Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / crypto / stm32 / stm32-cryp.c
blob2670c30332fad9f3638d831607c9790f2966562a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) STMicroelectronics SA 2017
4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
5 */
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
17 #include <crypto/aes.h>
18 #include <crypto/internal/des.h>
19 #include <crypto/engine.h>
20 #include <crypto/scatterwalk.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
24 #define DRIVER_NAME "stm32-cryp"
26 /* Bit [0] encrypt / decrypt */
27 #define FLG_ENCRYPT BIT(0)
28 /* Bit [8..1] algo & operation mode */
29 #define FLG_AES BIT(1)
30 #define FLG_DES BIT(2)
31 #define FLG_TDES BIT(3)
32 #define FLG_ECB BIT(4)
33 #define FLG_CBC BIT(5)
34 #define FLG_CTR BIT(6)
35 #define FLG_GCM BIT(7)
36 #define FLG_CCM BIT(8)
37 /* Mode mask = bits [15..0] */
38 #define FLG_MODE_MASK GENMASK(15, 0)
39 /* Bit [31..16] status */
40 #define FLG_CCM_PADDED_WA BIT(16)
42 /* Registers */
43 #define CRYP_CR 0x00000000
44 #define CRYP_SR 0x00000004
45 #define CRYP_DIN 0x00000008
46 #define CRYP_DOUT 0x0000000C
47 #define CRYP_DMACR 0x00000010
48 #define CRYP_IMSCR 0x00000014
49 #define CRYP_RISR 0x00000018
50 #define CRYP_MISR 0x0000001C
51 #define CRYP_K0LR 0x00000020
52 #define CRYP_K0RR 0x00000024
53 #define CRYP_K1LR 0x00000028
54 #define CRYP_K1RR 0x0000002C
55 #define CRYP_K2LR 0x00000030
56 #define CRYP_K2RR 0x00000034
57 #define CRYP_K3LR 0x00000038
58 #define CRYP_K3RR 0x0000003C
59 #define CRYP_IV0LR 0x00000040
60 #define CRYP_IV0RR 0x00000044
61 #define CRYP_IV1LR 0x00000048
62 #define CRYP_IV1RR 0x0000004C
63 #define CRYP_CSGCMCCM0R 0x00000050
64 #define CRYP_CSGCM0R 0x00000070
66 /* Registers values */
67 #define CR_DEC_NOT_ENC 0x00000004
68 #define CR_TDES_ECB 0x00000000
69 #define CR_TDES_CBC 0x00000008
70 #define CR_DES_ECB 0x00000010
71 #define CR_DES_CBC 0x00000018
72 #define CR_AES_ECB 0x00000020
73 #define CR_AES_CBC 0x00000028
74 #define CR_AES_CTR 0x00000030
75 #define CR_AES_KP 0x00000038
76 #define CR_AES_GCM 0x00080000
77 #define CR_AES_CCM 0x00080008
78 #define CR_AES_UNKNOWN 0xFFFFFFFF
79 #define CR_ALGO_MASK 0x00080038
80 #define CR_DATA32 0x00000000
81 #define CR_DATA16 0x00000040
82 #define CR_DATA8 0x00000080
83 #define CR_DATA1 0x000000C0
84 #define CR_KEY128 0x00000000
85 #define CR_KEY192 0x00000100
86 #define CR_KEY256 0x00000200
87 #define CR_FFLUSH 0x00004000
88 #define CR_CRYPEN 0x00008000
89 #define CR_PH_INIT 0x00000000
90 #define CR_PH_HEADER 0x00010000
91 #define CR_PH_PAYLOAD 0x00020000
92 #define CR_PH_FINAL 0x00030000
93 #define CR_PH_MASK 0x00030000
94 #define CR_NBPBL_SHIFT 20
96 #define SR_BUSY 0x00000010
97 #define SR_OFNE 0x00000004
99 #define IMSCR_IN BIT(0)
100 #define IMSCR_OUT BIT(1)
102 #define MISR_IN BIT(0)
103 #define MISR_OUT BIT(1)
105 /* Misc */
106 #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
107 #define GCM_CTR_INIT 2
108 #define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset)
109 #define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset)
110 #define CRYP_AUTOSUSPEND_DELAY 50
112 struct stm32_cryp_caps {
113 bool swap_final;
114 bool padding_wa;
117 struct stm32_cryp_ctx {
118 struct crypto_engine_ctx enginectx;
119 struct stm32_cryp *cryp;
120 int keylen;
121 __be32 key[AES_KEYSIZE_256 / sizeof(u32)];
122 unsigned long flags;
125 struct stm32_cryp_reqctx {
126 unsigned long mode;
129 struct stm32_cryp {
130 struct list_head list;
131 struct device *dev;
132 void __iomem *regs;
133 struct clk *clk;
134 unsigned long flags;
135 u32 irq_status;
136 const struct stm32_cryp_caps *caps;
137 struct stm32_cryp_ctx *ctx;
139 struct crypto_engine *engine;
141 struct skcipher_request *req;
142 struct aead_request *areq;
144 size_t authsize;
145 size_t hw_blocksize;
147 size_t total_in;
148 size_t total_in_save;
149 size_t total_out;
150 size_t total_out_save;
152 struct scatterlist *in_sg;
153 struct scatterlist *out_sg;
154 struct scatterlist *out_sg_save;
156 struct scatterlist in_sgl;
157 struct scatterlist out_sgl;
158 bool sgs_copied;
160 int in_sg_len;
161 int out_sg_len;
163 struct scatter_walk in_walk;
164 struct scatter_walk out_walk;
166 u32 last_ctr[4];
167 u32 gcm_ctr;
170 struct stm32_cryp_list {
171 struct list_head dev_list;
172 spinlock_t lock; /* protect dev_list */
175 static struct stm32_cryp_list cryp_list = {
176 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
177 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
180 static inline bool is_aes(struct stm32_cryp *cryp)
182 return cryp->flags & FLG_AES;
185 static inline bool is_des(struct stm32_cryp *cryp)
187 return cryp->flags & FLG_DES;
190 static inline bool is_tdes(struct stm32_cryp *cryp)
192 return cryp->flags & FLG_TDES;
195 static inline bool is_ecb(struct stm32_cryp *cryp)
197 return cryp->flags & FLG_ECB;
200 static inline bool is_cbc(struct stm32_cryp *cryp)
202 return cryp->flags & FLG_CBC;
205 static inline bool is_ctr(struct stm32_cryp *cryp)
207 return cryp->flags & FLG_CTR;
210 static inline bool is_gcm(struct stm32_cryp *cryp)
212 return cryp->flags & FLG_GCM;
215 static inline bool is_ccm(struct stm32_cryp *cryp)
217 return cryp->flags & FLG_CCM;
220 static inline bool is_encrypt(struct stm32_cryp *cryp)
222 return cryp->flags & FLG_ENCRYPT;
225 static inline bool is_decrypt(struct stm32_cryp *cryp)
227 return !is_encrypt(cryp);
230 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
232 return readl_relaxed(cryp->regs + ofst);
235 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
237 writel_relaxed(val, cryp->regs + ofst);
240 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
242 u32 status;
244 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
245 !(status & SR_BUSY), 10, 100000);
248 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
250 u32 status;
252 return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
253 !(status & CR_CRYPEN), 10, 100000);
256 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
258 u32 status;
260 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
261 status & SR_OFNE, 10, 100000);
264 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
266 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
268 struct stm32_cryp *tmp, *cryp = NULL;
270 spin_lock_bh(&cryp_list.lock);
271 if (!ctx->cryp) {
272 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
273 cryp = tmp;
274 break;
276 ctx->cryp = cryp;
277 } else {
278 cryp = ctx->cryp;
281 spin_unlock_bh(&cryp_list.lock);
283 return cryp;
286 static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
287 size_t align)
289 int len = 0;
291 if (!total)
