Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / crypto / hisilicon / sec / sec_algs.c
blob8ca945ac297ef2d2c6584d2184dc96eff81b1ed5
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2016-2017 Hisilicon Limited. */
3 #include <linux/crypto.h>
4 #include <linux/dma-mapping.h>
5 #include <linux/dmapool.h>
6 #include <linux/module.h>
7 #include <linux/mutex.h>
8 #include <linux/slab.h>
10 #include <crypto/aes.h>
11 #include <crypto/algapi.h>
12 #include <crypto/internal/des.h>
13 #include <crypto/skcipher.h>
14 #include <crypto/xts.h>
15 #include <crypto/internal/skcipher.h>
17 #include "sec_drv.h"
19 #define SEC_MAX_CIPHER_KEY 64
20 #define SEC_REQ_LIMIT SZ_32M
22 struct sec_c_alg_cfg {
23 unsigned c_alg : 3;
24 unsigned c_mode : 3;
25 unsigned key_len : 2;
26 unsigned c_width : 2;
29 static const struct sec_c_alg_cfg sec_c_alg_cfgs[] = {
30 [SEC_C_DES_ECB_64] = {
31 .c_alg = SEC_C_ALG_DES,
32 .c_mode = SEC_C_MODE_ECB,
33 .key_len = SEC_KEY_LEN_DES,
35 [SEC_C_DES_CBC_64] = {
36 .c_alg = SEC_C_ALG_DES,
37 .c_mode = SEC_C_MODE_CBC,
38 .key_len = SEC_KEY_LEN_DES,
40 [SEC_C_3DES_ECB_192_3KEY] = {
41 .c_alg = SEC_C_ALG_3DES,
42 .c_mode = SEC_C_MODE_ECB,
43 .key_len = SEC_KEY_LEN_3DES_3_KEY,
45 [SEC_C_3DES_ECB_192_2KEY] = {
46 .c_alg = SEC_C_ALG_3DES,
47 .c_mode = SEC_C_MODE_ECB,
48 .key_len = SEC_KEY_LEN_3DES_2_KEY,
50 [SEC_C_3DES_CBC_192_3KEY] = {
51 .c_alg = SEC_C_ALG_3DES,
52 .c_mode = SEC_C_MODE_CBC,
53 .key_len = SEC_KEY_LEN_3DES_3_KEY,
55 [SEC_C_3DES_CBC_192_2KEY] = {
56 .c_alg = SEC_C_ALG_3DES,
57 .c_mode = SEC_C_MODE_CBC,
58 .key_len = SEC_KEY_LEN_3DES_2_KEY,
60 [SEC_C_AES_ECB_128] = {
61 .c_alg = SEC_C_ALG_AES,
62 .c_mode = SEC_C_MODE_ECB,
63 .key_len = SEC_KEY_LEN_AES_128,
65 [SEC_C_AES_ECB_192] = {
66 .c_alg = SEC_C_ALG_AES,
67 .c_mode = SEC_C_MODE_ECB,
68 .key_len = SEC_KEY_LEN_AES_192,
70 [SEC_C_AES_ECB_256] = {
71 .c_alg = SEC_C_ALG_AES,
72 .c_mode = SEC_C_MODE_ECB,
73 .key_len = SEC_KEY_LEN_AES_256,
75 [SEC_C_AES_CBC_128] = {
76 .c_alg = SEC_C_ALG_AES,
77 .c_mode = SEC_C_MODE_CBC,
78 .key_len = SEC_KEY_LEN_AES_128,
80 [SEC_C_AES_CBC_192] = {
81 .c_alg = SEC_C_ALG_AES,
82 .c_mode = SEC_C_MODE_CBC,
83 .key_len = SEC_KEY_LEN_AES_192,
85 [SEC_C_AES_CBC_256] = {
86 .c_alg = SEC_C_ALG_AES,
87 .c_mode = SEC_C_MODE_CBC,
88 .key_len = SEC_KEY_LEN_AES_256,
90 [SEC_C_AES_CTR_128] = {
91 .c_alg = SEC_C_ALG_AES,
92 .c_mode = SEC_C_MODE_CTR,
93 .key_len = SEC_KEY_LEN_AES_128,
95 [SEC_C_AES_CTR_192] = {
96 .c_alg = SEC_C_ALG_AES,
97 .c_mode = SEC_C_MODE_CTR,
98 .key_len = SEC_KEY_LEN_AES_192,
100 [SEC_C_AES_CTR_256] = {
101 .c_alg = SEC_C_ALG_AES,
102 .c_mode = SEC_C_MODE_CTR,
103 .key_len = SEC_KEY_LEN_AES_256,
105 [SEC_C_AES_XTS_128] = {
106 .c_alg = SEC_C_ALG_AES,
107 .c_mode = SEC_C_MODE_XTS,
108 .key_len = SEC_KEY_LEN_AES_128,
110 [SEC_C_AES_XTS_256] = {
111 .c_alg = SEC_C_ALG_AES,
112 .c_mode = SEC_C_MODE_XTS,
113 .key_len = SEC_KEY_LEN_AES_256,
115 [SEC_C_NULL] = {
120 * Mutex used to ensure safe operation of reference count of
121 * alg providers
123 static DEFINE_MUTEX(algs_lock);
124 static unsigned int active_devs;
126 static void sec_alg_skcipher_init_template(struct sec_alg_tfm_ctx *ctx,
127 struct sec_bd_info *req,
128 enum sec_cipher_alg alg)
130 const struct sec_c_alg_cfg *cfg = &sec_c_alg_cfgs[alg];
132 memset(req, 0, sizeof(*req));
133 req->w0 |= cfg->c_mode << SEC_BD_W0_C_MODE_S;
134 req->w1 |= cfg->c_alg << SEC_BD_W1_C_ALG_S;
135 req->w3 |= cfg->key_len << SEC_BD_W3_C_KEY_LEN_S;
136 req->w0 |= cfg->c_width << SEC_BD_W0_C_WIDTH_S;
138 req->cipher_key_addr_lo = lower_32_bits(ctx->pkey);
139 req->cipher_key_addr_hi = upper_32_bits(ctx->pkey);
142 static void sec_alg_skcipher_init_context(struct crypto_skcipher *atfm,
143 const u8 *key,
144 unsigned int keylen,
145 enum sec_cipher_alg alg)
147 struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
148 struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
150 ctx->cipher_alg = alg;
