1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/kernel.h>
10 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha1.h>
19 #include <crypto/sha2.h>
20 #include <crypto/aes.h>
21 #include <crypto/internal/des.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
26 #include <crypto/internal/hash.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/scatterwalk.h>
29 #include <crypto/algapi.h>
31 #include <asm/hypervisor.h>
32 #include <asm/mdesc.h>
36 #define DRV_MODULE_NAME "n2_crypto"
37 #define DRV_MODULE_VERSION "0.2"
38 #define DRV_MODULE_RELDATE "July 28, 2011"
40 static const char version
[] =
41 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
43 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
44 MODULE_DESCRIPTION("Niagara2 Crypto driver");
45 MODULE_LICENSE("GPL");
46 MODULE_VERSION(DRV_MODULE_VERSION
);
48 #define N2_CRA_PRIORITY 200
50 static DEFINE_MUTEX(spu_lock
);
54 unsigned long qhandle
;
61 struct list_head jobs
;
68 struct list_head list
;
72 struct spu_queue
*queue
;
76 static struct spu_queue
**cpu_to_cwq
;
77 static struct spu_queue
**cpu_to_mau
;
79 static unsigned long spu_next_offset(struct spu_queue
*q
, unsigned long off
)
81 if (q
->q_type
== HV_NCS_QTYPE_MAU
) {
82 off
+= MAU_ENTRY_SIZE
;
83 if (off
== (MAU_ENTRY_SIZE
* MAU_NUM_ENTRIES
))
86 off
+= CWQ_ENTRY_SIZE
;
87 if (off
== (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
))
93 struct n2_request_common
{
94 struct list_head entry
;
97 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
99 /* An async job request records the final tail value it used in
100 * n2_request_common->offset, test to see if that offset is in
101 * the range old_head, new_head, inclusive.
103 static inline bool job_finished(struct spu_queue
*q
, unsigned int offset
,
104 unsigned long old_head
, unsigned long new_head
)
106 if (old_head
<= new_head
) {
107 if (offset
> old_head
&& offset
<= new_head
)
110 if (offset
> old_head
|| offset
<= new_head
)
116 /* When the HEAD marker is unequal to the actual HEAD, we get
117 * a virtual device INO interrupt. We should process the
118 * completed CWQ entries and adjust the HEAD marker to clear
121 static irqreturn_t
cwq_intr(int irq
, void *dev_id
)
123 unsigned long off
, new_head
, hv_ret
;
124 struct spu_queue
*q
= dev_id
;
126 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
127 smp_processor_id(), q
->qhandle
);
131 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &new_head
);
133 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
134 smp_processor_id(), new_head
, hv_ret
);
136 for (off
= q
->head
; off
!= new_head
; off
= spu_next_offset(q
, off
)) {
140 hv_ret
= sun4v_ncs_sethead_marker(q
->qhandle
, new_head
);
141 if (hv_ret
== HV_EOK
)
144 spin_unlock(&q
->lock
);
149 static irqreturn_t
mau_intr(int irq
, void *dev_id
)
151 struct spu_queue
*q
= dev_id
;
152 unsigned long head
, hv_ret
;
156 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
157 smp_processor_id(), q
->qhandle
);
159 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &head
);
161 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
162 smp_processor_id(), head
, hv_ret
);
164 sun4v_ncs_sethead_marker(q
->qhandle
, head
);
166 spin_unlock(&q
->lock
);
171 static void *spu_queue_next(struct spu_queue
*q
, void *cur
)
173 return q
->q
+ spu_next_offset(q
, cur
- q
->q
);
176 static int spu_queue_num_free(struct spu_queue
*q
)
178 unsigned long head
= q
->head
;
179 unsigned long tail
= q
->tail
;
180 unsigned long end
= (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
);
186 diff
= (end
- tail
) + head
;
188 return (diff
/ CWQ_ENTRY_SIZE
) - 1;
191 static void *spu_queue_alloc(struct spu_queue
*q
, int num_entries
)
193 int avail
= spu_queue_num_free(q
);
195 if (avail
>= num_entries
)
196 return q
->q
+ q
->tail
;
201 static unsigned long spu_queue_submit(struct spu_queue
*q
, void *last
)
203 unsigned long hv_ret
, new_tail
;
205 new_tail
= spu_next_offset(q
, last
- q
->q
);
207 hv_ret
= sun4v_ncs_settail(q
->qhandle
, new_tail
);
208 if (hv_ret
== HV_EOK
)
213 static u64
control_word_base(unsigned int len
, unsigned int hmac_key_len
,
214 int enc_type
, int auth_type
,
215 unsigned int hash_len
,
216 bool sfas
, bool sob
, bool eob
, bool encrypt
,
219 u64 word
= (len
- 1) & CONTROL_LEN
;
221 word
|= ((u64
) opcode
<< CONTROL_OPCODE_SHIFT
);
222 word
|= ((u64
) enc_type
<< CONTROL_ENC_TYPE_SHIFT
);
223 word
|= ((u64
) auth_type
<< CONTROL_AUTH_TYPE_SHIFT
);
225 word
|= CONTROL_STORE_FINAL_AUTH_STATE
;
227 word
|= CONTROL_START_OF_BLOCK
;
229 word
|= CONTROL_END_OF_BLOCK
;
231 word
|= CONTROL_ENCRYPT
;
233 word
|= ((u64
) (hmac_key_len
- 1)) << CONTROL_HMAC_KEY_LEN_SHIFT
;
235 word
|= ((u64
) (hash_len
- 1)) << CONTROL_HASH_LEN_SHIFT
;
241 static inline bool n2_should_run_async(struct spu_queue
*qp
, int this_len
)
243 if (this_len
>= 64 ||
244 qp
->head
!= qp
->tail
)
250 struct n2_ahash_alg
{
251 struct list_head entry
;
258 struct ahash_alg alg
;
261 static inline struct n2_ahash_alg
*n2_ahash_alg(struct crypto_tfm
*tfm
)
263 struct crypto_alg
*alg
= tfm
->__crt_alg
;
264 struct ahash_alg
*ahash_alg
;
266 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
268 return container_of(ahash_alg
, struct n2_ahash_alg
, alg
);
272 const char *child_alg
;
273 struct n2_ahash_alg derived
;
276 static inline struct n2_hmac_alg
*n2_hmac_alg(struct crypto_tfm
*tfm
)
278 struct crypto_alg
*alg
= tfm
->__crt_alg
;
279 struct ahash_alg
*ahash_alg
;
281 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
283 return container_of(ahash_alg
, struct n2_hmac_alg
, derived
.alg
);
287 struct crypto_ahash
*fallback_tfm
;
290 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
293 struct n2_hash_ctx base
;
295 struct crypto_shash
*child_shash
;
298 unsigned char hash_key
[N2_HASH_KEY_MAX
];
301 struct n2_hash_req_ctx
{
303 struct md5_state md5
;
304 struct sha1_state sha1
;
305 struct sha256_state sha256
;
308 struct ahash_request fallback_req
;
311 static int n2_hash_async_init(struct ahash_request
*req
)
313 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
314 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
315 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
317 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
318 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
320 return crypto_ahash_init(&rctx
->fallback_req
);
323 static int n2_hash_async_update(struct ahash_request
*req
)
325 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
326 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
327 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
329 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
330 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
331 rctx
->fallback_req
.nbytes
= req
->nbytes
;
332 rctx
->fallback_req
.src
= req
->src
;
334 return crypto_ahash_update(&rctx
->fallback_req
);
337 static int n2_hash_async_final(struct ahash_request
*req
)
339 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
340 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
341 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
343 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
344 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
345 rctx
->fallback_req
.result
= req
->result
;
347 return crypto_ahash_final(&rctx
->fallback_req
);
350 static int n2_hash_async_finup(struct ahash_request
*req
)
352 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
353 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
354 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
356 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
357 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
358 rctx
->fallback_req
.nbytes
= req
->nbytes
;
359 rctx
->fallback_req
.src
= req
->src
;
360 rctx
->fallback_req
.result
= req
->result
;
362 return crypto_ahash_finup(&rctx
->fallback_req
);
