Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / crypto / inside-secure / safexcel.c
blob2e1562108a858a9a0451518e558cf43bdfe123be
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017 Marvell
5 * Antoine Tenart <antoine.tenart@free-electrons.com>
6 */
8 #include <linux/clk.h>
9 #include <linux/device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/firmware.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/of_irq.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/workqueue.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/hash.h>
23 #include <crypto/internal/skcipher.h>
25 #include "safexcel.h"
27 static u32 max_rings = EIP197_MAX_RINGS;
28 module_param(max_rings, uint, 0644);
29 MODULE_PARM_DESC(max_rings, "Maximum number of rings to use.");
31 static void eip197_trc_cache_setupvirt(struct safexcel_crypto_priv *priv)
33 int i;
36 * Map all interfaces/rings to register index 0
37 * so they can share contexts. Without this, the EIP197 will
38 * assume each interface/ring to be in its own memory domain
39 * i.e. have its own subset of UNIQUE memory addresses.
40 * Which would cause records with the SAME memory address to
41 * use DIFFERENT cache buffers, causing both poor cache utilization
42 * AND serious coherence/invalidation issues.
44 for (i = 0; i < 4; i++)
45 writel(0, priv->base + EIP197_FLUE_IFC_LUT(i));
48 * Initialize other virtualization regs for cache
49 * These may not be in their reset state ...
51 for (i = 0; i < priv->config.rings; i++) {
52 writel(0, priv->base + EIP197_FLUE_CACHEBASE_LO(i));
53 writel(0, priv->base + EIP197_FLUE_CACHEBASE_HI(i));
54 writel(EIP197_FLUE_CONFIG_MAGIC,
55 priv->base + EIP197_FLUE_CONFIG(i));
57 writel(0, priv->base + EIP197_FLUE_OFFSETS);
58 writel(0, priv->base + EIP197_FLUE_ARC4_OFFSET);
61 static void eip197_trc_cache_banksel(struct safexcel_crypto_priv *priv,
62 u32 addrmid, int *actbank)
64 u32 val;
65 int curbank;
67 curbank = addrmid >> 16;
68 if (curbank != *actbank) {
69 val = readl(priv->base + EIP197_CS_RAM_CTRL);
70 val = (val & ~EIP197_CS_BANKSEL_MASK) |
71 (curbank << EIP197_CS_BANKSEL_OFS);
72 writel(val, priv->base + EIP197_CS_RAM_CTRL);
73 *actbank = curbank;
77 static u32 eip197_trc_cache_probe(struct safexcel_crypto_priv *priv,
78 int maxbanks, u32 probemask, u32 stride)
80 u32 val, addrhi, addrlo, addrmid, addralias, delta, marker;
81 int actbank;
84 * And probe the actual size of the physically attached cache data RAM
85 * Using a binary subdivision algorithm downto 32 byte cache lines.
87 addrhi = 1 << (16 + maxbanks);
88 addrlo = 0;
89 actbank = min(maxbanks - 1, 0);
90 while ((addrhi - addrlo) > stride) {
91 /* write marker to lowest address in top half */
92 addrmid = (addrhi + addrlo) >> 1;
93 marker = (addrmid ^ 0xabadbabe) & probemask; /* Unique */
94 eip197_trc_cache_banksel(priv, addrmid, &actbank);
95 writel(marker,
96 priv->base + EIP197_CLASSIFICATION_RAMS +
97 (addrmid & 0xffff));
99 /* write invalid markers to possible aliases */
100 delta = 1 << __fls(addrmid);
101 while (delta >= stride) {
102 addralias = addrmid - delta;
103 eip197_trc_cache_banksel(priv, addralias, &actbank);
104 writel(~marker,
105 priv->base + EIP197_CLASSIFICATION_RAMS +
106 (addralias & 0xffff));
107 delta >>= 1;
110 /* read back marker from top half */
111 eip197_trc_cache_banksel(priv, addrmid, &actbank);
112 val = readl(priv->base + EIP197_CLASSIFICATION_RAMS +
113 (addrmid & 0xffff));
115 if ((val & probemask) == marker)
116 /* read back correct, continue with top half */
117 addrlo = addrmid;
118 else
119 /* not read back correct, continue with bottom half */
120 addrhi = addrmid;
122 return addrhi;
125 static void eip197_trc_cache_clear(struct safexcel_crypto_priv *priv,
126 int cs_rc_max, int cs_ht_wc)
128 int i;
129 u32 htable_offset, val, offset;
131 /* Clear all records in administration RAM */
132 for (i = 0; i < cs_rc_max; i++) {
133 offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE;
135 writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) |
136 EIP197_CS_RC_PREV(EIP197_RC_NULL),
137 priv->base + offset);
139 val = EIP197_CS_RC_NEXT(i + 1) | EIP197_CS_RC_PREV(i - 1);
140 if (i == 0)
141 val |= EIP197_CS_RC_PREV(EIP197_RC_NULL);
142 else if (i == cs_rc_max - 1)
143 val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL);
144 writel(val, priv->base + offset + 4);
145 /* must also initialize the address key due to ECC! */
146 writel(0, priv->base + offset + 8);
147 writel(0, priv->base + offset + 12);
150 /* Clear the hash table entries */
151 htable_offset = cs_rc_max * EIP197_CS_RC_SIZE;
152 for (i = 0; i < cs_ht_wc; i++)
153 writel(GENMASK(29, 0),
154 priv->base + EIP197_CLASSIFICATION_RAMS +
155 htable_offset + i * sizeof(u32));
158 static int eip197_trc_cache_init(struct safexcel_crypto_priv *priv)
160 u32 val, dsize, asize;
161 int cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc;
162 int cs_rc_abs_max, cs_ht_sz;
163 int maxbanks;
165 /* Setup (dummy) virtualization for cache */
166 eip197_trc_cache_setupvirt(priv);
169 * Enable the record cache memory access and
170 * probe the bank select width
172 val = readl(priv->base + EIP197_CS_RAM_CTRL);
173 val &= ~EIP197_TRC_ENABLE_MASK;
174 val |= EIP197_TRC_ENABLE_0 | EIP197_CS_BANKSEL_MASK;
175 writel(val, priv->base + EIP197_CS_RAM_CTRL);
176 val = readl(priv->base + EIP197_CS_RAM_CTRL);
177 maxbanks = ((val&EIP197_CS_BANKSEL_MASK)>>EIP197_CS_BANKSEL_OFS) + 1;
179 /* Clear all ECC errors */
180 writel(0, priv->base + EIP197_TRC_ECCCTRL);
183 * Make sure the cache memory is accessible by taking record cache into
184 * reset. Need data memory access here, not admin access.
186 val = readl(priv->base + EIP197_TRC_PARAMS);
187 val |= EIP197_TRC_PARAMS_SW_RESET | EIP197_TRC_PARAMS_DATA_ACCESS;
188 writel(val, priv->base + EIP197_TRC_PARAMS);
190 /* Probed data RAM size in bytes */
191 dsize = eip197_trc_cache_probe(priv, maxbanks, 0xffffffff, 32);
194 * Now probe the administration RAM size pretty much the same way
195 * Except that only the lower 30 bits are writable and we don't need
196 * bank selects
198 val = readl(priv->base + EIP197_TRC_PARAMS);
199 /* admin access now */
200 val &= ~(EIP197_TRC_PARAMS_DATA_ACCESS | EIP197_CS_BANKSEL_MASK);
201 writel(val, priv->base + EIP197_TRC_PARAMS);
203 /* Probed admin RAM size in admin words */
204 asize = eip197_trc_cache_probe(priv, 0, 0x3fffffff, 16) >> 4;
206 /* Clear any ECC errors detected while probing! */
207 writel(0, priv->base + EIP197_TRC_ECCCTRL);
209 /* Sanity check probing results */
210 if (dsize < EIP197_MIN_DSIZE || asize < EIP197_MIN_ASIZE) {
211 dev_err(priv->dev, "Record cache probing failed (%d,%d).",
212 dsize, asize);
213 return -ENODEV;
217 * Determine optimal configuration from RAM sizes
218 * Note that we assume that the physical RAM configuration is sane
219 * Therefore, we don't do any parameter error checking here ...
222 /* For now, just use a single record format covering everything */
223 cs_trc_rec_wc = EIP197_CS_TRC_REC_WC;
224 cs_trc_lg_rec_wc = EIP197_CS_TRC_REC_WC;
227 * Step #1: How many records will physically fit?
228 * Hard upper limit is 1023!