292 return 0;
294 if (!IS_ALIGNED(total, align))
295 return -EINVAL;
297 while (sg) {
298 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
299 return -EINVAL;
301 if (!IS_ALIGNED(sg->length, align))
302 return -EINVAL;
304 len += sg->length;
305 sg = sg_next(sg);
308 if (len != total)
309 return -EINVAL;
311 return 0;
314 static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
316 int ret;
318 ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
319 cryp->hw_blocksize);
320 if (ret)
321 return ret;
323 ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
324 cryp->hw_blocksize);
326 return ret;
329 static void sg_copy_buf(void *buf, struct scatterlist *sg,
330 unsigned int start, unsigned int nbytes, int out)
332 struct scatter_walk walk;
334 if (!nbytes)
335 return;
337 scatterwalk_start(&walk, sg);
338 scatterwalk_advance(&walk, start);
339 scatterwalk_copychunks(buf, &walk, nbytes, out);
340 scatterwalk_done(&walk, out, 0);
343 static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
345 void *buf_in, *buf_out;
346 int pages, total_in, total_out;
348 if (!stm32_cryp_check_io_aligned(cryp)) {
349 cryp->sgs_copied = 0;
350 return 0;
353 total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
354 pages = total_in ? get_order(total_in) : 1;
355 buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
357 total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
358 pages = total_out ? get_order(total_out) : 1;
359 buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
361 if (!buf_in || !buf_out) {
362 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
363 cryp->sgs_copied = 0;
364 return -EFAULT;
367 sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
369 sg_init_one(&cryp->in_sgl, buf_in, total_in);
370 cryp->in_sg = &cryp->in_sgl;
371 cryp->in_sg_len = 1;
373 sg_init_one(&cryp->out_sgl, buf_out, total_out);
374 cryp->out_sg_save = cryp->out_sg;
375 cryp->out_sg = &cryp->out_sgl;
376 cryp->out_sg_len = 1;
378 cryp->sgs_copied = 1;
380 return 0;
383 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
385 if (!iv)
386 return;
388 stm32_cryp_write(cryp, CRYP_IV0LR, be32_to_cpu(*iv++));
389 stm32_cryp_write(cryp, CRYP_IV0RR, be32_to_cpu(*iv++));
391 if (is_aes(cryp)) {
392 stm32_cryp_write(cryp, CRYP_IV1LR, be32_to_cpu(*iv++));
393 stm32_cryp_write(cryp, CRYP_IV1RR, be32_to_cpu(*iv++));
397 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
399 struct skcipher_request *req = cryp->req;
400 __be32 *tmp = (void *)req->iv;
402 if (!tmp)
403 return;
405 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
406 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
408 if (is_aes(cryp)) {
409 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
410 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
414 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
416 unsigned int i;
417 int r_id;
419 if (is_des(c)) {
420 stm32_cryp_write(c, CRYP_K1LR, be32_to_cpu(c->ctx->key[0]));
421 stm32_cryp_write(c, CRYP_K1RR, be32_to_cpu(c->ctx->key[1]));
422 } else {
423 r_id = CRYP_K3RR;
424 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
425 stm32_cryp_write(c, r_id,
426 be32_to_cpu(c->ctx->key[i - 1]));
430 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
432 if (is_aes(cryp) && is_ecb(cryp))
433 return CR_AES_ECB;
435 if (is_aes(cryp) && is_cbc(cryp))
436 return CR_AES_CBC;
438 if (is_aes(cryp) && is_ctr(cryp))
439 return CR_AES_CTR;
441 if (is_aes(cryp) && is_gcm(cryp))
442 return CR_AES_GCM;
444 if (is_aes(cryp) && is_ccm(cryp))
445 return CR_AES_CCM;
447 if (is_des(cryp) && is_ecb(cryp))
448 return CR_DES_ECB;
450 if (is_des(cryp) && is_cbc(cryp))
451 return CR_DES_CBC;
453 if (is_tdes(cryp) && is_ecb(cryp))
454 return CR_TDES_ECB;
456 if (is_tdes(cryp) && is_cbc(cryp))
457 return CR_TDES_CBC;
459 dev_err(cryp->dev, "Unknown mode\n");
460 return CR_AES_UNKNOWN;
463 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
465 return is_encrypt(cryp) ? cryp->areq->cryptlen :
466 cryp->areq->cryptlen - cryp->authsize;
469 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
471 int ret;
472 __be32 iv[4];
474 /* Phase 1 : init */
475 memcpy(iv, cryp->areq->iv, 12);
476 iv[3] = cpu_to_be32(GCM_CTR_INIT);
477 cryp->gcm_ctr = GCM_CTR_INIT;
478 stm32_cryp_hw_write_iv(cryp, iv);
480 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
482 /* Wait for end of processing */
483 ret = stm32_cryp_wait_enable(cryp);
484 if (ret)
485 dev_err(cryp->dev, "Timeout (gcm init)\n");
487 return ret;
490 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
492 int ret;
493 u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
494 __be32 *bd;
495 u32 *d;
496 unsigned int i, textlen;
498 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
499 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
500 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
501 iv[AES_BLOCK_SIZE - 1] = 1;
502 stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
504 /* Build B0 */
505 memcpy(b0, iv, AES_BLOCK_SIZE);
507 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
509 if (cryp->areq->assoclen)
510 b0[0] |= 0x40;
512 textlen = stm32_cryp_get_input_text_len(cryp);
514 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
515 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
517 /* Enable HW */
518 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
520 /* Write B0 */
521 d = (u32 *)b0;
522 bd = (__be32 *)b0;
524 for (i = 0; i < AES_BLOCK_32; i++) {
525 u32 xd = d[i];
527 if (!cryp->caps->padding_wa)
528 xd = be32_to_cpu(bd[i]);
529 stm32_cryp_write(cryp, CRYP_DIN, xd);
532 /* Wait for end of processing */
533 ret = stm32_cryp_wait_enable(cryp);
534 if (ret)
535 dev_err(cryp->dev, "Timeout (ccm init)\n");
537 return ret;
540 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
542 int ret;
543 u32 cfg, hw_mode;
545 pm_runtime_get_sync(cryp->dev);
547 /* Disable interrupt */
548 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
550 /* Set key */
551 stm32_cryp_hw_write_key(cryp);
553 /* Set configuration */
554 cfg = CR_DATA8 | CR_FFLUSH;
556 switch (cryp->ctx->keylen) {
557 case AES_KEYSIZE_128:
558 cfg |= CR_KEY128;
559 break;
561 case AES_KEYSIZE_192:
562 cfg |= CR_KEY192;
563 break;
565 default:
566 case AES_KEYSIZE_256:
567 cfg |= CR_KEY256;
568 break;
571 hw_mode = stm32_cryp_get_hw_mode(cryp);
572 if (hw_mode == CR_AES_UNKNOWN)
573 return -EINVAL;
575 /* AES ECB/CBC decrypt: run key preparation first */
576 if (is_decrypt(cryp) &&
577 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
578 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
580 /* Wait for end of processing */
581 ret = stm32_cryp_wait_busy(cryp);
