1 // SPDX-License-Identifier: GPL-2.0
5 * Support for ATMEL SHA1/SHA256 HW acceleration.
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
10 * Some ideas are from omap-sham.c drivers.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_device.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/sha1.h>
37 #include <crypto/sha2.h>
38 #include <crypto/hash.h>
39 #include <crypto/internal/hash.h>
40 #include "atmel-sha-regs.h"
41 #include "atmel-authenc.h"
43 #define ATMEL_SHA_PRIORITY 300
46 #define SHA_FLAGS_BUSY BIT(0)
47 #define SHA_FLAGS_FINAL BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY BIT(3)
50 #define SHA_FLAGS_INIT BIT(4)
51 #define SHA_FLAGS_CPU BIT(5)
52 #define SHA_FLAGS_DMA_READY BIT(6)
53 #define SHA_FLAGS_DUMP_REG BIT(7)
55 /* bits[11:8] are reserved. */
57 #define SHA_FLAGS_FINUP BIT(16)
58 #define SHA_FLAGS_SG BIT(17)
59 #define SHA_FLAGS_ERROR BIT(23)
60 #define SHA_FLAGS_PAD BIT(24)
61 #define SHA_FLAGS_RESTORE BIT(25)
62 #define SHA_FLAGS_IDATAR0 BIT(26)
63 #define SHA_FLAGS_WAIT_DATARDY BIT(27)
66 #define SHA_OP_UPDATE 1
67 #define SHA_OP_FINAL 2
68 #define SHA_OP_DIGEST 3
70 #define SHA_BUFFER_LEN (PAGE_SIZE / 16)
72 #define ATMEL_SHA_DMA_THRESHOLD 56
74 struct atmel_sha_caps
{
86 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
87 * tested by the ahash_prepare_alg() function.
89 struct atmel_sha_reqctx
{
90 struct atmel_sha_dev
*dd
;
94 u8 digest
[SHA512_DIGEST_SIZE
] __aligned(sizeof(u32
));
101 struct scatterlist
*sg
;
102 unsigned int offset
; /* offset in current sg */
103 unsigned int total
; /* total request */
108 u8 buffer
[SHA_BUFFER_LEN
+ SHA512_BLOCK_SIZE
] __aligned(sizeof(u32
));
111 typedef int (*atmel_sha_fn_t
)(struct atmel_sha_dev
*);
113 struct atmel_sha_ctx
{
114 struct atmel_sha_dev
*dd
;
115 atmel_sha_fn_t start
;
120 #define ATMEL_SHA_QUEUE_LENGTH 50
122 struct atmel_sha_dma
{
123 struct dma_chan
*chan
;
124 struct dma_slave_config dma_conf
;
125 struct scatterlist
*sg
;
127 unsigned int last_sg_length
;
130 struct atmel_sha_dev
{
131 struct list_head list
;
132 unsigned long phys_base
;
136 void __iomem
*io_base
;
139 struct tasklet_struct done_task
;
140 struct tasklet_struct queue_task
;
143 struct crypto_queue queue
;
144 struct ahash_request
*req
;
147 atmel_sha_fn_t resume
;
148 atmel_sha_fn_t cpu_transfer_complete
;
150 struct atmel_sha_dma dma_lch_in
;
152 struct atmel_sha_caps caps
;
154 struct scatterlist tmp
;
159 struct atmel_sha_drv
{
160 struct list_head dev_list
;
164 static struct atmel_sha_drv atmel_sha
= {
165 .dev_list
= LIST_HEAD_INIT(atmel_sha
.dev_list
),
166 .lock
= __SPIN_LOCK_UNLOCKED(atmel_sha
.lock
),
170 static const char *atmel_sha_reg_name(u32 offset
, char *tmp
, size_t sz
, bool wr
)
207 case SHA_REG_DIN(10):
208 case SHA_REG_DIN(11):
209 case SHA_REG_DIN(12):
210 case SHA_REG_DIN(13):
211 case SHA_REG_DIN(14):
212 case SHA_REG_DIN(15):
213 snprintf(tmp
, sz
, "IDATAR[%u]", (offset
- SHA_REG_DIN(0)) >> 2);
216 case SHA_REG_DIGEST(0):
217 case SHA_REG_DIGEST(1):
218 case SHA_REG_DIGEST(2):
219 case SHA_REG_DIGEST(3):
220 case SHA_REG_DIGEST(4):
221 case SHA_REG_DIGEST(5):
222 case SHA_REG_DIGEST(6):
223 case SHA_REG_DIGEST(7):
224 case SHA_REG_DIGEST(8):
225 case SHA_REG_DIGEST(9):
226 case SHA_REG_DIGEST(10):
227 case SHA_REG_DIGEST(11):
228 case SHA_REG_DIGEST(12):
229 case SHA_REG_DIGEST(13):
230 case SHA_REG_DIGEST(14):
231 case SHA_REG_DIGEST(15):
233 snprintf(tmp
, sz
, "IDATAR[%u]",
234 16u + ((offset
- SHA_REG_DIGEST(0)) >> 2));
236 snprintf(tmp
, sz
, "ODATAR[%u]",
237 (offset
- SHA_REG_DIGEST(0)) >> 2);
244 snprintf(tmp
, sz
, "0x%02x", offset
);
251 #endif /* VERBOSE_DEBUG */
253 static inline u32
atmel_sha_read(struct atmel_sha_dev
*dd
, u32 offset
)
255 u32 value
= readl_relaxed(dd
->io_base
+ offset
);
258 if (dd
->flags
& SHA_FLAGS_DUMP_REG
) {
261 dev_vdbg(dd
->dev
, "read 0x%08x from %s\n", value
,
262 atmel_sha_reg_name(offset
, tmp
, sizeof(tmp
), false));
264 #endif /* VERBOSE_DEBUG */
269 static inline void atmel_sha_write(struct atmel_sha_dev
*dd
,
270 u32 offset
, u32 value
)
273 if (dd
->flags
& SHA_FLAGS_DUMP_REG
) {
276 dev_vdbg(dd
->dev
, "write 0x%08x into %s\n", value
,
277 atmel_sha_reg_name(offset
, tmp
, sizeof(tmp
), true));
279 #endif /* VERBOSE_DEBUG */
281 writel_relaxed(value
, dd
->io_base
+ offset
);
284 static inline int atmel_sha_complete(struct atmel_sha_dev
*dd
, int err
)
286 struct ahash_request
*req
= dd
->req
;
288 dd
->flags
&= ~(SHA_FLAGS_BUSY
| SHA_FLAGS_FINAL
| SHA_FLAGS_CPU
|
289 SHA_FLAGS_DMA_READY
| SHA_FLAGS_OUTPUT_READY
|
292 clk_disable(dd
->iclk
);
294 if ((dd
->is_async
|| dd
->force_complete
) && req
->base
.complete
)
295 req
->base
.complete(&req
->base
, err
);
297 /* handle new request */
298 tasklet_schedule(&dd
->queue_task
);
303 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx
*ctx
)
307 while ((ctx
->bufcnt
< ctx
->buflen
) && ctx
->total
) {
308 count
= min(ctx
->sg
->length
- ctx
->offset
, ctx
->total
);
309 count
= min(count
, ctx
->buflen
- ctx
->bufcnt
);
313 * Check if count <= 0 because the buffer is full or
314 * because the sg length is 0. In the latest case,
315 * check if there is another sg in the list, a 0 length
316 * sg doesn't necessarily mean the end of the sg list.
318 if ((ctx
->sg
->length
== 0) && !sg_is_last(ctx
->sg
)) {
319 ctx
->sg
= sg_next(ctx
->sg
);
326 scatterwalk_map_and_copy(ctx
->buffer
+ ctx
->bufcnt
, ctx
->sg
,
327 ctx
->offset
, count
, 0);
329 ctx
->bufcnt
+= count
;
330 ctx
->offset
+= count
;
333 if (ctx
->offset
== ctx
->sg
->length
) {
334 ctx
->sg
= sg_next(ctx
->sg
);
346 * The purpose of this padding is to ensure that the padded message is a
347 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
348 * The bit "1" is appended at the end of the message followed by
349 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
350 * 128 bits block (SHA384/SHA512) equals to the message length in bits
353 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
354 * - if message length < 56 bytes then padlen = 56 - message length
355 * - else padlen = 64 + 56 - message length
357 * For SHA384/SHA512, padlen is calculated as followed:
358 * - if message length < 112 bytes then padlen = 112 - message length
359 * - else padlen = 128 + 112 - message length
361 static void atmel_sha_fill_padding(struct atmel_sha_reqctx
*ctx
, int length
)
363 unsigned int index
, padlen
;
367 size
[0] = ctx
->digcnt
[0];
368 size
[1] = ctx
->digcnt
[1];
370 size
[0] += ctx
->bufcnt
;
371 if (size
[0] < ctx
->bufcnt
)
375 if (size
[0] < length
)
378 bits
[1] = cpu_to_be64(size
[0] << 3);
379 bits
[0] = cpu_to_be64(size
[1] << 3 | size
[0] >> 61);
381 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
382 case SHA_FLAGS_SHA384
:
383 case SHA_FLAGS_SHA512
:
384 index
= ctx
->bufcnt
& 0x7f;
385 padlen
= (index
< 112) ? (112 - index
) : ((128+112) - index
);
386 *(ctx
->buffer
+ ctx
->bufcnt
) = 0x80;
387 memset(ctx
->buffer
+ ctx
->bufcnt
+ 1, 0, padlen
-1);
388 memcpy(ctx
->buffer
+ ctx
->bufcnt
+ padlen
, bits
, 16);
389 ctx
->bufcnt
+= padlen
+ 16;
390 ctx
->flags
|= SHA_FLAGS_PAD
;
394 index
= ctx
->bufcnt
& 0x3f;
395 padlen
= (index
< 56) ? (56 - index
) : ((64+56) - index
);
396 *(ctx
->buffer
+ ctx
->bufcnt
) = 0x80;
397 memset(ctx
->buffer
+ ctx
->bufcnt
+ 1, 0, padlen
-1);
398 memcpy(ctx
->buffer
+ ctx
->bufcnt
+ padlen
, &bits
[1], 8);
399 ctx
->bufcnt
+= padlen
+ 8;
400 ctx
->flags
|= SHA_FLAGS_PAD
;
405 static struct atmel_sha_dev
*atmel_sha_find_dev(struct atmel_sha_ctx
*tctx
)
407 struct atmel_sha_dev
*dd
= NULL
;
408 struct atmel_sha_dev
*tmp
;
410 spin_lock_bh(&atmel_sha
.lock
);
412 list_for_each_entry(tmp
, &atmel_sha
.dev_list
, list
) {
421 spin_unlock_bh(&atmel_sha
.lock
);
426 static int atmel_sha_init(struct ahash_request
*req
)
428 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
429 struct atmel_sha_ctx
*tctx
= crypto_ahash_ctx(tfm
);
430 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
431 struct atmel_sha_dev
*dd
= atmel_sha_find_dev(tctx
);
437 dev_dbg(dd
->dev
, "init: digest size: %d\n",
438 crypto_ahash_digestsize(tfm
));
440 switch (crypto_ahash_digestsize(tfm
)) {
441 case SHA1_DIGEST_SIZE
:
442 ctx
