightly, as use
219 of the synchronize_rcu() API generally results in simpler code.
220 In addition, the synchronize_rcu() API has the nice property
221 of automatically limiting update rate should grace periods
222 be delayed. This property results in system resilience in face
223 of denial-of-service attacks. Code using call_rcu() should limit
224 update rate in order to gain this same sort of resilience. See
225 checklist.txt for some approaches to limiting the update rate.
229 void rcu_assign_pointer(p, typeof(p) v);
231 Yes, rcu_assign_pointer() **is** implemented as a macro, though it
232 would be cool to be able to declare a function in this manner.
233 (Compiler experts will no doubt disagree.)
235 The updater uses this function to assign a new value to an
236 RCU-protected pointer, in order to safely communicate the change
237 in value from the updater to the reader. This macro does not
238 evaluate to an rvalue, but it does execute any memory-barrier
239 instructions required for a given CPU architecture.
241 Perhaps just as important, it serves to document (1) which
242 pointers are protected by RCU and (2) the point at which a
243 given structure becomes accessible to other CPUs. That said,
244 rcu_assign_pointer() is most frequently used indirectly, via
245 the _rcu list-manipulation primitives such as list_add_rcu().
249 typeof(p) rcu_dereference(p);
251 Like rcu_assign_pointer(), rcu_dereference() must be implemented
254 The reader uses rcu_dereference() to fetch an RCU-protected
255 pointer, which returns a value that may then be safely
256 dereferenced. Note that rcu_dereference() does not actually
257 dereference the pointer, instead, it protects the pointer for
258 later dereferencing. It also executes any needed memory-barrier
259 instructions for a given CPU architecture. Currently, only Alpha
260 needs memory barriers within rcu_dereference() -- on other CPUs,
261 it compiles to nothing, not even a compiler directive.
263 Common coding practice uses rcu_dereference() to copy an
264 RCU-protected pointer to a local variable, then dereferences
265 this local variable, for example as follows::
267 p = rcu_dereference(head.next);
270 However, in this case, one could just as easily combine these
273 return rcu_dereference(head.next)->data;
275 If you are going to be fetching multiple fields from the
276 RCU-protected structure, using the local variable is of
277 course preferred. Repeated rcu_dereference() calls look
278 ugly, do not guarantee that the same pointer will be returned
279 if an update happened while in the critical section, and incur
280 unnecessary overhead on Alpha CPUs.
282 Note that the value returned by rcu_dereference() is valid
283 only within the enclosing RCU read-side critical section [1]_.
284 For example, the following is **not** legal::
287 p = rcu_dereference(head.next);
289 x = p->address; /* BUG!!! */
291 y = p->data; /* BUG!!! */
294 Holding a reference from one RCU read-side critical section
295 to another is just as illegal as holding a reference from
296 one lock-based critical section to another! Similarly,
297 using a reference outside of the critical section in which
298 it was acquired is just as illegal as doing so with normal
301 As with rcu_assign_pointer(), an important function of
302 rcu_dereference() is to document which pointers are protected by
303 RCU, in particular, flagging a pointer that is subject to changing
304 at any time, including immediately after the rcu_dereference().
305 And, again like rcu_assign_pointer(), rcu_dereference() is
306 typically used indirectly, via the _rcu list-manipulation
307 primitives, such as list_for_each_entry_rcu() [2]_.
309 .. [1] The variant rcu_dereference_protected() can be used outside
310 of an RCU read-side critical section as long as the usage is
311 protected by locks acquired by the update-side code. This variant
312 avoids the lockdep warning that would happen when using (for
313 example) rcu_dereference() without rcu_read_lock() protection.
314 Using rcu_dereference_protected() also has the advantage
315 of permitting compiler optimizations that rcu_dereference()
316 must prohibit. The rcu_dereference_protected() variant takes
317 a lockdep expression to indicate which locks must be acquired
318 by the caller. If the indicated protection is not provided,
319 a lockdep splat is emitted. See Documentation/RCU/Design/Requirements/Requirements.rst
320 and the API's code comments for more details and example usage.
322 .. [2] If the list_for_each_entry_rcu() instance might be used by
323 update-side code as well as by RCU readers, then an additional
324 lockdep expression can be added to its list of arguments.