582 if (ret) {
583 dev_err(cryp->dev, "Timeout (key preparation)\n");
584 return ret;
588 cfg |= hw_mode;
590 if (is_decrypt(cryp))
591 cfg |= CR_DEC_NOT_ENC;
593 /* Apply config and flush (valid when CRYPEN = 0) */
594 stm32_cryp_write(cryp, CRYP_CR, cfg);
596 switch (hw_mode) {
597 case CR_AES_GCM:
598 case CR_AES_CCM:
599 /* Phase 1 : init */
600 if (hw_mode == CR_AES_CCM)
601 ret = stm32_cryp_ccm_init(cryp, cfg);
602 else
603 ret = stm32_cryp_gcm_init(cryp, cfg);
605 if (ret)
606 return ret;
608 /* Phase 2 : header (authenticated data) */
609 if (cryp->areq->assoclen) {
610 cfg |= CR_PH_HEADER;
611 } else if (stm32_cryp_get_input_text_len(cryp)) {
612 cfg |= CR_PH_PAYLOAD;
613 stm32_cryp_write(cryp, CRYP_CR, cfg);
614 } else {
615 cfg |= CR_PH_INIT;
618 break;
620 case CR_DES_CBC:
621 case CR_TDES_CBC:
622 case CR_AES_CBC:
623 case CR_AES_CTR:
624 stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
625 break;
627 default:
628 break;
631 /* Enable now */
632 cfg |= CR_CRYPEN;
634 stm32_cryp_write(cryp, CRYP_CR, cfg);
636 cryp->flags &= ~FLG_CCM_PADDED_WA;
638 return 0;
641 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
643 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
644 /* Phase 4 : output tag */
645 err = stm32_cryp_read_auth_tag(cryp);
647 if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
648 stm32_cryp_get_iv(cryp);
650 if (cryp->sgs_copied) {
651 void *buf_in, *buf_out;
652 int pages, len;
654 buf_in = sg_virt(&cryp->in_sgl);
655 buf_out = sg_virt(&cryp->out_sgl);
657 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
658 cryp->total_out_save, 1);
660 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
661 pages = len ? get_order(len) : 1;
662 free_pages((unsigned long)buf_in, pages);
664 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
665 pages = len ? get_order(len) : 1;
666 free_pages((unsigned long)buf_out, pages);
669 pm_runtime_mark_last_busy(cryp->dev);
670 pm_runtime_put_autosuspend(cryp->dev);
672 if (is_gcm(cryp) || is_ccm(cryp))
673 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
674 else
675 crypto_finalize_skcipher_request(cryp->engine, cryp->req,
676 err);
678 memset(cryp->ctx->key, 0, cryp->ctx->keylen);
681 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
683 /* Enable interrupt and let the IRQ handler do everything */
684 stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
686 return 0;
689 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
690 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
691 void *areq);
693 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
695 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
697 crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
699 ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
700 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
701 ctx->enginectx.op.unprepare_request = NULL;
702 return 0;
705 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
706 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
707 void *areq);
709 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
711 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
713 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
715 ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
716 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
717 ctx->enginectx.op.unprepare_request = NULL;
719 return 0;
722 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
724 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
725 crypto_skcipher_reqtfm(req));
726 struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
727 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
729 if (!cryp)
730 return -ENODEV;
732 rctx->mode = mode;
734 return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
737 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
739 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
740 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
741 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
743 if (!cryp)
744 return -ENODEV;
746 rctx->mode = mode;
748 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
751 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
752 unsigned int keylen)
754 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
756 memcpy(ctx->key, key, keylen);
757 ctx->keylen = keylen;
759 return 0;
762 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
763 unsigned int keylen)
765 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
766 keylen != AES_KEYSIZE_256)
767 return -EINVAL;
768 else
769 return stm32_cryp_setkey(tfm, key, keylen);
772 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
773 unsigned int keylen)
775 return verify_skcipher_des_key(tfm, key) ?:
776 stm32_cryp_setkey(tfm, key, keylen);
779 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
780 unsigned int keylen)
782 return verify_skcipher_des3_key(tfm, key) ?:
783 stm32_cryp_setkey(tfm, key, keylen);
786 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
787 unsigned int keylen)
789 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
791 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
792 keylen != AES_KEYSIZE_256)
793 return -EINVAL;
795 memcpy(ctx->key, key, keylen);
796 ctx->keylen = keylen;
798 return 0;
801 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
802 unsigned int authsize)
804 return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
807 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
808 unsigned int authsize)
810 switch (authsize) {
811 case 4:
812 case 6:
813 case 8:
814 case 10:
815 case 12:
816 case 14:
817 case 16:
818 break;
819 default:
820 return -EINVAL;
823 return 0;
826 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
828 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
831 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
833 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
836 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
838 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
841 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
843 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
846 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
848 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
851 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
853 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
856 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
858 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
861 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
863 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
866 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
