1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for OHCI 1394 controllers
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
8 #include <linux/bitops.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
34 #include <asm/byteorder.h>
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
44 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
45 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
46 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
48 #define DESCRIPTOR_OUTPUT_MORE 0
49 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
50 #define DESCRIPTOR_INPUT_MORE (2 << 12)
51 #define DESCRIPTOR_INPUT_LAST (3 << 12)
52 #define DESCRIPTOR_STATUS (1 << 11)
53 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
54 #define DESCRIPTOR_PING (1 << 7)
55 #define DESCRIPTOR_YY (1 << 6)
56 #define DESCRIPTOR_NO_IRQ (0 << 4)
57 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
58 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
59 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
60 #define DESCRIPTOR_WAIT (3 << 0)
62 #define DESCRIPTOR_CMD (0xf << 12)
68 __le32 branch_address
;
70 __le16 transfer_status
;
71 } __attribute__((aligned(16)));
73 #define CONTROL_SET(regs) (regs)
74 #define CONTROL_CLEAR(regs) ((regs) + 4)
75 #define COMMAND_PTR(regs) ((regs) + 12)
76 #define CONTEXT_MATCH(regs) ((regs) + 16)
78 #define AR_BUFFER_SIZE (32*1024)
79 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80 /* we need at least two pages for proper list management */
81 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
83 #define MAX_ASYNC_PAYLOAD 4096
84 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
85 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
89 struct page
*pages
[AR_BUFFERS
];
91 struct descriptor
*descriptors
;
92 dma_addr_t descriptors_bus
;
94 unsigned int last_buffer_index
;
96 struct tasklet_struct tasklet
;
101 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
102 struct descriptor
*d
,
103 struct descriptor
*last
);
106 * A buffer that contains a block of DMA-able coherent memory used for
107 * storing a portion of a DMA descriptor program.
109 struct descriptor_buffer
{
110 struct list_head list
;
111 dma_addr_t buffer_bus
;
114 struct descriptor buffer
[];
118 struct fw_ohci
*ohci
;
120 int total_allocation
;
126 * List of page-sized buffers for storing DMA descriptors.
127 * Head of list contains buffers in use and tail of list contains
130 struct list_head buffer_list
;
133 * Pointer to a buffer inside buffer_list that contains the tail
134 * end of the current DMA program.
136 struct descriptor_buffer
*buffer_tail
;
139 * The descriptor containing the branch address of the first
140 * descriptor that has not yet been filled by the device.
142 struct descriptor
*last
;
145 * The last descriptor block in the DMA program. It contains the branch
146 * address that must be updated upon appending a new descriptor.
148 struct descriptor
*prev
;
151 descriptor_callback_t callback
;
153 struct tasklet_struct tasklet
;
156 #define IT_HEADER_SY(v) ((v) << 0)
157 #define IT_HEADER_TCODE(v) ((v) << 4)
158 #define IT_HEADER_CHANNEL(v) ((v) << 8)
159 #define IT_HEADER_TAG(v) ((v) << 14)
160 #define IT_HEADER_SPEED(v) ((v) << 16)
161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
164 struct fw_iso_context base
;
165 struct context context
;
167 size_t header_length
;
168 unsigned long flushing_completions
;
176 #define CONFIG_ROM_SIZE 1024
181 __iomem
char *registers
;
184 int request_generation
; /* for timestamping incoming requests */
186 unsigned int pri_req_max
;
188 bool bus_time_running
;
190 bool csr_state_setclear_abdicate
;
194 * Spinlock for accessing fw_ohci data. Never call out of
195 * this driver with this lock held.