325 For example, given an additional "lock_is_held(&mylock)" argument,
326 the RCU lockdep code would complain only if this instance was
327 invoked outside of an RCU read-side critical section and without
328 the protection of mylock.
330 The following diagram shows how each API communicates among the
331 reader, updater, and reclaimer.
337 +---------------------->| reader |---------+
341 | | | rcu_read_lock()
342 | | | rcu_read_unlock()
343 | rcu_dereference() | |
345 | updater |<----------------+ |
348 +----------------------------------->| reclaimer |
351 synchronize_rcu() & call_rcu()
354 The RCU infrastructure observes the time sequence of rcu_read_lock(),
355 rcu_read_unlock(), synchronize_rcu(), and call_rcu() invocations in
356 order to determine when (1) synchronize_rcu() invocations may return
357 to their callers and (2) call_rcu() callbacks may be invoked. Efficient
358 implementations of the RCU infrastructure make heavy use of batching in
359 order to amortize their overhead over many uses of the corresponding APIs.
361 There are at least three flavors of RCU usage in the Linux kernel. The diagram
362 above shows the most common one. On the updater side, the rcu_assign_pointer(),
363 synchronize_rcu() and call_rcu() primitives used are the same for all three
364 flavors. However for protection (on the reader side), the primitives used vary
365 depending on the flavor:
367 a. rcu_read_lock() / rcu_read_unlock()
370 b. rcu_read_lock_bh() / rcu_read_unlock_bh()
371 local_bh_disable() / local_bh_enable()
374 c. rcu_read_lock_sched() / rcu_read_unlock_sched()
375 preempt_disable() / preempt_enable()
376 local_irq_save() / local_irq_restore()
377 hardirq enter / hardirq exit
379 rcu_dereference_sched()
381 These three flavors are used as follows:
383 a. RCU applied to normal data structures.
385 b. RCU applied to networking data structures that may be subjected
386 to remote denial-of-service attacks.
388 c. RCU applied to scheduler and interrupt/NMI-handler tasks.
390 Again, most uses will be of (a). The (b) and (c) cases are important
391 for specialized uses, but are relatively uncommon.
395 3. WHAT ARE SOME EXAMPLE USES OF CORE RCU API?
396 -----------------------------------------------
398 This section shows a simple use of the core RCU API to protect a
399 global pointer to a dynamically allocated structure. More-typical
400 uses of RCU may be found in :ref:`listRCU.rst <list_rcu_doc>`,
401 :ref:`arrayRCU.rst <array_rcu_doc>`, and :ref:`NMI-RCU.rst <NMI_rcu_doc>`.
409 DEFINE_SPINLOCK(foo_mutex);
411 struct foo __rcu *gbl_foo;
414 * Create a new struct foo that is the same as the one currently
415 * pointed to by gbl_foo, except that field "a" is replaced
416 * with "new_a". Points gbl_foo to the new structure, and
417 * frees up the old structure after a grace period.
419 * Uses rcu_assign_pointer() to ensure that concurrent readers
420 * see the initialized version of the new structure.
422 * Uses synchronize_rcu() to ensure that any readers that might
423 * have references to the old structure complete before freeing
426 void foo_update_a(int new_a)
431 new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
432 spin_lock(&foo_mutex);
433 old_fp = rcu_dereference_protected(gbl_foo, lockdep_is_held(&foo_mutex));
436 rcu_assign_pointer(gbl_foo, new_fp);
437 spin_unlock(&foo_mutex);
443 * Return the value of field "a" of the current gbl_foo
444 * structure. Use rcu_read_lock() and rcu_read_unlock()
445 * to ensure that the structure does not get deleted out
446 * from under us, and use rcu_dereference() to ensure that
447 * we see the initialized version of the structure (important
448 * for DEC Alpha and for people reading the code).
455 retval = rcu_dereference(gbl_foo)->a;
462 - Use rcu_read_lock() and rcu_read_unlock() to guard RCU
463 read-side critical sections.
465 - Within an RCU read-side critical section, use rcu_dereference()
466 to dereference RCU-protected pointers.
468 - Use some solid scheme (such as locks or semaphores) to
469 keep concurrent updates from interfering with each other.
471 - Use rcu_assign_pointer() to update an RCU-protected pointer.
472 This primitive protects concurrent readers from the updater,
473 **not** concurrent updates from each other! You therefore still
474 need to use locking (or something similar) to keep concurrent
475 rcu_assign_pointer() primitives from interfering with each other.