868 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
871 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
873 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
876 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
878 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
881 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
883 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
886 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
888 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
891 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
893 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
896 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
898 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
901 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
903 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
906 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
908 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
911 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
913 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
916 static int stm32_cryp_prepare_req(struct skcipher_request *req,
917 struct aead_request *areq)
919 struct stm32_cryp_ctx *ctx;
920 struct stm32_cryp *cryp;
921 struct stm32_cryp_reqctx *rctx;
922 int ret;
924 if (!req && !areq)
925 return -EINVAL;
927 ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
928 crypto_aead_ctx(crypto_aead_reqtfm(areq));
930 cryp = ctx->cryp;
932 if (!cryp)
933 return -ENODEV;
935 rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
936 rctx->mode &= FLG_MODE_MASK;
938 ctx->cryp = cryp;
940 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
941 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
942 cryp->ctx = ctx;
944 if (req) {
945 cryp->req = req;
946 cryp->areq = NULL;
947 cryp->total_in = req->cryptlen;
948 cryp->total_out = cryp->total_in;
949 } else {
951 * Length of input and output data:
952 * Encryption case:
953 * INPUT = AssocData || PlainText
954 * <- assoclen -> <- cryptlen ->
955 * <------- total_in ----------->
957 * OUTPUT = AssocData || CipherText || AuthTag
958 * <- assoclen -> <- cryptlen -> <- authsize ->
959 * <---------------- total_out ----------------->
961 * Decryption case:
962 * INPUT = AssocData || CipherText || AuthTag
963 * <- assoclen -> <--------- cryptlen --------->
964 * <- authsize ->
965 * <---------------- total_in ------------------>
967 * OUTPUT = AssocData || PlainText
968 * <- assoclen -> <- crypten - authsize ->
969 * <---------- total_out ----------------->
971 cryp->areq = areq;
972 cryp->req = NULL;
973 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
974 cryp->total_in = areq->assoclen + areq->cryptlen;
975 if (is_encrypt(cryp))
976 /* Append auth tag to output */
977 cryp->total_out = cryp->total_in + cryp->authsize;
978 else
979 /* No auth tag in output */
980 cryp->total_out = cryp->total_in - cryp->authsize;
983 cryp->total_in_save = cryp->total_in;
984 cryp->total_out_save = cryp->total_out;
986 cryp->in_sg = req ? req->src : areq->src;
987 cryp->out_sg = req ? req->dst : areq->dst;
988 cryp->out_sg_save = cryp->out_sg;
990 cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
991 if (cryp->in_sg_len < 0) {
992 dev_err(cryp->dev, "Cannot get in_sg_len\n");
993 ret = cryp->in_sg_len;
994 return ret;
997 cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
998 if (cryp->out_sg_len < 0) {
999 dev_err(cryp->dev, "Cannot get out_sg_len\n");
1000 ret = cryp->out_sg_len;
1001 return ret;
1004 ret = stm32_cryp_copy_sgs(cryp);
1005 if (ret)
1006 return ret;
1008 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1009 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1011 if (is_gcm(cryp) || is_ccm(cryp)) {
1012 /* In output, jump after assoc data */
1013 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1014 cryp->total_out -= cryp->areq->assoclen;
1017 ret = stm32_cryp_hw_init(cryp);
1018 return ret;
1021 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1022 void *areq)
1024 struct skcipher_request *req = container_of(areq,
1025 struct skcipher_request,
1026 base);
1028 return stm32_cryp_prepare_req(req, NULL);
1031 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1033 struct skcipher_request *req = container_of(areq,
1034 struct skcipher_request,
1035 base);
1036 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1037 crypto_skcipher_reqtfm(req));
1038 struct stm32_cryp *cryp = ctx->cryp;
1040 if (!cryp)
1041 return -ENODEV;
1043 return stm32_cryp_cpu_start(cryp);
1046 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1048 struct aead_request *req = container_of(areq, struct aead_request,
1049 base);
1051 return stm32_cryp_prepare_req(NULL, req);
1054 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1056 struct aead_request *req = container_of(areq, struct aead_request,
1057 base);
1058 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1059 struct stm32_cryp *cryp = ctx->cryp;
1061 if (!cryp)
1062 return -ENODEV;
1064 if (unlikely(!cryp->areq->assoclen &&
1065 !stm32_cryp_get_input_text_len(cryp))) {
1066 /* No input data to process: get tag and finish */
1067 stm32_cryp_finish_req(cryp, 0);
1068 return 0;
1071 return stm32_cryp_cpu_start(cryp);
1074 static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1075 unsigned int n)
1077 scatterwalk_advance(&cryp->out_walk, n);
1079 if (unlikely(cryp->out_sg->length == _walked_out)) {
1080 cryp->out_sg = sg_next(cryp->out_sg);
1081 if (cryp->out_sg) {
1082 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1083 return (sg_virt(cryp->out_sg) + _walked_out);
1087 return (u32 *)((u8 *)dst + n);
1090 static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1091 unsigned int n)
1093 scatterwalk_advance(&cryp->in_walk, n);
1095 if (unlikely(cryp->in_sg->length == _walked_in)) {
1096 cryp->in_sg = sg_next(cryp->in_sg);
1097 if (cryp->in_sg) {
1098 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1099 return (sg_virt(cryp->in_sg) + _walked_in);
1103 return (u32 *)((u8 *)src + n);
1106 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1108 u32 cfg, size_bit, *dst, d32;
1109 u8 *d8;
1110 unsigned int i, j;
1111 int ret = 0;
1113 /* Update Config */
1114 cfg = stm32_cryp_read(cryp, CRYP_CR);
1116 cfg &= ~CR_PH_MASK;
1117 cfg |= CR_PH_FINAL;
1118 cfg &= ~CR_DEC_NOT_ENC;
1119 cfg |= CR_CRYPEN;
1121 stm32_cryp_write(cryp, CRYP_CR, cfg);
1123 if (is_gcm(cryp)) {
1124 /* GCM: write aad and payload size (in bits) */
1125 size_bit = cryp->areq->assoclen * 8;
1126 if (cryp->caps->swap_final)
1127 size_bit = (__force u32)cpu_to_be32(size_bit);
1129 stm32_cryp_write(cryp, CRYP_DIN, 0);