230 cs_rc_abs_max = min_t(uint, ((dsize >> 2) / cs_trc_lg_rec_wc), 1023);
231 /* Step #2: Need at least 2 words in the admin RAM per record */
232 cs_rc_max = min_t(uint, cs_rc_abs_max, (asize >> 1));
233 /* Step #3: Determine log2 of hash table size */
234 cs_ht_sz = __fls(asize - cs_rc_max) - 2;
235 /* Step #4: determine current size of hash table in dwords */
236 cs_ht_wc = 16 << cs_ht_sz; /* dwords, not admin words */
237 /* Step #5: add back excess words and see if we can fit more records */
238 cs_rc_max = min_t(uint, cs_rc_abs_max, asize - (cs_ht_wc >> 2));
240 /* Clear the cache RAMs */
241 eip197_trc_cache_clear(priv, cs_rc_max, cs_ht_wc);
243 /* Disable the record cache memory access */
244 val = readl(priv->base + EIP197_CS_RAM_CTRL);
245 val &= ~EIP197_TRC_ENABLE_MASK;
246 writel(val, priv->base + EIP197_CS_RAM_CTRL);
248 /* Write head and tail pointers of the record free chain */
249 val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) |
250 EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1);
251 writel(val, priv->base + EIP197_TRC_FREECHAIN);
253 /* Configure the record cache #1 */
254 val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) |
255 EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max);
256 writel(val, priv->base + EIP197_TRC_PARAMS2);
258 /* Configure the record cache #2 */
259 val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) |
260 EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) |
261 EIP197_TRC_PARAMS_HTABLE_SZ(cs_ht_sz);
262 writel(val, priv->base + EIP197_TRC_PARAMS);
264 dev_info(priv->dev, "TRC init: %dd,%da (%dr,%dh)\n",
265 dsize, asize, cs_rc_max, cs_ht_wc + cs_ht_wc);
266 return 0;
269 static void eip197_init_firmware(struct safexcel_crypto_priv *priv)
271 int pe, i;
272 u32 val;
274 for (pe = 0; pe < priv->config.pes; pe++) {
275 /* Configure the token FIFO's */
276 writel(3, EIP197_PE(priv) + EIP197_PE_ICE_PUTF_CTRL(pe));
277 writel(0, EIP197_PE(priv) + EIP197_PE_ICE_PPTF_CTRL(pe));
279 /* Clear the ICE scratchpad memory */
280 val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
281 val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER |
282 EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN |
283 EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS |
284 EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS;
285 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
287 /* clear the scratchpad RAM using 32 bit writes only */
288 for (i = 0; i < EIP197_NUM_OF_SCRATCH_BLOCKS; i++)
289 writel(0, EIP197_PE(priv) +
290 EIP197_PE_ICE_SCRATCH_RAM(pe) + (i << 2));
292 /* Reset the IFPP engine to make its program mem accessible */
293 writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
294 EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
295 EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
296 EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));
298 /* Reset the IPUE engine to make its program mem accessible */
299 writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
300 EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
301 EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
302 EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));
304 /* Enable access to all IFPP program memories */
305 writel(EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN,
306 EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
308 /* bypass the OCE, if present */
309 if (priv->flags & EIP197_OCE)
310 writel(EIP197_DEBUG_OCE_BYPASS, EIP197_PE(priv) +
311 EIP197_PE_DEBUG(pe));
316 static int eip197_write_firmware(struct safexcel_crypto_priv *priv,
317 const struct firmware *fw)
319 const __be32 *data = (const __be32 *)fw->data;
320 int i;
322 /* Write the firmware */
323 for (i = 0; i < fw->size / sizeof(u32); i++)
324 writel(be32_to_cpu(data[i]),
325 priv->base + EIP197_CLASSIFICATION_RAMS +
326 i * sizeof(__be32));
328 /* Exclude final 2 NOPs from size */
329 return i - EIP197_FW_TERMINAL_NOPS;
333 * If FW is actual production firmware, then poll for its initialization
334 * to complete and check if it is good for the HW, otherwise just return OK.
336 static bool poll_fw_ready(struct safexcel_crypto_priv *priv, int fpp)
338 int pe, pollcnt;
339 u32 base, pollofs;
341 if (fpp)
342 pollofs = EIP197_FW_FPP_READY;
343 else
344 pollofs = EIP197_FW_PUE_READY;
346 for (pe = 0; pe < priv->config.pes; pe++) {
347 base = EIP197_PE_ICE_SCRATCH_RAM(pe);
348 pollcnt = EIP197_FW_START_POLLCNT;
349 while (pollcnt &&
350 (readl_relaxed(EIP197_PE(priv) + base +
351 pollofs) != 1)) {
352 pollcnt--;
354 if (!pollcnt) {
355 dev_err(priv->dev, "FW(%d) for PE %d failed to start\n",
356 fpp, pe);
357 return false;
360 return true;
363 static bool eip197_start_firmware(struct safexcel_crypto_priv *priv,
364 int ipuesz, int ifppsz, int minifw)
366 int pe;
367 u32 val;
369 for (pe = 0; pe < priv->config.pes; pe++) {
370 /* Disable access to all program memory */
371 writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
373 /* Start IFPP microengines */
374 if (minifw)
375 val = 0;
376 else
377 val = EIP197_PE_ICE_UENG_START_OFFSET((ifppsz - 1) &
378 EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
379 EIP197_PE_ICE_UENG_DEBUG_RESET;
380 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));
382 /* Start IPUE microengines */
383 if (minifw)
384 val = 0;
385 else
386 val = EIP197_PE_ICE_UENG_START_OFFSET((ipuesz - 1) &
387 EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
388 EIP197_PE_ICE_UENG_DEBUG_RESET;
389 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));
392 /* For miniFW startup, there is no initialization, so always succeed */
393 if (minifw)
394 return true;
396 /* Wait until all the firmwares have properly started up */
397 if (!poll_fw_ready(priv, 1))
398 return false;
399 if (!poll_fw_ready(priv, 0))
400 return false;
402 return true;
405 static int eip197_load_firmwares(struct safexcel_crypto_priv *priv)
407 const char *fw_name[] = {"ifpp.bin", "ipue.bin"};
408 const struct firmware *fw[FW_NB];
409 char fw_path[37], *dir = NULL;
410 int i, j, ret = 0, pe;
411 int ipuesz, ifppsz, minifw = 0;
413 if (priv->version == EIP197D_MRVL)
414 dir = "eip197d";
415 else if (priv->version == EIP197B_MRVL ||
416 priv->version == EIP197_DEVBRD)
417 dir = "eip197b";
418 else
419 return -ENODEV;
421 retry_fw:
422 for (i = 0; i < FW_NB; i++) {
423 snprintf(fw_path, 37, "inside-secure/%s/%s", dir, fw_name[i]);
424 ret = firmware_request_nowarn(&fw[i], fw_path, priv->dev);
425 if (ret) {
426 if (minifw || priv->version != EIP197B_MRVL)
427 goto release_fw;
429 /* Fallback to the old firmware location for the
430 * EIP197b.
432 ret = firmware_request_nowarn(&fw[i], fw_name[i],
433 priv->dev);
434 if (ret)
435 goto release_fw;
439 eip197_init_firmware(priv);
441 ifppsz = eip197_write_firmware(priv, fw[FW_IFPP]);
443 /* Enable access to IPUE program memories */
444 for (pe = 0; pe < priv->config.pes; pe++)
445 writel(EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN,
446 EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
448 ipuesz = eip197_write_firmware(priv, fw[FW_IPUE]);
450 if (eip197_start_firmware(priv, ipuesz, ifppsz, minifw)) {
451 dev_dbg(priv->dev, "Firmware loaded successfully\n");
452 return 0;
455 ret = -ENODEV;
457 release_fw:
458 for (j = 0; j < i; j++)
459 release_firmware(fw[j]);
461 if (!minifw) {
462 /* Retry with minifw path */
463 dev_dbg(priv->dev, "Firmware set not (fully) present or init failed, falling back to BCLA mode\n");
464 dir = "eip197_minifw";
465 minifw = 1;
466 goto retry_fw;
469 dev_dbg(priv->dev, "Firmware load failed.\n");
471 return ret;
474 static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv)
476 u32 cd_size_rnd, val;
477 int i, cd_fetch_cnt;
479 cd_size_rnd = (priv->config.cd_size +
480 (BIT(priv->hwconfig.hwdataw) - 1)) >>
481 priv->hwconfig.hwdataw;
482 /* determine number of CD's we can fetch into the CD FIFO as 1 block */
483 if (priv->flags & SAFEXCEL_HW_EIP197) {
484 /* EIP197: try to fetch enough in 1 go to keep all pipes busy */
485 cd_fetch_cnt = (1 << priv->hwconfig.hwcfsize) / cd_size_rnd;
486 cd_fetch_cnt = min_t(uint, cd_fetch_cnt,
487 (priv->config.pes * EIP197_FETCH_DEPTH));
488 } else {
489 /* for the EIP97, just fetch all that fits minus 1 */
490 cd_fetch_cnt = ((1 << priv->hwconfig.hwcfsize) /
491 cd_size_rnd) - 1;
494 * Since we're using command desc's way larger than formally specified,
495 * we need to check whether we can fit even 1 for low-end EIP196's!