477 - Use synchronize_rcu() **after** removing a data element from an
478 RCU-protected data structure, but **before** reclaiming/freeing
479 the data element, in order to wait for the completion of all
480 RCU read-side critical sections that might be referencing that
483 See checklist.txt for additional rules to follow when using RCU.
484 And again, more-typical uses of RCU may be found in :ref:`listRCU.rst
485 <list_rcu_doc>`, :ref:`arrayRCU.rst <array_rcu_doc>`, and :ref:`NMI-RCU.rst
490 4. WHAT IF MY UPDATING THREAD CANNOT BLOCK?
491 --------------------------------------------
493 In the example above, foo_update_a() blocks until a grace period elapses.
494 This is quite simple, but in some cases one cannot afford to wait so
495 long -- there might be other high-priority work to be done.
497 In such cases, one uses call_rcu() rather than synchronize_rcu().
498 The call_rcu() API is as follows::
500 void call_rcu(struct rcu_head *head, rcu_callback_t func);
502 This function invokes func(head) after a grace period has elapsed.
503 This invocation might happen from either softirq or process context,
504 so the function is not permitted to block. The foo struct needs to
505 have an rcu_head structure added, perhaps as follows::
514 The foo_update_a() function might then be written as follows::
517 * Create a new struct foo that is the same as the one currently
518 * pointed to by gbl_foo, except that field "a" is replaced
519 * with "new_a". Points gbl_foo to the new structure, and
520 * frees up the old structure after a grace period.
522 * Uses rcu_assign_pointer() to ensure that concurrent readers
523 * see the initialized version of the new structure.
525 * Uses call_rcu() to ensure that any readers that might have
526 * references to the old structure complete before freeing the
529 void foo_update_a(int new_a)
534 new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
535 spin_lock(&foo_mutex);
536 old_fp = rcu_dereference_protected(gbl_foo, lockdep_is_held(&foo_mutex));
539 rcu_assign_pointer(gbl_foo, new_fp);
540 spin_unlock(&foo_mutex);
541 call_rcu(&old_fp->rcu, foo_reclaim);
544 The foo_reclaim() function might appear as follows::
546 void foo_reclaim(struct rcu_head *rp)
548 struct foo *fp = container_of(rp, struct foo, rcu);
555 The container_of() primitive is a macro that, given a pointer into a
556 struct, the type of the struct, and the pointed-to field within the
557 struct, returns a pointer to the beginning of the struct.
559 The use of call_rcu() permits the caller of foo_update_a() to
560 immediately regain control, without needing to worry further about the
561 old version of the newly updated element. It also clearly shows the
562 RCU distinction between updater, namely foo_update_a(), and reclaimer,
563 namely foo_reclaim().
565 The summary of advice is the same as for the previous section, except
566 that we are now using call_rcu() rather than synchronize_rcu():
568 - Use call_rcu() **after** removing a data element from an
569 RCU-protected data structure in order to register a callback
570 function that will be invoked after the completion of all RCU
571 read-side critical sections that might be referencing that
574 If the callback for call_rcu() is not doing anything more than calling
575 kfree() on the structure, you can use kfree_rcu() instead of call_rcu()
576 to avoid having to write your own callback::
578 kfree_rcu(old_fp, rcu);
580 Again, see checklist.txt for additional rules governing the use of RCU.
584 5. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU?
585 ------------------------------------------------
587 One of the nice things about RCU is that it has extremely simple "toy"
588 implementations that are a good first step towards understanding the
589 production-quality implementations in the Linux kernel. This section
590 presents two such "toy" implementations of RCU, one that is implemented
591 in terms of familiar locking primitives, and another that more closely
592 resembles "classic" RCU. Both are way too simple for real-world use,
593 lacking both functionality and performance. However, they are useful
594 in getting a feel for how RCU works. See kernel/rcu/update.c for a
595 production-quality implementation, and see:
597 http://www.rdrop.com/users/paulmck/RCU
599 for papers describing the Linux kernel RCU implementation. The OLS'01
600 and OLS'02 papers are a good introduction, and the dissertation provides
601 more details on the current implementation as of early 2004.