151 memcpy(ctx->key, key, keylen);
152 sec_alg_skcipher_init_template(ctx, &ctx->req_template,
153 ctx->cipher_alg);
156 static void sec_free_hw_sgl(struct sec_hw_sgl *hw_sgl,
157 dma_addr_t psec_sgl, struct sec_dev_info *info)
159 struct sec_hw_sgl *sgl_current, *sgl_next;
160 dma_addr_t sgl_next_dma;
162 sgl_current = hw_sgl;
163 while (sgl_current) {
164 sgl_next = sgl_current->next;
165 sgl_next_dma = sgl_current->next_sgl;
167 dma_pool_free(info->hw_sgl_pool, sgl_current, psec_sgl);
169 sgl_current = sgl_next;
170 psec_sgl = sgl_next_dma;
174 static int sec_alloc_and_fill_hw_sgl(struct sec_hw_sgl **sec_sgl,
175 dma_addr_t *psec_sgl,
176 struct scatterlist *sgl,
177 int count,
178 struct sec_dev_info *info,
179 gfp_t gfp)
181 struct sec_hw_sgl *sgl_current = NULL;
182 struct sec_hw_sgl *sgl_next;
183 dma_addr_t sgl_next_dma;
184 struct scatterlist *sg;
185 int ret, sge_index, i;
187 if (!count)
188 return -EINVAL;
190 for_each_sg(sgl, sg, count, i) {
191 sge_index = i % SEC_MAX_SGE_NUM;
192 if (sge_index == 0) {
193 sgl_next = dma_pool_zalloc(info->hw_sgl_pool,
194 gfp, &sgl_next_dma);
195 if (!sgl_next) {
196 ret = -ENOMEM;
197 goto err_free_hw_sgls;
200 if (!sgl_current) { /* First one */
201 *psec_sgl = sgl_next_dma;
202 *sec_sgl = sgl_next;
203 } else { /* Chained */
204 sgl_current->entry_sum_in_sgl = SEC_MAX_SGE_NUM;
205 sgl_current->next_sgl = sgl_next_dma;
206 sgl_current->next = sgl_next;
208 sgl_current = sgl_next;
210 sgl_current->sge_entries[sge_index].buf = sg_dma_address(sg);
211 sgl_current->sge_entries[sge_index].len = sg_dma_len(sg);
212 sgl_current->data_bytes_in_sgl += sg_dma_len(sg);
214 sgl_current->entry_sum_in_sgl = count % SEC_MAX_SGE_NUM;
215 sgl_current->next_sgl = 0;
216 (*sec_sgl)->entry_sum_in_chain = count;
218 return 0;
220 err_free_hw_sgls:
221 sec_free_hw_sgl(*sec_sgl, *psec_sgl, info);
222 *psec_sgl = 0;
224 return ret;
227 static int sec_alg_skcipher_setkey(struct crypto_skcipher *tfm,
228 const u8 *key, unsigned int keylen,
229 enum sec_cipher_alg alg)
231 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
232 struct device *dev = ctx->queue->dev_info->dev;
234 mutex_lock(&ctx->lock);
235 if (ctx->key) {
236 /* rekeying */
237 memset(ctx->key, 0, SEC_MAX_CIPHER_KEY);
238 } else {
239 /* new key */
240 ctx->key = dma_alloc_coherent(dev, SEC_MAX_CIPHER_KEY,
241 &ctx->pkey, GFP_KERNEL);
242 if (!ctx->key) {
243 mutex_unlock(&ctx->lock);
244 return -ENOMEM;
247 mutex_unlock(&ctx->lock);
248 sec_alg_skcipher_init_context(tfm, key, keylen, alg);
250 return 0;
253 static int sec_alg_skcipher_setkey_aes_ecb(struct crypto_skcipher *tfm,
254 const u8 *key, unsigned int keylen)
256 enum sec_cipher_alg alg;
258 switch (keylen) {
259 case AES_KEYSIZE_128:
260 alg = SEC_C_AES_ECB_128;
261 break;
262 case AES_KEYSIZE_192:
263 alg = SEC_C_AES_ECB_192;
264 break;
265 case AES_KEYSIZE_256:
266 alg = SEC_C_AES_ECB_256;
267 break;
268 default:
269 return -EINVAL;
272 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
275 static int sec_alg_skcipher_setkey_aes_cbc(struct crypto_skcipher *tfm,
276 const u8 *key, unsigned int keylen)
278 enum sec_cipher_alg alg;
280 switch (keylen) {
281 case AES_KEYSIZE_128:
282 alg = SEC_C_AES_CBC_128;
283 break;
284 case AES_KEYSIZE_192:
285 alg = SEC_C_AES_CBC_192;
286 break;
287 case AES_KEYSIZE_256:
288 alg = SEC_C_AES_CBC_256;
289 break;
290 default:
291 return -EINVAL;
294 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
297 static int sec_alg_skcipher_setkey_aes_ctr(struct crypto_skcipher *tfm,
298 const u8 *key, unsigned int keylen)
300 enum sec_cipher_alg alg;
302 switch (keylen) {
303 case AES_KEYSIZE_128:
304 alg = SEC_C_AES_CTR_128;
305 break;
306 case AES_KEYSIZE_192:
307 alg = SEC_C_AES_CTR_192;
308 break;
309 case AES_KEYSIZE_256:
310 alg = SEC_C_AES_CTR_256;
311 break;
312 default:
313 return -EINVAL;
316 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