497 if (!cd_fetch_cnt) {
498 dev_err(priv->dev, "Unable to fit even 1 command desc!\n");
499 return -ENODEV;
502 for (i = 0; i < priv->config.rings; i++) {
503 /* ring base address */
504 writel(lower_32_bits(priv->ring[i].cdr.base_dma),
505 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
506 writel(upper_32_bits(priv->ring[i].cdr.base_dma),
507 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
509 writel(EIP197_xDR_DESC_MODE_64BIT | EIP197_CDR_DESC_MODE_ADCP |
510 (priv->config.cd_offset << 14) | priv->config.cd_size,
511 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
512 writel(((cd_fetch_cnt *
513 (cd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
514 (cd_fetch_cnt * (priv->config.cd_offset / sizeof(u32))),
515 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
517 /* Configure DMA tx control */
518 val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
519 val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
520 writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
522 /* clear any pending interrupt */
523 writel(GENMASK(5, 0),
524 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
527 return 0;
530 static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv)
532 u32 rd_size_rnd, val;
533 int i, rd_fetch_cnt;
535 /* determine number of RD's we can fetch into the FIFO as one block */
536 rd_size_rnd = (EIP197_RD64_FETCH_SIZE +
537 (BIT(priv->hwconfig.hwdataw) - 1)) >>
538 priv->hwconfig.hwdataw;
539 if (priv->flags & SAFEXCEL_HW_EIP197) {
540 /* EIP197: try to fetch enough in 1 go to keep all pipes busy */
541 rd_fetch_cnt = (1 << priv->hwconfig.hwrfsize) / rd_size_rnd;
542 rd_fetch_cnt = min_t(uint, rd_fetch_cnt,
543 (priv->config.pes * EIP197_FETCH_DEPTH));
544 } else {
545 /* for the EIP97, just fetch all that fits minus 1 */
546 rd_fetch_cnt = ((1 << priv->hwconfig.hwrfsize) /
547 rd_size_rnd) - 1;
550 for (i = 0; i < priv->config.rings; i++) {
551 /* ring base address */
552 writel(lower_32_bits(priv->ring[i].rdr.base_dma),
553 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
554 writel(upper_32_bits(priv->ring[i].rdr.base_dma),
555 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
557 writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 14) |
558 priv->config.rd_size,
559 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
561 writel(((rd_fetch_cnt *
562 (rd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
563 (rd_fetch_cnt * (priv->config.rd_offset / sizeof(u32))),
564 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
566 /* Configure DMA tx control */
567 val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
568 val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
569 val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF;
570 writel(val,
571 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
573 /* clear any pending interrupt */
574 writel(GENMASK(7, 0),
575 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
577 /* enable ring interrupt */
578 val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
579 val |= EIP197_RDR_IRQ(i);
580 writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
583 return 0;
586 static int safexcel_hw_init(struct safexcel_crypto_priv *priv)
588 u32 val;
589 int i, ret, pe, opbuflo, opbufhi;
591 dev_dbg(priv->dev, "HW init: using %d pipe(s) and %d ring(s)\n",
592 priv->config.pes, priv->config.rings);
595 * For EIP197's only set maximum number of TX commands to 2^5 = 32
596 * Skip for the EIP97 as it does not have this field.
598 if (priv->flags & SAFEXCEL_HW_EIP197) {
599 val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
600 val |= EIP197_MST_CTRL_TX_MAX_CMD(5);
601 writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
604 /* Configure wr/rd cache values */
605 writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) |
606 EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS),
607 EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL);
609 /* Interrupts reset */
611 /* Disable all global interrupts */
612 writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL);
614 /* Clear any pending interrupt */
615 writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
617 /* Processing Engine configuration */
618 for (pe = 0; pe < priv->config.pes; pe++) {
619 /* Data Fetch Engine configuration */
621 /* Reset all DFE threads */
622 writel(EIP197_DxE_THR_CTRL_RESET_PE,
623 EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
625 if (priv->flags & EIP197_PE_ARB)
626 /* Reset HIA input interface arbiter (if present) */
627 writel(EIP197_HIA_RA_PE_CTRL_RESET,
628 EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
630 /* DMA transfer size to use */
631 val = EIP197_HIA_DFE_CFG_DIS_DEBUG;
632 val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) |
633 EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9);
634 val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) |
635 EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7);
636 val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS);
637 val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS);
638 writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe));
640 /* Leave the DFE threads reset state */
641 writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
643 /* Configure the processing engine thresholds */
644 writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
645 EIP197_PE_IN_xBUF_THRES_MAX(9),
646 EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe));
647 writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
648 EIP197_PE_IN_xBUF_THRES_MAX(7),
649 EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe));
651 if (priv->flags & SAFEXCEL_HW_EIP197)
652 /* enable HIA input interface arbiter and rings */
653 writel(EIP197_HIA_RA_PE_CTRL_EN |
654 GENMASK(priv->config.rings - 1, 0),
655 EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
657 /* Data Store Engine configuration */
659 /* Reset all DSE threads */
660 writel(EIP197_DxE_THR_CTRL_RESET_PE,
661 EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
663 /* Wait for all DSE threads to complete */
664 while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) &
665 GENMASK(15, 12)) != GENMASK(15, 12))
668 /* DMA transfer size to use */
669 if (priv->hwconfig.hwnumpes > 4) {
670 opbuflo = 9;
671 opbufhi = 10;
672 } else {
673 opbuflo = 7;
674 opbufhi = 8;
676 val = EIP197_HIA_DSE_CFG_DIS_DEBUG;
677 val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(opbuflo) |
678 EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(opbufhi);
679 val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS);
680 val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE;
681 /* FIXME: instability issues can occur for EIP97 but disabling
682 * it impacts performance.
684 if (priv->flags & SAFEXCEL_HW_EIP197)
685 val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR;
686 writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe));
688 /* Leave the DSE threads reset state */
689 writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
691 /* Configure the procesing engine thresholds */
692 writel(EIP197_PE_OUT_DBUF_THRES_MIN(opbuflo) |
693 EIP197_PE_OUT_DBUF_THRES_MAX(opbufhi),
694 EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe));
696 /* Processing Engine configuration */
698 /* Token & context configuration */
699 val = EIP197_PE_EIP96_TOKEN_CTRL_CTX_UPDATES |
700 EIP197_PE_EIP96_TOKEN_CTRL_NO_TOKEN_WAIT |
701 EIP197_PE_EIP96_TOKEN_CTRL_ENABLE_TIMEOUT;
702 writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL(pe));
704 /* H/W capabilities selection: just enable everything */
705 writel(EIP197_FUNCTION_ALL,
706 EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe));
707 writel(EIP197_FUNCTION_ALL,
708 EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION2_EN(pe));
711 /* Command Descriptor Rings prepare */
712 for (i = 0; i < priv->config.rings; i++) {
713 /* Clear interrupts for this ring */
714 writel(GENMASK(31, 0),
715 EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i));
717 /* Disable external triggering */
718 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
720 /* Clear the pending prepared counter */
721 writel(EIP197_xDR_PREP_CLR_COUNT,
722 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
724 /* Clear the pending processed counter */
725 writel(EIP197_xDR_PROC_CLR_COUNT,
726 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
728 writel(0,
729 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
730 writel(0,
731 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
733 writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset),
734 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
737 /* Result Descriptor Ring prepare */
738 for (i = 0; i < priv->config.rings; i++) {
739 /* Disable external triggering*/
740 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
742 /* Clear the pending prepared counter */
743 writel(EIP197_xDR_PREP_CLR_COUNT,
744 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
746 /* Clear the pending processed counter */
747 writel(EIP197_xDR_PROC_CLR_COUNT,
748 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
750 writel(0,
751 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
752 writel(0,
753 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
755 /* Ring size */
756 writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset),
757 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
760 for (pe = 0; pe < priv->config.pes; pe++) {
761 /* Enable command descriptor rings */
762 writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
763 EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
765 /* Enable result descriptor rings */
766 writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
767 EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
770 /* Clear any HIA interrupt */
771 writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
773 if (priv->flags & EIP197_SIMPLE_TRC) {
774 writel(EIP197_STRC_CONFIG_INIT |
775 EIP197_STRC_CONFIG_LARGE_REC(EIP197_CS_TRC_REC_WC) |
776 EIP197_STRC_CONFIG_SMALL_REC(EIP197_CS_TRC_REC_WC),
777 priv->base + EIP197_STRC_CONFIG);
778 writel(EIP197_PE_EIP96_TOKEN_CTRL2_CTX_DONE,
779 EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL2(0));
780 } else if (priv->flags & SAFEXCEL_HW_EIP197) {
781 ret = eip197_trc_cache_init(priv);
782 if (ret)
783 return ret;
786 if (priv->flags & EIP197_ICE) {
787 ret = eip197_load_firmwares(priv);
788 if (ret)
789 return ret;
792 return safexcel_hw_setup_cdesc_rings(priv) ?:
793 safexcel_hw_setup_rdesc_rings(priv) ?:
797 /* Called with ring's lock taken */
798 static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv,
799 int ring)
801 int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ);
803 if (!coal)
804 return;
806 /* Configure when we want an interrupt */
807 writel(EIP197_HIA_RDR_THRESH_PKT_MODE |
808 EIP197_HIA_RDR_THRESH_PROC_PKT(coal),
809 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH);
812 void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring)
814 struct crypto_async_request *req, *backlog;
815 struct safexcel_context *ctx;
816 int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results;
818 /* If a request wasn't properly dequeued because of a lack of resources,
819 * proceeded it first,
821 req = priv->ring[ring].req;
822 backlog = priv->ring[ring].backlog;
823 if (req)
824 goto handle_req;
826 while (true) {
827 spin_lock_bh(&priv->ring[ring].queue_lock);
828 backlog = crypto_get_backlog(&priv->ring[ring].queue);
829 req = crypto_dequeue_request(&priv->ring[ring].queue);
830 spin_unlock_bh(&priv->ring[ring].queue_lock);
832 if (!req) {
833 priv->ring[ring].req = NULL;
834 priv->ring[ring].backlog = NULL;
835 goto finalize;
838 handle_req:
839 ctx = crypto_tfm_ctx(req->tfm);
840 ret = ctx->send(req, ring, &commands, &results);
841 if (ret)
842 goto request_failed;
844 if (backlog)
845 backlog->complete(backlog, -EINPROGRESS);
847 /* In case the send() helper did not issue any command to push
848 * to the engine because the input data was cached, continue to
849 * dequeue other requests as this is valid and not an error.