->flags
|= SHA_FLAGS_SHA1
;
443 ctx
->block_size
= SHA1_BLOCK_SIZE
;
445 case SHA224_DIGEST_SIZE
:
446 ctx
->flags
|= SHA_FLAGS_SHA224
;
447 ctx
->block_size
= SHA224_BLOCK_SIZE
;
449 case SHA256_DIGEST_SIZE
:
450 ctx
->flags
|= SHA_FLAGS_SHA256
;
451 ctx
->block_size
= SHA256_BLOCK_SIZE
;
453 case SHA384_DIGEST_SIZE
:
454 ctx
->flags
|= SHA_FLAGS_SHA384
;
455 ctx
->block_size
= SHA384_BLOCK_SIZE
;
457 case SHA512_DIGEST_SIZE
:
458 ctx
->flags
|= SHA_FLAGS_SHA512
;
459 ctx
->block_size
= SHA512_BLOCK_SIZE
;
468 ctx
->buflen
= SHA_BUFFER_LEN
;
473 static void atmel_sha_write_ctrl(struct atmel_sha_dev
*dd
, int dma
)
475 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
476 u32 valmr
= SHA_MR_MODE_AUTO
;
477 unsigned int i
, hashsize
= 0;
480 if (!dd
->caps
.has_dma
)
481 atmel_sha_write(dd
, SHA_IER
, SHA_INT_TXBUFE
);
482 valmr
= SHA_MR_MODE_PDC
;
483 if (dd
->caps
.has_dualbuff
)
484 valmr
|= SHA_MR_DUALBUFF
;
486 atmel_sha_write(dd
, SHA_IER
, SHA_INT_DATARDY
);
489 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
491 valmr
|= SHA_MR_ALGO_SHA1
;
492 hashsize
= SHA1_DIGEST_SIZE
;
495 case SHA_FLAGS_SHA224
:
496 valmr
|= SHA_MR_ALGO_SHA224
;
497 hashsize
= SHA256_DIGEST_SIZE
;
500 case SHA_FLAGS_SHA256
:
501 valmr
|= SHA_MR_ALGO_SHA256
;
502 hashsize
= SHA256_DIGEST_SIZE
;
505 case SHA_FLAGS_SHA384
:
506 valmr
|= SHA_MR_ALGO_SHA384
;
507 hashsize
= SHA512_DIGEST_SIZE
;
510 case SHA_FLAGS_SHA512
:
511 valmr
|= SHA_MR_ALGO_SHA512
;
512 hashsize
= SHA512_DIGEST_SIZE
;
519 /* Setting CR_FIRST only for the first iteration */
520 if (!(ctx
->digcnt
[0] || ctx
->digcnt
[1])) {
521 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
522 } else if (dd
->caps
.has_uihv
&& (ctx
->flags
& SHA_FLAGS_RESTORE
)) {
523 const u32
*hash
= (const u32
*)ctx
->digest
;
526 * Restore the hardware context: update the User Initialize
527 * Hash Value (UIHV) with the value saved when the latest
528 * 'update' operation completed on this very same crypto
531 ctx
->flags
&= ~SHA_FLAGS_RESTORE
;
532 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIHV
);
533 for (i
= 0; i
< hashsize
/ sizeof(u32
); ++i
)
534 atmel_sha_write(dd
, SHA_REG_DIN(i
), hash
[i
]);
535 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
536 valmr
|= SHA_MR_UIHV
;
539 * WARNING: If the UIHV feature is not available, the hardware CANNOT
540 * process concurrent requests: the internal registers used to store
541 * the hash/digest are still set to the partial digest output values
542 * computed during the latest round.
545 atmel_sha_write(dd
, SHA_MR
, valmr
);
548 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev
*dd
,
549 atmel_sha_fn_t resume
)
551 u32 isr
= atmel_sha_read(dd
, SHA_ISR
);
553 if (unlikely(isr
& SHA_INT_DATARDY
))
557 atmel_sha_write(dd
, SHA_IER
, SHA_INT_DATARDY
);
561 static int atmel_sha_xmit_cpu(struct atmel_sha_dev
*dd
, const u8
*buf
,
562 size_t length
, int final
)
564 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
566 const u32
*buffer
= (const u32
*)buf
;
568 dev_dbg(dd
->dev
, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569 ctx
->digcnt
[1], ctx
->digcnt
[0], length
, final
);
571 atmel_sha_write_ctrl(dd
, 0);
573 /* should be non-zero before next lines to disable clocks later */
574 ctx
->digcnt
[0] += length
;
575 if (ctx
->digcnt
[0] < length
)
579 dd
->flags
|= SHA_FLAGS_FINAL
; /* catch last interrupt */
581 len32
= DIV_ROUND_UP(length
, sizeof(u32
));
583 dd
->flags
|= SHA_FLAGS_CPU
;
585 for (count
= 0; count
< len32
; count
++)
586 atmel_sha_write(dd
, SHA_REG_DIN(count
), buffer
[count
]);
591 static int atmel_sha_xmit_pdc(struct atmel_sha_dev
*dd
, dma_addr_t dma_addr1
,
592 size_t length1
, dma_addr_t dma_addr2
, size_t length2
, int final
)
594 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
597 dev_dbg(dd
->dev
, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598 ctx
->digcnt
[1], ctx
->digcnt
[0], length1
, final
);
600 len32
= DIV_ROUND_UP(length1
, sizeof(u32
));
601 atmel_sha_write(dd
, SHA_PTCR
, SHA_PTCR_TXTDIS
);
602 atmel_sha_write(dd
, SHA_TPR
, dma_addr1
);
603 atmel_sha_write(dd
, SHA_TCR
, len32
);
605 len32
= DIV_ROUND_UP(length2
, sizeof(u32
));
606 atmel_sha_write(dd
, SHA_TNPR
, dma_addr2
);
607 atmel_sha_write(dd
, SHA_TNCR
, len32
);
609 atmel_sha_write_ctrl(dd
, 1);
611 /* should be non-zero before next lines to disable clocks later */
612 ctx
->digcnt
[0] += length1
;
613 if (ctx
->digcnt
[0] < length1
)
617 dd
->flags
|= SHA_FLAGS_FINAL
; /* catch last interrupt */
619 dd
->flags
|= SHA_FLAGS_DMA_ACTIVE
;
621 /* Start DMA transfer */
622 atmel_sha_write(dd
, SHA_PTCR
, SHA_PTCR_TXTEN
);
627 static void atmel_sha_dma_callback(void *data
)
629 struct atmel_sha_dev
*dd
= data
;
633 /* dma_lch_in - completed - wait DATRDY */
634 atmel_sha_write(dd
, SHA_IER
, SHA_INT_DATARDY
);
637 static int atmel_sha_xmit_dma(struct atmel_sha_dev
*dd
, dma_addr_t dma_addr1
,
638 size_t length1
, dma_addr_t dma_addr2
, size_t length2
, int final
)
640 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
641 struct dma_async_tx_descriptor
*in_desc
;
642 struct scatterlist sg
[2];
644 dev_dbg(dd
->dev
, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645 ctx
->digcnt
[1], ctx
->digcnt
[0], length1
, final
);
647 dd
->dma_lch_in
.dma_conf
.src_maxburst
= 16;
648 dd
->dma_lch_in
.dma_conf
.dst_maxburst
= 16;
650 dmaengine_slave_config(dd
->dma_lch_in
.chan
, &dd
->dma_lch_in
.dma_conf
);
653 sg_init_table(sg
, 2);
654 sg_dma_address(&sg
[0]) = dma_addr1
;
655 sg_dma_len(&sg
[0]) = length1
;
656 sg_dma_address(&sg
[1]) = dma_addr2
;
657 sg_dma_len(&sg
[1]) = length2
;
658 in_desc
= dmaengine_prep_slave_sg(dd
->dma_lch_in
.chan
, sg
, 2,
659 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
661 sg_init_table(sg
, 1);
662 sg_dma_address(&sg
[0]) = dma_addr1
;
663 sg_dma_len(&sg
[0]) = length1
;
664 in_desc
= dmaengine_prep_slave_sg(dd
->dma_lch_in
.chan
, sg
, 1,
665 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
668 return atmel_sha_complete(dd
, -EINVAL
);
670 in_desc
->callback
= atmel_sha_dma_callback
;
671 in_desc
->callback_param
= dd
;
673 atmel_sha_write_ctrl(dd
, 1);
675 /* should be non-zero before next lines to disable clocks later */
676 ctx
->digcnt
[0] += length1
;
677 if (ctx
->digcnt
[0] < length1
)
681 dd
->flags
|= SHA_FLAGS_FINAL
; /* catch last interrupt */
683 dd
->flags
|= SHA_FLAGS_DMA_ACTIVE
;
685 /* Start DMA transfer */
686 dmaengine_submit(in_desc
);
687 dma_async_issue_pending(dd
->dma_lch_in
.chan
);
692 static int atmel_sha_xmit_start(struct atmel_sha_dev
*dd
, dma_addr_t dma_addr1
,
693 size_t length1
, dma_addr_t dma_addr2
, size_t length2
, int final
)
695 if (dd
->caps
.has_dma
)
696 return atmel_sha_xmit_dma(dd
, dma_addr1
, length1
,
697 dma_addr2
, length2
, final
);
699 return atmel_sha_xmit_pdc(dd
, dma_addr1
, length1
,
700 dma_addr2
, length2
, final
);
703 static int atmel_sha_update_cpu(struct atmel_sha_dev
*dd
)
705 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
708 atmel_sha_append_sg(ctx
);
709 atmel_sha_fill_padding(ctx
, 0);
710 bufcnt
= ctx
->bufcnt
;
713 return atmel_sha_xmit_cpu(dd
, ctx
->buffer
, bufcnt
, 1);
716 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev
*dd
,
717 struct atmel_sha_reqctx
*ctx
,
718 size_t length
, int final
)
720 ctx
->dma_addr
= dma_map_single(dd
->dev
, ctx
->buffer
,
721 ctx
->buflen
+ ctx
->block_size
, DMA_TO_DEVICE
);
722 if (dma_mapping_error(dd
->dev
, ctx
->dma_addr
)) {
723 dev_err(dd
->dev
, "dma %zu bytes error\n", ctx
->buflen
+
725 return atmel_sha_complete(dd
, -EINVAL
);
728 ctx
->flags
&= ~SHA_FLAGS_SG
;
730 /* next call does not fail... so no unmap in the case of error */
731 return atmel_sha_xmit_start(dd
, ctx
->dma_addr
, length
, 0, 0, final
);
734 static int atmel_sha_update_dma_slow(struct atmel_sha_dev
*dd
)
736 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
740 atmel_sha_append_sg(ctx
);
742 final
= (ctx
->flags
& SHA_FLAGS_FINUP
) && !ctx
->total
;
744 dev_dbg(dd
->dev
, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745 ctx
->bufcnt
, ctx
->digcnt
[1], ctx
->digcnt
[0], final
);
748 atmel_sha_fill_padding(ctx
, 0);
750 if (final
|| (ctx
->bufcnt