199 struct mutex phy_reg_mutex
;
202 dma_addr_t misc_buffer_bus
;
204 struct ar_context ar_request_ctx
;
205 struct ar_context ar_response_ctx
;
206 struct context at_request_ctx
;
207 struct context at_response_ctx
;
209 u32 it_context_support
;
210 u32 it_context_mask
; /* unoccupied IT contexts */
211 struct iso_context
*it_context_list
;
212 u64 ir_context_channels
; /* unoccupied channels */
213 u32 ir_context_support
;
214 u32 ir_context_mask
; /* unoccupied IR contexts */
215 struct iso_context
*ir_context_list
;
216 u64 mc_channels
; /* channels in use by the multichannel IR context */
220 dma_addr_t config_rom_bus
;
221 __be32
*next_config_rom
;
222 dma_addr_t next_config_rom_bus
;
226 dma_addr_t self_id_bus
;
227 struct work_struct bus_reset_work
;
229 u32 self_id_buffer
[512];
232 static struct workqueue_struct
*selfid_workqueue
;
234 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
236 return container_of(card
, struct fw_ohci
, card
);
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240 #define IR_CONTEXT_BUFFER_FILL 0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
246 #define CONTEXT_RUN 0x8000
247 #define CONTEXT_WAKE 0x1000
248 #define CONTEXT_DEAD 0x0800
249 #define CONTEXT_ACTIVE 0x0400
251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
255 #define OHCI1394_REGISTER_SIZE 0x800
256 #define OHCI1394_PCI_HCI_Control 0x40
257 #define SELF_ID_BUF_SIZE 0x800
258 #define OHCI_TCODE_PHY_PACKET 0x0e
259 #define OHCI_VERSION_1_1 0x010010
261 static char ohci_driver_name
[] = KBUILD_MODNAME
;
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
271 #define PCI_REV_ID_VIA_VT6306 0x46
272 #define PCI_DEVICE_ID_VIA_VT6315 0x3403
274 #define QUIRK_CYCLE_TIMER 0x1
275 #define QUIRK_RESET_PACKET 0x2
276 #define QUIRK_BE_HEADERS 0x4
277 #define QUIRK_NO_1394A 0x8
278 #define QUIRK_NO_MSI 0x10
279 #define QUIRK_TI_SLLZ059 0x20
280 #define QUIRK_IR_WAKE 0x40
282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
283 static const struct {
284 unsigned short vendor
, device
, revision
, flags
;
286 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
289 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
292 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
295 {PCI_VENDOR_ID_CREATIVE
, PCI_DEVICE_ID_CREATIVE_SB1394
, PCI_ANY_ID
,
298 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
301 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
304 {PCI_VENDOR_ID_O2
, PCI_ANY_ID
, PCI_ANY_ID
,
307 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
308 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
310 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
311 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
313 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV26
, PCI_ANY_ID
,
314 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
316 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB82AA2
, PCI_ANY_ID
,
317 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
319 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
322 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT630X
, PCI_REV_ID_VIA_VT6306
,
323 QUIRK_CYCLE_TIMER
| QUIRK_IR_WAKE
},
325 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT6315
, 0,
326 QUIRK_CYCLE_TIMER
/* FIXME: necessary? */ | QUIRK_NO_MSI
},
328 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT6315
, PCI_ANY_ID
,
331 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
332 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
335 /* This overrides anything that was found in ohci_quirks[]. */
336 static int param_quirks
;
337 module_param_named(quirks
, param_quirks
, int, 0644);
338 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
339 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
340 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
341 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS
)
342 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
343 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
344 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059
)
345 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE
)
348 #define OHCI_PARAM_DEBUG_AT_AR 1
349 #define OHCI_PARAM_DEBUG_SELFIDS 2
350 #define OHCI_PARAM_DEBUG_IRQS 4
351 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
353 static int param_debug
;
354 module_param_named(debug
, param_debug
, int, 0644);
355 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
356 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
357 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
358 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
359 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
360 ", or a combination, or all = -1)");
362 static bool param_remote_dma
;
363 module_param_named(remote_dma
, param_remote_dma
, bool, 0444);
364 MODULE_PARM_DESC(remote_dma
, "Enable unfiltered remote DMA (default = N)");
366 static void log_irqs(struct fw_ohci
*ohci
, u32 evt
)
368 if (likely(!(param_debug
&
369 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
372 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
373 !(evt
& OHCI1394_busReset
))
376 ohci_notice(ohci
, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
377 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
378 evt
& OHCI1394_RQPkt
? " AR_req" : "",
379 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
380 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
381 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
382 evt
& OHCI1394_isochRx
? " IR" : "",
383 evt
& OHCI1394_isochTx
? " IT" : "",
384 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