851 if (!commands && !results)
852 continue;
854 cdesc += commands;
855 rdesc += results;
856 nreq++;
859 request_failed:
860 /* Not enough resources to handle all the requests. Bail out and save
861 * the request and the backlog for the next dequeue call (per-ring).
863 priv->ring[ring].req = req;
864 priv->ring[ring].backlog = backlog;
866 finalize:
867 if (!nreq)
868 return;
870 spin_lock_bh(&priv->ring[ring].lock);
872 priv->ring[ring].requests += nreq;
874 if (!priv->ring[ring].busy) {
875 safexcel_try_push_requests(priv, ring);
876 priv->ring[ring].busy = true;
879 spin_unlock_bh(&priv->ring[ring].lock);
881 /* let the RDR know we have pending descriptors */
882 writel((rdesc * priv->config.rd_offset),
883 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
885 /* let the CDR know we have pending descriptors */
886 writel((cdesc * priv->config.cd_offset),
887 EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
890 inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv,
891 void *rdp)
893 struct safexcel_result_desc *rdesc = rdp;
894 struct result_data_desc *result_data = rdp + priv->config.res_offset;
896 if (likely((!rdesc->last_seg) || /* Rest only valid if last seg! */
897 ((!rdesc->descriptor_overflow) &&
898 (!rdesc->buffer_overflow) &&
899 (!result_data->error_code))))
900 return 0;
902 if (rdesc->descriptor_overflow)
903 dev_err(priv->dev, "Descriptor overflow detected");
905 if (rdesc->buffer_overflow)
906 dev_err(priv->dev, "Buffer overflow detected");
908 if (result_data->error_code & 0x4066) {
909 /* Fatal error (bits 1,2,5,6 & 14) */
910 dev_err(priv->dev,
911 "result descriptor error (%x)",
912 result_data->error_code);
914 return -EIO;
915 } else if (result_data->error_code &
916 (BIT(7) | BIT(4) | BIT(3) | BIT(0))) {
918 * Give priority over authentication fails:
919 * Blocksize, length & overflow errors,
920 * something wrong with the input!
922 return -EINVAL;
923 } else if (result_data->error_code & BIT(9)) {
924 /* Authentication failed */
925 return -EBADMSG;
928 /* All other non-fatal errors */
929 return -EINVAL;
932 inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv,
933 int ring,
934 struct safexcel_result_desc *rdesc,
935 struct crypto_async_request *req)
937 int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc);
939 priv->ring[ring].rdr_req[i] = req;
942 inline struct crypto_async_request *
943 safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring)
945 int i = safexcel_ring_first_rdr_index(priv, ring);
947 return priv->ring[ring].rdr_req[i];
950 void safexcel_complete(struct safexcel_crypto_priv *priv, int ring)
952 struct safexcel_command_desc *cdesc;
954 /* Acknowledge the command descriptors */
955 do {
956 cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr);
957 if (IS_ERR(cdesc)) {
958 dev_err(priv->dev,
959 "Could not retrieve the command descriptor\n");
960 return;
962 } while (!cdesc->last_seg);
965 void safexcel_inv_complete(struct crypto_async_request *req, int error)
967 struct safexcel_inv_result *result = req->data;
969 if (error == -EINPROGRESS)
970 return;
972 result->error = error;
973 complete(&result->completion);
976 int safexcel_invalidate_cache(struct crypto_async_request *async,
977 struct safexcel_crypto_priv *priv,
978 dma_addr_t ctxr_dma, int ring)
980 struct safexcel_command_desc *cdesc;
981 struct safexcel_result_desc *rdesc;
982 struct safexcel_token *dmmy;
983 int ret = 0;
985 /* Prepare command descriptor */
986 cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma,
987 &dmmy);
988 if (IS_ERR(cdesc))
989 return PTR_ERR(cdesc);
991 cdesc->control_data.type = EIP197_TYPE_EXTENDED;
992 cdesc->control_data.options = 0;
993 cdesc->control_data.context_lo &= ~EIP197_CONTEXT_SIZE_MASK;
994 cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR;
996 /* Prepare result descriptor */
997 rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);
999 if (IS_ERR(rdesc)) {
1000 ret = PTR_ERR(rdesc);
1001 goto cdesc_rollback;
1004 safexcel_rdr_req_set(priv, ring, rdesc, async);
1006 return ret;
1008 cdesc_rollback:
1009 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
1011 return ret;
1014 static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv,
1015 int ring)
1017 struct crypto_async_request *req;
1018 struct safexcel_context *ctx;
1019 int ret, i, nreq, ndesc, tot_descs, handled = 0;
1020 bool should_complete;
1022 handle_results:
1023 tot_descs = 0;
1025 nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
1026 nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET;
1027 nreq &= EIP197_xDR_PROC_xD_PKT_MASK;
1028 if (!nreq)
1029 goto requests_left;
1031 for (i = 0; i < nreq; i++) {
1032 req = safexcel_rdr_req_get(priv, ring);
1034 ctx = crypto_tfm_ctx(req->tfm);
1035 ndesc = ctx->handle_result(priv, ring, req,
1036 &should_complete, &ret);
1037 if (ndesc < 0) {
1038 dev_err(priv->dev, "failed to handle result (%d)\n",
1039 ndesc);
1040 goto acknowledge;
1043 if (should_complete) {
1044 local_bh_disable();
1045 req->complete(req, ret);
1046 local_bh_enable();
1049 tot_descs += ndesc;
1050 handled++;
1053 acknowledge:
1054 if (i)
1055 writel(EIP197_xDR_PROC_xD_PKT(i) |
1056 (tot_descs * priv->config.rd_offset),
1057 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
1059 /* If the number of requests overflowed the counter, try to proceed more
1060 * requests.
1062 if (nreq == EIP197_xDR_PROC_xD_PKT_MASK)
1063 goto handle_results;
1065 requests_left:
1066 spin_lock_bh(&priv->ring[ring].lock);
1068 priv->ring[ring].requests -= handled;
1069 safexcel_try_push_requests(priv, ring);
1071 if (!priv->ring[ring].requests)
1072 priv->ring[ring].busy = false;
1074 spin_unlock_bh(&priv->ring[ring].lock);
1077 static void safexcel_dequeue_work(struct work_struct *work)
1079 struct safexcel_work_data *data =
1080 container_of(work, struct safexcel_work_data, work);
1082 safexcel_dequeue(data->priv, data->ring);
1085 struct safexcel_ring_irq_data {
1086 struct safexcel_crypto_priv *priv;
1087 int ring;
1090 static irqreturn_t safexcel_irq_ring(int irq, void *data)
1092 struct safexcel_ring_irq_data *irq_data = data;
1093 struct safexcel_crypto_priv *priv = irq_data->priv;
1094 int ring = irq_data->ring, rc = IRQ_NONE;
1095 u32 status, stat;
1097 status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring));
1098 if (!status)
1099 return rc;
1101 /* RDR interrupts */
1102 if (status & EIP197_RDR_IRQ(ring)) {
1103 stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
1105 if (unlikely(stat & EIP197_xDR_ERR)) {
1107 * Fatal error, the RDR is unusable and must be
1108 * reinitialized. This should not happen under
1109 * normal circumstances.
