Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / crypto / mxs-dcp.c
blobd6a7784d298881544fb6b25e70d25805789cc007
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/stmp_device.h>
17 #include <linux/clk.h>
19 #include <crypto/aes.h>
20 #include <crypto/sha1.h>
21 #include <crypto/sha2.h>
22 #include <crypto/internal/hash.h>
23 #include <crypto/internal/skcipher.h>
24 #include <crypto/scatterwalk.h>
26 #define DCP_MAX_CHANS 4
27 #define DCP_BUF_SZ PAGE_SIZE
28 #define DCP_SHA_PAY_SZ 64
30 #define DCP_ALIGNMENT 64
33 * Null hashes to align with hw behavior on imx6sl and ull
34 * these are flipped for consistency with hw output
36 static const uint8_t sha1_null_hash[] =
37 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
38 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
40 static const uint8_t sha256_null_hash[] =
41 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
42 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
43 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
44 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
46 /* DCP DMA descriptor. */
47 struct dcp_dma_desc {
48 uint32_t next_cmd_addr;
49 uint32_t control0;
50 uint32_t control1;
51 uint32_t source;
52 uint32_t destination;
53 uint32_t size;
54 uint32_t payload;
55 uint32_t status;
58 /* Coherent aligned block for bounce buffering. */
59 struct dcp_coherent_block {
60 uint8_t aes_in_buf[DCP_BUF_SZ];
61 uint8_t aes_out_buf[DCP_BUF_SZ];
62 uint8_t sha_in_buf[DCP_BUF_SZ];
63 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
65 uint8_t aes_key[2 * AES_KEYSIZE_128];
67 struct dcp_dma_desc desc[DCP_MAX_CHANS];
70 struct dcp {
71 struct device *dev;
72 void __iomem *base;
74 uint32_t caps;
76 struct dcp_coherent_block *coh;
78 struct completion completion[DCP_MAX_CHANS];
79 spinlock_t lock[DCP_MAX_CHANS];
80 struct task_struct *thread[DCP_MAX_CHANS];
81 struct crypto_queue queue[DCP_MAX_CHANS];
82 struct clk *dcp_clk;
85 enum dcp_chan {
86 DCP_CHAN_HASH_SHA = 0,
87 DCP_CHAN_CRYPTO = 2,
90 struct dcp_async_ctx {
91 /* Common context */
92 enum dcp_chan chan;
93 uint32_t fill;
95 /* SHA Hash-specific context */
96 struct mutex mutex;
97 uint32_t alg;
98 unsigned int hot:1;
100 /* Crypto-specific context */
101 struct crypto_skcipher *fallback;
102 unsigned int key_len;
103 uint8_t key[AES_KEYSIZE_128];
106 struct dcp_aes_req_ctx {
107 unsigned int enc:1;
108 unsigned int ecb:1;
109 struct skcipher_request fallback_req; // keep at the end
112 struct dcp_sha_req_ctx {
113 unsigned int init:1;
114 unsigned int fini:1;
117 struct dcp_export_state {
118 struct dcp_sha_req_ctx req_ctx;
119 struct dcp_async_ctx async_ctx;
123 * There can even be only one instance of the MXS DCP due to the
124 * design of Linux Crypto API.