319 static int sec_alg_skcipher_setkey_aes_xts(struct crypto_skcipher *tfm,
320 const u8 *key, unsigned int keylen)
322 enum sec_cipher_alg alg;
323 int ret;
325 ret = xts_verify_key(tfm, key, keylen);
326 if (ret)
327 return ret;
329 switch (keylen) {
330 case AES_KEYSIZE_128 * 2:
331 alg = SEC_C_AES_XTS_128;
332 break;
333 case AES_KEYSIZE_256 * 2:
334 alg = SEC_C_AES_XTS_256;
335 break;
336 default:
337 return -EINVAL;
340 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
343 static int sec_alg_skcipher_setkey_des_ecb(struct crypto_skcipher *tfm,
344 const u8 *key, unsigned int keylen)
346 return verify_skcipher_des_key(tfm, key) ?:
347 sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_ECB_64);
350 static int sec_alg_skcipher_setkey_des_cbc(struct crypto_skcipher *tfm,
351 const u8 *key, unsigned int keylen)
353 return verify_skcipher_des_key(tfm, key) ?:
354 sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_CBC_64);
357 static int sec_alg_skcipher_setkey_3des_ecb(struct crypto_skcipher *tfm,
358 const u8 *key, unsigned int keylen)
360 return verify_skcipher_des3_key(tfm, key) ?:
361 sec_alg_skcipher_setkey(tfm, key, keylen,
362 SEC_C_3DES_ECB_192_3KEY);
365 static int sec_alg_skcipher_setkey_3des_cbc(struct crypto_skcipher *tfm,
366 const u8 *key, unsigned int keylen)
368 return verify_skcipher_des3_key(tfm, key) ?:
369 sec_alg_skcipher_setkey(tfm, key, keylen,
370 SEC_C_3DES_CBC_192_3KEY);
373 static void sec_alg_free_el(struct sec_request_el *el,
374 struct sec_dev_info *info)
376 sec_free_hw_sgl(el->out, el->dma_out, info);
377 sec_free_hw_sgl(el->in, el->dma_in, info);
378 kfree(el->sgl_in);
379 kfree(el->sgl_out);
380 kfree(el);
383 /* queuelock must be held */
384 static int sec_send_request(struct sec_request *sec_req, struct sec_queue *queue)
386 struct sec_request_el *el, *temp;
387 int ret = 0;
389 mutex_lock(&sec_req->lock);
390 list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
392 * Add to hardware queue only under following circumstances
393 * 1) Software and hardware queue empty so no chain dependencies
394 * 2) No dependencies as new IV - (check software queue empty
395 * to maintain order)
396 * 3) No dependencies because the mode does no chaining.
398 * In other cases first insert onto the software queue which
399 * is then emptied as requests complete
401 if (!queue->havesoftqueue ||
402 (kfifo_is_empty(&queue->softqueue) &&
403 sec_queue_empty(queue))) {
404 ret = sec_queue_send(queue, &el->req, sec_req);
405 if (ret == -EAGAIN) {
406 /* Wait unti we can send then try again */
407 /* DEAD if here - should not happen */
408 ret = -EBUSY;
409 goto err_unlock;
411 } else {
412 kfifo_put(&queue->softqueue, el);
415 err_unlock:
416 mutex_unlock(&sec_req->lock);
418 return ret;
421 static void sec_skcipher_alg_callback(struct sec_bd_info *sec_resp,
422 struct crypto_async_request *req_base)
424 struct skcipher_request *skreq = container_of(req_base,
425 struct skcipher_request,
426 base);
427 struct sec_request *sec_req = skcipher_request_ctx(skreq);
428 struct sec_request *backlog_req;
429 struct sec_request_el *sec_req_el, *nextrequest;
430 struct sec_alg_tfm_ctx *ctx = sec_req->tfm_ctx;
431 struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
432 struct device *dev = ctx->queue->dev_info->dev;
433 int icv_or_skey_en, ret;
434 bool done;
436 sec_req_el = list_first_entry(&sec_req->elements, struct sec_request_el,
437 head);
438 icv_or_skey_en = (sec_resp->w0 & SEC_BD_W0_ICV_OR_SKEY_EN_M) >>
439 SEC_BD_W0_ICV_OR_SKEY_EN_S;
440 if (sec_resp->w1 & SEC_BD_W1_BD_INVALID || icv_or_skey_en == 3) {
441 dev_err(dev, "Got an invalid answer %lu %d\n",
442 sec_resp->w1 & SEC_BD_W1_BD_INVALID,
443 icv_or_skey_en);
444 sec_req->err = -EINVAL;
446 * We need to muddle on to avoid getting stuck with elements
447 * on the queue. Error will be reported so requester so
448 * it should be able to handle appropriately.