1111 dev_err(priv->dev, "RDR: fatal error.\n");
1112 } else if (likely(stat & EIP197_xDR_THRESH)) {
1113 rc = IRQ_WAKE_THREAD;
1116 /* ACK the interrupts */
1117 writel(stat & 0xff,
1118 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
1121 /* ACK the interrupts */
1122 writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring));
1124 return rc;
1127 static irqreturn_t safexcel_irq_ring_thread(int irq, void *data)
1129 struct safexcel_ring_irq_data *irq_data = data;
1130 struct safexcel_crypto_priv *priv = irq_data->priv;
1131 int ring = irq_data->ring;
1133 safexcel_handle_result_descriptor(priv, ring);
1135 queue_work(priv->ring[ring].workqueue,
1136 &priv->ring[ring].work_data.work);
1138 return IRQ_HANDLED;
1141 static int safexcel_request_ring_irq(void *pdev, int irqid,
1142 int is_pci_dev,
1143 int ring_id,
1144 irq_handler_t handler,
1145 irq_handler_t threaded_handler,
1146 struct safexcel_ring_irq_data *ring_irq_priv)
1148 int ret, irq, cpu;
1149 struct device *dev;
1151 if (IS_ENABLED(CONFIG_PCI) && is_pci_dev) {
1152 struct pci_dev *pci_pdev = pdev;
1154 dev = &pci_pdev->dev;
1155 irq = pci_irq_vector(pci_pdev, irqid);
1156 if (irq < 0) {
1157 dev_err(dev, "unable to get device MSI IRQ %d (err %d)\n",
1158 irqid, irq);
1159 return irq;
1161 } else if (IS_ENABLED(CONFIG_OF)) {
1162 struct platform_device *plf_pdev = pdev;
1163 char irq_name[6] = {0}; /* "ringX\0" */
1165 snprintf(irq_name, 6, "ring%d", irqid);
1166 dev = &plf_pdev->dev;
1167 irq = platform_get_irq_byname(plf_pdev, irq_name);
1169 if (irq < 0) {
1170 dev_err(dev, "unable to get IRQ '%s' (err %d)\n",
1171 irq_name, irq);
1172 return irq;
1174 } else {
1175 return -ENXIO;
1178 ret = devm_request_threaded_irq(dev, irq, handler,
1179 threaded_handler, IRQF_ONESHOT,
1180 dev_name(dev), ring_irq_priv);
1181 if (ret) {
1182 dev_err(dev, "unable to request IRQ %d\n", irq);
1183 return ret;
1186 /* Set affinity */
1187 cpu = cpumask_local_spread(ring_id, NUMA_NO_NODE);
1188 irq_set_affinity_hint(irq, get_cpu_mask(cpu));
1190 return irq;
1193 static struct safexcel_alg_template *safexcel_algs[] = {
1194 &safexcel_alg_ecb_des,
1195 &safexcel_alg_cbc_des,
1196 &safexcel_alg_ecb_des3_ede,
1197 &safexcel_alg_cbc_des3_ede,
1198 &safexcel_alg_ecb_aes,
1199 &safexcel_alg_cbc_aes,
1200 &safexcel_alg_cfb_aes,
1201 &safexcel_alg_ofb_aes,
1202 &safexcel_alg_ctr_aes,
1203 &safexcel_alg_md5,
1204 &safexcel_alg_sha1,
1205 &safexcel_alg_sha224,
1206 &safexcel_alg_sha256,
1207 &safexcel_alg_sha384,
1208 &safexcel_alg_sha512,
1209 &safexcel_alg_hmac_md5,
1210 &safexcel_alg_hmac_sha1,
1211 &safexcel_alg_hmac_sha224,
1212 &safexcel_alg_hmac_sha256,
1213 &safexcel_alg_hmac_sha384,
1214 &safexcel_alg_hmac_sha512,
1215 &safexcel_alg_authenc_hmac_sha1_cbc_aes,
1216 &safexcel_alg_authenc_hmac_sha224_cbc_aes,
1217 &safexcel_alg_authenc_hmac_sha256_cbc_aes,
1218 &safexcel_alg_authenc_hmac_sha384_cbc_aes,
1219 &safexcel_alg_authenc_hmac_sha512_cbc_aes,
1220 &safexcel_alg_authenc_hmac_sha1_cbc_des3_ede,
1221 &safexcel_alg_authenc_hmac_sha1_ctr_aes,
1222 &safexcel_alg_authenc_hmac_sha224_ctr_aes,
1223 &safexcel_alg_authenc_hmac_sha256_ctr_aes,
1224 &safexcel_alg_authenc_hmac_sha384_ctr_aes,
1225 &safexcel_alg_authenc_hmac_sha512_ctr_aes,
1226 &safexcel_alg_xts_aes,
1227 &safexcel_alg_gcm,
1228 &safexcel_alg_ccm,
1229 &safexcel_alg_crc32,
1230 &safexcel_alg_cbcmac,
1231 &safexcel_alg_xcbcmac,
1232 &safexcel_alg_cmac,
1233 &safexcel_alg_chacha20,
1234 &safexcel_alg_chachapoly,
1235 &safexcel_alg_chachapoly_esp,
1236 &safexcel_alg_sm3,
1237 &safexcel_alg_hmac_sm3,
1238 &safexcel_alg_ecb_sm4,
1239 &safexcel_alg_cbc_sm4,
1240 &safexcel_alg_ofb_sm4,
1241 &safexcel_alg_cfb_sm4,
1242 &safexcel_alg_ctr_sm4,
1243 &safexcel_alg_authenc_hmac_sha1_cbc_sm4,
1244 &safexcel_alg_authenc_hmac_sm3_cbc_sm4,
1245 &safexcel_alg_authenc_hmac_sha1_ctr_sm4,
1246 &safexcel_alg_authenc_hmac_sm3_ctr_sm4,
1247 &safexcel_alg_sha3_224,
1248 &safexcel_alg_sha3_256,
1249 &safexcel_alg_sha3_384,
1250 &safexcel_alg_sha3_512,
1251 &safexcel_alg_hmac_sha3_224,
1252 &safexcel_alg_hmac_sha3_256,
1253 &safexcel_alg_hmac_sha3_384,
1254 &safexcel_alg_hmac_sha3_512,
1255 &safexcel_alg_authenc_hmac_sha1_cbc_des,
1256 &safexcel_alg_authenc_hmac_sha256_cbc_des3_ede,
1257 &safexcel_alg_authenc_hmac_sha224_cbc_des3_ede,
1258 &safexcel_alg_authenc_hmac_sha512_cbc_des3_ede,
1259 &safexcel_alg_authenc_hmac_sha384_cbc_des3_ede,
1260 &safexcel_alg_authenc_hmac_sha256_cbc_des,
1261 &safexcel_alg_authenc_hmac_sha224_cbc_des,
1262 &safexcel_alg_authenc_hmac_sha512_cbc_des,
1263 &safexcel_alg_authenc_hmac_sha384_cbc_des,
1264 &safexcel_alg_rfc4106_gcm,
1265 &safexcel_alg_rfc4543_gcm,
1266 &safexcel_alg_rfc4309_ccm,
1269 static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv)
1271 int i, j, ret = 0;
1273 for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
1274 safexcel_algs[i]->priv = priv;
1276 /* Do we have all required base algorithms available? */
1277 if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
1278 safexcel_algs[i]->algo_mask)
1279 /* No, so don't register this ciphersuite */
1280 continue;
1282 if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1283 ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher);
1284 else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
1285 ret = crypto_register_aead(&safexcel_algs[i]->alg.aead);
1286 else
1287 ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash);
1289 if (ret)
1290 goto fail;
1293 return 0;
1295 fail:
1296 for (j = 0; j < i; j++) {
1297 /* Do we have all required base algorithms available? */
1298 if ((safexcel_algs[j]->algo_mask & priv->hwconfig.algo_flags) !=
1299 safexcel_algs[j]->algo_mask)
1300 /* No, so don't unregister this ciphersuite */
1301 continue;
1303 if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1304 crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher);
1305 else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD)
1306 crypto_unregister_aead(&safexcel_algs[j]->alg.aead);
1307 else
1308 crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash);
1311 return ret;