385 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
386 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
387 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
388 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
389 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
390 evt
& OHCI1394_busReset
? " busReset" : "",
391 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
392 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
393 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
394 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
395 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
396 OHCI1394_cycleInconsistent
|
397 OHCI1394_regAccessFail
| OHCI1394_busReset
)
401 static const char *speed
[] = {
402 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
404 static const char *power
[] = {
405 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
406 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
408 static const char port
[] = { '.', '-', 'p', 'c', };
410 static char _p(u32
*s
, int shift
)
412 return port
[*s
>> shift
& 3];
415 static void log_selfids(struct fw_ohci
*ohci
, int generation
, int self_id_count
)
419 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
422 ohci_notice(ohci
, "%d selfIDs, generation %d, local node ID %04x\n",
423 self_id_count
, generation
, ohci
->node_id
);
425 for (s
= ohci
->self_id_buffer
; self_id_count
--; ++s
)
426 if ((*s
& 1 << 23) == 0)
428 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
429 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
430 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
431 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
432 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
435 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
437 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
438 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
441 static const char *evts
[] = {
442 [0x00] = "evt_no_status", [0x01] = "-reserved-",
443 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
444 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
445 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
446 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
447 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
448 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
449 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
450 [0x10] = "-reserved-", [0x11] = "ack_complete",
451 [0x12] = "ack_pending ", [0x13] = "-reserved-",
452 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
453 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
454 [0x18] = "-reserved-", [0x19] = "-reserved-",
455 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
456 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
457 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
458 [0x20] = "pending/cancelled",
460 static const char *tcodes
[] = {
461 [0x0] = "QW req", [0x1] = "BW req",
462 [0x2] = "W resp", [0x3] = "-reserved-",
463 [0x4] = "QR req", [0x5] = "BR req",
464 [0x6] = "QR resp", [0x7] = "BR resp",
465 [0x8] = "cycle start", [0x9] = "Lk req",
466 [0xa] = "async stream packet", [0xb] = "Lk resp",
467 [0xc] = "-reserved-", [0xd] = "-reserved-",
468 [0xe] = "link internal", [0xf] = "-reserved-",
471 static void log_ar_at_event(struct fw_ohci
*ohci
,
472 char dir
, int speed
, u32
*header
, int evt
)
474 int tcode
= header
[0] >> 4 & 0xf;
477 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
480 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
483 if (evt
== OHCI1394_evt_bus_reset
) {
484 ohci_notice(ohci
, "A%c evt_bus_reset, generation %d\n",
485 dir
, (header
[2] >> 16) & 0xff);
490 case 0x0: case 0x6: case 0x8:
491 snprintf(specific
, sizeof(specific
), " = %08x",
492 be32_to_cpu((__force __be32
)header
[3]));
494 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
495 snprintf(specific
, sizeof(specific
), " %x,%x",
496 header
[3] >> 16, header
[3] & 0xffff);
504 ohci_notice(ohci
, "A%c %s, %s\n",
505 dir
, evts
[evt
], tcodes
[tcode
]);
508 ohci_notice(ohci
, "A%c %s, PHY %08x %08x\n",
509 dir
, evts
[evt
], header
[1], header
[2]);
511 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
513 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
514 dir
, speed
, header
[0] >> 10 & 0x3f,
515 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
516 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
520 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
521 dir
, speed
, header
[0] >> 10 & 0x3f,
522 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
523 tcodes
[tcode
], specific
);
527 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
529 writel(data
, ohci
->registers
+ offset
);
532 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
534 return readl(ohci
->registers
+ offset
);
537 static inline void flush_writes(const struct fw_ohci
*ohci
)
539 /* Do a dummy read to flush writes. */
540 reg_read(ohci
, OHCI1394_Version
);
544 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
545 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
546 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
547 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
549 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
554 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
555 for (i
= 0; i
< 3 + 100; i
++) {
556 val
= reg_read(ohci
, OHCI1394_PhyControl
);
558 return -ENODEV
; /* Card was ejected. */
560 if (val
& OHCI1394_PhyControl_ReadDone
)
561 return OHCI1394_PhyControl_ReadData(val
);
564 * Try a few times without waiting. Sleeping is necessary
565 * only when the link/PHY interface is busy.