452 mutex_lock(&ctx->queue->queuelock);
453 /* Put the IV in place for chained cases */
454 switch (ctx->cipher_alg) {
455 case SEC_C_AES_CBC_128:
456 case SEC_C_AES_CBC_192:
457 case SEC_C_AES_CBC_256:
458 if (sec_req_el->req.w0 & SEC_BD_W0_DE)
459 sg_pcopy_to_buffer(sec_req_el->sgl_out,
460 sg_nents(sec_req_el->sgl_out),
461 skreq->iv,
462 crypto_skcipher_ivsize(atfm),
463 sec_req_el->el_length -
464 crypto_skcipher_ivsize(atfm));
465 else
466 sg_pcopy_to_buffer(sec_req_el->sgl_in,
467 sg_nents(sec_req_el->sgl_in),
468 skreq->iv,
469 crypto_skcipher_ivsize(atfm),
470 sec_req_el->el_length -
471 crypto_skcipher_ivsize(atfm));
472 /* No need to sync to the device as coherent DMA */
473 break;
474 case SEC_C_AES_CTR_128:
475 case SEC_C_AES_CTR_192:
476 case SEC_C_AES_CTR_256:
477 crypto_inc(skreq->iv, 16);
478 break;
479 default:
480 /* Do not update */
481 break;
484 if (ctx->queue->havesoftqueue &&
485 !kfifo_is_empty(&ctx->queue->softqueue) &&
486 sec_queue_empty(ctx->queue)) {
487 ret = kfifo_get(&ctx->queue->softqueue, &nextrequest);
488 if (ret <= 0)
489 dev_err(dev,
490 "Error getting next element from kfifo %d\n",
491 ret);
492 else
493 /* We know there is space so this cannot fail */
494 sec_queue_send(ctx->queue, &nextrequest->req,
495 nextrequest->sec_req);
496 } else if (!list_empty(&ctx->backlog)) {
497 /* Need to verify there is room first */
498 backlog_req = list_first_entry(&ctx->backlog,
499 typeof(*backlog_req),
500 backlog_head);
501 if (sec_queue_can_enqueue(ctx->queue,
502 backlog_req->num_elements) ||
503 (ctx->queue->havesoftqueue &&
504 kfifo_avail(&ctx->queue->softqueue) >
505 backlog_req->num_elements)) {
506 sec_send_request(backlog_req, ctx->queue);
507 backlog_req->req_base->complete(backlog_req->req_base,
508 -EINPROGRESS);
509 list_del(&backlog_req->backlog_head);
512 mutex_unlock(&ctx->queue->queuelock);
514 mutex_lock(&sec_req->lock);
515 list_del(&sec_req_el->head);
516 mutex_unlock(&sec_req->lock);
517 sec_alg_free_el(sec_req_el, ctx->queue->dev_info);
520 * Request is done.
521 * The dance is needed as the lock is freed in the completion
523 mutex_lock(&sec_req->lock);
524 done = list_empty(&sec_req->elements);
525 mutex_unlock(&sec_req->lock);
526 if (done) {
527 if (crypto_skcipher_ivsize(atfm)) {
528 dma_unmap_single(dev, sec_req->dma_iv,
529 crypto_skcipher_ivsize(atfm),
530 DMA_TO_DEVICE);
532 dma_unmap_sg(dev, skreq->src, sec_req->len_in,
533 DMA_BIDIRECTIONAL);
534 if (skreq->src != skreq->dst)
535 dma_unmap_sg(dev, skreq->dst, sec_req->len_out,
536 DMA_BIDIRECTIONAL);
537 skreq->base.complete(&skreq->base, sec_req->err);
541 void sec_alg_callback(struct sec_bd_info *resp, void *shadow)
543 struct sec_request *sec_req = shadow;
545 sec_req->cb(resp, sec_req->req_base);
548 static int sec_alg_alloc_and_calc_split_sizes(int length, size_t **split_sizes,
549 int *steps, gfp_t gfp)
551 size_t *sizes;
552 int i;
554 /* Split into suitable sized blocks */
555 *steps = roundup(length, SEC_REQ_LIMIT) / SEC_REQ_LIMIT;
556 sizes = kcalloc(*steps, sizeof(*sizes), gfp);
557 if (!sizes)
558 return -ENOMEM;
560 for (i = 0; i < *steps - 1; i++)
561 sizes[i] = SEC_REQ_LIMIT;
562 sizes[*steps - 1] = length - SEC_REQ_LIMIT * (*steps - 1);
563 *split_sizes = sizes;
565 return 0;
568 static int sec_map_and_split_sg(struct scatterlist *sgl, size_t *split_sizes,
569 int steps, struct scatterlist ***splits,
570 int **splits_nents,
571 int sgl_len_in,
572 struct device *dev, gfp_t gfp)
574 int ret, count;
576 count = dma_map_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
577 if (!count)
578 return -EINVAL;
580 *splits = kcalloc(steps, sizeof(struct scatterlist *), gfp);
581 if (!*splits) {
582 ret = -ENOMEM;
583 goto err_unmap_sg;
585 *splits_nents = kcalloc(steps, sizeof(int), gfp);
586 if (!*splits_nents) {
587 ret = -ENOMEM;
588 goto err_free_splits;
591 /* output the scatter list before and after this */
592 ret = sg_split(sgl, count, 0, steps, split_sizes,
593 *splits, *splits_nents, gfp);
594 if (ret) {
595 ret = -ENOMEM;
596 goto err_free_splits_nents;
599 return 0;
601 err_free_splits_nents:
602 kfree(*splits_nents);
603 err_free_splits:
604 kfree(*splits);
605 err_unmap_sg:
606 dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
608 return ret;
612 * Reverses the sec_map_and_split_sg call for messages not yet added to
613 * the queues.