1314 static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv)
1316 int i;
1318 for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
1319 /* Do we have all required base algorithms available? */
1320 if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
1321 safexcel_algs[i]->algo_mask)
1322 /* No, so don't unregister this ciphersuite */
1323 continue;
1325 if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1326 crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher);
1327 else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
1328 crypto_unregister_aead(&safexcel_algs[i]->alg.aead);
1329 else
1330 crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash);
1334 static void safexcel_configure(struct safexcel_crypto_priv *priv)
1336 u32 mask = BIT(priv->hwconfig.hwdataw) - 1;
1338 priv->config.pes = priv->hwconfig.hwnumpes;
1339 priv->config.rings = min_t(u32, priv->hwconfig.hwnumrings, max_rings);
1340 /* Cannot currently support more rings than we have ring AICs! */
1341 priv->config.rings = min_t(u32, priv->config.rings,
1342 priv->hwconfig.hwnumraic);
1344 priv->config.cd_size = EIP197_CD64_FETCH_SIZE;
1345 priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask;
1346 priv->config.cdsh_offset = (EIP197_MAX_TOKENS + mask) & ~mask;
1348 /* res token is behind the descr, but ofs must be rounded to buswdth */
1349 priv->config.res_offset = (EIP197_RD64_FETCH_SIZE + mask) & ~mask;
1350 /* now the size of the descr is this 1st part plus the result struct */
1351 priv->config.rd_size = priv->config.res_offset +
1352 EIP197_RD64_RESULT_SIZE;
1353 priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask;
1355 /* convert dwords to bytes */
1356 priv->config.cd_offset *= sizeof(u32);
1357 priv->config.cdsh_offset *= sizeof(u32);
1358 priv->config.rd_offset *= sizeof(u32);
1359 priv->config.res_offset *= sizeof(u32);
1362 static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv)
1364 struct safexcel_register_offsets *offsets = &priv->offsets;
1366 if (priv->flags & SAFEXCEL_HW_EIP197) {
1367 offsets->hia_aic = EIP197_HIA_AIC_BASE;
1368 offsets->hia_aic_g = EIP197_HIA_AIC_G_BASE;
1369 offsets->hia_aic_r = EIP197_HIA_AIC_R_BASE;
1370 offsets->hia_aic_xdr = EIP197_HIA_AIC_xDR_BASE;
1371 offsets->hia_dfe = EIP197_HIA_DFE_BASE;
1372 offsets->hia_dfe_thr = EIP197_HIA_DFE_THR_BASE;
1373 offsets->hia_dse = EIP197_HIA_DSE_BASE;
1374 offsets->hia_dse_thr = EIP197_HIA_DSE_THR_BASE;
1375 offsets->hia_gen_cfg = EIP197_HIA_GEN_CFG_BASE;
1376 offsets->pe = EIP197_PE_BASE;
1377 offsets->global = EIP197_GLOBAL_BASE;
1378 } else {
1379 offsets->hia_aic = EIP97_HIA_AIC_BASE;
1380 offsets->hia_aic_g = EIP97_HIA_AIC_G_BASE;
1381 offsets->hia_aic_r = EIP97_HIA_AIC_R_BASE;
1382 offsets->hia_aic_xdr = EIP97_HIA_AIC_xDR_BASE;
1383 offsets->hia_dfe = EIP97_HIA_DFE_BASE;
1384 offsets->hia_dfe_thr = EIP97_HIA_DFE_THR_BASE;
1385 offsets->hia_dse = EIP97_HIA_DSE_BASE;
1386 offsets->hia_dse_thr = EIP97_HIA_DSE_THR_BASE;
1387 offsets->hia_gen_cfg = EIP97_HIA_GEN_CFG_BASE;
1388 offsets->pe = EIP97_PE_BASE;
1389 offsets->global = EIP97_GLOBAL_BASE;
1394 * Generic part of probe routine, shared by platform and PCI driver
1396 * Assumes IO resources have been mapped, private data mem has been allocated,
1397 * clocks have been enabled, device pointer has been assigned etc.
1400 static int safexcel_probe_generic(void *pdev,
1401 struct safexcel_crypto_priv *priv,
1402 int is_pci_dev)
1404 struct device *dev = priv->dev;
1405 u32 peid, version, mask, val, hiaopt, hwopt, peopt;
1406 int i, ret, hwctg;
1408 priv->context_pool = dmam_pool_create("safexcel-context", dev,
1409 sizeof(struct safexcel_context_record),
1410 1, 0);
1411 if (!priv->context_pool)
1412 return -ENOMEM;
1415 * First try the EIP97 HIA version regs
1416 * For the EIP197, this is guaranteed to NOT return any of the test
1417 * values
1419 version = readl(priv->base + EIP97_HIA_AIC_BASE + EIP197_HIA_VERSION);
1421 mask = 0; /* do not swap */
1422 if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
1423 priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
1424 } else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) {
1425 /* read back byte-swapped, so complement byte swap bits */
1426 mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
1427 priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
1428 } else {
1429 /* So it wasn't an EIP97 ... maybe it's an EIP197? */
1430 version = readl(priv->base + EIP197_HIA_AIC_BASE +
1431 EIP197_HIA_VERSION);
1432 if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
1433 priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
1434 priv->flags |= SAFEXCEL_HW_EIP197;
1435 } else if (EIP197_REG_HI16(version) ==
1436 EIP197_HIA_VERSION_BE) {
1437 /* read back byte-swapped, so complement swap bits */
1438 mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
1439 priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
1440 priv->flags |= SAFEXCEL_HW_EIP197;
1441 } else {
1442 return -ENODEV;
1446 /* Now initialize the reg offsets based on the probing info so far */
1447 safexcel_init_register_offsets(priv);
1450 * If the version was read byte-swapped, we need to flip the device
1451 * swapping Keep in mind here, though, that what we write will also be
1452 * byte-swapped ...
1454 if (mask) {
1455 val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
1456 val = val ^ (mask >> 24); /* toggle byte swap bits */
1457 writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
1461 * We're not done probing yet! We may fall through to here if no HIA
1462 * was found at all. So, with the endianness presumably correct now and
1463 * the offsets setup, *really* probe for the EIP97/EIP197.
1465 version = readl(EIP197_GLOBAL(priv) + EIP197_VERSION);
1466 if (((priv->flags & SAFEXCEL_HW_EIP197) &&
1467 (EIP197_REG_LO16(version) != EIP197_VERSION_LE) &&
1468 (EIP197_REG_LO16(version) != EIP196_VERSION_LE)) ||
1469 ((!(priv->flags & SAFEXCEL_HW_EIP197) &&
1470 (EIP197_REG_LO16(version) != EIP97_VERSION_LE)))) {
1472 * We did not find the device that matched our initial probing
1473 * (or our initial probing failed) Report appropriate error.