604 5A. "TOY" IMPLEMENTATION #1: LOCKING
605 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
606 This section presents a "toy" RCU implementation that is based on
607 familiar locking primitives. Its overhead makes it a non-starter for
608 real-life use, as does its lack of scalability. It is also unsuitable
609 for realtime use, since it allows scheduling latency to "bleed" from
610 one read-side critical section to another. It also assumes recursive
611 reader-writer locks: If you try this with non-recursive locks, and
612 you allow nested rcu_read_lock() calls, you can deadlock.
614 However, it is probably the easiest implementation to relate to, so is
615 a good starting point.
617 It is extremely simple::
619 static DEFINE_RWLOCK(rcu_gp_mutex);
621 void rcu_read_lock(void)
623 read_lock(&rcu_gp_mutex);
626 void rcu_read_unlock(void)
628 read_unlock(&rcu_gp_mutex);
631 void synchronize_rcu(void)
633 write_lock(&rcu_gp_mutex);
634 smp_mb__after_spinlock();
635 write_unlock(&rcu_gp_mutex);
638 [You can ignore rcu_assign_pointer() and rcu_dereference() without missing
639 much. But here are simplified versions anyway. And whatever you do,
640 don't forget about them when submitting patches making use of RCU!]::
642 #define rcu_assign_pointer(p, v) \
644 smp_store_release(&(p), (v)); \
647 #define rcu_dereference(p) \
649 typeof(p) _________p1 = READ_ONCE(p); \
654 The rcu_read_lock() and rcu_read_unlock() primitive read-acquire
655 and release a global reader-writer lock. The synchronize_rcu()
656 primitive write-acquires this same lock, then releases it. This means
657 that once synchronize_rcu() exits, all RCU read-side critical sections
658 that were in progress before synchronize_rcu() was called are guaranteed
659 to have completed -- there is no way that synchronize_rcu() would have
660 been able to write-acquire the lock otherwise. The smp_mb__after_spinlock()
661 promotes synchronize_rcu() to a full memory barrier in compliance with
662 the "Memory-Barrier Guarantees" listed in:
664 Documentation/RCU/Design/Requirements/Requirements.rst
666 It is possible to nest rcu_read_lock(), since reader-writer locks may
667 be recursively acquired. Note also that rcu_read_lock() is immune
668 from deadlock (an important property of RCU). The reason for this is
669 that the only thing that can block rcu_read_lock() is a synchronize_rcu().
670 But synchronize_rcu() does not acquire any locks while holding rcu_gp_mutex,
671 so there can be no deadlock cycle.
676 Why is this argument naive? How could a deadlock
677 occur when using this algorithm in a real-world Linux
678 kernel? How could this deadlock be avoided?
680 :ref:`Answers to Quick Quiz <8_whatisRCU>`
682 5B. "TOY" EXAMPLE #2: CLASSIC RCU
683 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
684 This section presents a "toy" RCU implementation that is based on
685 "classic RCU". It is also short on performance (but only for updates) and
686 on features such as hotplug CPU and the ability to run in CONFIG_PREEMPT
687 kernels. The definitions of rcu_dereference() and rcu_assign_pointer()
688 are the same as those shown in the preceding section, so they are omitted.
691 void rcu_read_lock(void) { }
693 void rcu_read_unlock(void) { }
695 void synchronize_rcu(void)
699 for_each_possible_cpu(cpu)
703 Note that rcu_read_lock() and rcu_read_unlock() do absolutely nothing.
704 This is the great strength of classic RCU in a non-preemptive kernel:
705 read-side overhead is precisely zero, at least on non-Alpha CPUs.
706 And there is absolutely no way that rcu_read_lock() can possibly
707 participate in a deadlock cycle!
709 The implementation of synchronize_rcu() simply schedules itself on each
710 CPU in turn. The run_on() primitive can be implemented straightforwardly
711 in terms of the sched_setaffinity() primitive. Of course, a somewhat less
712 "toy" implementation would restore the affinity upon completion rather
713 than just leaving all tasks running on the last CPU, but when I said
714 "toy", I meant **toy**!
716 So how the heck is this supposed to work???
718 Remember that it is illegal to block while in an RCU read-side critical
719 section. Therefore, if a given CPU executes a context switch, we know
720 that it must have completed all preceding RCU read-side critical sections.
721 Once **all** CPUs have executed a context switch, then **all** preceding
722 RCU read-side critical sections will have completed.
724 So, suppose that we remove a data item from its structure and then invoke
725 synchronize_rcu(). Once synchronize_rcu() returns, we are guaranteed
726 that there are no RCU read-side critical sections holding a reference
727 to that data item, so we can safely reclaim it.