1130 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1132 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1133 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1134 size_bit *= 8;
1135 if (cryp->caps->swap_final)
1136 size_bit = (__force u32)cpu_to_be32(size_bit);
1138 stm32_cryp_write(cryp, CRYP_DIN, 0);
1139 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1140 } else {
1141 /* CCM: write CTR0 */
1142 u8 iv[AES_BLOCK_SIZE];
1143 u32 *iv32 = (u32 *)iv;
1144 __be32 *biv;
1146 biv = (void *)iv;
1148 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1149 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1151 for (i = 0; i < AES_BLOCK_32; i++) {
1152 u32 xiv = iv32[i];
1154 if (!cryp->caps->padding_wa)
1155 xiv = be32_to_cpu(biv[i]);
1156 stm32_cryp_write(cryp, CRYP_DIN, xiv);
1160 /* Wait for output data */
1161 ret = stm32_cryp_wait_output(cryp);
1162 if (ret) {
1163 dev_err(cryp->dev, "Timeout (read tag)\n");
1164 return ret;
1167 if (is_encrypt(cryp)) {
1168 /* Get and write tag */
1169 dst = sg_virt(cryp->out_sg) + _walked_out;
1171 for (i = 0; i < AES_BLOCK_32; i++) {
1172 if (cryp->total_out >= sizeof(u32)) {
1173 /* Read a full u32 */
1174 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1176 dst = stm32_cryp_next_out(cryp, dst,
1177 sizeof(u32));
1178 cryp->total_out -= sizeof(u32);
1179 } else if (!cryp->total_out) {
1180 /* Empty fifo out (data from input padding) */
1181 stm32_cryp_read(cryp, CRYP_DOUT);
1182 } else {
1183 /* Read less than an u32 */
1184 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1185 d8 = (u8 *)&d32;
1187 for (j = 0; j < cryp->total_out; j++) {
1188 *((u8 *)dst) = *(d8++);
1189 dst = stm32_cryp_next_out(cryp, dst, 1);
1191 cryp->total_out = 0;
1194 } else {
1195 /* Get and check tag */
1196 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1198 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1199 cryp->total_in_save - cryp->authsize,
1200 cryp->authsize, 0);
1202 for (i = 0; i < AES_BLOCK_32; i++)
1203 out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1205 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1206 ret = -EBADMSG;
1209 /* Disable cryp */
1210 cfg &= ~CR_CRYPEN;
1211 stm32_cryp_write(cryp, CRYP_CR, cfg);
1213 return ret;
1216 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1218 u32 cr;
1220 if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1221 cryp->last_ctr[3] = 0;
1222 cryp->last_ctr[2]++;
1223 if (!cryp->last_ctr[2]) {
1224 cryp->last_ctr[1]++;
1225 if (!cryp->last_ctr[1])
1226 cryp->last_ctr[0]++;
1229 cr = stm32_cryp_read(cryp, CRYP_CR);
1230 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1232 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1234 stm32_cryp_write(cryp, CRYP_CR, cr);
1237 cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1238 cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1239 cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1240 cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1243 static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1245 unsigned int i, j;
1246 u32 d32, *dst;
1247 u8 *d8;
1248 size_t tag_size;
1250 /* Do no read tag now (if any) */
1251 if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1252 tag_size = cryp->authsize;
1253 else
1254 tag_size = 0;
1256 dst = sg_virt(cryp->out_sg) + _walked_out;
1258 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1259 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1260 /* Read a full u32 */
1261 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1263 dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1264 cryp->total_out -= sizeof(u32);
1265 } else if (cryp->total_out == tag_size) {
1266 /* Empty fifo out (data from input padding) */
1267 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1268 } else {
1269 /* Read less than an u32 */
1270 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1271 d8 = (u8 *)&d32;
1273 for (j = 0; j < cryp->total_out - tag_size; j++) {
1274 *((u8 *)dst) = *(d8++);
1275 dst = stm32_cryp_next_out(cryp, dst, 1);
1277 cryp->total_out = tag_size;
1281 return !(cryp->total_out - tag_size) || !cryp->total_in;
1284 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1286 unsigned int i, j;
1287 u32 *src;
1288 u8 d8[4];
1289 size_t tag_size;
1291 /* Do no write tag (if any) */
1292 if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1293 tag_size = cryp->authsize;
1294 else
1295 tag_size = 0;
1297 src = sg_virt(cryp->in_sg) + _walked_in;
1299 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1300 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1301 /* Write a full u32 */
1302 stm32_cryp_write(cryp, CRYP_DIN, *src);
1304 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1305 cryp->total_in -= sizeof(u32);
1306 } else if (cryp->total_in == tag_size) {
1307 /* Write padding data */
1308 stm32_cryp_write(cryp, CRYP_DIN, 0);
1309 } else {
1310 /* Write less than an u32 */
1311 memset(d8, 0, sizeof(u32));
1312 for (j = 0; j < cryp->total_in - tag_size; j++) {
1313 d8[j] = *((u8 *)src);
1314 src = stm32_cryp_next_in(cryp, src, 1);
1317 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1318 cryp->total_in = tag_size;
1323 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1325 int err;
1326 u32 cfg, tmp[AES_BLOCK_32];
1327 size_t total_in_ori = cryp->total_in;
1328 struct scatterlist *out_sg_ori = cryp->out_sg;
1329 unsigned int i;
1331 /* 'Special workaround' procedure described in the datasheet */
1333 /* a) disable ip */
1334 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1335 cfg = stm32_cryp_read(cryp, CRYP_CR);
1336 cfg &= ~CR_CRYPEN;
1337 stm32_cryp_write(cryp, CRYP_CR, cfg);
1339 /* b) Update IV1R */
1340 stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1342 /* c) change mode to CTR */
1343 cfg &= ~CR_ALGO_MASK;
1344 cfg |= CR_AES_CTR;
1345 stm32_cryp_write(cryp, CRYP_CR, cfg);
1347 /* a) enable IP */
1348 cfg |= CR_CRYPEN;
1349 stm32_cryp_write(cryp, CRYP_CR, cfg);
1351 /* b) pad and write the last block */
1352 stm32_cryp_irq_write_block(cryp);
1353 cryp->total_in = total_in_ori;
1354 err = stm32_cryp_wait_output(cryp);
1355 if (err) {
1356 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1357 return stm32_cryp_finish_req(cryp, err);
1360 /* c) get and store encrypted data */
1361 stm32_cryp_irq_read_data(cryp);
1362 scatterwalk_map_and_copy(tmp, out_sg_ori,
1363 cryp->total_in_save - total_in_ori,
1364 total_in_ori, 0);
1366 /* d) change mode back to AES GCM */
1367 cfg &= ~CR_ALGO_MASK;
1368 cfg |= CR_AES_GCM;
1369 stm32_cryp_write(cryp, CRYP_CR, cfg);
1371 /* e) change phase to Final */
1372 cfg &= ~CR_PH_MASK;
1373 cfg |= CR_PH_FINAL;
1374 stm32_cryp_write(cryp, CRYP_CR, cfg);