615 static void sec_unmap_sg_on_err(struct scatterlist *sgl, int steps,
616 struct scatterlist **splits, int *splits_nents,
617 int sgl_len_in, struct device *dev)
619 int i;
621 for (i = 0; i < steps; i++)
622 kfree(splits[i]);
623 kfree(splits_nents);
624 kfree(splits);
626 dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
629 static struct sec_request_el
630 *sec_alg_alloc_and_fill_el(struct sec_bd_info *template, int encrypt,
631 int el_size, bool different_dest,
632 struct scatterlist *sgl_in, int n_ents_in,
633 struct scatterlist *sgl_out, int n_ents_out,
634 struct sec_dev_info *info, gfp_t gfp)
636 struct sec_request_el *el;
637 struct sec_bd_info *req;
638 int ret;
640 el = kzalloc(sizeof(*el), gfp);
641 if (!el)
642 return ERR_PTR(-ENOMEM);
643 el->el_length = el_size;
644 req = &el->req;
645 memcpy(req, template, sizeof(*req));
647 req->w0 &= ~SEC_BD_W0_CIPHER_M;
648 if (encrypt)
649 req->w0 |= SEC_CIPHER_ENCRYPT << SEC_BD_W0_CIPHER_S;
650 else
651 req->w0 |= SEC_CIPHER_DECRYPT << SEC_BD_W0_CIPHER_S;
653 req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_19_16_M;
654 req->w0 |= ((el_size >> 16) << SEC_BD_W0_C_GRAN_SIZE_19_16_S) &
655 SEC_BD_W0_C_GRAN_SIZE_19_16_M;
657 req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_21_20_M;
658 req->w0 |= ((el_size >> 20) << SEC_BD_W0_C_GRAN_SIZE_21_20_S) &
659 SEC_BD_W0_C_GRAN_SIZE_21_20_M;
661 /* Writing whole u32 so no need to take care of masking */
662 req->w2 = ((1 << SEC_BD_W2_GRAN_NUM_S) & SEC_BD_W2_GRAN_NUM_M) |
663 ((el_size << SEC_BD_W2_C_GRAN_SIZE_15_0_S) &
664 SEC_BD_W2_C_GRAN_SIZE_15_0_M);
666 req->w3 &= ~SEC_BD_W3_CIPHER_LEN_OFFSET_M;
667 req->w1 |= SEC_BD_W1_ADDR_TYPE;
669 el->sgl_in = sgl_in;
671 ret = sec_alloc_and_fill_hw_sgl(&el->in, &el->dma_in, el->sgl_in,
672 n_ents_in, info, gfp);
673 if (ret)
674 goto err_free_el;
676 req->data_addr_lo = lower_32_bits(el->dma_in);
677 req->data_addr_hi = upper_32_bits(el->dma_in);
679 if (different_dest) {
680 el->sgl_out = sgl_out;
681 ret = sec_alloc_and_fill_hw_sgl(&el->out, &el->dma_out,
682 el->sgl_out,
683 n_ents_out, info, gfp);
684 if (ret)
685 goto err_free_hw_sgl_in;
687 req->w0 |= SEC_BD_W0_DE;
688 req->cipher_destin_addr_lo = lower_32_bits(el->dma_out);
689 req->cipher_destin_addr_hi = upper_32_bits(el->dma_out);
691 } else {
692 req->w0 &= ~SEC_BD_W0_DE;
693 req->cipher_destin_addr_lo = lower_32_bits(el->dma_in);
694 req->cipher_destin_addr_hi = upper_32_bits(el->dma_in);
697 return el;
699 err_free_hw_sgl_in:
700 sec_free_hw_sgl(el->in, el->dma_in, info);
701 err_free_el:
702 kfree(el);
704 return ERR_PTR(ret);
707 static int sec_alg_skcipher_crypto(struct skcipher_request *skreq,
708 bool encrypt)
710 struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
711 struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
712 struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
713 struct sec_queue *queue = ctx->queue;
714 struct sec_request *sec_req = skcipher_request_ctx(skreq);
715 struct sec_dev_info *info = queue->dev_info;