365 static int n2_hash_async_noimport(struct ahash_request
*req
, const void *in
)
370 static int n2_hash_async_noexport(struct ahash_request
*req
, void *out
)
375 static int n2_hash_cra_init(struct crypto_tfm
*tfm
)
377 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
378 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
379 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
380 struct crypto_ahash
*fallback_tfm
;
383 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
384 CRYPTO_ALG_NEED_FALLBACK
);
385 if (IS_ERR(fallback_tfm
)) {
386 pr_warn("Fallback driver '%s' could not be loaded!\n",
387 fallback_driver_name
);
388 err
= PTR_ERR(fallback_tfm
);
392 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
393 crypto_ahash_reqsize(fallback_tfm
)));
395 ctx
->fallback_tfm
= fallback_tfm
;
402 static void n2_hash_cra_exit(struct crypto_tfm
*tfm
)
404 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
405 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
407 crypto_free_ahash(ctx
->fallback_tfm
);
410 static int n2_hmac_cra_init(struct crypto_tfm
*tfm
)
412 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
413 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
414 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
415 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(tfm
);
416 struct crypto_ahash
*fallback_tfm
;
417 struct crypto_shash
*child_shash
;
420 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
421 CRYPTO_ALG_NEED_FALLBACK
);
422 if (IS_ERR(fallback_tfm
)) {
423 pr_warn("Fallback driver '%s' could not be loaded!\n",
424 fallback_driver_name
);
425 err
= PTR_ERR(fallback_tfm
);
429 child_shash
= crypto_alloc_shash(n2alg
->child_alg
, 0, 0);
430 if (IS_ERR(child_shash
)) {
431 pr_warn("Child shash '%s' could not be loaded!\n",
433 err
= PTR_ERR(child_shash
);
434 goto out_free_fallback
;
437 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
438 crypto_ahash_reqsize(fallback_tfm
)));
440 ctx
->child_shash
= child_shash
;
441 ctx
->base
.fallback_tfm
= fallback_tfm
;
445 crypto_free_ahash(fallback_tfm
);
451 static void n2_hmac_cra_exit(struct crypto_tfm
*tfm
)
453 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
454 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
456 crypto_free_ahash(ctx
->base
.fallback_tfm
);
457 crypto_free_shash(ctx
->child_shash
);
460 static int n2_hmac_async_setkey(struct crypto_ahash
*tfm
, const u8
*key
,
463 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
464 struct crypto_shash
*child_shash
= ctx
->child_shash
;
465 struct crypto_ahash
*fallback_tfm
;
468 fallback_tfm
= ctx
->base
.fallback_tfm
;
469 err
= crypto_ahash_setkey(fallback_tfm
, key
, keylen
);
473 bs
= crypto_shash_blocksize(child_shash
);
474 ds
= crypto_shash_digestsize(child_shash
);
475 BUG_ON(ds
> N2_HASH_KEY_MAX
);
477 err
= crypto_shash_tfm_digest(child_shash
, key
, keylen
,
482 } else if (keylen
<= N2_HASH_KEY_MAX
)
483 memcpy(ctx
->hash_key
, key
, keylen
);
485 ctx
->hash_key_len
= keylen
;
490 static unsigned long wait_for_tail(struct spu_queue
*qp
)
492 unsigned long head
, hv_ret
;
495 hv_ret
= sun4v_ncs_gethead(qp
->qhandle
, &head
);
496 if (hv_ret
!= HV_EOK
) {
497 pr_err("Hypervisor error on gethead\n");
500 if (head
== qp
->tail
) {
508 static unsigned long submit_and_wait_for_tail(struct spu_queue
*qp
,
509 struct cwq_initial_entry
*ent
)
511 unsigned long hv_ret
= spu_queue_submit(qp
, ent
);
513 if (hv_ret
== HV_EOK
)
514 hv_ret
= wait_for_tail(qp
);
519 static int n2_do_async_digest(struct ahash_request
*req
,
520 unsigned int auth_type
, unsigned int digest_size
,
521 unsigned int result_size
, void *hash_loc
,
522 unsigned long auth_key
, unsigned int auth_key_len
)
524 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
525 struct cwq_initial_entry
*ent
;
526 struct crypto_hash_walk walk
;
527 struct spu_queue
*qp
;
532 /* The total effective length of the operation may not
535 if (unlikely(req
->nbytes
> (1 << 16))) {
536 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
537 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
539 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
540 rctx
->fallback_req
.base
.flags
=
541 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
542 rctx
->fallback_req
.nbytes
= req
->nbytes
;
543 rctx
->fallback_req
.src
= req
->src
;
544 rctx
->fallback_req
.result
= req
->result
;
546 return crypto_ahash_digest(&rctx
->fallback_req
);
549 nbytes
= crypto_hash_walk_first(req
, &walk
);
552 qp
= cpu_to_cwq
[cpu
];
556 spin_lock_irqsave(&qp
->lock
, flags
);
558 /* XXX can do better, improve this later by doing a by-hand scatterlist
561 ent
= qp
->q
+ qp
->tail
;
563 ent
->control
= control_word_base(nbytes
, auth_key_len
, 0,
564 auth_type
, digest_size
,
565 false, true, false, false,
568 ent
->src_addr
= __pa(walk
.data
);
569 ent
->auth_key_addr
= auth_key
;
570 ent
->auth_iv_addr
= __pa(hash_loc
);
571 ent
->final_auth_state_addr
= 0UL;
572 ent
->enc_key_addr
= 0UL;
573 ent
->enc_iv_addr
= 0UL;
574 ent
->dest_addr
= __pa(hash_loc
);
576 nbytes
= crypto_hash_walk_done(&walk
, 0);
578 ent
= spu_queue_next(qp
, ent
);
580 ent
->control
= (nbytes
- 1);
581 ent
->src_addr
= __pa(walk
.data
);
582 ent
->auth_key_addr
= 0UL;
583 ent
->auth_iv_addr
= 0UL;
584 ent
->final_auth_state_addr
= 0UL;
585 ent
->enc_key_addr
= 0UL;
586 ent
->enc_iv_addr
= 0UL;
587 ent
->dest_addr
= 0UL;
589 nbytes
= crypto_hash_walk_done(&walk
, 0);
591 ent
->control
|= CONTROL_END_OF_BLOCK
;
593 if (submit_and_wait_for_tail(qp
, ent
) != HV_EOK
)
598 spin_unlock_irqrestore(&qp
->lock
, flags
);
601 memcpy(req
->result
, hash_loc
, result_size
);
608 static int n2_hash_async_digest(struct ahash_request
*req
)
610 struct n2_ahash_alg
*n2alg
= n2_ahash_alg(req
->base
.tfm
);
611 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
614 ds
= n2alg
->digest_size
;
615 if (unlikely(req
->nbytes
== 0)) {
616 memcpy(req
->result
, n2alg
->hash_zero
, ds
);
619 memcpy(&rctx
->u
, n2alg
->hash_init
, n2alg
->hw_op_hashsz
);
621 return n2_do_async_digest(req
, n2alg
->auth_type
,
622 n2alg
->hw_op_hashsz
, ds
,
626 static int n2_hmac_async_digest(struct ahash_request
*req
)
628 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(req
->base
.tfm
);
629 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
630 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
631 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
634 ds
= n2alg
->derived
.digest_size
;
635 if (unlikely(req
->nbytes
== 0) ||
636 unlikely(ctx
->hash_key_len
> N2_HASH_KEY_MAX
)) {
637 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
638 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
640 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
641 rctx
->fallback_req
.base
.flags
=
642 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
643 rctx
->fallback_req
.nbytes
= req
->nbytes
;
644 rctx
->fallback_req
.src
= req
->src
;
645 rctx
->fallback_req
.result
= req
->result
;
647 return crypto_ahash_digest(&rctx
->fallback_req
);
649 memcpy(&rctx
->u
, n2alg
->derived
.hash_init
,
650 n2alg
->derived
.hw_op_hashsz
);
652 return n2_do_async_digest(req
, n2alg
->derived
.hmac_type
,
653 n2alg
->derived
.hw_op_hashsz
, ds
,
655 __pa(&ctx
->hash_key
),
659 struct n2_skcipher_context
{
663 u8 aes
[AES_MAX_KEY_SIZE
];
664 u8 des
[DES_KEY_SIZE
];
665 u8 des3
[3 * DES_KEY_SIZE
];
669 #define N2_CHUNK_ARR_LEN 16
671 struct n2_crypto_chunk
{
672 struct list_head entry
;
673 unsigned long iv_paddr
: 44;
674 unsigned long arr_len
: 20;
675 unsigned long dest_paddr
;
676 unsigned long dest_final
;
678 unsigned long src_paddr
: 44;
679 unsigned long src_len
: 20;
680 } arr
[N2_CHUNK_ARR_LEN
];
683 struct n2_request_context
{
684 struct skcipher_walk walk
;
685 struct list_head chunk_list
;
686 struct n2_crypto_chunk chunk
;
690 /* The SPU allows some level of flexibility for partial cipher blocks
691 * being specified in a descriptor.