1376 /* f) write padded data */
1377 for (i = 0; i < AES_BLOCK_32; i++) {
1378 if (cryp->total_in)
1379 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1380 else
1381 stm32_cryp_write(cryp, CRYP_DIN, 0);
1383 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1386 /* g) Empty fifo out */
1387 err = stm32_cryp_wait_output(cryp);
1388 if (err) {
1389 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1390 return stm32_cryp_finish_req(cryp, err);
1393 for (i = 0; i < AES_BLOCK_32; i++)
1394 stm32_cryp_read(cryp, CRYP_DOUT);
1396 /* h) run the he normal Final phase */
1397 stm32_cryp_finish_req(cryp, 0);
1400 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1402 u32 cfg, payload_bytes;
1404 /* disable ip, set NPBLB and reneable ip */
1405 cfg = stm32_cryp_read(cryp, CRYP_CR);
1406 cfg &= ~CR_CRYPEN;
1407 stm32_cryp_write(cryp, CRYP_CR, cfg);
1409 payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1410 cryp->total_in;
1411 cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1412 cfg |= CR_CRYPEN;
1413 stm32_cryp_write(cryp, CRYP_CR, cfg);
1416 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1418 int err = 0;
1419 u32 cfg, iv1tmp;
1420 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1421 size_t last_total_out, total_in_ori = cryp->total_in;
1422 struct scatterlist *out_sg_ori = cryp->out_sg;
1423 unsigned int i;
1425 /* 'Special workaround' procedure described in the datasheet */
1426 cryp->flags |= FLG_CCM_PADDED_WA;
1428 /* a) disable ip */
1429 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1431 cfg = stm32_cryp_read(cryp, CRYP_CR);
1432 cfg &= ~CR_CRYPEN;
1433 stm32_cryp_write(cryp, CRYP_CR, cfg);
1435 /* b) get IV1 from CRYP_CSGCMCCM7 */
1436 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1438 /* c) Load CRYP_CSGCMCCMxR */
1439 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1440 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1442 /* d) Write IV1R */
1443 stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1445 /* e) change mode to CTR */
1446 cfg &= ~CR_ALGO_MASK;
1447 cfg |= CR_AES_CTR;
1448 stm32_cryp_write(cryp, CRYP_CR, cfg);
1450 /* a) enable IP */
1451 cfg |= CR_CRYPEN;
1452 stm32_cryp_write(cryp, CRYP_CR, cfg);
1454 /* b) pad and write the last block */
1455 stm32_cryp_irq_write_block(cryp);
1456 cryp->total_in = total_in_ori;
1457 err = stm32_cryp_wait_output(cryp);
1458 if (err) {
1459 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1460 return stm32_cryp_finish_req(cryp, err);
1463 /* c) get and store decrypted data */
1464 last_total_out = cryp->total_out;
1465 stm32_cryp_irq_read_data(cryp);
1467 memset(tmp, 0, sizeof(tmp));
1468 scatterwalk_map_and_copy(tmp, out_sg_ori,
1469 cryp->total_out_save - last_total_out,
1470 last_total_out, 0);
1472 /* d) Load again CRYP_CSGCMCCMxR */
1473 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1474 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1476 /* e) change mode back to AES CCM */
1477 cfg &= ~CR_ALGO_MASK;
1478 cfg |= CR_AES_CCM;
1479 stm32_cryp_write(cryp, CRYP_CR, cfg);
1481 /* f) change phase to header */
1482 cfg &= ~CR_PH_MASK;
1483 cfg |= CR_PH_HEADER;
1484 stm32_cryp_write(cryp, CRYP_CR, cfg);
1486 /* g) XOR and write padded data */
1487 for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1488 tmp[i] ^= cstmp1[i];
1489 tmp[i] ^= cstmp2[i];
1490 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1493 /* h) wait for completion */
1494 err = stm32_cryp_wait_busy(cryp);
1495 if (err)
1496 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1498 /* i) run the he normal Final phase */
1499 stm32_cryp_finish_req(cryp, err);
1502 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1504 if (unlikely(!cryp->total_in)) {
1505 dev_warn(cryp->dev, "No more data to process\n");
1506 return;
1509 if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1510 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1511 is_encrypt(cryp))) {
1512 /* Padding for AES GCM encryption */
1513 if (cryp->caps->padding_wa)
1514 /* Special case 1 */
1515 return stm32_cryp_irq_write_gcm_padded_data(cryp);
1517 /* Setting padding bytes (NBBLB) */
1518 stm32_cryp_irq_set_npblb(cryp);
1521 if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1522 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1523 is_decrypt(cryp))) {
1524 /* Padding for AES CCM decryption */
1525 if (cryp->caps->padding_wa)
1526 /* Special case 2 */
1527 return stm32_cryp_irq_write_ccm_padded_data(cryp);
1529 /* Setting padding bytes (NBBLB) */
1530 stm32_cryp_irq_set_npblb(cryp);
1533 if (is_aes(cryp) && is_ctr(cryp))
1534 stm32_cryp_check_ctr_counter(cryp);
1536 stm32_cryp_irq_write_block(cryp);
1539 static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1541 int err;
1542 unsigned int i, j;
1543 u32 cfg, *src;
1545 src = sg_virt(cryp->in_sg) + _walked_in;
1547 for (i = 0; i < AES_BLOCK_32; i++) {
1548 stm32_cryp_write(cryp, CRYP_DIN, *src);
1550 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1551 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1553 /* Check if whole header written */
1554 if ((cryp->total_in_save - cryp->total_in) ==
1555 cryp->areq->assoclen) {
1556 /* Write padding if needed */
1557 for (j = i + 1; j < AES_BLOCK_32; j++)
1558 stm32_cryp_write(cryp, CRYP_DIN, 0);
1560 /* Wait for completion */
1561 err = stm32_cryp_wait_busy(cryp);
1562 if (err) {
1563 dev_err(cryp->dev, "Timeout (gcm header)\n");
1564 return stm32_cryp_finish_req(cryp, err);
1567 if (stm32_cryp_get_input_text_len(cryp)) {
1568 /* Phase 3 : payload */
1569 cfg = stm32_cryp_read(cryp, CRYP_CR);
1570 cfg &= ~CR_CRYPEN;
1571 stm32_cryp_write(cryp, CRYP_CR, cfg);
1573 cfg &= ~CR_PH_MASK;
1574 cfg |= CR_PH_PAYLOAD;
1575 cfg |= CR_CRYPEN;
1576 stm32_cryp_write(cryp, CRYP_CR, cfg);
1577 } else {
1578 /* Phase 4 : tag */
1579 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1580 stm32_cryp_finish_req(cryp, 0);
1583 break;
1586 if (!cryp->total_in)
1587 break;
1591 static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1593 int err;
1594 unsigned int i = 0, j, k;
1595 u32 alen, cfg, *src;
1596 u8 d8[4];
1598 src = sg_virt(cryp->in_sg) + _walked_in;
1599 alen = cryp->areq->assoclen;
1601 if (!_walked_in) {
1602 if (cryp->areq->assoclen <= 65280) {
1603 /* Write first u32 of B1 */
1604 d8[0] = (alen >> 8) & 0xFF;
1605 d8[1] = alen & 0xFF;
1606 d8[2] = *((u8 *)src);
1607 src = stm32_cryp_next_in(cryp, src, 1);
1608 d8[3] = *((u8 *)src);
1609 src = stm32_cryp_next_in(cryp, src, 1);
1611 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1612 i++;
1614 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1615 } else {
1616 /* Build the two first u32 of B1 */