126 static struct dcp *global_sdcp;
128 /* DCP register layout. */
129 #define MXS_DCP_CTRL 0x00
130 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
131 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
133 #define MXS_DCP_STAT 0x10
134 #define MXS_DCP_STAT_CLR 0x18
135 #define MXS_DCP_STAT_IRQ_MASK 0xf
137 #define MXS_DCP_CHANNELCTRL 0x20
138 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
140 #define MXS_DCP_CAPABILITY1 0x40
141 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
142 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
143 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
145 #define MXS_DCP_CONTEXT 0x50
147 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
149 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
151 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
152 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
154 /* DMA descriptor bits. */
155 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
156 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
157 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
158 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
159 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
160 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
161 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
162 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
163 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
165 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
166 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
167 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
168 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
169 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
171 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
173 struct dcp *sdcp = global_sdcp;
174 const int chan = actx->chan;
175 uint32_t stat;
176 unsigned long ret;
177 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
179 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
180 DMA_TO_DEVICE);
182 reinit_completion(&sdcp->completion[chan]);
184 /* Clear status register. */
185 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
187 /* Load the DMA descriptor. */
188 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
190 /* Increment the semaphore to start the DMA transfer. */
191 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
193 ret = wait_for_completion_timeout(&sdcp->completion[chan],
194 msecs_to_jiffies(1000));
195 if (!ret) {
196 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
197 chan, readl(sdcp->base + MXS_DCP_STAT));
198 return -ETIMEDOUT;
201 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
202 if (stat & 0xff) {
203 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
204 chan, stat);
205 return -EINVAL;
208 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
210 return 0;
214 * Encryption (AES128)
216 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
217 struct skcipher_request *req, int init)
219 struct dcp *sdcp = global_sdcp;
220 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
221 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
222 int ret;
224 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
225 2 * AES_KEYSIZE_128,
226 DMA_TO_DEVICE);
227 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
228 DCP_BUF_SZ, DMA_TO_DEVICE);
229 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
230 DCP_BUF_SZ, DMA_FROM_DEVICE);
232 if (actx->fill % AES_BLOCK_SIZE) {
233 dev_err(sdcp->dev, "Invalid block size!\n");
234 ret = -EINVAL;
235 goto aes_done_run;
238 /* Fill in the DMA descriptor. */
239 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
240 MXS_DCP_CONTROL0_INTERRUPT |
241 MXS_DCP_CONTROL0_ENABLE_CIPHER;
243 /* Payload contains the key. */
244 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
246 if (rctx->enc)
247 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
248 if (init)
249 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
251 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
253 if (rctx->ecb)
254 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
255 else
256 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
258 desc->next_cmd_addr = 0;
259 desc->source = src_phys;
260 desc->destination = dst_phys;
261 desc->size = actx->fill;
262 desc->payload = key_phys;
263 desc->status = 0;
265 ret = mxs_dcp_start_dma(actx);
267 aes_done_run:
268 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
269 DMA_TO_DEVICE);
270 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
271 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
273 return ret;
276 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
278 struct dcp *sdcp = global_sdcp;
280 struct skcipher_request *req = skcipher_request_cast(arq);
281 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
282 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
284 struct scatterlist *dst = req->dst;
285 struct scatterlist *src = req->src;
286 const int nents = sg_nents(req->src);
288 const int out_off = DCP_BUF_SZ;
289 uint8_t *in_buf = sdcp->coh->aes_in_buf;
290 uint8_t *out_buf = sdcp->coh->aes_out_buf;
292 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
293 uint32_t dst_off = 0;
294 uint32_t last_out_len = 0;
296 uint8_t *key = sdcp->coh->aes_key;
298 int ret = 0;
299 int split = 0;
300 unsigned int i, len, clen, rem = 0, tlen = 0;
301 int init = 0;
302 bool limit_hit = false;
304 actx->fill = 0;
306 /* Copy the key from the temporary location. */
307 memcpy(key, actx->key, actx->key_len);
309 if (!rctx->ecb) {
310 /* Copy the CBC IV just past the key. */
311 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
312 /* CBC needs the INIT set. */
313 init = 1;
314 } else {
315 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
318 for_each_sg(req->src, src, nents, i) {
319 src_buf = sg_virt(src);
320 len = sg_dma_len(src);
321 tlen += len;
322 limit_hit = tlen > req->cryptlen;
324 if (limit_hit)
325 len = req->cryptlen - (tlen - len);
327 do {
328 if (actx->fill + len > out_off)
329 clen = out_off - actx->fill;
330 else
331 clen = len;
333 memcpy(in_buf + actx->fill, src_buf, clen);
334 len -= clen;
335 src_buf += clen;
336 actx->fill += clen;
339 * If we filled the buffer or this is the last SG,
340 * submit the buffer.