693 * It merely requires that every descriptor's length field is at least
694 * as large as the cipher block size. This means that a cipher block
695 * can span at most 2 descriptors. However, this does not allow a
696 * partial block to span into the final descriptor as that would
697 * violate the rule (since every descriptor's length must be at lest
698 * the block size). So, for example, assuming an 8 byte block size:
700 * 0xe --> 0xa --> 0x8
702 * is a valid length sequence, whereas:
704 * 0xe --> 0xb --> 0x7
706 * is not a valid sequence.
709 struct n2_skcipher_alg
{
710 struct list_head entry
;
712 struct skcipher_alg skcipher
;
715 static inline struct n2_skcipher_alg
*n2_skcipher_alg(struct crypto_skcipher
*tfm
)
717 struct skcipher_alg
*alg
= crypto_skcipher_alg(tfm
);
719 return container_of(alg
, struct n2_skcipher_alg
, skcipher
);
722 struct n2_skcipher_request_context
{
723 struct skcipher_walk walk
;
726 static int n2_aes_setkey(struct crypto_skcipher
*skcipher
, const u8
*key
,
729 struct crypto_tfm
*tfm
= crypto_skcipher_tfm(skcipher
);
730 struct n2_skcipher_context
*ctx
= crypto_tfm_ctx(tfm
);
731 struct n2_skcipher_alg
*n2alg
= n2_skcipher_alg(skcipher
);
733 ctx
->enc_type
= (n2alg
->enc_type
& ENC_TYPE_CHAINING_MASK
);
736 case AES_KEYSIZE_128
:
737 ctx
->enc_type
|= ENC_TYPE_ALG_AES128
;
739 case AES_KEYSIZE_192
:
740 ctx
->enc_type
|= ENC_TYPE_ALG_AES192
;
742 case AES_KEYSIZE_256
:
743 ctx
->enc_type
|= ENC_TYPE_ALG_AES256
;
749 ctx
->key_len
= keylen
;
750 memcpy(ctx
->key
.aes
, key
, keylen
);
754 static int n2_des_setkey(struct crypto_skcipher
*skcipher
, const u8
*key
,
757 struct crypto_tfm
*tfm
= crypto_skcipher_tfm(skcipher
);
758 struct n2_skcipher_context
*ctx
= crypto_tfm_ctx(tfm
);
759 struct n2_skcipher_alg
*n2alg
= n2_skcipher_alg(skcipher
);
762 err
= verify_skcipher_des_key(skcipher
, key
);
766 ctx
->enc_type
= n2alg
->enc_type
;
768 ctx
->key_len
= keylen
;
769 memcpy(ctx
->key
.des
, key
, keylen
);
773 static int n2_3des_setkey(struct crypto_skcipher
*skcipher
, const u8
*key
,
776 struct crypto_tfm
*tfm
= crypto_skcipher_tfm(skcipher
);
777 struct n2_skcipher_context
*ctx
= crypto_tfm_ctx(tfm
);
778 struct n2_skcipher_alg
*n2alg
= n2_skcipher_alg(skcipher
);
781 err
= verify_skcipher_des3_key(skcipher
, key
);
785 ctx
->enc_type
= n2alg
->enc_type
;
787 ctx
->key_len
= keylen
;
788 memcpy(ctx
->key
.des3
, key
, keylen
);
792 static inline int skcipher_descriptor_len(int nbytes
, unsigned int block_size
)
794 int this_len
= nbytes
;
796 this_len
-= (nbytes
& (block_size
- 1));
797 return this_len
> (1 << 16) ? (1 << 16) : this_len
;
800 static int __n2_crypt_chunk(struct crypto_skcipher
*skcipher
,
801 struct n2_crypto_chunk
*cp
,
802 struct spu_queue
*qp
, bool encrypt
)
804 struct n2_skcipher_context
*ctx
= crypto_skcipher_ctx(skcipher
);
805 struct cwq_initial_entry
*ent
;
809 ent
= spu_queue_alloc(qp
, cp
->arr_len
);
811 pr_info("queue_alloc() of %d fails\n",
816 in_place
= (cp
->dest_paddr
== cp
->arr
[0].src_paddr
);
818 ent
->control
= control_word_base(cp
->arr
[0].src_len
,
819 0, ctx
->enc_type
, 0, 0,
820 false, true, false, encrypt
,
822 (in_place
? OPCODE_INPLACE_BIT
: 0));
823 ent
->src_addr
= cp
->arr
[0].src_paddr
;
824 ent
->auth_key_addr
= 0UL;
825 ent
->auth_iv_addr
= 0UL;
826 ent
->final_auth_state_addr
= 0UL;
827 ent
->enc_key_addr
= __pa(&ctx
->key
);
828 ent
->enc_iv_addr
= cp
->iv_paddr
;
829 ent
->dest_addr
= (in_place
? 0UL : cp
->dest_paddr
);
831 for (i
= 1; i
< cp
->arr_len
; i
++) {
832 ent
= spu_queue_next(qp
, ent
);
834 ent
->control
= cp
->arr
[i
].src_len
- 1;
835 ent
->src_addr
= cp
->arr
[i
].src_paddr
;
836 ent
->auth_key_addr
= 0UL;
837 ent
->auth_iv_addr
= 0UL;
838 ent
->final_auth_state_addr
= 0UL;
839 ent
->enc_key_addr
= 0UL;
840 ent
->enc_iv_addr
= 0UL;
841 ent
->dest_addr
= 0UL;
843 ent
->control
|= CONTROL_END_OF_BLOCK
;
845 return (spu_queue_submit(qp
, ent
) != HV_EOK
) ? -EINVAL
: 0;
848 static int n2_compute_chunks(struct skcipher_request
*req
)
850 struct n2_request_context
*rctx
= skcipher_request_ctx(req
);
851 struct skcipher_walk
*walk
= &rctx
->walk
;
852 struct n2_crypto_chunk
*chunk
;
853 unsigned long dest_prev
;
854 unsigned int tot_len
;
858 err
= skcipher_walk_async(walk
, req
);
862 INIT_LIST_HEAD(&rctx
->chunk_list
);
864 chunk
= &rctx
->chunk
;
865 INIT_LIST_HEAD(&chunk
->entry
);
867 chunk
->iv_paddr
= 0UL;
869 chunk
->dest_paddr
= 0UL;
871 prev_in_place
= false;
875 while ((nbytes
= walk
->nbytes
) != 0) {
876 unsigned long dest_paddr
, src_paddr
;
880 src_paddr
= (page_to_phys(walk
->src
.phys
.page
) +
881 walk
->src
.phys
.offset
);
882 dest_paddr
= (page_to_phys(walk
->dst
.phys
.page
) +
883 walk
->dst
.phys
.offset
);
884 in_place
= (src_paddr
== dest_paddr
);
885 this_len
= skcipher_descriptor_len(nbytes
, walk
->blocksize
);
887 if (chunk
->arr_len
!= 0) {
888 if (in_place
!= prev_in_place
||
890 dest_paddr
!= dest_prev
) ||
891 chunk
->arr_len
== N2_CHUNK_ARR_LEN
||
892 tot_len
+ this_len
> (1 << 16)) {
893 chunk
->dest_final