1617 d8[0] = 0xFF;
1618 d8[1] = 0xFE;
1619 d8[2] = alen & 0xFF000000;
1620 d8[3] = alen & 0x00FF0000;
1622 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1623 i++;
1625 d8[0] = alen & 0x0000FF00;
1626 d8[1] = alen & 0x000000FF;
1627 d8[2] = *((u8 *)src);
1628 src = stm32_cryp_next_in(cryp, src, 1);
1629 d8[3] = *((u8 *)src);
1630 src = stm32_cryp_next_in(cryp, src, 1);
1632 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1633 i++;
1635 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1639 /* Write next u32 */
1640 for (; i < AES_BLOCK_32; i++) {
1641 /* Build an u32 */
1642 memset(d8, 0, sizeof(u32));
1643 for (k = 0; k < sizeof(u32); k++) {
1644 d8[k] = *((u8 *)src);
1645 src = stm32_cryp_next_in(cryp, src, 1);
1647 cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1648 if ((cryp->total_in_save - cryp->total_in) == alen)
1649 break;
1652 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1654 if ((cryp->total_in_save - cryp->total_in) == alen) {
1655 /* Write padding if needed */
1656 for (j = i + 1; j < AES_BLOCK_32; j++)
1657 stm32_cryp_write(cryp, CRYP_DIN, 0);
1659 /* Wait for completion */
1660 err = stm32_cryp_wait_busy(cryp);
1661 if (err) {
1662 dev_err(cryp->dev, "Timeout (ccm header)\n");
1663 return stm32_cryp_finish_req(cryp, err);
1666 if (stm32_cryp_get_input_text_len(cryp)) {
1667 /* Phase 3 : payload */
1668 cfg = stm32_cryp_read(cryp, CRYP_CR);
1669 cfg &= ~CR_CRYPEN;
1670 stm32_cryp_write(cryp, CRYP_CR, cfg);
1672 cfg &= ~CR_PH_MASK;
1673 cfg |= CR_PH_PAYLOAD;
1674 cfg |= CR_CRYPEN;
1675 stm32_cryp_write(cryp, CRYP_CR, cfg);
1676 } else {
1677 /* Phase 4 : tag */
1678 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1679 stm32_cryp_finish_req(cryp, 0);
1682 break;
1687 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1689 struct stm32_cryp *cryp = arg;
1690 u32 ph;
1692 if (cryp->irq_status & MISR_OUT)
1693 /* Output FIFO IRQ: read data */
1694 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1695 /* All bytes processed, finish */
1696 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1697 stm32_cryp_finish_req(cryp, 0);
1698 return IRQ_HANDLED;
1701 if (cryp->irq_status & MISR_IN) {
1702 if (is_gcm(cryp)) {
1703 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1704 if (unlikely(ph == CR_PH_HEADER))
1705 /* Write Header */
1706 stm32_cryp_irq_write_gcm_header(cryp);
1707 else
1708 /* Input FIFO IRQ: write data */
1709 stm32_cryp_irq_write_data(cryp);
1710 cryp->gcm_ctr++;
1711 } else if (is_ccm(cryp)) {
1712 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1713 if (unlikely(ph == CR_PH_HEADER))
1714 /* Write Header */
1715 stm32_cryp_irq_write_ccm_header(cryp);
1716 else
1717 /* Input FIFO IRQ: write data */
1718 stm32_cryp_irq_write_data(cryp);
1719 } else {
1720 /* Input FIFO IRQ: write data */
1721 stm32_cryp_irq_write_data(cryp);
1725 return IRQ_HANDLED;
1728 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1730 struct stm32_cryp *cryp = arg;
1732 cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1734 return IRQ_WAKE_THREAD;
1737 static struct skcipher_alg crypto_algs[] = {
1739 .base.cra_name = "ecb(aes)",
1740 .base.cra_driver_name = "stm32-ecb-aes",
1741 .base.cra_priority = 200,
1742 .base.cra_flags = CRYPTO_ALG_ASYNC,
1743 .base.cra_blocksize = AES_BLOCK_SIZE,
1744 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1745 .base.cra_alignmask = 0xf,
1746 .base.cra_module = THIS_MODULE,
1748 .init = stm32_cryp_init_tfm,
1749 .min_keysize = AES_MIN_KEY_SIZE,
1750 .max_keysize = AES_MAX_KEY_SIZE,
1751 .setkey = stm32_cryp_aes_setkey,
1752 .encrypt = stm32_cryp_aes_ecb_encrypt,
1753 .decrypt = stm32_cryp_aes_ecb_decrypt,
1756 .base.cra_name = "cbc(aes)",
1757 .base.cra_driver_name = "stm32-cbc-aes",
1758 .base.cra_priority = 200,
1759 .base.cra_flags = CRYPTO_ALG_ASYNC,
1760 .base.cra_blocksize = AES_BLOCK_SIZE,
1761 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1762 .base.cra_alignmask = 0xf,
1763 .base.cra_module = THIS_MODULE,
1765 .init = stm32_cryp_init_tfm,
1766 .min_keysize = AES_MIN_KEY_SIZE,
1767 .max_keysize = AES_MAX_KEY_SIZE,
1768 .ivsize = AES_BLOCK_SIZE,
1769 .setkey = stm32_cryp_aes_setkey,
1770 .encrypt = stm32_cryp_aes_cbc_encrypt,
1771 .decrypt = stm32_cryp_aes_cbc_decrypt,
1774 .base.cra_name = "ctr(aes)",
1775 .base.cra_driver_name = "stm32-ctr-aes",
1776 .base.cra_priority = 200,
1777 .base.cra_flags = CRYPTO_ALG_ASYNC,
1778 .base.cra_blocksize = 1,
1779 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1780 .base.cra_alignmask = 0xf,
1781 .base.cra_module = THIS_MODULE,
1783 .init = stm32_cryp_init_tfm,
1784 .min_keysize = AES_MIN_KEY_SIZE,
1785 .max_keysize = AES_MAX_KEY_SIZE,
1786 .ivsize = AES_BLOCK_SIZE,
1787 .setkey = stm32_cryp_aes_setkey,
1788 .encrypt = stm32_cryp_aes_ctr_encrypt,
1789 .decrypt = stm32_cryp_aes_ctr_decrypt,
1792 .base.cra_name = "ecb(des)",
1793 .base.cra_driver_name = "stm32-ecb-des",
1794 .base.cra_priority = 200,
1795 .base.cra_flags = CRYPTO_ALG_ASYNC,
1796 .base.cra_blocksize = DES_BLOCK_SIZE,
1797 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1798 .base.cra_alignmask = 0xf,
1799 .base.cra_module = THIS_MODULE,
1801 .init = stm32_cryp_init_tfm,
1802 .min_keysize = DES_BLOCK_SIZE,
1803 .max_keysize = DES_BLOCK_SIZE,
1804 .setkey = stm32_cryp_des_setkey,
1805 .encrypt = stm32_cryp_des_ecb_encrypt,
1806 .decrypt = stm32_cryp_des_ecb_decrypt,
1809 .base.cra_name = "cbc(des)",
1810 .base.cra_driver_name = "stm32-cbc-des",
1811 .base.cra_priority = 200,
1812 .base.cra_flags = CRYPTO_ALG_ASYNC,
1813 .base.cra_blocksize = DES_BLOCK_SIZE,
1814 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1815 .base.cra_alignmask = 0xf,
1816 .base.cra_module = THIS_MODULE,
1818 .init = stm32_cryp_init_tfm,
1819 .min_keysize = DES_BLOCK_SIZE,
1820 .max_keysize = DES_BLOCK_SIZE,
1821 .ivsize = DES_BLOCK_SIZE,
1822 .setkey = stm32_cryp_des_setkey,
1823 .encrypt = stm32_cryp_des_cbc_encrypt,
1824 .decrypt = stm32_cryp_des_cbc_decrypt,
1827 .base.cra_name = "ecb(des3_ede)",
1828 .base.cra_driver_name = "stm32-ecb-des3",
1829 .base.cra_priority = 200,
1830 .base.cra_flags = CRYPTO_ALG_ASYNC,
1831 .base.cra_blocksize = DES_BLOCK_SIZE,
1832 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1833 .base.cra_alignmask = 0xf,
1834 .base.cra_module = THIS_MODULE,
1836 .init = stm32_cryp_init_tfm,
1837 .min_keysize = 3 * DES_BLOCK_SIZE,
1838 .max_keysize = 3 * DES_BLOCK_SIZE,
1839 .setkey = stm32_cryp_tdes_setkey,
1840 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1841 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1844 .base.cra_name = "cbc(des3_ede)",
1845 .base.cra_driver_name = "stm32-cbc-des3",