342 if (actx->fill == out_off || sg_is_last(src) ||
343 limit_hit) {
344 ret = mxs_dcp_run_aes(actx, req, init);
345 if (ret)
346 return ret;
347 init = 0;
349 out_tmp = out_buf;
350 last_out_len = actx->fill;
351 while (dst && actx->fill) {
352 if (!split) {
353 dst_buf = sg_virt(dst);
354 dst_off = 0;
356 rem = min(sg_dma_len(dst) - dst_off,
357 actx->fill);
359 memcpy(dst_buf + dst_off, out_tmp, rem);
360 out_tmp += rem;
361 dst_off += rem;
362 actx->fill -= rem;
364 if (dst_off == sg_dma_len(dst)) {
365 dst = sg_next(dst);
366 split = 0;
367 } else {
368 split = 1;
372 } while (len);
374 if (limit_hit)
375 break;
378 /* Copy the IV for CBC for chaining */
379 if (!rctx->ecb) {
380 if (rctx->enc)
381 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
382 AES_BLOCK_SIZE);
383 else
384 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
385 AES_BLOCK_SIZE);
388 return ret;
391 static int dcp_chan_thread_aes(void *data)
393 struct dcp *sdcp = global_sdcp;
394 const int chan = DCP_CHAN_CRYPTO;
396 struct crypto_async_request *backlog;
397 struct crypto_async_request *arq;
399 int ret;
401 while (!kthread_should_stop()) {
402 set_current_state(TASK_INTERRUPTIBLE);
404 spin_lock(&sdcp->lock[chan]);
405 backlog = crypto_get_backlog(&sdcp->queue[chan]);
406 arq = crypto_dequeue_request(&sdcp->queue[chan]);
407 spin_unlock(&sdcp->lock[chan]);
409 if (!backlog && !arq) {
410 schedule();
411 continue;
414 set_current_state(TASK_RUNNING);
416 if (backlog)
417 backlog->complete(backlog, -EINPROGRESS);
419 if (arq) {
420 ret = mxs_dcp_aes_block_crypt(arq);
421 arq->complete(arq, ret);
425 return 0;
428 static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
430 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
431 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
432 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
433 int ret;
435 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
436 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
437 req->base.complete, req->base.data);
438 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
439 req->cryptlen, req->iv);
441 if (enc)
442 ret = crypto_skcipher_encrypt(&rctx->fallback_req);
443 else
444 ret = crypto_skcipher_decrypt(&rctx->fallback_req);
446 return ret;
449 static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
451 struct dcp *sdcp = global_sdcp;
452 struct crypto_async_request *arq = &req->base;
453 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
454 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
455 int ret;
457 if (unlikely(actx->key_len != AES_KEYSIZE_128))
458 return mxs_dcp_block_fallback(req, enc);
460 rctx->enc = enc;
461 rctx->ecb = ecb;
462 actx->chan = DCP_CHAN_CRYPTO;
464 spin_lock(&sdcp->lock[actx->chan]);
465 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
466 spin_unlock(&sdcp->lock[actx->chan]);
468 wake_up_process(sdcp->thread[actx->chan]);
470 return ret;
473 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
475 return mxs_dcp_aes_enqueue(req, 0, 1);
478 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
480 return mxs_dcp_aes_enqueue(req, 1, 1);
483 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
485 return mxs_dcp_aes_enqueue(req, 0, 0);
488 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
490 return mxs_dcp_aes_enqueue(req, 1, 0);
493 static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
494 unsigned int len)
496 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
499 * AES 128 is supposed by the hardware, store key into temporary
500 * buffer and exit. We must use the temporary buffer here, since
501 * there can still be an operation in progress.
503 actx->key_len = len;
504 if (len == AES_KEYSIZE_128) {
505 memcpy(actx->key, key, len);
506 return 0;
510 * If the requested AES key size is not supported by the hardware,
511 * but is supported by in-kernel software implementation, we use
512 * software fallback.