= dest_prev
;
894 list_add_tail(&chunk
->entry
,
896 chunk
= kzalloc(sizeof(*chunk
), GFP_ATOMIC
);
901 INIT_LIST_HEAD(&chunk
->entry
);
904 if (chunk
->arr_len
== 0) {
905 chunk
->dest_paddr
= dest_paddr
;
908 chunk
->arr
[chunk
->arr_len
].src_paddr
= src_paddr
;
909 chunk
->arr
[chunk
->arr_len
].src_len
= this_len
;
912 dest_prev
= dest_paddr
+ this_len
;
913 prev_in_place
= in_place
;
916 err
= skcipher_walk_done(walk
, nbytes
- this_len
);
920 if (!err
&& chunk
->arr_len
!= 0) {
921 chunk
->dest_final
= dest_prev
;
922 list_add_tail(&chunk
->entry
, &rctx
->chunk_list
);
928 static void n2_chunk_complete(struct skcipher_request
*req
, void *final_iv
)
930 struct n2_request_context
*rctx
= skcipher_request_ctx(req
);
931 struct n2_crypto_chunk
*c
, *tmp
;
934 memcpy(rctx
->walk
.iv
, final_iv
, rctx
->walk
.blocksize
);
936 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
938 if (unlikely(c
!= &rctx
->chunk
))
944 static int n2_do_ecb(struct skcipher_request
*req
, bool encrypt
)
946 struct n2_request_context
*rctx
= skcipher_request_ctx(req
);
947 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
948 int err
= n2_compute_chunks(req
);
949 struct n2_crypto_chunk
*c
, *tmp
;
950 unsigned long flags
, hv_ret
;
951 struct spu_queue
*qp
;
956 qp
= cpu_to_cwq
[get_cpu()];
961 spin_lock_irqsave(&qp
->lock
, flags
);
963 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
964 err
= __n2_crypt_chunk(tfm
, c
, qp
, encrypt
);
968 if (unlikely(c
!= &rctx
->chunk
))
972 hv_ret
= wait_for_tail(qp
);
973 if (hv_ret
!= HV_EOK
)
977 spin_unlock_irqrestore(&qp
->lock
, flags
);
982 n2_chunk_complete(req
, NULL
);
986 static int n2_encrypt_ecb(struct skcipher_request
*req
)
988 return n2_do_ecb(req
, true);
991 static int n2_decrypt_ecb(struct skcipher_request
*req
)
993 return n2_do_ecb(req
, false);
996 static int n2_do_chaining(struct skcipher_request
*req
, bool encrypt
)
998 struct n2_request_context
*rctx
= skcipher_request_ctx(req
);
999 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
1000 unsigned long flags
, hv_ret
, iv_paddr
;
1001 int err
= n2_compute_chunks(req
);
1002 struct n2_crypto_chunk
*c
, *tmp
;
1003 struct spu_queue
*qp
;
1004 void *final_iv_addr
;
1006 final_iv_addr
= NULL
;
1011 qp
= cpu_to_cwq
[get_cpu()];
1016 spin_lock_irqsave(&qp
->lock
, flags
);
1019 iv_paddr
= __pa(rctx
->walk
.iv
);
1020 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
,
1022 c
->iv_paddr
= iv_paddr
;
1023 err
= __n2_crypt_chunk(tfm
, c
, qp
, true);
1026 iv_paddr
= c
->dest_final
- rctx
->walk
.blocksize
;
1027 list_del(&c
->entry
);
1028 if (unlikely(c
!= &rctx
->chunk
))
1031 final_iv_addr
= __va(iv_paddr
);
1033 list_for_each_entry_safe_reverse(c
, tmp
, &rctx
->chunk_list
,
1035 if (c
== &rctx
->chunk
) {
1036 iv_paddr
= __pa(rctx
->walk
.iv
);
1038 iv_paddr
= (tmp
->arr
[tmp
->arr_len
-1].src_paddr
+
1039 tmp
->arr
[tmp
->arr_len
-1].src_len
-
1040 rctx
->walk
.blocksize
);
1042 if (!final_iv_addr
) {
1045 pa
= (c
->arr
[c
->arr_len
-1].src_paddr
+
1046 c
->arr
[c
->arr_len
-1].src_len
-
1047 rctx
->walk
.blocksize
);
1048 final_iv_addr
= rctx
->temp_iv
;
1049 memcpy(rctx
->temp_iv
, __va(pa
),
1050 rctx
->walk
.blocksize
);
1052 c
->iv_paddr
= iv_paddr
;
1053 err
= __n2_crypt_chunk(tfm
, c
, qp
, false);
1056 list_del(&c
->entry
);
1057 if (unlikely(c
!= &rctx
->chunk
))
1062 hv_ret
= wait_for_tail(qp
);
1063 if (hv_ret
!= HV_EOK
)
1067 spin_unlock_irqrestore(&qp
->lock
, flags
);
1072 n2_chunk_complete(req
, err
? NULL
: final_iv_addr
);
1076 static int n2_encrypt_chaining(struct skcipher_request
*req
)
1078 return n2_do_chaining(req
, true);
1081 static int n2_decrypt_chaining(struct skcipher_request
*req
)
1083 return n2_do_chaining(req
, false);
1086 struct n2_skcipher_tmpl
{
1088 const char *drv_name
;
1091 struct skcipher_alg skcipher
;
1094 static const struct n2_skcipher_tmpl skcipher_tmpls
[] = {
1095 /* DES: ECB CBC and CFB are supported */
1096 { .name
= "ecb(des)",
1097 .drv_name
= "ecb-des",
1098 .block_size
= DES_BLOCK_SIZE
,
1099 .enc_type
= (ENC_TYPE_ALG_DES
|
1100 ENC_TYPE_CHAINING_ECB
),
1102 .min_keysize
= DES_KEY_SIZE
,
1103 .max_keysize
= DES_KEY_SIZE
,
1104 .setkey
= n2_des_setkey
,
1105 .encrypt
= n2_encrypt_ecb
,
1106 .decrypt
= n2_decrypt_ecb
,
1109 { .name
= "cbc(des)",
1110 .drv_name
= "cbc-des",
1111 .block_size
= DES_BLOCK_SIZE
,
1112 .enc_type
= (ENC_TYPE_ALG_DES
|
1113 ENC_TYPE_CHAINING_CBC
),
1115 .ivsize
= DES_BLOCK_SIZE
,
1116 .min_keysize
= DES_KEY_SIZE
,
1117 .max_keysize
= DES_KEY_SIZE
,
1118 .setkey
= n2_des_setkey
,
1119 .encrypt
= n2_encrypt_chaining
,
1120 .decrypt
= n2_decrypt_chaining
,
1123 { .name
= "cfb(des)",
1124 .drv_name
= "cfb-des",
1125 .block_size
= DES_BLOCK_SIZE
,
1126 .enc_type
= (ENC_TYPE_ALG_DES
|
1127 ENC_TYPE_CHAINING_CFB
),
1129 .min_keysize
= DES_KEY_SIZE
,
1130 .max_keysize
= DES_KEY_SIZE
,
1131 .setkey
= n2_des_setkey
,
1132 .encrypt
= n2_encrypt_chaining
,
1133 .decrypt
= n2_decrypt_chaining
,
1137 /* 3DES: ECB CBC and CFB are supported */
1138 { .name