716 int i, ret, steps;
717 size_t *split_sizes;
718 struct scatterlist **splits_in;
719 struct scatterlist **splits_out = NULL;
720 int *splits_in_nents;
721 int *splits_out_nents = NULL;
722 struct sec_request_el *el, *temp;
723 bool split = skreq->src != skreq->dst;
724 gfp_t gfp = skreq->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
726 mutex_init(&sec_req->lock);
727 sec_req->req_base = &skreq->base;
728 sec_req->err = 0;
729 /* SGL mapping out here to allow us to break it up as necessary */
730 sec_req->len_in = sg_nents(skreq->src);
732 ret = sec_alg_alloc_and_calc_split_sizes(skreq->cryptlen, &split_sizes,
733 &steps, gfp);
734 if (ret)
735 return ret;
736 sec_req->num_elements = steps;
737 ret = sec_map_and_split_sg(skreq->src, split_sizes, steps, &splits_in,
738 &splits_in_nents, sec_req->len_in,
739 info->dev, gfp);
740 if (ret)
741 goto err_free_split_sizes;
743 if (split) {
744 sec_req->len_out = sg_nents(skreq->dst);
745 ret = sec_map_and_split_sg(skreq->dst, split_sizes, steps,
746 &splits_out, &splits_out_nents,
747 sec_req->len_out, info->dev, gfp);
748 if (ret)
749 goto err_unmap_in_sg;
751 /* Shared info stored in seq_req - applies to all BDs */
752 sec_req->tfm_ctx = ctx;
753 sec_req->cb = sec_skcipher_alg_callback;
754 INIT_LIST_HEAD(&sec_req->elements);
757 * Future optimization.
758 * In the chaining case we can't use a dma pool bounce buffer
759 * but in the case where we know there is no chaining we can
761 if (crypto_skcipher_ivsize(atfm)) {
762 sec_req->dma_iv = dma_map_single(info->dev, skreq->iv,
763 crypto_skcipher_ivsize(atfm),
764 DMA_TO_DEVICE);
765 if (dma_mapping_error(info->dev, sec_req->dma_iv)) {
766 ret = -ENOMEM;
767 goto err_unmap_out_sg;
771 /* Set them all up then queue - cleaner error handling. */
772 for (i = 0; i < steps; i++) {
773 el = sec_alg_alloc_and_fill_el(&ctx->req_template,
774 encrypt ? 1 : 0,
775 split_sizes[i],
776 skreq->src != skreq->dst,
777 splits_in[i], splits_in_nents[i],
778 split ? splits_out[i] : NULL,
779 split ? splits_out_nents[i] : 0,
780 info, gfp);
781 if (IS_ERR(el)) {
782 ret = PTR_ERR(el);
783 goto err_free_elements;
785 el->req.cipher_iv_addr_lo = lower_32_bits(sec_req->dma_iv);
786 el->req.cipher_iv_addr_hi = upper_32_bits(sec_req->dma_iv);
787 el->sec_req = sec_req;
788 list_add_tail(&el->head, &sec_req->elements);
792 * Only attempt to queue if the whole lot can fit in the queue -
793 * we can't successfully cleanup after a partial queing so this
794 * must succeed or fail atomically.
796 * Big hammer test of both software and hardware queues - could be
797 * more refined but this is unlikely to happen so no need.
800 /* Grab a big lock for a long time to avoid concurrency issues */
801 mutex_lock(&queue->queuelock);
804 * Can go on to queue if we have space in either:
805 * 1) The hardware queue and no software queue
806 * 2) The software queue
807 * AND there is nothing in the backlog. If there is backlog we
808 * have to only queue to the backlog queue and return busy.