514 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
515 crypto_skcipher_set_flags(actx->fallback,
516 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
517 return crypto_skcipher_setkey(actx->fallback, key, len);
520 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
522 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
523 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
524 struct crypto_skcipher *blk;
526 blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
527 if (IS_ERR(blk))
528 return PTR_ERR(blk);
530 actx->fallback = blk;
531 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
532 crypto_skcipher_reqsize(blk));
533 return 0;
536 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
538 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
540 crypto_free_skcipher(actx->fallback);
544 * Hashing (SHA1/SHA256)
546 static int mxs_dcp_run_sha(struct ahash_request *req)
548 struct dcp *sdcp = global_sdcp;
549 int ret;
551 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
552 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
553 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
554 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
556 dma_addr_t digest_phys = 0;
557 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
558 DCP_BUF_SZ, DMA_TO_DEVICE);
560 /* Fill in the DMA descriptor. */
561 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
562 MXS_DCP_CONTROL0_INTERRUPT |
563 MXS_DCP_CONTROL0_ENABLE_HASH;
564 if (rctx->init)
565 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
567 desc->control1 = actx->alg;
568 desc->next_cmd_addr = 0;
569 desc->source = buf_phys;
570 desc->destination = 0;
571 desc->size = actx->fill;
572 desc->payload = 0;
573 desc->status = 0;
576 * Align driver with hw behavior when generating null hashes
578 if (rctx->init && rctx->fini && desc->size == 0) {
579 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
580 const uint8_t *sha_buf =
581 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
582 sha1_null_hash : sha256_null_hash;
583 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
584 ret = 0;
585 goto done_run;
588 /* Set HASH_TERM bit for last transfer block. */
589 if (rctx->fini) {
590 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
591 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
592 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
593 desc->payload = digest_phys;
596 ret = mxs_dcp_start_dma(actx);
598 if (rctx->fini)
599 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
600 DMA_FROM_DEVICE);
602 done_run:
603 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
605 return ret;
608 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
610 struct dcp *sdcp = global_sdcp;
612 struct ahash_request *req = ahash_request_cast(arq);
613 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
614 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
615 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
616 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
618 uint8_t *in_buf = sdcp->coh->sha_in_buf;
619 uint8_t *out_buf = sdcp->coh->sha_out_buf;
621 struct scatterlist *src;
623 unsigned int i, len, clen, oft = 0;
624 int ret;
626 int fin = rctx->fini;
627 if (fin)
628 rctx->fini = 0;
630 src = req->src;
631 len = req->nbytes;
633 while (len) {
634 if (actx->fill + len > DCP_BUF_SZ)
635 clen = DCP_BUF_SZ - actx->fill;
636 else
637 clen = len;
639 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
642 len -= clen;
643 oft += clen;
644 actx->fill += clen;
647 * If we filled the buffer and still have some
648 * more data, submit the buffer.
650 if (len && actx->fill == DCP_BUF_SZ) {
651 ret = mxs_dcp_run_sha(req);
652 if (ret)
653 return ret;
654 actx->fill = 0;
655 rctx->init = 0;
659 if (fin) {
660 rctx->fini = 1;
662 /* Submit whatever is left. */
663 if (!req->result)
664 return -EINVAL;
666 ret = mxs_dcp_run_sha(req);
667 if (ret)
668 return ret;
670 actx->fill = 0;
672 /* For some reason the result is flipped */
673 for (i = 0; i < halg->digestsize; i++)
674 req->result[i] = out_buf[halg->digestsize - i - 1];
677 return 0;
680 static int dcp_chan_thread_sha(void *data)
682 struct dcp *sdcp = global_sdcp;
683 const int chan = DCP_CHAN_HASH_SHA;
685 struct crypto_async_request *backlog;
686 struct crypto_async_request *arq;
687 int ret;
689 while (!kthread_should_stop()) {
690 set_current_state(TASK_INTERRUPTIBLE);
692 spin_lock(&sdcp->lock[chan]);
693 backlog = crypto_get_backlog(&sdcp->queue[chan]);
694 arq = crypto_dequeue_request(&sdcp->queue[chan]);
695 spin_unlock(&sdcp->lock[chan]);
697 if (!backlog && !arq) {
698 schedule();
699 continue;
702 set_current_state(TASK_RUNNING);
704 if (backlog)
705 backlog->complete(backlog, -EINPROGRESS);
707 if (arq) {
708 ret = dcp_sha_req_to_buf(arq);
709 arq->complete(arq, ret);
713 return 0;
716 static int dcp_sha_init(struct ahash_request *req)
718 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
719 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
721 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
724 * Start hashing session. The code below only inits the
725 * hashing session context, nothing more.
727 memset(actx, 0, sizeof(*actx));
729 if (strcmp(halg->base.cra_name, "sha1") == 0)
730 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
731 else
732 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
734 actx->fill = 0;
735 actx->hot = 0;
736 actx->chan = DCP_CHAN_HASH_SHA;
738 mutex_init(&actx->mutex);
740 return 0;
743 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
745 struct dcp *sdcp = global_sdcp;
747 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
748 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
749 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
751 int ret;
754 * Ignore requests that have no data in them and are not
755 * the trailing requests in the stream of requests.