== ctx
->buflen
)) {
753 return atmel_sha_xmit_dma_map(dd
, ctx
, count
, final
);
759 static int atmel_sha_update_dma_start(struct atmel_sha_dev
*dd
)
761 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
762 unsigned int length
, final
, tail
;
763 struct scatterlist
*sg
;
769 if (ctx
->bufcnt
|| ctx
->offset
)
770 return atmel_sha_update_dma_slow(dd
);
772 dev_dbg(dd
->dev
, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773 ctx
->digcnt
[1], ctx
->digcnt
[0], ctx
->bufcnt
, ctx
->total
);
777 if (!IS_ALIGNED(sg
->offset
, sizeof(u32
)))
778 return atmel_sha_update_dma_slow(dd
);
780 if (!sg_is_last(sg
) && !IS_ALIGNED(sg
->length
, ctx
->block_size
))
781 /* size is not ctx->block_size aligned */
782 return atmel_sha_update_dma_slow(dd
);
784 length
= min(ctx
->total
, sg
->length
);
786 if (sg_is_last(sg
)) {
787 if (!(ctx
->flags
& SHA_FLAGS_FINUP
)) {
788 /* not last sg must be ctx->block_size aligned */
789 tail
= length
& (ctx
->block_size
- 1);
794 ctx
->total
-= length
;
795 ctx
->offset
= length
; /* offset where to start slow */
797 final
= (ctx
->flags
& SHA_FLAGS_FINUP
) && !ctx
->total
;
801 tail
= length
& (ctx
->block_size
- 1);
804 ctx
->offset
= length
; /* offset where to start slow */
807 atmel_sha_append_sg(ctx
);
809 atmel_sha_fill_padding(ctx
, length
);
811 ctx
->dma_addr
= dma_map_single(dd
->dev
, ctx
->buffer
,
812 ctx
->buflen
+ ctx
->block_size
, DMA_TO_DEVICE
);
813 if (dma_mapping_error(dd
->dev
, ctx
->dma_addr
)) {
814 dev_err(dd
->dev
, "dma %zu bytes error\n",
815 ctx
->buflen
+ ctx
->block_size
);
816 return atmel_sha_complete(dd
, -EINVAL
);
820 ctx
->flags
&= ~SHA_FLAGS_SG
;
823 return atmel_sha_xmit_start(dd
, ctx
->dma_addr
, count
, 0,
827 if (!dma_map_sg(dd
->dev
, ctx
->sg
, 1,
829 dev_err(dd
->dev
, "dma_map_sg error\n");
830 return atmel_sha_complete(dd
, -EINVAL
);
833 ctx
->flags
|= SHA_FLAGS_SG
;
837 return atmel_sha_xmit_start(dd
, sg_dma_address(ctx
->sg
),
838 length
, ctx
->dma_addr
, count
, final
);
842 if (!dma_map_sg(dd
->dev
, ctx
->sg
, 1, DMA_TO_DEVICE
)) {
843 dev_err(dd
->dev
, "dma_map_sg error\n");
844 return atmel_sha_complete(dd
, -EINVAL
);
847 ctx
->flags
|= SHA_FLAGS_SG
;
849 /* next call does not fail... so no unmap in the case of error */
850 return atmel_sha_xmit_start(dd
, sg_dma_address(ctx
->sg
), length
, 0,
854 static void atmel_sha_update_dma_stop(struct atmel_sha_dev
*dd
)
856 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(dd
->req
);
858 if (ctx
->flags
& SHA_FLAGS_SG
) {
859 dma_unmap_sg(dd
->dev
, ctx
->sg
, 1, DMA_TO_DEVICE
);
860 if (ctx
->sg
->length
== ctx
->offset
) {
861 ctx
->sg
= sg_next(ctx
->sg
);
865 if (ctx
->flags
& SHA_FLAGS_PAD
) {
866 dma_unmap_single(dd
->dev
, ctx
->dma_addr
,
867 ctx
->buflen
+ ctx
->block_size
, DMA_TO_DEVICE
);
870 dma_unmap_single(dd
->dev
, ctx
->dma_addr
, ctx
->buflen
+
871 ctx
->block_size
, DMA_TO_DEVICE
);
875 static int atmel_sha_update_req(struct atmel_sha_dev
*dd
)
877 struct ahash_request
*req
= dd
->req
;
878 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
881 dev_dbg(dd
->dev
, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
882 ctx
->total
, ctx
->digcnt
[1], ctx
->digcnt
[0]);
884 if (ctx
->flags
& SHA_FLAGS_CPU
)
885 err
= atmel_sha_update_cpu(dd
);
887 err
= atmel_sha_update_dma_start(dd
);
889 /* wait for dma completion before can take more data */
890 dev_dbg(dd
->dev
, "update: err: %d, digcnt: 0x%llx 0%llx\n",
891 err
, ctx
->digcnt
[1], ctx
->digcnt
[0]);
896 static int atmel_sha_final_req(struct atmel_sha_dev
*dd
)
898 struct ahash_request
*req
= dd
->req
;
899 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
903 if (ctx
->bufcnt
>= ATMEL_SHA_DMA_THRESHOLD
) {
904 atmel_sha_fill_padding(ctx
, 0);
907 err
= atmel_sha_xmit_dma_map(dd
, ctx
, count
, 1);
909 /* faster to handle last block with cpu */
911 atmel_sha_fill_padding(ctx
, 0);
914 err
= atmel_sha_xmit_cpu(dd
, ctx
->buffer
, count
, 1);
917 dev_dbg(dd
->dev
, "final_req: err: %d\n", err
);
922 static void atmel_sha_copy_hash(struct ahash_request
*req
)
924 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
925 u32
*hash
= (u32
*)ctx
->digest
;
926 unsigned int i
, hashsize
;
928 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
930 hashsize
= SHA1_DIGEST_SIZE
;
933 case SHA_FLAGS_SHA224
:
934 case SHA_FLAGS_SHA256
:
935 hashsize
= SHA256_DIGEST_SIZE
;
938 case SHA_FLAGS_SHA384
:
939 case SHA_FLAGS_SHA512
:
940 hashsize
= SHA512_DIGEST_SIZE
;
944 /* Should not happen... */
948 for (i
= 0; i
< hashsize
/ sizeof(u32
); ++i
)
949 hash
[i
] = atmel_sha_read(ctx
->dd
, SHA_REG_DIGEST(i
));
950 ctx
->flags
|= SHA_FLAGS_RESTORE
;
953 static void atmel_sha_copy_ready_hash(struct ahash_request
*req
)
955 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
960 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
963 memcpy(req
->result
, ctx
->digest
, SHA1_DIGEST_SIZE
);
966 case SHA_FLAGS_SHA224
:
967 memcpy(req
->result
, ctx
->digest
, SHA224_DIGEST_SIZE
);
970 case SHA_FLAGS_SHA256
:
971 memcpy(req
->result
, ctx
->digest
, SHA256_DIGEST_SIZE
);
974 case SHA_FLAGS_SHA384
:
975 memcpy(req
->result
, ctx
->digest
, SHA384_DIGEST_SIZE
);
978 case SHA_FLAGS_SHA512
:
979 memcpy(req
->result
, ctx
->digest
, SHA512_DIGEST_SIZE
);
984 static int atmel_sha_finish(struct ahash_request
*req
)
986 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
987 struct atmel_sha_dev
*dd
= ctx
->dd
;
989 if (ctx
->digcnt
[0] || ctx
->digcnt
[1])
990 atmel_sha_copy_ready_hash(req
);
992 dev_dbg(dd
->dev
, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx
->digcnt
[1],
993 ctx
->digcnt
[0], ctx
->bufcnt
);
998 static void atmel_sha_finish_req(struct ahash_request
*req
, int err
)
1000 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1001 struct atmel_sha_dev
*dd
= ctx
->dd
;
1004 atmel_sha_copy_hash(req
);
1005 if (SHA_FLAGS_FINAL
& dd
->flags
)
1006 err
= atmel_sha_finish(req
);
1008 ctx
->flags
|= SHA_FLAGS_ERROR
;
1011 /* atomic operation is not needed here */
1012 (void)atmel_sha_complete(dd
, err
);
1015 static int atmel_sha_hw_init(struct atmel_sha_dev
*dd
)
1019 err
= clk_enable(dd
->iclk
);
1023 if (!(SHA_FLAGS_INIT
& dd
->flags
)) {
1024 atmel_sha_write(dd
, SHA_CR
, SHA_CR_SWRST
);
1025 dd
->flags
|= SHA_FLAGS_INIT
;
1031 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev
*dd
)
1033 return atmel_sha_read(dd
, SHA_HW_VERSION
) & 0x00000fff;
1036 static int atmel_sha_hw_version_init(struct atmel_sha_dev
*dd
)
1040 err
= atmel_sha_hw_init(dd
);
1044 dd
->hw_version
= atmel_sha_get_version(dd
);
1047 "version: 0x%x\n", dd
->hw_version
);
1049 clk_disable(dd
->iclk
);
1054 static int atmel_sha_handle_queue(struct atmel_sha_dev
*dd
,
1055 struct ahash_request
*req
)
1057 struct crypto_async_request
*async_req
, *backlog
;
1058 struct atmel_sha_ctx
*ctx
;
1059 unsigned long flags
;
1061 int err
= 0, ret
= 0;
1063 spin_lock_irqsave(&dd
->lock
, flags
);
1065 ret
= ahash_enqueue_request(&dd
->queue
, req
);
1067 if (SHA_FLAGS_BUSY
& dd
->flags
) {
1068 spin_unlock_irqrestore(&dd
->lock
, flags
);
1072 backlog
= crypto_get_backlog(&dd
->queue
);
1073 async_req
= crypto_dequeue_request(&dd
->queue
);
1075 dd
->flags
|= SHA_FLAGS_BUSY
;
1077 spin_unlock_irqrestore(&dd
->lock
, flags
);
1083 backlog
->complete(backlog
, -EINPROGRESS
);
1085 ctx
= crypto_tfm_ctx(async_req
->tfm
);
1087 dd
->req
= ahash_request_cast(async_req
);
1088 start_async
= (dd
->req
!= req
);
1089 dd
->is_async
= start_async
;
1090 dd
->force_complete
= false;
1092 /* WARNING: ctx->start() MAY change dd->is_async. */
1093 err
= ctx
->start(dd
);
1094 return (start_async
) ? ret
: err
;
1097 static int atmel_sha_done(struct atmel_sha_dev
*dd
);
1099 static int atmel_sha_start(struct atmel_sha_dev
*dd
)
1101 struct ahash_request
*req
= dd
->req
;
1102 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1105 dev_dbg(dd
->dev
, "handling new req, op: %lu, nbytes: %d\n",
1106 ctx
->op
, req
->nbytes
);
1108 err
= atmel_sha_hw_init(dd
);
1110 return atmel_sha_complete(dd
, err
);
1113 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114 * -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115 * its job later in the done_task.