732 Give an example where Classic RCU's read-side
733 overhead is **negative**.
735 :ref:`Answers to Quick Quiz <8_whatisRCU>`
740 If it is illegal to block in an RCU read-side
741 critical section, what the heck do you do in
742 PREEMPT_RT, where normal spinlocks can block???
744 :ref:`Answers to Quick Quiz <8_whatisRCU>`
748 6. ANALOGY WITH READER-WRITER LOCKING
749 --------------------------------------
751 Although RCU can be used in many different ways, a very common use of
752 RCU is analogous to reader-writer locking. The following unified
753 diff shows how closely related RCU and reader-writer locking can be.
756 @@ -5,5 +5,5 @@ struct el {
758 /* Other data fields */
761 +spinlock_t listmutex;
765 struct list_head *lp;
768 - read_lock(&listmutex);
769 - list_for_each_entry(p, head, lp) {
771 + list_for_each_entry_rcu(p, head, lp) {
774 - read_unlock(&listmutex);
779 - read_unlock(&listmutex);
788 - write_lock(&listmutex);
789 + spin_lock(&listmutex);
790 list_for_each_entry(p, head, lp) {
792 - list_del(&p->list);
793 - write_unlock(&listmutex);
794 + list_del_rcu(&p->list);
795 + spin_unlock(&listmutex);
801 - write_unlock(&listmutex);
802 + spin_unlock(&listmutex);
806 Or, for those who prefer a side-by-side listing::
808 1 struct el { 1 struct el {
809 2 struct list_head list; 2 struct list_head list;
810 3 long key; 3 long key;
811 4 spinlock_t mutex; 4 spinlock_t mutex;
812 5 int data; 5 int data;
813 6 /* Other data fields */ 6 /* Other data fields */
815 8 rwlock_t listmutex; 8 spinlock_t listmutex;
816 9 struct el head; 9 struct el head;
820 1 int search(long key, int *result) 1 int search(long key, int *result)
822 3 struct list_head *lp; 3 struct list_head *lp;
823 4 struct el *p; 4 struct el *p;
825 6 read_lock(&listmutex); 6 rcu_read_lock();
826 7 list_for_each_entry(p, head, lp) { 7 list_for_each_entry_rcu(p, head, lp) {
827 8 if (p->key == key) { 8 if (p->key == key) {
828 9 *result = p->data; 9 *result = p->data;
829 10 read_unlock(&listmutex); 10 rcu_read_unlock();
830 11 return 1; 11 return 1;
833 14 read_unlock(&listmutex); 14 rcu_read_unlock();
834 15 return 0; 15 return 0;
839 1 int delete(long key) 1 int delete(long key)
841 3 struct el *p; 3 struct el *p;
843 5 write_lock(&listmutex); 5 spin_lock(&listmutex);
844 6 list_for_each_entry(p, head, lp) { 6 list_for_each_entry(p, head, lp) {
845 7 if (p->key == key) { 7 if (p->key == key) {
846 8 list_del(&p->list); 8 list_del_rcu(&p->list);
847 9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);
848 10 synchronize_rcu();
849 10 kfree(p); 11 kfree(p);
850 11 return 1; 12 return 1;
853 14 write_unlock(&listmutex); 15 spin_unlock(&listmutex);
854 15 return 0; 16 return 0;
857 Either way, the differences are quite small. Read-side locking moves
858 to rcu_read_lock() and rcu_read_unlock, update-side locking moves from
859 a reader-writer lock to a simple spinlock, and a synchronize_rcu()
860 precedes the kfree().
862 However, there is one potential catch: the read-side and update-side
863 critical sections can now run concurrently. In many cases, this will
864 not be a problem, but it is necessary to check carefully regardless.
865 For example, if multiple independent list updates must be seen as
866 a single atomic update, converting to RCU will require special care.
868 Also, the presence of synchronize_rcu() means that the RCU version of
869 delete() can now block. If this is a problem, there is a callback-based
870 mechanism that never blocks, namely call_rcu() or kfree_rcu(), that can
871 be used in place of synchronize_rcu().