757 if (!req->nbytes && !fini)
758 return 0;
760 mutex_lock(&actx->mutex);
762 rctx->fini = fini;
764 if (!actx->hot) {
765 actx->hot = 1;
766 rctx->init = 1;
769 spin_lock(&sdcp->lock[actx->chan]);
770 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
771 spin_unlock(&sdcp->lock[actx->chan]);
773 wake_up_process(sdcp->thread[actx->chan]);
774 mutex_unlock(&actx->mutex);
776 return ret;
779 static int dcp_sha_update(struct ahash_request *req)
781 return dcp_sha_update_fx(req, 0);
784 static int dcp_sha_final(struct ahash_request *req)
786 ahash_request_set_crypt(req, NULL, req->result, 0);
787 req->nbytes = 0;
788 return dcp_sha_update_fx(req, 1);
791 static int dcp_sha_finup(struct ahash_request *req)
793 return dcp_sha_update_fx(req, 1);
796 static int dcp_sha_digest(struct ahash_request *req)
798 int ret;
800 ret = dcp_sha_init(req);
801 if (ret)
802 return ret;
804 return dcp_sha_finup(req);
807 static int dcp_sha_import(struct ahash_request *req, const void *in)
809 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
810 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
811 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
812 const struct dcp_export_state *export = in;
814 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
815 memset(actx, 0, sizeof(struct dcp_async_ctx));
816 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
817 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
819 return 0;
822 static int dcp_sha_export(struct ahash_request *req, void *out)
824 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
825 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
826 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
827 struct dcp_export_state *export = out;
829 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
830 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
832 return 0;
835 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
837 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
838 sizeof(struct dcp_sha_req_ctx));
839 return 0;
842 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
846 /* AES 128 ECB and AES 128 CBC */
847 static struct skcipher_alg dcp_aes_algs[] = {
849 .base.cra_name = "ecb(aes)",
850 .base.cra_driver_name = "ecb-aes-dcp",
851 .base.cra_priority = 400,
852 .base.cra_alignmask = 15,
853 .base.cra_flags = CRYPTO_ALG_ASYNC |
854 CRYPTO_ALG_NEED_FALLBACK,
855 .base.cra_blocksize = AES_BLOCK_SIZE,
856 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
857 .base.cra_module = THIS_MODULE,
859 .min_keysize = AES_MIN_KEY_SIZE,
860 .max_keysize = AES_MAX_KEY_SIZE,
861 .setkey = mxs_dcp_aes_setkey,
862 .encrypt = mxs_dcp_aes_ecb_encrypt,
863 .decrypt = mxs_dcp_aes_ecb_decrypt,
864 .init = mxs_dcp_aes_fallback_init_tfm,
865 .exit = mxs_dcp_aes_fallback_exit_tfm,
866 }, {
867 .base.cra_name = "cbc(aes)",
868 .base.cra_driver_name = "cbc-aes-dcp",
869 .base.cra_priority = 400,
870 .base.cra_alignmask = 15,
871 .base.cra_flags = CRYPTO_ALG_ASYNC |
872 CRYPTO_ALG_NEED_FALLBACK,
873 .base.cra_blocksize = AES_BLOCK_SIZE,
874 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
875 .base.cra_module = THIS_MODULE,
877 .min_keysize = AES_MIN_KEY_SIZE,
878 .max_keysize = AES_MAX_KEY_SIZE,
879 .setkey = mxs_dcp_aes_setkey,
880 .encrypt = mxs_dcp_aes_cbc_encrypt,
881 .decrypt = mxs_dcp_aes_cbc_decrypt,
882 .ivsize = AES_BLOCK_SIZE,
883 .init = mxs_dcp_aes_fallback_init_tfm,
884 .exit = mxs_dcp_aes_fallback_exit_tfm,
888 /* SHA1 */
889 static struct ahash_alg dcp_sha1_alg = {
890 .init = dcp_sha_init,
891 .update = dcp_sha_update,
892 .final = dcp_sha_final,
893 .finup = dcp_sha_finup,
894 .digest = dcp_sha_digest,
895 .import = dcp_sha_import,
896 .export = dcp_sha_export,
897 .halg = {
898 .digestsize = SHA1_DIGEST_SIZE,
899 .statesize = sizeof(struct dcp_export_state),
900 .base = {
901 .cra_name = "sha1",
902 .cra_driver_name = "sha1-dcp",