1116 * This is the main path.
1118 * 0: the SHA driver can continue its job then release the hardware
1119 * later, if needed, with atmel_sha_finish_req().
1120 * This is the alternate path.
1122 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123 * been called, hence the hardware has been released.
1124 * The SHA driver must stop its job without calling
1125 * atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126 * called a second time.
1128 * Please note that currently, atmel_sha_final_req() never returns 0.
1131 dd
->resume
= atmel_sha_done
;
1132 if (ctx
->op
== SHA_OP_UPDATE
) {
1133 err
= atmel_sha_update_req(dd
);
1134 if (!err
&& (ctx
->flags
& SHA_FLAGS_FINUP
))
1135 /* no final() after finup() */
1136 err
= atmel_sha_final_req(dd
);
1137 } else if (ctx
->op
== SHA_OP_FINAL
) {
1138 err
= atmel_sha_final_req(dd
);
1142 /* done_task will not finish it, so do it here */
1143 atmel_sha_finish_req(req
, err
);
1145 dev_dbg(dd
->dev
, "exit, err: %d\n", err
);
1150 static int atmel_sha_enqueue(struct ahash_request
*req
, unsigned int op
)
1152 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1153 struct atmel_sha_ctx
*tctx
= crypto_tfm_ctx(req
->base
.tfm
);
1154 struct atmel_sha_dev
*dd
= tctx
->dd
;
1158 return atmel_sha_handle_queue(dd
, req
);
1161 static int atmel_sha_update(struct ahash_request
*req
)
1163 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1168 ctx
->total
= req
->nbytes
;
1172 if (ctx
->flags
& SHA_FLAGS_FINUP
) {
1173 if (ctx
->bufcnt
+ ctx
->total
< ATMEL_SHA_DMA_THRESHOLD
)
1174 /* faster to use CPU for short transfers */
1175 ctx
->flags
|= SHA_FLAGS_CPU
;
1176 } else if (ctx
->bufcnt
+ ctx
->total
< ctx
->buflen
) {
1177 atmel_sha_append_sg(ctx
);
1180 return atmel_sha_enqueue(req
, SHA_OP_UPDATE
);
1183 static int atmel_sha_final(struct ahash_request
*req
)
1185 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1187 ctx
->flags
|= SHA_FLAGS_FINUP
;
1189 if (ctx
->flags
& SHA_FLAGS_ERROR
)
1190 return 0; /* uncompleted hash is not needed */
1192 if (ctx
->flags
& SHA_FLAGS_PAD
)
1193 /* copy ready hash (+ finalize hmac) */
1194 return atmel_sha_finish(req
);
1196 return atmel_sha_enqueue(req
, SHA_OP_FINAL
);
1199 static int atmel_sha_finup(struct ahash_request
*req
)
1201 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1204 ctx
->flags
|= SHA_FLAGS_FINUP
;
1206 err1
= atmel_sha_update(req
);
1207 if (err1
== -EINPROGRESS
||
1208 (err1
== -EBUSY
&& (ahash_request_flags(req
) &
1209 CRYPTO_TFM_REQ_MAY_BACKLOG
)))
1213 * final() has to be always called to cleanup resources
1214 * even if udpate() failed, except EINPROGRESS
1216 err2
= atmel_sha_final(req
);
1218 return err1
?: err2
;
1221 static int atmel_sha_digest(struct ahash_request
*req
)
1223 return atmel_sha_init(req
) ?: atmel_sha_finup(req
);
1227 static int atmel_sha_export(struct ahash_request
*req
, void *out
)
1229 const struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1231 memcpy(out
, ctx
, sizeof(*ctx
));
1235 static int atmel_sha_import(struct ahash_request
*req
, const void *in
)
1237 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1239 memcpy(ctx
, in
, sizeof(*ctx
));
1243 static int atmel_sha_cra_init(struct crypto_tfm
*tfm
)
1245 struct atmel_sha_ctx
*ctx
= crypto_tfm_ctx(tfm
);
1247 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
1248 sizeof(struct atmel_sha_reqctx
));
1249 ctx
->start
= atmel_sha_start
;
1254 static void atmel_sha_alg_init(struct ahash_alg
*alg
)
1256 alg
->halg
.base
.cra_priority
= ATMEL_SHA_PRIORITY
;
1257 alg
->halg
.base
.cra_flags
= CRYPTO_ALG_ASYNC
;
1258 alg
->halg
.base
.cra_ctxsize
= sizeof(struct atmel_sha_ctx
);
1259 alg
->halg
.base
.cra_module
= THIS_MODULE
;
1260 alg
->halg
.base
.cra_init
= atmel_sha_cra_init
;
1262 alg
->halg
.statesize
= sizeof(struct atmel_sha_reqctx
);
1264 alg
->init
= atmel_sha_init
;
1265 alg
->update
= atmel_sha_update
;
1266 alg
->final
= atmel_sha_final
;
1267 alg
->finup
= atmel_sha_finup
;
1268 alg
->digest
= atmel_sha_digest
;
1269 alg
->export
= atmel_sha_export
;
1270 alg
->import
= atmel_sha_import
;
1273 static struct ahash_alg sha_1_256_algs
[] = {
1275 .halg
.base
.cra_name
= "sha1",
1276 .halg
.base
.cra_driver_name
= "atmel-sha1",
1277 .halg
.base
.cra_blocksize
= SHA1_BLOCK_SIZE
,
1279 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
1282 .halg
.base
.cra_name
= "sha256",
1283 .halg
.base
.cra_driver_name
= "atmel-sha256",
1284 .halg
.base
.cra_blocksize
= SHA256_BLOCK_SIZE
,
1286 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
1290 static struct ahash_alg sha_224_alg
= {
1291 .halg
.base
.cra_name
= "sha224",
1292 .halg
.base
.cra_driver_name
= "atmel-sha224",
1293 .halg
.base
.cra_blocksize
= SHA224_BLOCK_SIZE
,
1295 .halg
.digestsize
= SHA224_DIGEST_SIZE
,
1298 static struct ahash_alg sha_384_512_algs
[] = {
1300 .halg
.base
.cra_name
= "sha384",
1301 .halg
.base
.cra_driver_name
= "atmel-sha384",
1302 .halg
.base
.cra_blocksize
= SHA384_BLOCK_SIZE
,
1303 .halg
.base
.cra_alignmask
= 0x3,
1305 .halg
.digestsize
= SHA384_DIGEST_SIZE
,
1308 .halg
.base
.cra_name
= "sha512",
1309 .halg
.base
.cra_driver_name
= "atmel-sha512",
1310 .halg
.base
.cra_blocksize
= SHA512_BLOCK_SIZE
,
1311 .halg
.base
.cra_alignmask
= 0x3,
1313 .halg
.digestsize
= SHA512_DIGEST_SIZE
,
1317 static void atmel_sha_queue_task(unsigned long data
)
1319 struct atmel_sha_dev
*dd
= (struct atmel_sha_dev
*)data
;
1321 atmel_sha_handle_queue(dd
, NULL
);
1324 static int atmel_sha_done(struct atmel_sha_dev
*dd
)
1328 if (SHA_FLAGS_CPU
& dd
->flags
) {
1329 if (SHA_FLAGS_OUTPUT_READY
& dd
->flags
) {
1330 dd
->flags
&= ~SHA_FLAGS_OUTPUT_READY
;
1333 } else if (SHA_FLAGS_DMA_READY
& dd
->flags
) {
1334 if (SHA_FLAGS_DMA_ACTIVE
& dd
->flags
) {
1335 dd
->flags
&= ~SHA_FLAGS_DMA_ACTIVE
;
1336 atmel_sha_update_dma_stop(dd
);
1338 if (SHA_FLAGS_OUTPUT_READY
& dd
->flags
) {
1339 /* hash or semi-hash ready */
1340 dd
->flags
&= ~(SHA_FLAGS_DMA_READY
|
1341 SHA_FLAGS_OUTPUT_READY
);
1342 err
= atmel_sha_update_dma_start(dd
);
1343 if (err
!= -EINPROGRESS
)
1350 /* finish curent request */
1351 atmel_sha_finish_req(dd
->req
, err
);
1356 static void atmel_sha_done_task(unsigned long data
)
1358 struct atmel_sha_dev
*dd
= (struct atmel_sha_dev
*)data
;
1360 dd
->is_async
= true;
1361 (void)dd
->resume(dd
);
1364 static irqreturn_t
atmel_sha_irq(int irq
, void *dev_id
)
1366 struct atmel_sha_dev
*sha_dd
= dev_id
;
1369 reg
= atmel_sha_read(sha_dd
, SHA_ISR
);
1370 if (reg
& atmel_sha_read(sha_dd
, SHA_IMR
)) {
1371 atmel_sha_write(sha_dd
, SHA_IDR
, reg
);
1372 if (SHA_FLAGS_BUSY
& sha_dd
->flags
) {
1373 sha_dd
->flags
|= SHA_FLAGS_OUTPUT_READY
;
1374 if (!(SHA_FLAGS_CPU
& sha_dd
->flags
))
1375 sha_dd
->flags
|= SHA_FLAGS_DMA_READY
;
1376 tasklet_schedule(&sha_dd
->done_task
);
1378 dev_warn(sha_dd
->dev
, "SHA interrupt when no active requests.\n");
1387 /* DMA transfer functions */
1389 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev
*dd
,
1390 struct scatterlist
*sg
,
1393 struct atmel_sha_dma
*dma
= &dd
->dma_lch_in
;
1394 struct ahash_request
*req
= dd
->req
;
1395 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1396 size_t bs
= ctx
->block_size
;
1399 for (nents
= 0; sg
; sg
= sg_next(sg
), ++nents
) {
1400 if (!IS_ALIGNED(sg
->offset
, sizeof(u32
)))
1404 * This is the last sg, the only one that is allowed to
1405 * have an unaligned length.
1407 if (len
<= sg
->length
) {
1408 dma
->nents
= nents
+ 1;
1409 dma
->last_sg_length
= sg
->length
;
1410 sg
->length
= ALIGN(len
, sizeof(u32
));
1414 /* All other sg lengths MUST be aligned to the block size. */
1415 if (!IS_ALIGNED(sg
->length
, bs
))
1424 static void atmel_sha_dma_callback2(void *data
)
1426 struct atmel_sha_dev
*dd
= data
;
1427 struct atmel_sha_dma
*dma
= &dd
->dma_lch_in
;
1428 struct scatterlist
*sg
;
1431 dma_unmap_sg(dd
->dev
, dma
->sg
, dma
->nents
, DMA_TO_DEVICE
);
1434 for (nents
= 0; nents
< dma
->nents
- 1; ++nents
)
1436 sg
->length
= dma
->last_sg_length
;
1438 dd
->is_async
= true;
1439 (void)atmel_sha_wait_for_data_ready(dd
, dd
->resume
);
1442 static int atmel_sha_dma_start(struct atmel_sha_dev
*dd
,
1443 struct scatterlist
*src
,
1445 atmel_sha_fn_t resume
)
1447 struct atmel_sha_dma
*dma
= &dd
->dma_lch_in
;
1448 struct dma_slave_config
*config
= &dma
->dma_conf
;
1449 struct dma_chan
*chan
= dma
->chan
;
1450 struct dma_async_tx_descriptor
*desc
;
1451 dma_cookie_t cookie
;
1452 unsigned int sg_len
;
1455 dd
->resume
= resume
;
1458 * dma->nents has already been initialized by
1459 * atmel_sha_dma_check_aligned().