875 7. FULL LIST OF RCU APIs
876 -------------------------
878 The RCU APIs are documented in docbook-format header comments in the
879 Linux-kernel source code, but it helps to have a full list of the
880 APIs, since there does not appear to be a way to categorize them
881 in docbook. Here is the list, by category.
889 list_for_each_entry_rcu
890 list_for_each_entry_continue_rcu
891 list_for_each_entry_from_rcu
892 list_first_or_null_rcu
893 list_next_or_null_rcu
897 hlist_for_each_entry_rcu
898 hlist_for_each_entry_rcu_bh
899 hlist_for_each_entry_from_rcu
900 hlist_for_each_entry_continue_rcu
901 hlist_for_each_entry_continue_rcu_bh
902 hlist_nulls_first_rcu
903 hlist_nulls_for_each_entry_rcu
905 hlist_bl_for_each_entry_rcu
907 RCU pointer/list update::
922 list_splice_tail_init_rcu
923 hlist_nulls_del_init_rcu
925 hlist_nulls_add_head_rcu
926 hlist_bl_add_head_rcu
927 hlist_bl_del_init_rcu
929 hlist_bl_set_first_rcu
933 Critical sections Grace period Barrier
935 rcu_read_lock synchronize_net rcu_barrier
936 rcu_read_unlock synchronize_rcu
937 rcu_dereference synchronize_rcu_expedited
938 rcu_read_lock_held call_rcu
939 rcu_dereference_check kfree_rcu
940 rcu_dereference_protected
944 Critical sections Grace period Barrier
946 rcu_read_lock_bh call_rcu rcu_barrier
947 rcu_read_unlock_bh synchronize_rcu
948 [local_bh_disable] synchronize_rcu_expedited
951 rcu_dereference_bh_check
952 rcu_dereference_bh_protected
953 rcu_read_lock_bh_held
957 Critical sections Grace period Barrier
959 rcu_read_lock_sched call_rcu rcu_barrier
960 rcu_read_unlock_sched synchronize_rcu
961 [preempt_disable] synchronize_rcu_expedited
963 rcu_read_lock_sched_notrace
964 rcu_read_unlock_sched_notrace
965 rcu_dereference_sched
966 rcu_dereference_sched_check
967 rcu_dereference_sched_protected
968 rcu_read_lock_sched_held
973 Critical sections Grace period Barrier
975 srcu_read_lock call_srcu srcu_barrier
976 srcu_read_unlock synchronize_srcu
977 srcu_dereference synchronize_srcu_expedited
978 srcu_dereference_check
981 SRCU: Initialization/cleanup::
988 All: lockdep-checked RCU-protected pointer access::
996 See the comment headers in the source code (or the docbook generated
997 from them) for more information.
999 However, given that there are no fewer than four families of RCU APIs
1000 in the Linux kernel, how do you choose which one to use? The following
1001 list can be helpful:
1003 a. Will readers need to block? If so, you need SRCU.
1005 b. What about the -rt patchset? If readers would need to block
1006 in an non-rt kernel, you need SRCU. If readers would block
1007 in a -rt kernel, but not in a non-rt kernel, SRCU is not
1008 necessary. (The -rt patchset turns spinlocks into sleeplocks,
1009 hence this distinction.)
1011 c. Do you need to treat NMI handlers, hardirq handlers,
1012 and code segments with preemption disabled (whether
1013 via preempt_disable(), local_irq_save(), local_bh_disable(),
1014 or some other mechanism) as if they were explicit RCU readers?
1015 If so, RCU-sched is the only choice that will work for you.
1017 d. Do you need RCU grace periods to complete even in the face
1018 of softirq monopolization of one or more of the CPUs? For
1019 example, is your code subject to network-based denial-of-service
1020 attacks? If so, you should disable softirq across your readers,
1021 for example, by using rcu_read_lock_bh().
1023 e. Is your workload too update-intensive for normal use of
1024 RCU, but inappropriate for other synchronization mechanisms?
1025 If so, consider SLAB_TYPESAFE_BY_RCU (which was originally
1026 named SLAB_DESTROY_BY_RCU). But please be careful!
1028 f. Do you need read-side critical sections that are respected
1029 even though they are in the middle of the idle loop, during
1030 user-mode execution, or on an offlined CPU? If so, SRCU is the
1031 only choice that will work for you.
1033 g. Otherwise, use RCU.
1035 Of course, this all assumes that you have determined that RCU is in fact
1036 the right tool for your job.