1846 .base.cra_priority = 200,
1847 .base.cra_flags = CRYPTO_ALG_ASYNC,
1848 .base.cra_blocksize = DES_BLOCK_SIZE,
1849 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1850 .base.cra_alignmask = 0xf,
1851 .base.cra_module = THIS_MODULE,
1853 .init = stm32_cryp_init_tfm,
1854 .min_keysize = 3 * DES_BLOCK_SIZE,
1855 .max_keysize = 3 * DES_BLOCK_SIZE,
1856 .ivsize = DES_BLOCK_SIZE,
1857 .setkey = stm32_cryp_tdes_setkey,
1858 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1859 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1863 static struct aead_alg aead_algs[] = {
1865 .setkey = stm32_cryp_aes_aead_setkey,
1866 .setauthsize = stm32_cryp_aes_gcm_setauthsize,
1867 .encrypt = stm32_cryp_aes_gcm_encrypt,
1868 .decrypt = stm32_cryp_aes_gcm_decrypt,
1869 .init = stm32_cryp_aes_aead_init,
1870 .ivsize = 12,
1871 .maxauthsize = AES_BLOCK_SIZE,
1873 .base = {
1874 .cra_name = "gcm(aes)",
1875 .cra_driver_name = "stm32-gcm-aes",
1876 .cra_priority = 200,
1877 .cra_flags = CRYPTO_ALG_ASYNC,
1878 .cra_blocksize = 1,
1879 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1880 .cra_alignmask = 0xf,
1881 .cra_module = THIS_MODULE,
1885 .setkey = stm32_cryp_aes_aead_setkey,
1886 .setauthsize = stm32_cryp_aes_ccm_setauthsize,
1887 .encrypt = stm32_cryp_aes_ccm_encrypt,
1888 .decrypt = stm32_cryp_aes_ccm_decrypt,
1889 .init = stm32_cryp_aes_aead_init,
1890 .ivsize = AES_BLOCK_SIZE,
1891 .maxauthsize = AES_BLOCK_SIZE,
1893 .base = {
1894 .cra_name = "ccm(aes)",
1895 .cra_driver_name = "stm32-ccm-aes",
1896 .cra_priority = 200,
1897 .cra_flags = CRYPTO_ALG_ASYNC,
1898 .cra_blocksize = 1,
1899 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1900 .cra_alignmask = 0xf,
1901 .cra_module = THIS_MODULE,
1906 static const struct stm32_cryp_caps f7_data = {
1907 .swap_final = true,
1908 .padding_wa = true,
1911 static const struct stm32_cryp_caps mp1_data = {
1912 .swap_final = false,
1913 .padding_wa = false,
1916 static const struct of_device_id stm32_dt_ids[] = {
1917 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1918 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1921 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1923 static int stm32_cryp_probe(struct platform_device *pdev)
1925 struct device *dev = &pdev->dev;
1926 struct stm32_cryp *cryp;
1927 struct reset_control *rst;
1928 int irq, ret;
1930 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1931 if (!cryp)
1932 return -ENOMEM;
1934 cryp->caps = of_device_get_match_data(dev);
1935 if (!cryp->caps)
1936 return -ENODEV;
1938 cryp->dev = dev;
1940 cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1941 if (IS_ERR(cryp->regs))
1942 return PTR_ERR(cryp->regs);
1944 irq = platform_get_irq(pdev, 0);
1945 if (irq < 0)
1946 return irq;
1948 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1949 stm32_cryp_irq_thread, IRQF_ONESHOT,
1950 dev_name(dev), cryp);
1951 if (ret) {
1952 dev_err(dev, "Cannot grab IRQ\n");
1953 return ret;
1956 cryp->clk = devm_clk_get(dev, NULL);
1957 if (IS_ERR(cryp->clk)) {
1958 dev_err(dev, "Could not get clock\n");
1959 return PTR_ERR(cryp->clk);
1962 ret = clk_prepare_enable(cryp->clk);
1963 if (ret) {
1964 dev_err(cryp->dev, "Failed to enable clock\n");
1965 return ret;
1968 pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1969 pm_runtime_use_autosuspend(dev);
1971 pm_runtime_get_noresume(dev);
1972 pm_runtime_set_active(dev);
1973 pm_runtime_enable(dev);
1975 rst = devm_reset_control_get(dev, NULL);
1976 if (!IS_ERR(rst)) {
1977 reset_control_assert(rst);
1978 udelay(2);
1979 reset_control_deassert(rst);
1982 platform_set_drvdata(pdev, cryp);
1984 spin_lock(&cryp_list.lock);
1985 list_add(&cryp->list, &cryp_list.dev_list);
1986 spin_unlock(&cryp_list.lock);
1988 /* Initialize crypto engine */
1989 cryp->engine = crypto_engine_alloc_init(dev, 1);
1990 if (!cryp->engine) {
1991 dev_err(dev, "Could not init crypto engine\n");
1992 ret = -ENOMEM;
1993 goto err_engine1;
1996 ret = crypto_engine_start(cryp->engine);
1997 if (ret) {
1998 dev_err(dev, "Could not start crypto engine\n");
1999 goto err_engine2;
2002 ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2003 if (ret) {
2004 dev_err(dev, "Could not register algs\n");
2005 goto err_algs;
2008 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2009 if (ret)
2010 goto err_aead_algs;
2012 dev_info(dev, "Initialized\n");
2014 pm_runtime_put_sync(dev);
2016 return 0;
2018 err_aead_algs:
2019 crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2020 err_algs:
2021 err_engine2:
2022 crypto_engine_exit(cryp->engine);
2023 err_engine1:
2024 spin_lock(&cryp_list.lock);
2025 list_del(&cryp->list);
2026 spin_unlock(&cryp_list.lock);
2028 pm_runtime_disable(dev);
2029 pm_runtime_put_noidle(dev);
2030 pm_runtime_disable(dev);
2031 pm_runtime_put_noidle(dev);
2033 clk_disable_unprepare(cryp->clk);
2035 return ret;
2038 static int stm32_cryp_remove(struct platform_device *pdev)
2040 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2041 int ret;
2043 if (!cryp)
2044 return -ENODEV;
2046 ret = pm_runtime_get_sync(cryp->dev);
2047 if (ret < 0)
2048 return ret;
2050 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2051 crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2053 crypto_engine_exit(cryp->engine);
2055 spin_lock(&cryp_list.lock);
2056 list_del(&cryp->list);
2057 spin_unlock(&cryp_list.lock);
2059 pm_runtime_disable(cryp->dev);
2060 pm_runtime_put_noidle(cryp->dev);
2062 clk_disable_unprepare(cryp->clk);
2064 return 0;
2067 #ifdef CONFIG_PM
2068 static int stm32_cryp_runtime_suspend(struct device *dev)
2070 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2072 clk_disable_unprepare(cryp->clk);
2074 return 0;
2077 static int stm32_cryp_runtime_resume(struct device *dev)
2079 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2080 int ret;
2082 ret = clk_prepare_enable(cryp->clk);
2083 if (ret) {
2084 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2085 return ret;
2088 return 0;
2090 #endif
2092 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2093 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2094 pm_runtime_force_resume)
2095 SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2096 stm32_cryp_runtime_resume, NULL)
2099 static struct platform_driver stm32_cryp_driver = {
2100 .probe = stm32_cryp_probe,
2101 .remove = stm32_cryp_remove,
2102 .driver = {
2103 .name = DRIVER_NAME,
2104 .pm = &stm32_cryp_pm_ops,
2105 .of_match_table = stm32_dt_ids,
2109 module_platform_driver(stm32_cryp_driver);
2111 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2112 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2113 MODULE_LICENSE("GPL");