903 .cra_priority = 400,
904 .cra_alignmask = 63,
905 .cra_flags = CRYPTO_ALG_ASYNC,
906 .cra_blocksize = SHA1_BLOCK_SIZE,
907 .cra_ctxsize = sizeof(struct dcp_async_ctx),
908 .cra_module = THIS_MODULE,
909 .cra_init = dcp_sha_cra_init,
910 .cra_exit = dcp_sha_cra_exit,
915 /* SHA256 */
916 static struct ahash_alg dcp_sha256_alg = {
917 .init = dcp_sha_init,
918 .update = dcp_sha_update,
919 .final = dcp_sha_final,
920 .finup = dcp_sha_finup,
921 .digest = dcp_sha_digest,
922 .import = dcp_sha_import,
923 .export = dcp_sha_export,
924 .halg = {
925 .digestsize = SHA256_DIGEST_SIZE,
926 .statesize = sizeof(struct dcp_export_state),
927 .base = {
928 .cra_name = "sha256",
929 .cra_driver_name = "sha256-dcp",
930 .cra_priority = 400,
931 .cra_alignmask = 63,
932 .cra_flags = CRYPTO_ALG_ASYNC,
933 .cra_blocksize = SHA256_BLOCK_SIZE,
934 .cra_ctxsize = sizeof(struct dcp_async_ctx),
935 .cra_module = THIS_MODULE,
936 .cra_init = dcp_sha_cra_init,
937 .cra_exit = dcp_sha_cra_exit,
942 static irqreturn_t mxs_dcp_irq(int irq, void *context)
944 struct dcp *sdcp = context;
945 uint32_t stat;
946 int i;
948 stat = readl(sdcp->base + MXS_DCP_STAT);
949 stat &= MXS_DCP_STAT_IRQ_MASK;
950 if (!stat)
951 return IRQ_NONE;
953 /* Clear the interrupts. */
954 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
956 /* Complete the DMA requests that finished. */
957 for (i = 0; i < DCP_MAX_CHANS; i++)
958 if (stat & (1 << i))
959 complete(&sdcp->completion[i]);
961 return IRQ_HANDLED;
964 static int mxs_dcp_probe(struct platform_device *pdev)
966 struct device *dev = &pdev->dev;
967 struct dcp *sdcp = NULL;
968 int i, ret;
969 int dcp_vmi_irq, dcp_irq;
971 if (global_sdcp) {
972 dev_err(dev, "Only one DCP instance allowed!\n");
973 return -ENODEV;
976 dcp_vmi_irq = platform_get_irq(pdev, 0);
977 if (dcp_vmi_irq < 0)
978 return dcp_vmi_irq;
980 dcp_irq = platform_get_irq(pdev, 1);
981 if (dcp_irq < 0)
982 return dcp_irq;
984 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
985 if (!sdcp)
986 return -ENOMEM;
988 sdcp->dev = dev;
989 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
990 if (IS_ERR(sdcp->base))
991 return PTR_ERR(sdcp->base);
994 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
995 "dcp-vmi-irq", sdcp);
996 if (ret) {
997 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
998 return ret;
1001 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1002 "dcp-irq", sdcp);
1003 if (ret) {
1004 dev_err(dev, "Failed to claim DCP IRQ!\n");
1005 return ret;
1008 /* Allocate coherent helper block. */
1009 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1010 GFP_KERNEL);
1011 if (!sdcp->coh)
1012 return -ENOMEM;
1014 /* Re-align the structure so it fits the DCP constraints. */
1015 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1017 /* DCP clock is optional, only used on some SOCs */
1018 sdcp->dcp_clk = devm_clk_get(dev, "dcp");
1019 if (IS_ERR(sdcp->dcp_clk)) {
1020 if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
1021 return PTR_ERR(sdcp->dcp_clk);
1022 sdcp->dcp_clk = NULL;
1024 ret = clk_prepare_enable(sdcp->dcp_clk);
1025 if (ret)
1026 return ret;
1028 /* Restart the DCP block. */
1029 ret = stmp_reset_block(sdcp->base);
1030 if (ret) {
1031 dev_err(dev, "Failed reset\n");
1032 goto err_disable_unprepare_clk;
1035 /* Initialize control register. */
1036 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1037 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1038 sdcp->base + MXS_DCP_CTRL);
1040 /* Enable all DCP DMA channels. */
1041 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1042 sdcp->base + MXS_DCP_CHANNELCTRL);
1045 * We do not enable context switching. Give the context buffer a
1046 * pointer to an illegal address so if context switching is
1047 * inadvertantly enabled, the DCP will return an error instead of
1048 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1049 * address will do.