1040 8. ANSWERS TO QUICK QUIZZES
1041 ----------------------------
1044 Why is this argument naive? How could a deadlock
1045 occur when using this algorithm in a real-world Linux
1046 kernel? [Referring to the lock-based "toy" RCU
1050 Consider the following sequence of events:
1052 1. CPU 0 acquires some unrelated lock, call it
1053 "problematic_lock", disabling irq via
1054 spin_lock_irqsave().
1056 2. CPU 1 enters synchronize_rcu(), write-acquiring
1059 3. CPU 0 enters rcu_read_lock(), but must wait
1060 because CPU 1 holds rcu_gp_mutex.
1062 4. CPU 1 is interrupted, and the irq handler
1063 attempts to acquire problematic_lock.
1065 The system is now deadlocked.
1067 One way to avoid this deadlock is to use an approach like
1068 that of CONFIG_PREEMPT_RT, where all normal spinlocks
1069 become blocking locks, and all irq handlers execute in
1070 the context of special tasks. In this case, in step 4
1071 above, the irq handler would block, allowing CPU 1 to
1072 release rcu_gp_mutex, avoiding the deadlock.
1074 Even in the absence of deadlock, this RCU implementation
1075 allows latency to "bleed" from readers to other
1076 readers through synchronize_rcu(). To see this,
1077 consider task A in an RCU read-side critical section
1078 (thus read-holding rcu_gp_mutex), task B blocked
1079 attempting to write-acquire rcu_gp_mutex, and
1080 task C blocked in rcu_read_lock() attempting to
1081 read_acquire rcu_gp_mutex. Task A's RCU read-side
1082 latency is holding up task C, albeit indirectly via
1085 Realtime RCU implementations therefore use a counter-based
1086 approach where tasks in RCU read-side critical sections
1087 cannot be blocked by tasks executing synchronize_rcu().
1089 :ref:`Back to Quick Quiz #1 <quiz_1>`
1092 Give an example where Classic RCU's read-side
1093 overhead is **negative**.
1096 Imagine a single-CPU system with a non-CONFIG_PREEMPT
1097 kernel where a routing table is used by process-context
1098 code, but can be updated by irq-context code (for example,
1099 by an "ICMP REDIRECT" packet). The usual way of handling
1100 this would be to have the process-context code disable
1101 interrupts while searching the routing table. Use of
1102 RCU allows such interrupt-disabling to be dispensed with.
1103 Thus, without RCU, you pay the cost of disabling interrupts,
1104 and with RCU you don't.
1106 One can argue that the overhead of RCU in this
1107 case is negative with respect to the single-CPU
1108 interrupt-disabling approach. Others might argue that
1109 the overhead of RCU is merely zero, and that replacing
1110 the positive overhead of the interrupt-disabling scheme
1111 with the zero-overhead RCU scheme does not constitute
1114 In real life, of course, things are more complex. But
1115 even the theoretical possibility of negative overhead for
1116 a synchronization primitive is a bit unexpected. ;-)
1118 :ref:`Back to Quick Quiz #2 <quiz_2>`
1121 If it is illegal to block in an RCU read-side
1122 critical section, what the heck do you do in
1123 PREEMPT_RT, where normal spinlocks can block???
1126 Just as PREEMPT_RT permits preemption of spinlock
1127 critical sections, it permits preemption of RCU
1128 read-side critical sections. It also permits
1129 spinlocks blocking while in RCU read-side critical
1132 Why the apparent inconsistency? Because it is
1133 possible to use priority boosting to keep the RCU
1134 grace periods short if need be (for example, if running
1135 short of memory). In contrast, if blocking waiting
1136 for (say) network reception, there is no way to know
1137 what should be boosted. Especially given that the
1138 process we need to boost might well be a human being
1139 who just went out for a pizza or something. And although
1140 a computer-operated cattle prod might arouse serious
1141 interest, it might also provoke serious objections.
1142 Besides, how does the computer know what pizza parlor
1143 the human being went to???
1145 :ref:`Back to Quick Quiz #3 <quiz_3>`
1149 My thanks to the people who helped make this human-readable, including
1150 Jon Walpole, Josh Triplett, Serge Hallyn, Suzanne Wood, and Alan Stern.
1153 For more information, see http://www.rdrop.com/users/paulmck/RCU.