= "ecb(des3_ede)",
1139 .drv_name
= "ecb-3des",
1140 .block_size
= DES_BLOCK_SIZE
,
1141 .enc_type
= (ENC_TYPE_ALG_3DES
|
1142 ENC_TYPE_CHAINING_ECB
),
1144 .min_keysize
= 3 * DES_KEY_SIZE
,
1145 .max_keysize
= 3 * DES_KEY_SIZE
,
1146 .setkey
= n2_3des_setkey
,
1147 .encrypt
= n2_encrypt_ecb
,
1148 .decrypt
= n2_decrypt_ecb
,
1151 { .name
= "cbc(des3_ede)",
1152 .drv_name
= "cbc-3des",
1153 .block_size
= DES_BLOCK_SIZE
,
1154 .enc_type
= (ENC_TYPE_ALG_3DES
|
1155 ENC_TYPE_CHAINING_CBC
),
1157 .ivsize
= DES_BLOCK_SIZE
,
1158 .min_keysize
= 3 * DES_KEY_SIZE
,
1159 .max_keysize
= 3 * DES_KEY_SIZE
,
1160 .setkey
= n2_3des_setkey
,
1161 .encrypt
= n2_encrypt_chaining
,
1162 .decrypt
= n2_decrypt_chaining
,
1165 { .name
= "cfb(des3_ede)",
1166 .drv_name
= "cfb-3des",
1167 .block_size
= DES_BLOCK_SIZE
,
1168 .enc_type
= (ENC_TYPE_ALG_3DES
|
1169 ENC_TYPE_CHAINING_CFB
),
1171 .min_keysize
= 3 * DES_KEY_SIZE
,
1172 .max_keysize
= 3 * DES_KEY_SIZE
,
1173 .setkey
= n2_3des_setkey
,
1174 .encrypt
= n2_encrypt_chaining
,
1175 .decrypt
= n2_decrypt_chaining
,
1178 /* AES: ECB CBC and CTR are supported */
1179 { .name
= "ecb(aes)",
1180 .drv_name
= "ecb-aes",
1181 .block_size
= AES_BLOCK_SIZE
,
1182 .enc_type
= (ENC_TYPE_ALG_AES128
|
1183 ENC_TYPE_CHAINING_ECB
),
1185 .min_keysize
= AES_MIN_KEY_SIZE
,
1186 .max_keysize
= AES_MAX_KEY_SIZE
,
1187 .setkey
= n2_aes_setkey
,
1188 .encrypt
= n2_encrypt_ecb
,
1189 .decrypt
= n2_decrypt_ecb
,
1192 { .name
= "cbc(aes)",
1193 .drv_name
= "cbc-aes",
1194 .block_size
= AES_BLOCK_SIZE
,
1195 .enc_type
= (ENC_TYPE_ALG_AES128
|
1196 ENC_TYPE_CHAINING_CBC
),
1198 .ivsize
= AES_BLOCK_SIZE
,
1199 .min_keysize
= AES_MIN_KEY_SIZE
,
1200 .max_keysize
= AES_MAX_KEY_SIZE
,
1201 .setkey
= n2_aes_setkey
,
1202 .encrypt
= n2_encrypt_chaining
,
1203 .decrypt
= n2_decrypt_chaining
,
1206 { .name
= "ctr(aes)",
1207 .drv_name
= "ctr-aes",
1208 .block_size
= AES_BLOCK_SIZE
,
1209 .enc_type
= (ENC_TYPE_ALG_AES128
|
1210 ENC_TYPE_CHAINING_COUNTER
),
1212 .ivsize
= AES_BLOCK_SIZE
,
1213 .min_keysize
= AES_MIN_KEY_SIZE
,
1214 .max_keysize
= AES_MAX_KEY_SIZE
,
1215 .setkey
= n2_aes_setkey
,
1216 .encrypt
= n2_encrypt_chaining
,
1217 .decrypt
= n2_encrypt_chaining
,
1222 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1224 static LIST_HEAD(skcipher_algs
);
1226 struct n2_hash_tmpl
{
1228 const u8
*hash_zero
;
1229 const u8
*hash_init
;
1237 static const __le32 n2_md5_init
[MD5_HASH_WORDS
] = {
1238 cpu_to_le32(MD5_H0
),
1239 cpu_to_le32(MD5_H1
),
1240 cpu_to_le32(MD5_H2
),
1241 cpu_to_le32(MD5_H3
),
1243 static const u32 n2_sha1_init
[SHA1_DIGEST_SIZE
/ 4] = {
1244 SHA1_H0
, SHA1_H1
, SHA1_H2
, SHA1_H3
, SHA1_H4
,
1246 static const u32 n2_sha256_init
[SHA256_DIGEST_SIZE
/ 4] = {
1247 SHA256_H0
, SHA256_H1
, SHA256_H2
, SHA256_H3
,
1248 SHA256_H4
, SHA256_H5
, SHA256_H6
, SHA256_H7
,
1250 static const u32 n2_sha224_init
[SHA256_DIGEST_SIZE
/ 4] = {
1251 SHA224_H0
, SHA224_H1
, SHA224_H2
, SHA224_H3
,
1252 SHA224_H4
, SHA224_H5
, SHA224_H6
, SHA224_H7
,
1255 static const struct n2_hash_tmpl hash_tmpls
[] = {
1257 .hash_zero
= md5_zero_message_hash
,
1258 .hash_init
= (u8
*)n2_md5_init
,
1259 .auth_type
= AUTH_TYPE_MD5
,
1260 .hmac_type
= AUTH_TYPE_HMAC_MD5
,
1261 .hw_op_hashsz
= MD5_DIGEST_SIZE
,
1262 .digest_size
= MD5_DIGEST_SIZE
,
1263 .block_size
= MD5_HMAC_BLOCK_SIZE
},
1265 .hash_zero
= sha1_zero_message_hash
,
1266 .hash_init
= (u8
*)n2_sha1_init
,
1267 .auth_type
= AUTH_TYPE_SHA1
,
1268 .hmac_type
= AUTH_TYPE_HMAC_SHA1
,
1269 .hw_op_hashsz
= SHA1_DIGEST_SIZE
,
1270 .digest_size
= SHA1_DIGEST_SIZE
,
1271 .block_size
= SHA1_BLOCK_SIZE
},
1273 .hash_zero
= sha256_zero_message_hash
,
1274 .hash_init
= (u8
*)n2_sha256_init
,
1275 .auth_type
= AUTH_TYPE_SHA256
,
1276 .hmac_type
= AUTH_TYPE_HMAC_SHA256
,
1277 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1278 .digest_size
= SHA256_DIGEST_SIZE
,
1279 .block_size
= SHA256_BLOCK_SIZE
},
1281 .hash_zero
= sha224_zero_message_hash
,
1282 .hash_init
= (u8
*)n2_sha224_init
,
1283 .auth_type
= AUTH_TYPE_SHA256
,
1284 .hmac_type
= AUTH_TYPE_RESERVED
,
1285 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1286 .digest_size
= SHA224_DIGEST_SIZE
,
1287 .block_size
= SHA224_BLOCK_SIZE
},
1289 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1291 static LIST_HEAD(ahash_algs
);
1292 static LIST_HEAD(hmac_algs
);
1294 static int algs_registered
;
1296 static void __n2_unregister_algs(void)
1298 struct n2_skcipher_alg
*skcipher
, *skcipher_tmp
;
1299 struct n2_ahash_alg
*alg
, *alg_tmp
;
1300 struct n2_hmac_alg
*hmac
, *hmac_tmp
;
1302 list_for_each_entry_safe(skcipher
, skcipher_tmp
, &skcipher_algs
, entry
) {
1303 crypto_unregister_skcipher(&skcipher
->skcipher
);
1304 list_del(&skcipher
->entry
);
1307 list_for_each_entry_safe(hmac
, hmac_tmp
, &hmac_algs
, derived
.entry
) {
1308 crypto_unregister_ahash(&hmac
->derived
.alg
);
1309 list_del(&hmac
->derived
.entry
);
1312 list_for_each_entry_safe(alg
, alg_tmp
, &ahash_algs
, entry
) {
1313 crypto_unregister_ahash(&alg
->alg
);
1314 list_del(&alg