1475 dev_err(priv->dev, "Probing for EIP97/EIP19x failed - no such device (read %08x)\n",
1476 version);
1477 return -ENODEV;
1480 priv->hwconfig.hwver = EIP197_VERSION_MASK(version);
1481 hwctg = version >> 28;
1482 peid = version & 255;
1484 /* Detect EIP206 processing pipe */
1485 version = readl(EIP197_PE(priv) + + EIP197_PE_VERSION(0));
1486 if (EIP197_REG_LO16(version) != EIP206_VERSION_LE) {
1487 dev_err(priv->dev, "EIP%d: EIP206 not detected\n", peid);
1488 return -ENODEV;
1490 priv->hwconfig.ppver = EIP197_VERSION_MASK(version);
1492 /* Detect EIP96 packet engine and version */
1493 version = readl(EIP197_PE(priv) + EIP197_PE_EIP96_VERSION(0));
1494 if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) {
1495 dev_err(dev, "EIP%d: EIP96 not detected.\n", peid);
1496 return -ENODEV;
1498 priv->hwconfig.pever = EIP197_VERSION_MASK(version);
1500 hwopt = readl(EIP197_GLOBAL(priv) + EIP197_OPTIONS);
1501 hiaopt = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_OPTIONS);
1503 priv->hwconfig.icever = 0;
1504 priv->hwconfig.ocever = 0;
1505 priv->hwconfig.psever = 0;
1506 if (priv->flags & SAFEXCEL_HW_EIP197) {
1507 /* EIP197 */
1508 peopt = readl(EIP197_PE(priv) + EIP197_PE_OPTIONS(0));
1510 priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) &
1511 EIP197_HWDATAW_MASK;
1512 priv->hwconfig.hwcfsize = ((hiaopt >> EIP197_CFSIZE_OFFSET) &
1513 EIP197_CFSIZE_MASK) +
1514 EIP197_CFSIZE_ADJUST;
1515 priv->hwconfig.hwrfsize = ((hiaopt >> EIP197_RFSIZE_OFFSET) &
1516 EIP197_RFSIZE_MASK) +
1517 EIP197_RFSIZE_ADJUST;
1518 priv->hwconfig.hwnumpes = (hiaopt >> EIP197_N_PES_OFFSET) &
1519 EIP197_N_PES_MASK;
1520 priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) &
1521 EIP197_N_RINGS_MASK;
1522 if (hiaopt & EIP197_HIA_OPT_HAS_PE_ARB)
1523 priv->flags |= EIP197_PE_ARB;
1524 if (EIP206_OPT_ICE_TYPE(peopt) == 1) {
1525 priv->flags |= EIP197_ICE;
1526 /* Detect ICE EIP207 class. engine and version */
1527 version = readl(EIP197_PE(priv) +
1528 EIP197_PE_ICE_VERSION(0));
1529 if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) {
1530 dev_err(dev, "EIP%d: ICE EIP207 not detected.\n",
1531 peid);
1532 return -ENODEV;
1534 priv->hwconfig.icever = EIP197_VERSION_MASK(version);
1536 if (EIP206_OPT_OCE_TYPE(peopt) == 1) {
1537 priv->flags |= EIP197_OCE;
1538 /* Detect EIP96PP packet stream editor and version */
1539 version = readl(EIP197_PE(priv) + EIP197_PE_PSE_VERSION(0));
1540 if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) {
1541 dev_err(dev, "EIP%d: EIP96PP not detected.\n", peid);
1542 return -ENODEV;
1544 priv->hwconfig.psever = EIP197_VERSION_MASK(version);
1545 /* Detect OCE EIP207 class. engine and version */
1546 version = readl(EIP197_PE(priv) +
1547 EIP197_PE_ICE_VERSION(0));
1548 if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) {
1549 dev_err(dev, "EIP%d: OCE EIP207 not detected.\n",
1550 peid);
1551 return -ENODEV;
1553 priv->hwconfig.ocever = EIP197_VERSION_MASK(version);
1555 /* If not a full TRC, then assume simple TRC */
1556 if (!(hwopt & EIP197_OPT_HAS_TRC))
1557 priv->flags |= EIP197_SIMPLE_TRC;
1558 /* EIP197 always has SOME form of TRC */
1559 priv->flags |= EIP197_TRC_CACHE;
1560 } else {
1561 /* EIP97 */
1562 priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) &
1563 EIP97_HWDATAW_MASK;
1564 priv->hwconfig.hwcfsize = (hiaopt >> EIP97_CFSIZE_OFFSET) &
1565 EIP97_CFSIZE_MASK;
1566 priv->hwconfig.hwrfsize = (hiaopt >> EIP97_RFSIZE_OFFSET) &
1567 EIP97_RFSIZE_MASK;
1568 priv->hwconfig.hwnumpes = 1; /* by definition */
1569 priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) &
1570 EIP197_N_RINGS_MASK;
1573 /* Scan for ring AIC's */
1574 for (i = 0; i < EIP197_MAX_RING_AIC; i++) {
1575 version = readl(EIP197_HIA_AIC_R(priv) +
1576 EIP197_HIA_AIC_R_VERSION(i));
1577 if (EIP197_REG_LO16(version) != EIP201_VERSION_LE)
1578 break;
1580 priv->hwconfig.hwnumraic = i;
1581 /* Low-end EIP196 may not have any ring AIC's ... */
1582 if (!priv->hwconfig.hwnumraic) {
1583 dev_err(priv->dev, "No ring interrupt controller present!\n");
1584 return -ENODEV;
1587 /* Get supported algorithms from EIP96 transform engine */
1588 priv->hwconfig.algo_flags = readl(EIP197_PE(priv) +
1589 EIP197_PE_EIP96_OPTIONS(0));
1591 /* Print single info line describing what we just detected */
1592 dev_info(priv->dev, "EIP%d:%x(%d,%d,%d,%d)-HIA:%x(%d,%d,%d),PE:%x/%x(alg:%08x)/%x/%x/%x\n",
1593 peid, priv->hwconfig.hwver, hwctg, priv->hwconfig.hwnumpes,
1594 priv->hwconfig.hwnumrings, priv->hwconfig.hwnumraic,
1595 priv->hwconfig.hiaver, priv->hwconfig.hwdataw,
1596 priv->hwconfig.hwcfsize, priv->hwconfig.hwrfsize,
1597 priv->hwconfig.ppver, priv->hwconfig.pever,
1598 priv->hwconfig.algo_flags, priv->hwconfig.icever,
1599 priv->hwconfig.ocever, priv->hwconfig.psever);
1601 safexcel_configure(priv);
1603 if (IS_ENABLED(CONFIG_PCI) && priv->version == EIP197_DEVBRD) {
1605 * Request MSI vectors for global + 1 per ring -
1606 * or just 1 for older dev images
1608 struct pci_dev *pci_pdev = pdev;
1610 ret = pci_alloc_irq_vectors(pci_pdev,
1611 priv->config.rings + 1,
1612 priv->config.rings + 1,
1613 PCI_IRQ_MSI | PCI_IRQ_MSIX);
1614 if (ret < 0) {
1615 dev_err(dev, "Failed to allocate PCI MSI interrupts\n");
1616 return ret;
1620 /* Register the ring IRQ handlers and configure the rings */
1621 priv->ring = devm_kcalloc(dev, priv->config.rings,
1622 sizeof(*priv->ring),
1623 GFP_KERNEL);
1624 if (!priv->ring)
1625 return -ENOMEM;
1627 for (i = 0; i < priv->config.rings; i++) {
1628 char wq_name[9] = {0};
1629 int irq;
1630 struct safexcel_ring_irq_data *ring_irq;
1632 ret = safexcel_init_ring_descriptors(priv,
1633 &priv->ring[i].cdr,
1634 &priv->ring[i].rdr);
1635 if (ret) {
1636 dev_err(dev, "Failed to initialize rings\n");
1637 return ret;
1640 priv->ring[i].rdr_req = devm_kcalloc(dev,
1641 EIP197_DEFAULT_RING_SIZE,
1642 sizeof(*priv->ring[i].rdr_req),
1643 GFP_KERNEL);
1644 if (!priv->ring[i].rdr_req)
1645 return -ENOMEM;
1647 ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL);
1648 if (!ring_irq)
1649 return -ENOMEM;
1651 ring_irq->priv = priv;
1652 ring_irq->ring = i;
1654 irq = safexcel_request_ring_irq(pdev,
1655 EIP197_IRQ_NUMBER(i, is_pci_dev),
1656 is_pci_dev,
1658 safexcel_irq_ring,
1659 safexcel_irq_ring_thread,
1660 ring_irq);
1661 if (irq < 0) {
1662 dev_err(dev, "Failed to get IRQ ID for ring %d\n", i);
1663 return irq;
1666 priv->ring[i].irq = irq;
1667 priv->ring[i].work_data.priv = priv;
1668 priv->ring[i].work_data.ring = i;
1669 INIT_WORK(&priv->ring[i].work_data.work,
1670 safexcel_dequeue_work);
1672 snprintf(wq_name, 9, "wq_ring%d", i);
1673 priv->ring[i].workqueue =
1674 create_singlethread_workqueue(wq_name);
1675 if (!priv->ring[i].workqueue)
1676 return -ENOMEM;
1678 priv->ring[i].requests = 0;
1679 priv->ring[i].busy = false;
1681 crypto_init_queue(&priv->ring[i].queue,
1682 EIP197_DEFAULT_RING_SIZE);
1684 spin_lock_init(&priv->ring[i].lock);
1685 spin_lock_init(&priv->ring[i].queue_lock);
1688 atomic_set(&priv->ring_used, 0);
1690 ret = safexcel_hw_init(priv);
1691 if (ret) {
1692 dev_err(dev, "HW init failed (%d)\n", ret);
1693 return ret;
1696 ret = safexcel_register_algorithms(priv);
1697 if (ret) {
1698 dev_err(dev, "Failed to register algorithms (%d)\n", ret);
1699 return ret;
1702 return 0;
1705 static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv)
1707 int i;
1709 for (i = 0; i < priv->config.rings; i++) {
1710 /* clear any pending interrupt */
1711 writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
1712 writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
1714 /* Reset the CDR base address */