1462 sg_len
= dma_map_sg(dd
->dev
, dma
->sg
, dma
->nents
, DMA_TO_DEVICE
);
1468 config
->src_maxburst
= 16;
1469 config
->dst_maxburst
= 16;
1470 err
= dmaengine_slave_config(chan
, config
);
1474 desc
= dmaengine_prep_slave_sg(chan
, dma
->sg
, sg_len
, DMA_MEM_TO_DEV
,
1475 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1481 desc
->callback
= atmel_sha_dma_callback2
;
1482 desc
->callback_param
= dd
;
1483 cookie
= dmaengine_submit(desc
);
1484 err
= dma_submit_error(cookie
);
1488 dma_async_issue_pending(chan
);
1490 return -EINPROGRESS
;
1493 dma_unmap_sg(dd
->dev
, dma
->sg
, dma
->nents
, DMA_TO_DEVICE
);
1495 return atmel_sha_complete(dd
, err
);
1499 /* CPU transfer functions */
1501 static int atmel_sha_cpu_transfer(struct atmel_sha_dev
*dd
)
1503 struct ahash_request
*req
= dd
->req
;
1504 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1505 const u32
*words
= (const u32
*)ctx
->buffer
;
1506 size_t i
, num_words
;
1507 u32 isr
, din
, din_inc
;
1509 din_inc
= (ctx
->flags
& SHA_FLAGS_IDATAR0
) ? 0 : 1;
1511 /* Write data into the Input Data Registers. */
1512 num_words
= DIV_ROUND_UP(ctx
->bufcnt
, sizeof(u32
));
1513 for (i
= 0, din
= 0; i
< num_words
; ++i
, din
+= din_inc
)
1514 atmel_sha_write(dd
, SHA_REG_DIN(din
), words
[i
]);
1516 ctx
->offset
+= ctx
->bufcnt
;
1517 ctx
->total
-= ctx
->bufcnt
;
1523 * Prepare next block:
1524 * Fill ctx->buffer now with the next data to be written into
1525 * IDATARx: it gives time for the SHA hardware to process
1526 * the current data so the SHA_INT_DATARDY flag might be set
1527 * in SHA_ISR when polling this register at the beginning of
1530 ctx
->bufcnt
= min_t(size_t, ctx
->block_size
, ctx
->total
);
1531 scatterwalk_map_and_copy(ctx
->buffer
, ctx
->sg
,
1532 ctx
->offset
, ctx
->bufcnt
, 0);
1534 /* Wait for hardware to be ready again. */
1535 isr
= atmel_sha_read(dd
, SHA_ISR
);
1536 if (!(isr
& SHA_INT_DATARDY
)) {
1537 /* Not ready yet. */
1538 dd
->resume
= atmel_sha_cpu_transfer
;
1539 atmel_sha_write(dd
, SHA_IER
, SHA_INT_DATARDY
);
1540 return -EINPROGRESS
;
1544 if (unlikely(!(ctx
->flags
& SHA_FLAGS_WAIT_DATARDY
)))
1545 return dd
->cpu_transfer_complete(dd
);
1547 return atmel_sha_wait_for_data_ready(dd
, dd
->cpu_transfer_complete
);
1550 static int atmel_sha_cpu_start(struct atmel_sha_dev
*dd
,
1551 struct scatterlist
*sg
,
1554 bool wait_data_ready
,
1555 atmel_sha_fn_t resume
)
1557 struct ahash_request
*req
= dd
->req
;
1558 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1563 ctx
->flags
&= ~(SHA_FLAGS_IDATAR0
| SHA_FLAGS_WAIT_DATARDY
);
1566 ctx
->flags
|= SHA_FLAGS_IDATAR0
;
1568 if (wait_data_ready
)
1569 ctx
->flags
|= SHA_FLAGS_WAIT_DATARDY
;
1575 /* Prepare the first block to be written. */
1576 ctx
->bufcnt
= min_t(size_t, ctx
->block_size
, ctx
->total
);
1577 scatterwalk_map_and_copy(ctx
->buffer
, ctx
->sg
,
1578 ctx
->offset
, ctx
->bufcnt
, 0);
1580 dd
->cpu_transfer_complete
= resume
;
1581 return atmel_sha_cpu_transfer(dd
);
1584 static int atmel_sha_cpu_hash(struct atmel_sha_dev
*dd
,
1585 const void *data
, unsigned int datalen
,
1587 atmel_sha_fn_t resume
)
1589 struct ahash_request
*req
= dd
->req
;
1590 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1591 u32 msglen
= (auto_padding
) ? datalen
: 0;
1592 u32 mr
= SHA_MR_MODE_AUTO
;
1594 if (!(IS_ALIGNED(datalen
, ctx
->block_size
) || auto_padding
))
1595 return atmel_sha_complete(dd
, -EINVAL
);
1597 mr
|= (ctx
->flags
& SHA_FLAGS_ALGO_MASK
);
1598 atmel_sha_write(dd
, SHA_MR
, mr
);
1599 atmel_sha_write(dd
, SHA_MSR
, msglen
);
1600 atmel_sha_write(dd
, SHA_BCR
, msglen
);
1601 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
1603 sg_init_one(&dd
->tmp
, data
, datalen
);
1604 return atmel_sha_cpu_start(dd
, &dd
->tmp
, datalen
, false, true, resume
);
1608 /* hmac functions */
1610 struct atmel_sha_hmac_key
{
1612 unsigned int keylen
;
1613 u8 buffer
[SHA512_BLOCK_SIZE
];
1617 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key
*hkey
)
1619 memset(hkey
, 0, sizeof(*hkey
));
1622 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key
*hkey
)
1624 kfree(hkey
->keydup
);
1625 memset(hkey
, 0, sizeof(*hkey
));
1628 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key
*hkey
,
1630 unsigned int keylen
)
1632 atmel_sha_hmac_key_release(hkey
);
1634 if (keylen
> sizeof(hkey
->buffer
)) {
1635 hkey
->keydup
= kmemdup(key
, keylen
, GFP_KERNEL
);
1640 memcpy(hkey
->buffer
, key
, keylen
);
1644 hkey
->keylen
= keylen
;
1648 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key
*hkey
,
1650 unsigned int *keylen
)
1655 *keylen
= hkey
->keylen
;
1656 *key
= (hkey
->keydup
) ? hkey
->keydup
: hkey
->buffer
;
1661 struct atmel_sha_hmac_ctx
{
1662 struct atmel_sha_ctx base
;
1664 struct atmel_sha_hmac_key hkey
;
1665 u32 ipad
[SHA512_BLOCK_SIZE
/ sizeof(u32
)];
1666 u32 opad
[SHA512_BLOCK_SIZE
/ sizeof(u32
)];
1667 atmel_sha_fn_t resume
;
1670 static int atmel_sha_hmac_setup(struct atmel_sha_dev
*dd
,
1671 atmel_sha_fn_t resume
);
1672 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev
*dd
,
1673 const u8
*key
, unsigned int keylen
);
1674 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev
*dd
);
1675 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev
*dd
);
1676 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev
*dd
);
1677 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev
*dd
);
1679 static int atmel_sha_hmac_init_done(struct atmel_sha_dev
*dd
);
1680 static int atmel_sha_hmac_final(struct atmel_sha_dev
*dd
);
1681 static int atmel_sha_hmac_final_done(struct atmel_sha_dev
*dd
);
1682 static int atmel_sha_hmac_digest2(struct atmel_sha_dev
*dd
);
1684 static int atmel_sha_hmac_setup(struct atmel_sha_dev
*dd
,
1685 atmel_sha_fn_t resume
)
1687 struct ahash_request
*req
= dd
->req
;
1688 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1689 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1690 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1691 unsigned int keylen
;
1695 hmac
->resume
= resume
;
1696 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
1697 case SHA_FLAGS_SHA1
:
1698 ctx
->block_size
= SHA1_BLOCK_SIZE
;
1699 ctx
->hash_size
= SHA1_DIGEST_SIZE
;
1702 case SHA_FLAGS_SHA224
:
1703 ctx
->block_size
= SHA224_BLOCK_SIZE
;
1704 ctx
->hash_size
= SHA256_DIGEST_SIZE
;
1707 case SHA_FLAGS_SHA256
:
1708 ctx
->block_size
= SHA256_BLOCK_SIZE
;
1709 ctx
->hash_size
= SHA256_DIGEST_SIZE
;
1712 case SHA_FLAGS_SHA384
:
1713 ctx
->block_size
= SHA384_BLOCK_SIZE
;
1714 ctx
->hash_size
= SHA512_DIGEST_SIZE
;
1717 case SHA_FLAGS_SHA512
:
1718 ctx
->block_size
= SHA512_BLOCK_SIZE
;
1719 ctx
->hash_size
= SHA512_DIGEST_SIZE
;
1723 return atmel_sha_complete(dd
, -EINVAL
);
1725 bs
= ctx
->block_size
;
1727 if (likely(!atmel_sha_hmac_key_get(&hmac
->hkey
, &key
, &keylen
)))
1730 /* Compute K' from K. */
1731 if (unlikely(keylen
> bs
))
1732 return atmel_sha_hmac_prehash_key(dd
, key
, keylen
);
1735 memcpy((u8
*)hmac
->ipad
, key
, keylen
);
1736 memset((u8
*)hmac
->ipad
+ keylen
, 0, bs
- keylen
);
1737 return atmel_sha_hmac_compute_ipad_hash(dd
);
1740 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev
*dd
,
1741 const u8
*key
, unsigned int keylen
)
1743 return atmel_sha_cpu_hash(dd
, key
, keylen
, true,
1744 atmel_sha_hmac_prehash_key_done
);
1747 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev
*dd
)
1749 struct ahash_request
*req
= dd
->req
;
1750 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1751 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1752 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1753 size_t ds
= crypto_ahash_digestsize(tfm
);
1754 size_t bs
= ctx
->block_size
;
1755 size_t i
, num_words
= ds
/ sizeof(u32
);
1758 for (i
= 0; i
< num_words
; ++i
)
1759 hmac
->ipad
[i
] = atmel_sha_read(dd
, SHA_REG_DIGEST(i
));
1760 memset((u8
*)hmac
->ipad
+ ds
, 0, bs
- ds
);
1761 return atmel_sha_hmac_compute_ipad_hash(dd
);
1764 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev
*dd
)
1766 struct ahash_request
*req
= dd
->req
;
1767 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1768 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1769 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1770 size_t bs