->entry
);
1319 static int n2_skcipher_init_tfm(struct crypto_skcipher
*tfm
)
1321 crypto_skcipher_set_reqsize(tfm
, sizeof(struct n2_request_context
));
1325 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl
*tmpl
)
1327 struct n2_skcipher_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1328 struct skcipher_alg
*alg
;
1335 *alg
= tmpl
->skcipher
;
1337 snprintf(alg
->base
.cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1338 snprintf(alg
->base
.cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->drv_name
);
1339 alg
->base
.cra_priority
= N2_CRA_PRIORITY
;
1340 alg
->base
.cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
|
1341 CRYPTO_ALG_ALLOCATES_MEMORY
;
1342 alg
->base
.cra_blocksize
= tmpl
->block_size
;
1343 p
->enc_type
= tmpl
->enc_type
;
1344 alg
->base
.cra_ctxsize
= sizeof(struct n2_skcipher_context
);
1345 alg
->base
.cra_module
= THIS_MODULE
;
1346 alg
->init
= n2_skcipher_init_tfm
;
1348 list_add(&p
->entry
, &skcipher_algs
);
1349 err
= crypto_register_skcipher(alg
);
1351 pr_err("%s alg registration failed\n", alg
->base
.cra_name
);
1352 list_del(&p
->entry
);
1355 pr_info("%s alg registered\n", alg
->base
.cra_name
);
1360 static int __n2_register_one_hmac(struct n2_ahash_alg
*n2ahash
)
1362 struct n2_hmac_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1363 struct ahash_alg
*ahash
;
1364 struct crypto_alg
*base
;
1370 p
->child_alg
= n2ahash
->alg
.halg
.base
.cra_name
;
1371 memcpy(&p
->derived
, n2ahash
, sizeof(struct n2_ahash_alg
));
1372 INIT_LIST_HEAD(&p
->derived
.entry
);
1374 ahash
= &p
->derived
.alg
;
1375 ahash
->digest
= n2_hmac_async_digest
;
1376 ahash
->setkey
= n2_hmac_async_setkey
;
1378 base
= &ahash
->halg
.base
;
1379 snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "hmac(%s)", p
->child_alg
);
1380 snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "hmac-%s-n2", p
->child_alg
);
1382 base
->cra_ctxsize
= sizeof(struct n2_hmac_ctx
);
1383 base
->cra_init
= n2_hmac_cra_init
;
1384 base
->cra_exit
= n2_hmac_cra_exit
;
1386 list_add(&p
->derived
.entry
, &hmac_algs
);
1387 err
= crypto_register_ahash(ahash
);
1389 pr_err("%s alg registration failed\n", base
->cra_name
);
1390 list_del(&p
->derived
.entry
);
1393 pr_info("%s alg registered\n", base
->cra_name
);
1398 static int __n2_register_one_ahash(const struct n2_hash_tmpl
*tmpl
)
1400 struct n2_ahash_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1401 struct hash_alg_common
*halg
;
1402 struct crypto_alg
*base
;
1403 struct ahash_alg
*ahash
;
1409 p
->hash_zero
= tmpl
->hash_zero
;
1410 p
->hash_init
= tmpl
->hash_init
;
1411 p
->auth_type
= tmpl
->auth_type
;
1412 p
->hmac_type
= tmpl
->hmac_type
;
1413 p
->hw_op_hashsz
= tmpl
->hw_op_hashsz
;
1414 p
->digest_size
= tmpl
->digest_size
;
1417 ahash
->init
= n2_hash_async_init
;
1418 ahash
->update
= n2_hash_async_update
;
1419 ahash
->final
= n2_hash_async_final
;
1420 ahash
->finup
= n2_hash_async_finup
;
1421 ahash
->digest
= n2_hash_async_digest
;
1422 ahash
->export
= n2_hash_async_noexport
;
1423 ahash
->import
= n2_hash_async_noimport
;
1425 halg
= &ahash
->halg
;
1426 halg
->digestsize
= tmpl
->digest_size
;
1429 snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1430 snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->name
);
1431 base
->cra_priority
= N2_CRA_PRIORITY
;
1432 base
->cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
|
1433 CRYPTO_ALG_NEED_FALLBACK
;
1434 base
->cra_blocksize
= tmpl
->block_size
;
1435 base
->cra_ctxsize
= sizeof(struct n2_hash_ctx
);
1436 base
->cra_module
= THIS_MODULE
;
1437 base
->cra_init
= n2_hash_cra_init
;
1438 base
->cra_exit
= n2_hash_cra_exit
;
1440 list_add(&p
->entry
, &ahash_algs
);
1441 err
= crypto_register_ahash(ahash
);
1443 pr_err("%s alg registration failed\n", base
->cra_name
);
1444 list_del(&p
->entry
);
1447 pr_info("%s alg registered\n", base
->cra_name
);
1449 if (!err
&& p
->hmac_type
!= AUTH_TYPE_RESERVED
)
1450 err
= __n2_register_one_hmac(p
);
1454 static int n2_register_algs(void)
1458 mutex_lock(&spu_lock
);
1459 if (algs_registered
++)
1462 for (i
= 0; i
< NUM_HASH_TMPLS
; i
++) {
1463 err
= __n2_register_one_ahash(&hash_tmpls
[i
]);
1465 __n2_unregister_algs();
1469 for (i
= 0; i
< NUM_CIPHER_TMPLS
; i
++) {
1470 err
= __n2_register_one_skcipher(&skcipher_tmpls
[i
]);
1472 __n2_unregister_algs();
1478 mutex_unlock(&spu_lock
);
1482 static void n2_unregister_algs(void)
1484 mutex_lock(&spu_lock
);
1485 if (!--algs_registered
)
1486 __n2_unregister_algs();
1487 mutex_unlock(&spu_lock
);
1490 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1491 * a devino. This isn't very useful to us because all of the
1492 * interrupts listed in the device_node have been translated to
1493 * Linux virtual IRQ cookie numbers.
1495 * So we have to back-translate, going through the 'intr' and 'ino'
1496 * property tables of the n2cp MDESC node, matching it with the OF
1497 * 'interrupts' property entries, in order to to figure out which
1498 * devino goes to which already-translated IRQ.