1715 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
1716 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
1718 /* Reset the RDR base address */
1719 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
1720 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
1724 /* for Device Tree platform driver */
1726 static int safexcel_probe(struct platform_device *pdev)
1728 struct device *dev = &pdev->dev;
1729 struct safexcel_crypto_priv *priv;
1730 int ret;
1732 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1733 if (!priv)
1734 return -ENOMEM;
1736 priv->dev = dev;
1737 priv->version = (enum safexcel_eip_version)of_device_get_match_data(dev);
1739 platform_set_drvdata(pdev, priv);
1741 priv->base = devm_platform_ioremap_resource(pdev, 0);
1742 if (IS_ERR(priv->base)) {
1743 dev_err(dev, "failed to get resource\n");
1744 return PTR_ERR(priv->base);
1747 priv->clk = devm_clk_get(&pdev->dev, NULL);
1748 ret = PTR_ERR_OR_ZERO(priv->clk);
1749 /* The clock isn't mandatory */
1750 if (ret != -ENOENT) {
1751 if (ret)
1752 return ret;
1754 ret = clk_prepare_enable(priv->clk);
1755 if (ret) {
1756 dev_err(dev, "unable to enable clk (%d)\n", ret);
1757 return ret;
1761 priv->reg_clk = devm_clk_get(&pdev->dev, "reg");
1762 ret = PTR_ERR_OR_ZERO(priv->reg_clk);
1763 /* The clock isn't mandatory */
1764 if (ret != -ENOENT) {
1765 if (ret)
1766 goto err_core_clk;
1768 ret = clk_prepare_enable(priv->reg_clk);
1769 if (ret) {
1770 dev_err(dev, "unable to enable reg clk (%d)\n", ret);
1771 goto err_core_clk;
1775 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1776 if (ret)
1777 goto err_reg_clk;
1779 /* Generic EIP97/EIP197 device probing */
1780 ret = safexcel_probe_generic(pdev, priv, 0);
1781 if (ret)
1782 goto err_reg_clk;
1784 return 0;
1786 err_reg_clk:
1787 clk_disable_unprepare(priv->reg_clk);
1788 err_core_clk:
1789 clk_disable_unprepare(priv->clk);
1790 return ret;
1793 static int safexcel_remove(struct platform_device *pdev)
1795 struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev);
1796 int i;
1798 safexcel_unregister_algorithms(priv);
1799 safexcel_hw_reset_rings(priv);
1801 clk_disable_unprepare(priv->reg_clk);
1802 clk_disable_unprepare(priv->clk);
1804 for (i = 0; i < priv->config.rings; i++) {
1805 irq_set_affinity_hint(priv->ring[i].irq, NULL);
1806 destroy_workqueue(priv->ring[i].workqueue);
1809 return 0;
1812 static const struct of_device_id safexcel_of_match_table[] = {
1814 .compatible = "inside-secure,safexcel-eip97ies",
1815 .data = (void *)EIP97IES_MRVL,
1818 .compatible = "inside-secure,safexcel-eip197b",
1819 .data = (void *)EIP197B_MRVL,
1822 .compatible = "inside-secure,safexcel-eip197d",
1823 .data = (void *)EIP197D_MRVL,
1825 /* For backward compatibility and intended for generic use */
1827 .compatible = "inside-secure,safexcel-eip97",
1828 .data = (void *)EIP97IES_MRVL,
1831 .compatible = "inside-secure,safexcel-eip197",
1832 .data = (void *)EIP197B_MRVL,
1837 static struct platform_driver crypto_safexcel = {
1838 .probe = safexcel_probe,
1839 .remove = safexcel_remove,
1840 .driver = {
1841 .name = "crypto-safexcel",
1842 .of_match_table = safexcel_of_match_table,
1846 /* PCIE devices - i.e. Inside Secure development boards */
1848 static int safexcel_pci_probe(struct pci_dev *pdev,
1849 const struct pci_device_id *ent)
1851 struct device *dev = &pdev->dev;
1852 struct safexcel_crypto_priv *priv;
1853 void __iomem *pciebase;
1854 int rc;
1855 u32 val;
1857 dev_dbg(dev, "Probing PCIE device: vendor %04x, device %04x, subv %04x, subdev %04x, ctxt %lx\n",
1858 ent->vendor, ent->device, ent->subvendor,
1859 ent->subdevice, ent->driver_data);
1861 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1862 if (!priv)
1863 return -ENOMEM;
1865 priv->dev = dev;
1866 priv->version = (enum safexcel_eip_version)ent->driver_data;
1868 pci_set_drvdata(pdev, priv);
1870 /* enable the device */
1871 rc = pcim_enable_device(pdev);
1872 if (rc) {
1873 dev_err(dev, "Failed to enable PCI device\n");
1874 return rc;
1877 /* take ownership of PCI BAR0 */
1878 rc = pcim_iomap_regions(pdev, 1, "crypto_safexcel");
1879 if (rc) {
1880 dev_err(dev, "Failed to map IO region for BAR0\n");
1881 return rc;
1883 priv->base = pcim_iomap_table(pdev)[0];
1885 if (priv->version == EIP197_DEVBRD) {
1886 dev_dbg(dev, "Device identified as FPGA based development board - applying HW reset\n");
1888 rc = pcim_iomap_regions(pdev, 4, "crypto_safexcel");
1889 if (rc) {
1890 dev_err(dev, "Failed to map IO region for BAR4\n");
1891 return rc;
1894 pciebase = pcim_iomap_table(pdev)[2];
1895 val = readl(pciebase + EIP197_XLX_IRQ_BLOCK_ID_ADDR);
1896 if ((val >> 16) == EIP197_XLX_IRQ_BLOCK_ID_VALUE) {
1897 dev_dbg(dev, "Detected Xilinx PCIE IRQ block version %d, multiple MSI support enabled\n",
1898 (val & 0xff));
1900 /* Setup MSI identity map mapping */
1901 writel(EIP197_XLX_USER_VECT_LUT0_IDENT,
1902 pciebase + EIP197_XLX_USER_VECT_LUT0_ADDR);
1903 writel(EIP197_XLX_USER_VECT_LUT1_IDENT,
1904 pciebase + EIP197_XLX_USER_VECT_LUT1_ADDR);
1905 writel(EIP197_XLX_USER_VECT_LUT2_IDENT,
1906 pciebase + EIP197_XLX_USER_VECT_LUT2_ADDR);
1907 writel(EIP197_XLX_USER_VECT_LUT3_IDENT,
1908 pciebase + EIP197_XLX_USER_VECT_LUT3_ADDR);
1910 /* Enable all device interrupts */
1911 writel(GENMASK(31, 0),
1912 pciebase + EIP197_XLX_USER_INT_ENB_MSK);
1913 } else {
1914 dev_err(dev, "Unrecognised IRQ block identifier %x\n",
1915 val);
1916 return -ENODEV;
1919 /* HW reset FPGA dev board */
1920 /* assert reset */
1921 writel(1, priv->base + EIP197_XLX_GPIO_BASE);
1922 wmb(); /* maintain strict ordering for accesses here */
1923 /* deassert reset */
1924 writel(0, priv->base + EIP197_XLX_GPIO_BASE);
1925 wmb(); /* maintain strict ordering for accesses here */
1928 /* enable bus mastering */
1929 pci_set_master(pdev);
1931 /* Generic EIP97/EIP197 device probing */
1932 rc = safexcel_probe_generic(pdev, priv, 1);
1933 return rc;
1936 static void safexcel_pci_remove(struct pci_dev *pdev)
1938 struct safexcel_crypto_priv *priv = pci_get_drvdata(pdev);
1939 int i;
1941 safexcel_unregister_algorithms(priv);
1943 for (i = 0; i < priv->config.rings; i++)
1944 destroy_workqueue(priv->ring[i].workqueue);
1946 safexcel_hw_reset_rings(priv);
1949 static const struct pci_device_id safexcel_pci_ids[] = {
1951 PCI_DEVICE_SUB(PCI_VENDOR_ID_XILINX, 0x9038,
1952 0x16ae, 0xc522),
1953 .driver_data = EIP197_DEVBRD,
1958 MODULE_DEVICE_TABLE(pci, safexcel_pci_ids);
1960 static struct pci_driver safexcel_pci_driver = {
1961 .name = "crypto-safexcel",
1962 .id_table = safexcel_pci_ids,
1963 .probe = safexcel_pci_probe,
1964 .remove = safexcel_pci_remove,
1967 static int __init safexcel_init(void)
1969 int ret;
1971 /* Register PCI driver */
1972 ret = pci_register_driver(&safexcel_pci_driver);
1974 /* Register platform driver */
1975 if (IS_ENABLED(CONFIG_OF) && !ret) {
1976 ret = platform_driver_register(&crypto_safexcel);
1977 if (ret)
1978 pci_unregister_driver(&safexcel_pci_driver);
1981 return ret;
1984 static void __exit safexcel_exit(void)
1986 /* Unregister platform driver */
1987 if (IS_ENABLED(CONFIG_OF))
1988 platform_driver_unregister(&crypto_safexcel);
1990 /* Unregister PCI driver if successfully registered before */
1991 pci_unregister_driver(&safexcel_pci_driver);
1994 module_init(safexcel_init);
1995 module_exit(safexcel_exit);
1997 MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>");
1998 MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>");
1999 MODULE_AUTHOR("Igal Liberman <igall@marvell.com>");
2000 MODULE_DESCRIPTION("Support for SafeXcel cryptographic engines: EIP97 & EIP197");
2001 MODULE_LICENSE("GPL v2");