= ctx
->block_size
;
1771 size_t i
, num_words
= bs
/ sizeof(u32
);
1773 memcpy(hmac
->opad
, hmac
->ipad
, bs
);
1774 for (i
= 0; i
< num_words
; ++i
) {
1775 hmac
->ipad
[i
] ^= 0x36363636;
1776 hmac
->opad
[i
] ^= 0x5c5c5c5c;
1779 return atmel_sha_cpu_hash(dd
, hmac
->ipad
, bs
, false,
1780 atmel_sha_hmac_compute_opad_hash
);
1783 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev
*dd
)
1785 struct ahash_request
*req
= dd
->req
;
1786 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1787 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1788 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1789 size_t bs
= ctx
->block_size
;
1790 size_t hs
= ctx
->hash_size
;
1791 size_t i
, num_words
= hs
/ sizeof(u32
);
1793 for (i
= 0; i
< num_words
; ++i
)
1794 hmac
->ipad
[i
] = atmel_sha_read(dd
, SHA_REG_DIGEST(i
));
1795 return atmel_sha_cpu_hash(dd
, hmac
->opad
, bs
, false,
1796 atmel_sha_hmac_setup_done
);
1799 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev
*dd
)
1801 struct ahash_request
*req
= dd
->req
;
1802 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1803 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1804 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1805 size_t hs
= ctx
->hash_size
;
1806 size_t i
, num_words
= hs
/ sizeof(u32
);
1808 for (i
= 0; i
< num_words
; ++i
)
1809 hmac
->opad
[i
] = atmel_sha_read(dd
, SHA_REG_DIGEST(i
));
1810 atmel_sha_hmac_key_release(&hmac
->hkey
);
1811 return hmac
->resume(dd
);
1814 static int atmel_sha_hmac_start(struct atmel_sha_dev
*dd
)
1816 struct ahash_request
*req
= dd
->req
;
1817 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1820 err
= atmel_sha_hw_init(dd
);
1822 return atmel_sha_complete(dd
, err
);
1826 err
= atmel_sha_hmac_setup(dd
, atmel_sha_hmac_init_done
);
1830 dd
->resume
= atmel_sha_done
;
1831 err
= atmel_sha_update_req(dd
);
1835 dd
->resume
= atmel_sha_hmac_final
;
1836 err
= atmel_sha_final_req(dd
);
1840 err
= atmel_sha_hmac_setup(dd
, atmel_sha_hmac_digest2
);
1844 return atmel_sha_complete(dd
, -EINVAL
);
1850 static int atmel_sha_hmac_setkey(struct crypto_ahash
*tfm
, const u8
*key
,
1851 unsigned int keylen
)
1853 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1855 return atmel_sha_hmac_key_set(&hmac
->hkey
, key
, keylen
);
1858 static int atmel_sha_hmac_init(struct ahash_request
*req
)
1862 err
= atmel_sha_init(req
);
1866 return atmel_sha_enqueue(req
, SHA_OP_INIT
);
1869 static int atmel_sha_hmac_init_done(struct atmel_sha_dev
*dd
)
1871 struct ahash_request
*req
= dd
->req
;
1872 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1873 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1874 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1875 size_t bs
= ctx
->block_size
;
1876 size_t hs
= ctx
->hash_size
;
1879 ctx
->digcnt
[0] = bs
;
1881 ctx
->flags
|= SHA_FLAGS_RESTORE
;
1882 memcpy(ctx
->digest
, hmac
->ipad
, hs
);
1883 return atmel_sha_complete(dd
, 0);
1886 static int atmel_sha_hmac_final(struct atmel_sha_dev
*dd
)
1888 struct ahash_request
*req
= dd
->req
;
1889 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1890 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1891 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1892 u32
*digest
= (u32
*)ctx
->digest
;
1893 size_t ds
= crypto_ahash_digestsize(tfm
);
1894 size_t bs
= ctx
->block_size
;
1895 size_t hs
= ctx
->hash_size
;
1896 size_t i
, num_words
;
1899 /* Save d = SHA((K' + ipad) | msg). */
1900 num_words
= ds
/ sizeof(u32
);
1901 for (i
= 0; i
< num_words
; ++i
)
1902 digest
[i
] = atmel_sha_read(dd
, SHA_REG_DIGEST(i
));
1904 /* Restore context to finish computing SHA((K' + opad) | d). */
1905 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIHV
);
1906 num_words
= hs
/ sizeof(u32
);
1907 for (i
= 0; i
< num_words
; ++i
)
1908 atmel_sha_write(dd
, SHA_REG_DIN(i
), hmac
->opad
[i
]);
1910 mr
= SHA_MR_MODE_AUTO
| SHA_MR_UIHV
;
1911 mr
|= (ctx
->flags
& SHA_FLAGS_ALGO_MASK
);
1912 atmel_sha_write(dd
, SHA_MR
, mr
);
1913 atmel_sha_write(dd
, SHA_MSR
, bs
+ ds
);
1914 atmel_sha_write(dd
, SHA_BCR
, ds
);
1915 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
1917 sg_init_one(&dd
->tmp
, digest
, ds
);
1918 return atmel_sha_cpu_start(dd
, &dd
->tmp
, ds
, false, true,
1919 atmel_sha_hmac_final_done
);
1922 static int atmel_sha_hmac_final_done(struct atmel_sha_dev
*dd
)
1925 * req->result might not be sizeof(u32) aligned, so copy the
1926 * digest into ctx->digest[] before memcpy() the data into
1929 atmel_sha_copy_hash(dd
->req
);
1930 atmel_sha_copy_ready_hash(dd
->req
);
1931 return atmel_sha_complete(dd
, 0);
1934 static int atmel_sha_hmac_digest(struct ahash_request
*req
)
1938 err
= atmel_sha_init(req
);
1942 return atmel_sha_enqueue(req
, SHA_OP_DIGEST
);
1945 static int atmel_sha_hmac_digest2(struct atmel_sha_dev
*dd
)
1947 struct ahash_request
*req
= dd
->req
;
1948 struct atmel_sha_reqctx
*ctx
= ahash_request_ctx(req
);
1949 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1950 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
1951 size_t hs
= ctx
->hash_size
;
1952 size_t i
, num_words
= hs
/ sizeof(u32
);
1953 bool use_dma
= false;
1956 /* Special case for empty message. */
1958 return atmel_sha_complete(dd
, -EINVAL
); // TODO:
1960 /* Check DMA threshold and alignment. */
1961 if (req
->nbytes
> ATMEL_SHA_DMA_THRESHOLD
&&
1962 atmel_sha_dma_check_aligned(dd
, req
->src
, req
->nbytes
))
1965 /* Write both initial hash values to compute a HMAC. */
1966 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIHV
);
1967 for (i
= 0; i
< num_words
; ++i
)
1968 atmel_sha_write(dd
, SHA_REG_DIN(i
), hmac
->ipad
[i
]);
1970 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIEHV
);
1971 for (i
= 0; i
< num_words
; ++i
)
1972 atmel_sha_write(dd
, SHA_REG_DIN(i
), hmac
->opad
[i
]);
1974 /* Write the Mode, Message Size, Bytes Count then Control Registers. */
1975 mr
= (SHA_MR_HMAC
| SHA_MR_DUALBUFF
);
1976 mr
|= ctx
->flags
& SHA_FLAGS_ALGO_MASK
;
1978 mr
|= SHA_MR_MODE_IDATAR0
;
1980 mr
|= SHA_MR_MODE_AUTO
;
1981 atmel_sha_write(dd
, SHA_MR
, mr
);
1983 atmel_sha_write(dd
, SHA_MSR
, req
->nbytes
);
1984 atmel_sha_write(dd
, SHA_BCR
, req
->nbytes
);
1986 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
1990 return atmel_sha_dma_start(dd
, req
->src
, req
->nbytes
,
1991 atmel_sha_hmac_final_done
);
1993 return atmel_sha_cpu_start(dd
, req
->src
, req
->nbytes
, false, true,
1994 atmel_sha_hmac_final_done
);
1997 static int atmel_sha_hmac_cra_init(struct crypto_tfm
*tfm
)
1999 struct atmel_sha_hmac_ctx
*hmac
= crypto_tfm_ctx(tfm
);
2001 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
2002 sizeof(struct atmel_sha_reqctx
));
2003 hmac
->base
.start
= atmel_sha_hmac_start
;
2004 atmel_sha_hmac_key_init(&hmac
->hkey
);
2009 static void atmel_sha_hmac_cra_exit(struct crypto_tfm
*tfm
)
2011 struct atmel_sha_hmac_ctx
*hmac
= crypto_tfm_ctx(tfm
);
2013 atmel_sha_hmac_key_release(&hmac
->hkey
);
2016 static void atmel_sha_hmac_alg_init(struct ahash_alg
*alg
)
2018 alg
->halg
.base
.cra_priority
= ATMEL_SHA_PRIORITY
;
2019 alg
->halg
.base
.cra_flags
= CRYPTO_ALG_ASYNC
;
2020 alg
->halg
.base
.cra_ctxsize
= sizeof(struct atmel_sha_hmac_ctx
);
2021 alg
->halg
.base
.cra_module
= THIS_MODULE
;
2022 alg
->halg
.base
.cra_init
= atmel_sha_hmac_cra_init
;
2023 alg
->halg
.base
.cra_exit
= atmel_sha_hmac_cra_exit
;
2025 alg
->halg
.statesize
= sizeof(struct atmel_sha_reqctx
);
2027 alg
->init
= atmel_sha_hmac_init
;
2028 alg
->update
= atmel_sha_update
;
2029 alg
->final
= atmel_sha_final
;
2030 alg
->digest
= atmel_sha_hmac_digest
;
2031 alg
->setkey
= atmel_sha_hmac_setkey
;
2032 alg
->export
= atmel_sha_export
;
2033 alg
->import
= atmel_sha_import
;
2036 static struct ahash_alg sha_hmac_algs
[] = {
2038 .halg
.base
.cra_name
= "hmac(sha1)",
2039 .halg
.base
.cra_driver_name
= "atmel-hmac-sha1",
2040 .halg
.base
.cra_blocksize
= SHA1_BLOCK_SIZE
,
2042 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
2045 .halg
.base
.cra_name
= "hmac(sha224)",
2046 .halg
.base
.cra_driver_name
= "atmel-hmac-sha224",
2047 .halg
.base
.cra_blocksize
= SHA224_BLOCK_SIZE
,
2049 .halg
.digestsize
= SHA224_DIGEST_SIZE