1500 static int find_devino_index(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1501 unsigned long dev_ino
)
1503 const unsigned int *dev_intrs
;
1507 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1508 if (ip
->ino_table
[i
].ino
== dev_ino
)
1511 if (i
== ip
->num_intrs
)
1514 intr
= ip
->ino_table
[i
].intr
;
1516 dev_intrs
= of_get_property(dev
->dev
.of_node
, "interrupts", NULL
);
1520 for (i
= 0; i
< dev
->archdata
.num_irqs
; i
++) {
1521 if (dev_intrs
[i
] == intr
)
1528 static int spu_map_ino(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1529 const char *irq_name
, struct spu_queue
*p
,
1530 irq_handler_t handler
)
1535 herr
= sun4v_ncs_qhandle_to_devino(p
->qhandle
, &p
->devino
);
1539 index
= find_devino_index(dev
, ip
, p
->devino
);
1543 p
->irq
= dev
->archdata
.irqs
[index
];
1545 sprintf(p
->irq_name
, "%s-%d", irq_name
, index
);
1547 return request_irq(p
->irq
, handler
, 0, p
->irq_name
, p
);
1550 static struct kmem_cache
*queue_cache
[2];
1552 static void *new_queue(unsigned long q_type
)
1554 return kmem_cache_zalloc(queue_cache
[q_type
- 1], GFP_KERNEL
);
1557 static void free_queue(void *p
, unsigned long q_type
)
1559 kmem_cache_free(queue_cache
[q_type
- 1], p
);
1562 static int queue_cache_init(void)
1564 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1565 queue_cache
[HV_NCS_QTYPE_MAU
- 1] =
1566 kmem_cache_create("mau_queue",
1569 MAU_ENTRY_SIZE
, 0, NULL
);
1570 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1573 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1])
1574 queue_cache
[HV_NCS_QTYPE_CWQ
- 1] =
1575 kmem_cache_create("cwq_queue",
1578 CWQ_ENTRY_SIZE
, 0, NULL
);
1579 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1]) {
1580 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1581 queue_cache
[HV_NCS_QTYPE_MAU
- 1] = NULL
;
1587 static void queue_cache_destroy(void)
1589 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1590 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_CWQ
- 1]);
1591 queue_cache
[HV_NCS_QTYPE_MAU
- 1] = NULL
;
1592 queue_cache
[HV_NCS_QTYPE_CWQ
- 1] = NULL
;
1595 static long spu_queue_register_workfn(void *arg
)
1597 struct spu_qreg
*qr
= arg
;
1598 struct spu_queue
*p
= qr
->queue
;
1599 unsigned long q_type
= qr
->type
;
1600 unsigned long hv_ret
;
1602 hv_ret
= sun4v_ncs_qconf(q_type
, __pa(p
->q
),
1603 CWQ_NUM_ENTRIES
, &p
->qhandle
);
1605 sun4v_ncs_sethead_marker(p
->qhandle
, 0);
1607 return hv_ret
? -EINVAL
: 0;
1610 static int spu_queue_register(struct spu_queue
*p
, unsigned long q_type
)
1612 int cpu
= cpumask_any_and(&p
->sharing
, cpu_online_mask
);
1613 struct spu_qreg qr
= { .queue
= p
, .type
= q_type
};
1615 return work_on_cpu_safe(cpu
, spu_queue_register_workfn
, &qr
);
1618 static int spu_queue_setup(struct spu_queue
*p
)
1622 p
->q
= new_queue(p
->q_type
);
1626 err
= spu_queue_register(p
, p
->q_type
);
1628 free_queue(p
->q
, p
->q_type
);
1635 static void spu_queue_destroy(struct spu_queue
*p
)
1637 unsigned long hv_ret
;
1642 hv_ret
= sun4v_ncs_qconf(p
->q_type
, p
->qhandle
, 0, &p
->qhandle
);
1645 free_queue(p
->q
, p
->q_type
);
1648 static void spu_list_destroy(struct list_head
*list
)
1650 struct spu_queue
*p
, *n
;
1652 list_for_each_entry_safe(p
, n
, list
, list
) {
1655 for (i
= 0; i
< NR_CPUS
; i
++) {
1656 if (cpu_to_cwq
[i
] == p
)
1657 cpu_to_cwq
[i
] = NULL
;
1661 free_irq(p
->irq
, p
);
1664 spu_queue_destroy(p
);
1670 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1671 * gathering cpu membership information.
1673 static int spu_mdesc_walk_arcs(struct mdesc_handle
*mdesc
,
1674 struct platform_device
*dev
,
1675 u64 node
, struct spu_queue
*p
,
1676 struct spu_queue
**table
)
1680 mdesc_for_each_arc(arc
, mdesc
, node
, MDESC_ARC_TYPE_BACK
) {
1681 u64 tgt
= mdesc_arc_target(mdesc
, arc
);
1682 const char *name
= mdesc_node_name(mdesc
, tgt
);
1685 if (strcmp(name
, "cpu"))
1687 id
= mdesc_get_property(mdesc
, tgt
, "id", NULL
);
1688 if (table
[*id
] != NULL
) {
1689 dev_err(&dev
->dev
, "%pOF: SPU cpu slot already set.\n",
1693 cpumask_set_cpu(*id
, &p
->sharing
);
1699 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1700 static int handle_exec_unit(struct spu_mdesc_info
*ip
, struct list_head
*list
,
1701 struct platform_device
*dev
, struct mdesc_handle
*mdesc
,
1702 u64 node
, const char *iname
, unsigned long q_type
,
1703 irq_handler_t handler
, struct spu_queue
**table
)
1705 struct spu_queue
*p
;
1708 p
= kzalloc(sizeof(struct spu_queue
), GFP_KERNEL
);
1710 dev_err(&dev
->dev
, "%pOF: Could not allocate SPU queue.\n",
1715 cpumask_clear(&p
->sharing
);
1716 spin_lock_init(&p
->lock
);
1718 INIT_LIST_HEAD(&p
->jobs
);
1719 list_add(&p
->list
, list
);
1721 err
= spu_mdesc_walk_arcs(mdesc
, dev
, node
, p
, table
);
1725 err
= spu_queue_setup(p
);
1729 return spu_map_ino(dev
, ip
, iname
, p
, handler
);
1732 static int spu_mdesc_scan(struct mdesc_handle
*mdesc
, struct platform_device
*dev
,
1733 struct spu_mdesc_info
*ip
, struct list_head
*list
,
1734 const char *exec_name
, unsigned long q_type
,
1735 irq_handler_t handler
, struct spu_queue
**table
)
1740 mdesc_for_each_node_by_name(mdesc
, node
, "exec-unit") {
1743 type
= mdesc_get_property(mdesc
, node
, "type", NULL
);
1744 if (!type
|| strcmp(type
, exec_name
))
1747 err
= handle_exec_unit(ip
, list
, dev
, mdesc
, node
,
1748 exec_name
, q_type
, handler
, table
);
1750 spu_list_destroy(list
);
1758 static int get_irq_props(struct mdesc_handle
*mdesc
, u64 node
,
1759 struct spu_mdesc_info
*ip
)
1765 ino
= mdesc_get_property(mdesc
, node
, "ino", &ino_len
);
1767 printk("NO 'ino'\n");
1771 ip
->num_intrs
= ino_len
/ sizeof(u64
);
1772 ip
->ino_table
= kzalloc((sizeof(struct ino_blob
) *
1778 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1779 struct ino_blob
*b
= &ip
->ino_table
[i
];
1787 static int grab_mdesc_irq_props(struct mdesc_handle
*mdesc
,
1788 struct platform_device
*dev
,
1789 struct spu_mdesc_info