1051 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1052 for (i = 0; i < DCP_MAX_CHANS; i++)
1053 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1054 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1056 global_sdcp = sdcp;
1058 platform_set_drvdata(pdev, sdcp);
1060 for (i = 0; i < DCP_MAX_CHANS; i++) {
1061 spin_lock_init(&sdcp->lock[i]);
1062 init_completion(&sdcp->completion[i]);
1063 crypto_init_queue(&sdcp->queue[i], 50);
1066 /* Create the SHA and AES handler threads. */
1067 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1068 NULL, "mxs_dcp_chan/sha");
1069 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1070 dev_err(dev, "Error starting SHA thread!\n");
1071 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1072 goto err_disable_unprepare_clk;
1075 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1076 NULL, "mxs_dcp_chan/aes");
1077 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1078 dev_err(dev, "Error starting SHA thread!\n");
1079 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1080 goto err_destroy_sha_thread;
1083 /* Register the various crypto algorithms. */
1084 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1086 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1087 ret = crypto_register_skciphers(dcp_aes_algs,
1088 ARRAY_SIZE(dcp_aes_algs));
1089 if (ret) {
1090 /* Failed to register algorithm. */
1091 dev_err(dev, "Failed to register AES crypto!\n");
1092 goto err_destroy_aes_thread;
1096 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1097 ret = crypto_register_ahash(&dcp_sha1_alg);
1098 if (ret) {
1099 dev_err(dev, "Failed to register %s hash!\n",
1100 dcp_sha1_alg.halg.base.cra_name);
1101 goto err_unregister_aes;
1105 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1106 ret = crypto_register_ahash(&dcp_sha256_alg);
1107 if (ret) {
1108 dev_err(dev, "Failed to register %s hash!\n",
1109 dcp_sha256_alg.halg.base.cra_name);
1110 goto err_unregister_sha1;
1114 return 0;
1116 err_unregister_sha1:
1117 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1118 crypto_unregister_ahash(&dcp_sha1_alg);
1120 err_unregister_aes:
1121 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1122 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1124 err_destroy_aes_thread:
1125 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1127 err_destroy_sha_thread:
1128 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1130 err_disable_unprepare_clk:
1131 clk_disable_unprepare(sdcp->dcp_clk);
1133 return ret;
1136 static int mxs_dcp_remove(struct platform_device *pdev)
1138 struct dcp *sdcp = platform_get_drvdata(pdev);
1140 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1141 crypto_unregister_ahash(&dcp_sha256_alg);
1143 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1144 crypto_unregister_ahash(&dcp_sha1_alg);
1146 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1147 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1149 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1150 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1152 clk_disable_unprepare(sdcp->dcp_clk);
1154 platform_set_drvdata(pdev, NULL);
1156 global_sdcp = NULL;
1158 return 0;
1161 static const struct of_device_id mxs_dcp_dt_ids[] = {
1162 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1163 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1164 { /* sentinel */ }
1167 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1169 static struct platform_driver mxs_dcp_driver = {
1170 .probe = mxs_dcp_probe,
1171 .remove = mxs_dcp_remove,
1172 .driver = {
1173 .name = "mxs-dcp",
1174 .of_match_table = mxs_dcp_dt_ids,
1178 module_platform_driver(mxs_dcp_driver);
1180 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1181 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1182 MODULE_LICENSE("GPL");
1183 MODULE_ALIAS("platform:mxs-dcp");