,
2052 .halg
.base
.cra_name
= "hmac(sha256)",
2053 .halg
.base
.cra_driver_name
= "atmel-hmac-sha256",
2054 .halg
.base
.cra_blocksize
= SHA256_BLOCK_SIZE
,
2056 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
2059 .halg
.base
.cra_name
= "hmac(sha384)",
2060 .halg
.base
.cra_driver_name
= "atmel-hmac-sha384",
2061 .halg
.base
.cra_blocksize
= SHA384_BLOCK_SIZE
,
2063 .halg
.digestsize
= SHA384_DIGEST_SIZE
,
2066 .halg
.base
.cra_name
= "hmac(sha512)",
2067 .halg
.base
.cra_driver_name
= "atmel-hmac-sha512",
2068 .halg
.base
.cra_blocksize
= SHA512_BLOCK_SIZE
,
2070 .halg
.digestsize
= SHA512_DIGEST_SIZE
,
2074 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2075 /* authenc functions */
2077 static int atmel_sha_authenc_init2(struct atmel_sha_dev
*dd
);
2078 static int atmel_sha_authenc_init_done(struct atmel_sha_dev
*dd
);
2079 static int atmel_sha_authenc_final_done(struct atmel_sha_dev
*dd
);
2082 struct atmel_sha_authenc_ctx
{
2083 struct crypto_ahash
*tfm
;
2086 struct atmel_sha_authenc_reqctx
{
2087 struct atmel_sha_reqctx base
;
2089 atmel_aes_authenc_fn_t cb
;
2090 struct atmel_aes_dev
*aes_dev
;
2092 /* _init() parameters. */
2093 struct scatterlist
*assoc
;
2097 /* _final() parameters. */
2099 unsigned int digestlen
;
2102 static void atmel_sha_authenc_complete(struct crypto_async_request
*areq
,
2105 struct ahash_request
*req
= areq
->data
;
2106 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2108 authctx
->cb(authctx
->aes_dev
, err
, authctx
->base
.dd
->is_async
);
2111 static int atmel_sha_authenc_start(struct atmel_sha_dev
*dd
)
2113 struct ahash_request
*req
= dd
->req
;
2114 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2118 * Force atmel_sha_complete() to call req->base.complete(), ie
2119 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2121 dd
->force_complete
= true;
2123 err
= atmel_sha_hw_init(dd
);
2124 return authctx
->cb(authctx
->aes_dev
, err
, dd
->is_async
);
2127 bool atmel_sha_authenc_is_ready(void)
2129 struct atmel_sha_ctx dummy
;
2132 return (atmel_sha_find_dev(&dummy
) != NULL
);
2134 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready
);
2136 unsigned int atmel_sha_authenc_get_reqsize(void)
2138 return sizeof(struct atmel_sha_authenc_reqctx
);
2140 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize
);
2142 struct atmel_sha_authenc_ctx
*atmel_sha_authenc_spawn(unsigned long mode
)
2144 struct atmel_sha_authenc_ctx
*auth
;
2145 struct crypto_ahash
*tfm
;
2146 struct atmel_sha_ctx
*tctx
;
2150 switch (mode
& SHA_FLAGS_MODE_MASK
) {
2151 case SHA_FLAGS_HMAC_SHA1
:
2152 name
= "atmel-hmac-sha1";
2155 case SHA_FLAGS_HMAC_SHA224
:
2156 name
= "atmel-hmac-sha224";
2159 case SHA_FLAGS_HMAC_SHA256
:
2160 name
= "atmel-hmac-sha256";
2163 case SHA_FLAGS_HMAC_SHA384
:
2164 name
= "atmel-hmac-sha384";
2167 case SHA_FLAGS_HMAC_SHA512
:
2168 name
= "atmel-hmac-sha512";
2175 tfm
= crypto_alloc_ahash(name
, 0, 0);
2180 tctx
= crypto_ahash_ctx(tfm
);
2181 tctx
->start
= atmel_sha_authenc_start
;
2184 auth
= kzalloc(sizeof(*auth
), GFP_KERNEL
);
2187 goto err_free_ahash
;
2194 crypto_free_ahash(tfm
);
2196 return ERR_PTR(err
);
2198 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn
);
2200 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx
*auth
)
2203 crypto_free_ahash(auth
->tfm
);
2206 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free
);
2208 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx
*auth
,
2209 const u8
*key
, unsigned int keylen
, u32 flags
)
2211 struct crypto_ahash
*tfm
= auth
->tfm
;
2213 crypto_ahash_clear_flags(tfm
, CRYPTO_TFM_REQ_MASK
);
2214 crypto_ahash_set_flags(tfm
, flags
& CRYPTO_TFM_REQ_MASK
);
2215 return crypto_ahash_setkey(tfm
, key
, keylen
);
2217 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey
);
2219 int atmel_sha_authenc_schedule(struct ahash_request
*req
,
2220 struct atmel_sha_authenc_ctx
*auth
,
2221 atmel_aes_authenc_fn_t cb
,
2222 struct atmel_aes_dev
*aes_dev
)
2224 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2225 struct atmel_sha_reqctx
*ctx
= &authctx
->base
;
2226 struct crypto_ahash
*tfm
= auth
->tfm
;
2227 struct atmel_sha_ctx
*tctx
= crypto_ahash_ctx(tfm
);
2228 struct atmel_sha_dev
*dd
;
2230 /* Reset request context (MUST be done first). */
2231 memset(authctx
, 0, sizeof(*authctx
));
2233 /* Get SHA device. */
2234 dd
= atmel_sha_find_dev(tctx
);
2236 return cb(aes_dev
, -ENODEV
, false);
2238 /* Init request context. */
2240 ctx
->buflen
= SHA_BUFFER_LEN
;
2242 authctx
->aes_dev
= aes_dev
;
2243 ahash_request_set_tfm(req
, tfm
);
2244 ahash_request_set_callback(req
, 0, atmel_sha_authenc_complete
, req
);
2246 return atmel_sha_handle_queue(dd
, req
);
2248 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule
);
2250 int atmel_sha_authenc_init(struct ahash_request
*req
,
2251 struct scatterlist
*assoc
, unsigned int assoclen
,
2252 unsigned int textlen
,
2253 atmel_aes_authenc_fn_t cb
,
2254 struct atmel_aes_dev
*aes_dev
)
2256 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2257 struct atmel_sha_reqctx
*ctx
= &authctx
->base
;
2258 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2259 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
2260 struct atmel_sha_dev
*dd
= ctx
->dd
;
2262 if (unlikely(!IS_ALIGNED(assoclen
, sizeof(u32
))))
2263 return atmel_sha_complete(dd
, -EINVAL
);
2266 authctx
->aes_dev
= aes_dev
;
2267 authctx
->assoc
= assoc
;
2268 authctx
->assoclen
= assoclen
;
2269 authctx
->textlen
= textlen
;
2271 ctx
->flags
= hmac
->base
.flags
;
2272 return atmel_sha_hmac_setup(dd
, atmel_sha_authenc_init2
);
2274 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init
);
2276 static int atmel_sha_authenc_init2(struct atmel_sha_dev
*dd
)
2278 struct ahash_request
*req
= dd
->req
;
2279 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2280 struct atmel_sha_reqctx
*ctx
= &authctx
->base
;
2281 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2282 struct atmel_sha_hmac_ctx
*hmac
= crypto_ahash_ctx(tfm
);
2283 size_t hs
= ctx
->hash_size
;
2284 size_t i
, num_words
= hs
/ sizeof(u32
);
2287 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIHV
);
2288 for (i
= 0; i
< num_words
; ++i
)
2289 atmel_sha_write(dd
, SHA_REG_DIN(i
), hmac
->ipad
[i
]);
2291 atmel_sha_write(dd
, SHA_CR
, SHA_CR_WUIEHV
);
2292 for (i
= 0; i
< num_words
; ++i
)
2293 atmel_sha_write(dd
, SHA_REG_DIN(i
), hmac
->opad
[i
]);
2295 mr
= (SHA_MR_MODE_IDATAR0
|
2298 mr
|= ctx
->flags
& SHA_FLAGS_ALGO_MASK
;
2299 atmel_sha_write(dd
, SHA_MR
, mr
);
2301 msg_size
= authctx
->assoclen
+ authctx
->textlen
;
2302 atmel_sha_write(dd
, SHA_MSR
, msg_size
);
2303 atmel_sha_write(dd
, SHA_BCR
, msg_size
);
2305 atmel_sha_write(dd
, SHA_CR
, SHA_CR_FIRST
);
2307 /* Process assoc data. */
2308 return atmel_sha_cpu_start(dd
, authctx
->assoc
, authctx
->assoclen
,
2310 atmel_sha_authenc_init_done
);
2313 static int atmel_sha_authenc_init_done(struct atmel_sha_dev
*dd
)
2315 struct ahash_request
*req
= dd
->req
;
2316 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2318 return authctx
->cb(authctx
->aes_dev
, 0, dd
->is_async
);
2321 int atmel_sha_authenc_final(struct ahash_request
*req
,
2322 u32
*digest
, unsigned int digestlen
,
2323 atmel_aes_authenc_fn_t cb
,
2324 struct atmel_aes_dev
*aes_dev
)
2326 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2327 struct atmel_sha_reqctx
*ctx
= &authctx
->base
;
2328 struct atmel_sha_dev
*dd
= ctx
->dd
;
2330 switch (ctx
->flags
& SHA_FLAGS_ALGO_MASK
) {
2331 case SHA_FLAGS_SHA1
:
2332 authctx
->digestlen
= SHA1_DIGEST_SIZE
;
2335 case SHA_FLAGS_SHA224
:
2336 authctx
->digestlen
= SHA224_DIGEST_SIZE
;
2339 case SHA_FLAGS_SHA256
:
2340 authctx
->digestlen
= SHA256_DIGEST_SIZE
;
2343 case SHA_FLAGS_SHA384
:
2344 authctx
->digestlen
= SHA384_DIGEST_SIZE
;
2347 case SHA_FLAGS_SHA512
:
2348 authctx
->digestlen
= SHA512_DIGEST_SIZE
;
2352 return atmel_sha_complete(dd
, -EINVAL
);
2354 if (authctx
->digestlen
> digestlen
)
2355 authctx
->digestlen
= digestlen
;
2358 authctx
->aes_dev
= aes_dev
;
2359 authctx
->digest
= digest
;
2360 return atmel_sha_wait_for_data_ready(dd
,
2361 atmel_sha_authenc_final_done
);
2363 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final