810 if ((!sec_queue_can_enqueue(queue, steps) &&
811 (!queue->havesoftqueue ||
812 kfifo_avail(&queue->softqueue) > steps)) ||
813 !list_empty(&ctx->backlog)) {
814 ret = -EBUSY;
815 if ((skreq->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
816 list_add_tail(&sec_req->backlog_head, &ctx->backlog);
817 mutex_unlock(&queue->queuelock);
818 goto out;
821 mutex_unlock(&queue->queuelock);
822 goto err_free_elements;
824 ret = sec_send_request(sec_req, queue);
825 mutex_unlock(&queue->queuelock);
826 if (ret)
827 goto err_free_elements;
829 ret = -EINPROGRESS;
830 out:
831 /* Cleanup - all elements in pointer arrays have been copied */
832 kfree(splits_in_nents);
833 kfree(splits_in);
834 kfree(splits_out_nents);
835 kfree(splits_out);
836 kfree(split_sizes);
837 return ret;
839 err_free_elements:
840 list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
841 list_del(&el->head);
842 sec_alg_free_el(el, info);
844 if (crypto_skcipher_ivsize(atfm))
845 dma_unmap_single(info->dev, sec_req->dma_iv,
846 crypto_skcipher_ivsize(atfm),
847 DMA_BIDIRECTIONAL);
848 err_unmap_out_sg:
849 if (split)
850 sec_unmap_sg_on_err(skreq->dst, steps, splits_out,
851 splits_out_nents, sec_req->len_out,
852 info->dev);
853 err_unmap_in_sg:
854 sec_unmap_sg_on_err(skreq->src, steps, splits_in, splits_in_nents,
855 sec_req->len_in, info->dev);
856 err_free_split_sizes:
857 kfree(split_sizes);
859 return ret;
862 static int sec_alg_skcipher_encrypt(struct skcipher_request *req)
864 return sec_alg_skcipher_crypto(req, true);
867 static int sec_alg_skcipher_decrypt(struct skcipher_request *req)
869 return sec_alg_skcipher_crypto(req, false);
872 static int sec_alg_skcipher_init(struct crypto_skcipher *tfm)
874 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
876 mutex_init(&ctx->lock);
877 INIT_LIST_HEAD(&ctx->backlog);
878 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_request));
880 ctx->queue = sec_queue_alloc_start_safe();
881 if (IS_ERR(ctx->queue))
882 return PTR_ERR(ctx->queue);
884 mutex_init(&ctx->queue->queuelock);
885 ctx->queue->havesoftqueue = false;
887 return 0;
890 static void sec_alg_skcipher_exit(struct crypto_skcipher *tfm)
892 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
893 struct device *dev = ctx->queue->dev_info->dev;
895 if (ctx->key) {
896 memzero_explicit(ctx->key, SEC_MAX_CIPHER_KEY);
897 dma_free_coherent(dev, SEC_MAX_CIPHER_KEY, ctx->key,
898 ctx->pkey);
900 sec_queue_stop_release(ctx->queue);
903 static int sec_alg_skcipher_init_with_queue(struct crypto_skcipher *tfm)
905 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
906 int ret;
908 ret = sec_alg_skcipher_init(tfm);
909 if (ret)
910 return ret;
912 INIT_KFIFO(ctx->queue->softqueue);
913 ret = kfifo_alloc(&ctx->queue->softqueue, 512, GFP_KERNEL);
914 if (ret) {
915 sec_alg_skcipher_exit(tfm);
916 return ret;
918 ctx->queue->havesoftqueue = true;
920 return 0;
923 static void sec_alg_skcipher_exit_with_queue(struct crypto_skcipher *tfm)
925 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
927 kfifo_free(&ctx->queue->softqueue);
928 sec_alg_skcipher_exit(tfm);
931 static struct skcipher_alg sec_algs[] = {
933 .base = {
934 .cra_name = "ecb(aes)",
935 .cra_driver_name = "hisi_sec_aes_ecb",
936 .cra_priority = 4001,
937 .cra_flags = CRYPTO_ALG_ASYNC |
938 CRYPTO_ALG_ALLOCATES_MEMORY,
939 .cra_blocksize = AES_BLOCK_SIZE,
940 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
941 .cra_alignmask = 0,
942 .cra_module = THIS_MODULE,
944 .init = sec_alg_skcipher_init,
945 .exit = sec_alg_skcipher_exit,
946 .setkey = sec_alg_skcipher_setkey_aes_ecb,
947 .decrypt = sec_alg_skcipher_decrypt,
948 .encrypt = sec_alg_skcipher_encrypt,
949 .min_keysize = AES_MIN_KEY_SIZE,
950 .max_keysize = AES_MAX_KEY_SIZE,
951 .ivsize = 0,
952 }, {
953 .base = {
954 .cra_name = "cbc(aes)",
955 .cra_driver_name = "hisi_sec_aes_cbc",
956 .cra_priority = 4001,
957 .cra_flags = CRYPTO_ALG_ASYNC |
958 CRYPTO_ALG_ALLOCATES_MEMORY,
959 .cra_blocksize = AES_BLOCK_SIZE,
960 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
961 .cra_alignmask = 0,
962 .cra_module = THIS_MODULE,
964 .init = sec_alg_skcipher_init_with_queue,
965 .exit = sec_alg_skcipher_exit_with_queue,
966 .setkey = sec_alg_skcipher_setkey_aes_cbc,
967 .decrypt = sec_alg_skcipher_decrypt,
968 .encrypt = sec_alg_skcipher_encrypt,
969 .min_keysize = AES_MIN_KEY_SIZE,
970 .max_keysize = AES_MAX_KEY_SIZE,
971 .ivsize = AES_BLOCK_SIZE,
972 }, {
973 .base = {
974 .cra_name = "ctr(aes)",
975 .cra_driver_name = "hisi_sec_aes_ctr",