*ip
,
1790 const char *node_name
)
1792 const unsigned int *reg
;
1795 reg
= of_get_property(dev
->dev
.of_node
, "reg", NULL
);
1799 mdesc_for_each_node_by_name(mdesc
, node
, "virtual-device") {
1803 name
= mdesc_get_property(mdesc
, node
, "name", NULL
);
1804 if (!name
|| strcmp(name
, node_name
))
1806 chdl
= mdesc_get_property(mdesc
, node
, "cfg-handle", NULL
);
1807 if (!chdl
|| (*chdl
!= *reg
))
1809 ip
->cfg_handle
= *chdl
;
1810 return get_irq_props(mdesc
, node
, ip
);
1816 static unsigned long n2_spu_hvapi_major
;
1817 static unsigned long n2_spu_hvapi_minor
;
1819 static int n2_spu_hvapi_register(void)
1823 n2_spu_hvapi_major
= 2;
1824 n2_spu_hvapi_minor
= 0;
1826 err
= sun4v_hvapi_register(HV_GRP_NCS
,
1828 &n2_spu_hvapi_minor
);
1831 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1833 n2_spu_hvapi_minor
);
1838 static void n2_spu_hvapi_unregister(void)
1840 sun4v_hvapi_unregister(HV_GRP_NCS
);
1843 static int global_ref
;
1845 static int grab_global_resources(void)
1849 mutex_lock(&spu_lock
);
1854 err
= n2_spu_hvapi_register();
1858 err
= queue_cache_init();
1860 goto out_hvapi_release
;
1863 cpu_to_cwq
= kcalloc(NR_CPUS
, sizeof(struct spu_queue
*),
1866 goto out_queue_cache_destroy
;
1868 cpu_to_mau
= kcalloc(NR_CPUS
, sizeof(struct spu_queue
*),
1871 goto out_free_cwq_table
;
1878 mutex_unlock(&spu_lock
);
1885 out_queue_cache_destroy
:
1886 queue_cache_destroy();
1889 n2_spu_hvapi_unregister();
1893 static void release_global_resources(void)
1895 mutex_lock(&spu_lock
);
1896 if (!--global_ref
) {
1903 queue_cache_destroy();
1904 n2_spu_hvapi_unregister();
1906 mutex_unlock(&spu_lock
);
1909 static struct n2_crypto
*alloc_n2cp(void)
1911 struct n2_crypto
*np
= kzalloc(sizeof(struct n2_crypto
), GFP_KERNEL
);
1914 INIT_LIST_HEAD(&np
->cwq_list
);
1919 static void free_n2cp(struct n2_crypto
*np
)
1921 kfree(np
->cwq_info
.ino_table
);
1922 np
->cwq_info
.ino_table
= NULL
;
1927 static void n2_spu_driver_version(void)
1929 static int n2_spu_version_printed
;
1931 if (n2_spu_version_printed
++ == 0)
1932 pr_info("%s", version
);
1935 static int n2_crypto_probe(struct platform_device
*dev
)
1937 struct mdesc_handle
*mdesc
;
1938 struct n2_crypto
*np
;
1941 n2_spu_driver_version();
1943 pr_info("Found N2CP at %pOF\n", dev
->dev
.of_node
);
1947 dev_err(&dev
->dev
, "%pOF: Unable to allocate n2cp.\n",
1952 err
= grab_global_resources();
1954 dev_err(&dev
->dev
, "%pOF: Unable to grab global resources.\n",
1959 mdesc
= mdesc_grab();
1962 dev_err(&dev
->dev
, "%pOF: Unable to grab MDESC.\n",
1965 goto out_free_global
;
1967 err
= grab_mdesc_irq_props(mdesc
, dev
, &np
->cwq_info
, "n2cp");
1969 dev_err(&dev
->dev
, "%pOF: Unable to grab IRQ props.\n",
1971 mdesc_release(mdesc
);
1972 goto out_free_global
;
1975 err
= spu_mdesc_scan(mdesc
, dev
, &np
->cwq_info
, &np
->cwq_list
,
1976 "cwq", HV_NCS_QTYPE_CWQ
, cwq_intr
,
1978 mdesc_release(mdesc
);
1981 dev_err(&dev
->dev
, "%pOF: CWQ MDESC scan failed.\n",
1983 goto out_free_global
;
1986 err
= n2_register_algs();
1988 dev_err(&dev
->dev
, "%pOF: Unable to register algorithms.\n",
1990 goto out_free_spu_list
;
1993 dev_set_drvdata(&dev
->dev
, np
);
1998 spu_list_destroy(&np
->cwq_list
);
2001 release_global_resources();
2009 static int n2_crypto_remove(struct platform_device
*dev
)
2011 struct n2_crypto
*np
= dev_get_drvdata(&dev
->dev
);
2013 n2_unregister_algs();
2015 spu_list_destroy(&np
->cwq_list
);
2017 release_global_resources();
2024 static struct n2_mau
*alloc_ncp(void)
2026 struct n2_mau
*mp
= kzalloc(sizeof(struct n2_mau
), GFP_KERNEL
);
2029 INIT_LIST_HEAD(&mp
->mau_list
);
2034 static void free_ncp(struct n2_mau
*mp
)
2036 kfree(mp
->mau_info
.ino_table
);
2037 mp
->mau_info
.ino_table
= NULL
;
2042 static int n2_mau_probe(struct platform_device
*dev
)
2044 struct mdesc_handle
*mdesc
;
2048 n2_spu_driver_version();
2050 pr_info("Found NCP at %pOF\n", dev
->dev
.of_node
);
2054 dev_err(&dev
->dev
, "%pOF: Unable to allocate ncp.\n",
2059 err
= grab_global_resources();
2061 dev_err(&dev
->dev
, "%pOF: Unable to grab global resources.\n",
2066 mdesc
= mdesc_grab();
2069 dev_err(&dev
->dev
, "%pOF: Unable to grab MDESC.\n",
2072 goto out_free_global
;
2075 err
= grab_mdesc_irq_props(mdesc
, dev
, &mp
->mau_info
, "ncp");
2077 dev_err(&dev
->dev
, "%pOF: Unable to grab IRQ props.\n",
2079 mdesc_release(mdesc
);
2080 goto out_free_global
;
2083 err
= spu_mdesc_scan(mdesc
, dev
, &mp
->mau_info
, &mp
->mau_list
,
2084 "mau", HV_NCS_QTYPE_MAU
, mau_intr
,
2086 mdesc_release(mdesc
);
2089 dev_err(&dev
->dev
, "%pOF: MAU MDESC scan failed.\n",
2091 goto out_free_global
;
2094 dev_set_drvdata(&dev
->dev
, mp
);
2099 release_global_resources();
2107 static int n2_mau_remove(struct platform_device
*dev
)
2109 struct n2_mau
*mp
= dev_get_drvdata(&dev
->dev
);
2111 spu_list_destroy(&mp
->mau_list
);
2113 release_global_resources();
2120 static const struct of_device_id n2_crypto_match
[] = {
2123 .compatible
= "SUNW,n2-cwq",
2127 .compatible
= "SUNW,vf-cwq",
2131 .compatible
= "SUNW,kt-cwq",
2136 MODULE_DEVICE_TABLE(of
, n2_crypto_match
);
2138 static struct platform_driver n2_crypto_driver
= {
2141 .of_match_table
= n2_crypto_match
,
2143 .probe
= n2_crypto_probe
,
2144 .remove
= n2_crypto_remove
,
2147 static const struct of_device_id n2_mau_match
[] = {
2150 .compatible
= "SUNW,n2-mau",
2154 .compatible
= "SUNW,vf-mau",
2158 .compatible
= "SUNW,kt-mau",
2163 MODULE_DEVICE_TABLE(of
, n2_mau_match
);
2165 static struct platform_driver n2_mau_driver
= {
2168 .of_match_table
= n2_mau_match
,
2170 .probe
= n2_mau_probe
,
2171 .remove
= n2_mau_remove
,
2174 static struct platform_driver
* const drivers
[] = {
2179 static int __init
n2_init(void)
2181 return platform_register_drivers(drivers
, ARRAY_SIZE(drivers
));
2184 static void __exit
n2_exit(void)
2186 platform_unregister_drivers(drivers
, ARRAY_SIZE(drivers
));
2189 module_init(n2_init
);
2190 module_exit(n2_exit
);