);
2365 static int atmel_sha_authenc_final_done(struct atmel_sha_dev
*dd
)
2367 struct ahash_request
*req
= dd
->req
;
2368 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2369 size_t i
, num_words
= authctx
->digestlen
/ sizeof(u32
);
2371 for (i
= 0; i
< num_words
; ++i
)
2372 authctx
->digest
[i
] = atmel_sha_read(dd
, SHA_REG_DIGEST(i
));
2374 return atmel_sha_complete(dd
, 0);
2377 void atmel_sha_authenc_abort(struct ahash_request
*req
)
2379 struct atmel_sha_authenc_reqctx
*authctx
= ahash_request_ctx(req
);
2380 struct atmel_sha_reqctx
*ctx
= &authctx
->base
;
2381 struct atmel_sha_dev
*dd
= ctx
->dd
;
2383 /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2384 dd
->is_async
= false;
2385 dd
->force_complete
= false;
2386 (void)atmel_sha_complete(dd
, 0);
2388 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort
);
2390 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2393 static void atmel_sha_unregister_algs(struct atmel_sha_dev
*dd
)
2397 if (dd
->caps
.has_hmac
)
2398 for (i
= 0; i
< ARRAY_SIZE(sha_hmac_algs
); i
++)
2399 crypto_unregister_ahash(&sha_hmac_algs
[i
]);
2401 for (i
= 0; i
< ARRAY_SIZE(sha_1_256_algs
); i
++)
2402 crypto_unregister_ahash(&sha_1_256_algs
[i
]);
2404 if (dd
->caps
.has_sha224
)
2405 crypto_unregister_ahash(&sha_224_alg
);
2407 if (dd
->caps
.has_sha_384_512
) {
2408 for (i
= 0; i
< ARRAY_SIZE(sha_384_512_algs
); i
++)
2409 crypto_unregister_ahash(&sha_384_512_algs
[i
]);
2413 static int atmel_sha_register_algs(struct atmel_sha_dev
*dd
)
2417 for (i
= 0; i
< ARRAY_SIZE(sha_1_256_algs
); i
++) {
2418 atmel_sha_alg_init(&sha_1_256_algs
[i
]);
2420 err
= crypto_register_ahash(&sha_1_256_algs
[i
]);
2422 goto err_sha_1_256_algs
;
2425 if (dd
->caps
.has_sha224
) {
2426 atmel_sha_alg_init(&sha_224_alg
);
2428 err
= crypto_register_ahash(&sha_224_alg
);
2430 goto err_sha_224_algs
;
2433 if (dd
->caps
.has_sha_384_512
) {
2434 for (i
= 0; i
< ARRAY_SIZE(sha_384_512_algs
); i
++) {
2435 atmel_sha_alg_init(&sha_384_512_algs
[i
]);
2437 err
= crypto_register_ahash(&sha_384_512_algs
[i
]);
2439 goto err_sha_384_512_algs
;
2443 if (dd
->caps
.has_hmac
) {
2444 for (i
= 0; i
< ARRAY_SIZE(sha_hmac_algs
); i
++) {
2445 atmel_sha_hmac_alg_init(&sha_hmac_algs
[i
]);
2447 err
= crypto_register_ahash(&sha_hmac_algs
[i
]);
2449 goto err_sha_hmac_algs
;
2455 /*i = ARRAY_SIZE(sha_hmac_algs);*/
2457 for (j
= 0; j
< i
; j
++)
2458 crypto_unregister_ahash(&sha_hmac_algs
[j
]);
2459 i
= ARRAY_SIZE(sha_384_512_algs
);
2460 err_sha_384_512_algs
:
2461 for (j
= 0; j
< i
; j
++)
2462 crypto_unregister_ahash(&sha_384_512_algs
[j
]);
2463 crypto_unregister_ahash(&sha_224_alg
);
2465 i
= ARRAY_SIZE(sha_1_256_algs
);
2467 for (j
= 0; j
< i
; j
++)
2468 crypto_unregister_ahash(&sha_1_256_algs
[j
]);
2473 static int atmel_sha_dma_init(struct atmel_sha_dev
*dd
)
2475 dd
->dma_lch_in
.chan
= dma_request_chan(dd
->dev
, "tx");
2476 if (IS_ERR(dd
->dma_lch_in
.chan
)) {
2477 dev_err(dd
->dev
, "DMA channel is not available\n");
2478 return PTR_ERR(dd
->dma_lch_in
.chan
);
2481 dd
->dma_lch_in
.dma_conf
.dst_addr
= dd
->phys_base
+
2483 dd
->dma_lch_in
.dma_conf
.src_maxburst
= 1;
2484 dd
->dma_lch_in
.dma_conf
.src_addr_width
=
2485 DMA_SLAVE_BUSWIDTH_4_BYTES
;
2486 dd
->dma_lch_in
.dma_conf
.dst_maxburst
= 1;
2487 dd
->dma_lch_in
.dma_conf
.dst_addr_width
=
2488 DMA_SLAVE_BUSWIDTH_4_BYTES
;
2489 dd
->dma_lch_in
.dma_conf
.device_fc
= false;
2494 static void atmel_sha_dma_cleanup(struct atmel_sha_dev
*dd
)
2496 dma_release_channel(dd
->dma_lch_in
.chan
);
2499 static void atmel_sha_get_cap(struct atmel_sha_dev
*dd
)
2502 dd
->caps
.has_dma
= 0;
2503 dd
->caps
.has_dualbuff
= 0;
2504 dd
->caps
.has_sha224
= 0;
2505 dd
->caps
.has_sha_384_512
= 0;
2506 dd
->caps
.has_uihv
= 0;
2507 dd
->caps
.has_hmac
= 0;
2509 /* keep only major version number */
2510 switch (dd
->hw_version
& 0xff0) {
2512 dd
->caps
.has_dma
= 1;
2513 dd
->caps
.has_dualbuff
= 1;
2514 dd
->caps
.has_sha224
= 1;
2515 dd
->caps
.has_sha_384_512
= 1;
2516 dd
->caps
.has_uihv
= 1;
2517 dd
->caps
.has_hmac
= 1;
2520 dd
->caps
.has_dma
= 1;
2521 dd
->caps
.has_dualbuff
= 1;
2522 dd
->caps
.has_sha224
= 1;
2523 dd
->caps
.has_sha_384_512
= 1;
2524 dd
->caps
.has_uihv
= 1;
2527 dd
->caps
.has_dma
= 1;
2528 dd
->caps
.has_dualbuff
= 1;
2529 dd
->caps
.has_sha224
= 1;
2530 dd
->caps
.has_sha_384_512
= 1;
2533 dd
->caps
.has_dma
= 1;
2534 dd
->caps
.has_dualbuff
= 1;
2535 dd
->caps
.has_sha224
= 1;
2541 "Unmanaged sha version, set minimum capabilities\n");
2546 #if defined(CONFIG_OF)
2547 static const struct of_device_id atmel_sha_dt_ids
[] = {
2548 { .compatible
= "atmel,at91sam9g46-sha" },
2552 MODULE_DEVICE_TABLE(of
, atmel_sha_dt_ids
);
2555 static int atmel_sha_probe(struct platform_device
*pdev
)
2557 struct atmel_sha_dev
*sha_dd
;
2558 struct device
*dev
= &pdev
->dev
;
2559 struct resource
*sha_res
;
2562 sha_dd
= devm_kzalloc(&pdev
->dev
, sizeof(*sha_dd
), GFP_KERNEL
);
2568 platform_set_drvdata(pdev
, sha_dd
);
2570 INIT_LIST_HEAD(&sha_dd
->list
);
2571 spin_lock_init(&sha_dd
->lock
);
2573 tasklet_init(&sha_dd
->done_task
, atmel_sha_done_task
,
2574 (unsigned long)sha_dd
);
2575 tasklet_init(&sha_dd
->queue_task
, atmel_sha_queue_task
,
2576 (unsigned long)sha_dd
);
2578 crypto_init_queue(&sha_dd
->queue
, ATMEL_SHA_QUEUE_LENGTH
);
2580 /* Get the base address */
2581 sha_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2583 dev_err(dev
, "no MEM resource info\n");
2585 goto err_tasklet_kill
;
2587 sha_dd
->phys_base
= sha_res
->start
;
2590 sha_dd
->irq
= platform_get_irq(pdev
, 0);
2591 if (sha_dd
->irq
< 0) {
2593 goto err_tasklet_kill
;
2596 err
= devm_request_irq(&pdev
->dev
, sha_dd
->irq
, atmel_sha_irq
,
2597 IRQF_SHARED
, "atmel-sha", sha_dd
);
2599 dev_err(dev
, "unable to request sha irq.\n");
2600 goto err_tasklet_kill
;
2603 /* Initializing the clock */
2604 sha_dd
->iclk
= devm_clk_get(&pdev
->dev
, "sha_clk");
2605 if (IS_ERR(sha_dd
->iclk
)) {
2606 dev_err(dev
, "clock initialization failed.\n");
2607 err
= PTR_ERR(sha_dd
->iclk
);
2608 goto err_tasklet_kill
;
2611 sha_dd
->io_base
= devm_ioremap_resource(&pdev
->dev
, sha_res
);
2612 if (IS_ERR(sha_dd
->io_base
)) {
2613 dev_err(dev
, "can't ioremap\n");
2614 err
= PTR_ERR(sha_dd
->io_base
);
2615 goto err_tasklet_kill
;
2618 err
= clk_prepare(sha_dd
->iclk
);
2620 goto err_tasklet_kill
;
2622 err
= atmel_sha_hw_version_init(sha_dd
);
2624 goto err_iclk_unprepare
;
2626 atmel_sha_get_cap(sha_dd
);
2628 if (sha_dd
->caps
.has_dma
) {
2629 err
= atmel_sha_dma_init(sha_dd
);
2631 goto err_iclk_unprepare
;
2633 dev_info(dev
, "using %s for DMA transfers\n",
2634 dma_chan_name(sha_dd
->dma_lch_in
.chan
));
2637 spin_lock(&atmel_sha
.lock
);
2638 list_add_tail(&sha_dd
->list
, &atmel_sha
.dev_list
);
2639 spin_unlock(&atmel_sha
.lock
);
2641 err
= atmel_sha_register_algs(sha_dd
);
2645 dev_info(dev
, "Atmel SHA1/SHA256%s%s\n",
2646 sha_dd
->caps
.has_sha224
? "/SHA224" : "",
2647 sha_dd
->caps
.has_sha_384_512
? "/SHA384/SHA512" : "");
2652 spin_lock(&atmel_sha
.lock
);
2653 list_del(&sha_dd
->list
);
2654 spin_unlock(&atmel_sha
.lock
);
2655 if (sha_dd
->caps
.has_dma
)
2656 atmel_sha_dma_cleanup(sha_dd
);
2658 clk_unprepare(sha_dd
->iclk
);
2660 tasklet_kill(&sha_dd
->queue_task
);
2661 tasklet_kill(&sha_dd
->done_task
);
2666 static int atmel_sha_remove(struct platform_device
*pdev
)
2668 struct atmel_sha_dev
*sha_dd
;
2670 sha_dd
= platform_get_drvdata(pdev
);
2673 spin_lock(&atmel_sha
.lock
);
2674 list_del(&sha_dd
->list
);
2675 spin_unlock(&atmel_sha
.lock
);
2677 atmel_sha_unregister_algs(sha_dd
);
2679 tasklet_kill(&sha_dd
->queue_task
);
2680 tasklet_kill(&sha_dd
->done_task
);
2682 if (sha_dd
->caps
.has_dma
)
2683 atmel_sha_dma_cleanup(sha_dd
);
2685 clk_unprepare(sha_dd
->iclk
);
2690 static struct platform_driver atmel_sha_driver
= {
2691 .probe
= atmel_sha_probe
,
2692 .remove
= atmel_sha_remove
,
2694 .name
= "atmel_sha",
2695 .of_match_table
= of_match_ptr(atmel_sha_dt_ids
),
2699 module_platform_driver(atmel_sha_driver
);
2701 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2702 MODULE_LICENSE("GPL v2");
2703 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");