976 .cra_priority = 4001,
977 .cra_flags = CRYPTO_ALG_ASYNC |
978 CRYPTO_ALG_ALLOCATES_MEMORY,
979 .cra_blocksize = AES_BLOCK_SIZE,
980 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
981 .cra_alignmask = 0,
982 .cra_module = THIS_MODULE,
984 .init = sec_alg_skcipher_init_with_queue,
985 .exit = sec_alg_skcipher_exit_with_queue,
986 .setkey = sec_alg_skcipher_setkey_aes_ctr,
987 .decrypt = sec_alg_skcipher_decrypt,
988 .encrypt = sec_alg_skcipher_encrypt,
989 .min_keysize = AES_MIN_KEY_SIZE,
990 .max_keysize = AES_MAX_KEY_SIZE,
991 .ivsize = AES_BLOCK_SIZE,
992 }, {
993 .base = {
994 .cra_name = "xts(aes)",
995 .cra_driver_name = "hisi_sec_aes_xts",
996 .cra_priority = 4001,
997 .cra_flags = CRYPTO_ALG_ASYNC |
998 CRYPTO_ALG_ALLOCATES_MEMORY,
999 .cra_blocksize = AES_BLOCK_SIZE,
1000 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1001 .cra_alignmask = 0,
1002 .cra_module = THIS_MODULE,
1004 .init = sec_alg_skcipher_init,
1005 .exit = sec_alg_skcipher_exit,
1006 .setkey = sec_alg_skcipher_setkey_aes_xts,
1007 .decrypt = sec_alg_skcipher_decrypt,
1008 .encrypt = sec_alg_skcipher_encrypt,
1009 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1010 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1011 .ivsize = AES_BLOCK_SIZE,
1012 }, {
1013 /* Unable to find any test vectors so untested */
1014 .base = {
1015 .cra_name = "ecb(des)",
1016 .cra_driver_name = "hisi_sec_des_ecb",
1017 .cra_priority = 4001,
1018 .cra_flags = CRYPTO_ALG_ASYNC |
1019 CRYPTO_ALG_ALLOCATES_MEMORY,
1020 .cra_blocksize = DES_BLOCK_SIZE,
1021 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1022 .cra_alignmask = 0,
1023 .cra_module = THIS_MODULE,
1025 .init = sec_alg_skcipher_init,
1026 .exit = sec_alg_skcipher_exit,
1027 .setkey = sec_alg_skcipher_setkey_des_ecb,
1028 .decrypt = sec_alg_skcipher_decrypt,
1029 .encrypt = sec_alg_skcipher_encrypt,
1030 .min_keysize = DES_KEY_SIZE,
1031 .max_keysize = DES_KEY_SIZE,
1032 .ivsize = 0,
1033 }, {
1034 .base = {
1035 .cra_name = "cbc(des)",
1036 .cra_driver_name = "hisi_sec_des_cbc",
1037 .cra_priority = 4001,
1038 .cra_flags = CRYPTO_ALG_ASYNC |
1039 CRYPTO_ALG_ALLOCATES_MEMORY,
1040 .cra_blocksize = DES_BLOCK_SIZE,
1041 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1042 .cra_alignmask = 0,
1043 .cra_module = THIS_MODULE,
1045 .init = sec_alg_skcipher_init_with_queue,
1046 .exit = sec_alg_skcipher_exit_with_queue,
1047 .setkey = sec_alg_skcipher_setkey_des_cbc,
1048 .decrypt = sec_alg_skcipher_decrypt,
1049 .encrypt = sec_alg_skcipher_encrypt,
1050 .min_keysize = DES_KEY_SIZE,
1051 .max_keysize = DES_KEY_SIZE,
1052 .ivsize = DES_BLOCK_SIZE,
1053 }, {
1054 .base = {
1055 .cra_name = "cbc(des3_ede)",
1056 .cra_driver_name = "hisi_sec_3des_cbc",
1057 .cra_priority = 4001,
1058 .cra_flags = CRYPTO_ALG_ASYNC |
1059 CRYPTO_ALG_ALLOCATES_MEMORY,
1060 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1061 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1062 .cra_alignmask = 0,
1063 .cra_module = THIS_MODULE,
1065 .init = sec_alg_skcipher_init_with_queue,
1066 .exit = sec_alg_skcipher_exit_with_queue,
1067 .setkey = sec_alg_skcipher_setkey_3des_cbc,
1068 .decrypt = sec_alg_skcipher_decrypt,
1069 .encrypt = sec_alg_skcipher_encrypt,
1070 .min_keysize = DES3_EDE_KEY_SIZE,
1071 .max_keysize = DES3_EDE_KEY_SIZE,
1072 .ivsize = DES3_EDE_BLOCK_SIZE,
1073 }, {
1074 .base = {
1075 .cra_name = "ecb(des3_ede)",
1076 .cra_driver_name = "hisi_sec_3des_ecb",
1077 .cra_priority = 4001,
1078 .cra_flags = CRYPTO_ALG_ASYNC |
1079 CRYPTO_ALG_ALLOCATES_MEMORY,
1080 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1081 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1082 .cra_alignmask = 0,
1083 .cra_module = THIS_MODULE,
1085 .init = sec_alg_skcipher_init,
1086 .exit = sec_alg_skcipher_exit,
1087 .setkey = sec_alg_skcipher_setkey_3des_ecb,
1088 .decrypt = sec_alg_skcipher_decrypt,
1089 .encrypt = sec_alg_skcipher_encrypt,
1090 .min_keysize = DES3_EDE_KEY_SIZE,
1091 .max_keysize = DES3_EDE_KEY_SIZE,
1092 .ivsize = 0,
1096 int sec_algs_register(void)
1098 int ret = 0;
1100 mutex_lock(&algs_lock);
1101 if (++active_devs != 1)
1102 goto unlock;
1104 ret = crypto_register_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
1105 if (ret)
1106 --active_devs;
1107 unlock:
1108 mutex_unlock(&algs_lock);
1110 return ret;
1113 void sec_algs_unregister(void)
1115 mutex_lock(&algs_lock);
1116 if (--active_devs != 0)
1117 goto unlock;
1118 crypto_unregister_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
1120 unlock:
1121 mutex_unlock(&algs_lock);