570 ohci_err(ohci
, "failed to read phy reg %d\n", addr
);
576 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
580 reg_write(ohci
, OHCI1394_PhyControl
,
581 OHCI1394_PhyControl_Write(addr
, val
));
582 for (i
= 0; i
< 3 + 100; i
++) {
583 val
= reg_read(ohci
, OHCI1394_PhyControl
);
585 return -ENODEV
; /* Card was ejected. */
587 if (!(val
& OHCI1394_PhyControl_WritePending
))
593 ohci_err(ohci
, "failed to write phy reg %d, val %u\n", addr
, val
);
599 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
600 int clear_bits
, int set_bits
)
602 int ret
= read_phy_reg(ohci
, addr
);
607 * The interrupt status bits are cleared by writing a one bit.
608 * Avoid clearing them unless explicitly requested in set_bits.
611 clear_bits
|= PHY_INT_STATUS_BITS
;
613 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
616 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
620 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
624 return read_phy_reg(ohci
, addr
);
627 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
629 struct fw_ohci
*ohci
= fw_ohci(card
);
632 mutex_lock(&ohci
->phy_reg_mutex
);
633 ret
= read_phy_reg(ohci
, addr
);
634 mutex_unlock(&ohci
->phy_reg_mutex
);
639 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
640 int clear_bits
, int set_bits
)
642 struct fw_ohci
*ohci
= fw_ohci(card
);
645 mutex_lock(&ohci
->phy_reg_mutex
);
646 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
647 mutex_unlock(&ohci
->phy_reg_mutex
);
652 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
654 return page_private(ctx
->pages
[i
]);
657 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
659 struct descriptor
*d
;
661 d
= &ctx
->descriptors
[index
];
662 d
->branch_address
&= cpu_to_le32(~0xf);
663 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
664 d
->transfer_status
= 0;
666 wmb(); /* finish init of new descriptors before branch_address update */
667 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
668 d
->branch_address
|= cpu_to_le32(1);
670 ctx
->last_buffer_index
= index
;
672 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
675 static void ar_context_release(struct ar_context
*ctx
)
677 struct device
*dev
= ctx
->ohci
->card
.device
;
682 for (i
= 0; i
< AR_BUFFERS
; i
++) {
684 dma_free_pages(dev
, PAGE_SIZE
, ctx
->pages
[i
],
685 ar_buffer_bus(ctx
, i
), DMA_FROM_DEVICE
);
689 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
691 struct fw_ohci
*ohci
= ctx
->ohci
;
693 if (reg_read(ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
694 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
697 ohci_err(ohci
, "AR error: %s; DMA stopped\n", error_msg
);
699 /* FIXME: restart? */
702 static inline unsigned int ar_next_buffer_index(unsigned int index
)
704 return (index
+ 1) % AR_BUFFERS
;
707 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
709 return ar_next_buffer_index(ctx
->last_buffer_index
);
713 * We search for the buffer that contains the last AR packet DMA data written
716 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
717 unsigned int *buffer_offset
)
719 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
720 __le16 res_count
, next_res_count
;
722 i
= ar_first_buffer_index(ctx
);
723 res_count
= READ_ONCE(ctx
->descriptors
[i
].res_count
);
725 /* A buffer that is not yet completely filled must be the last one. */
726 while (i
!= last
&& res_count
== 0) {
728 /* Peek at the next descriptor. */
729 next_i
= ar_next_buffer_index(i
);
730 rmb(); /* read descriptors in order */
731 next_res_count
= READ_ONCE(ctx
->descriptors
[next_i
].res_count
);
733 * If the next descriptor is still empty, we must stop at this
736 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
738 * The exception is when the DMA data for one packet is
739 * split over three buffers; in this case, the middle
740 * buffer's descriptor might be never updated by the
741 * controller and look still empty, and we have to peek
744 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
745 next_i
= ar_next_buffer_index(next_i
);
747 next_res_count
= READ_ONCE(ctx
->descriptors
[next_i
].res_count
);
748 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
749 goto next_buffer_is_active
;
755 next_buffer_is_active
:
757 res_count
= next_res_count
;
760 rmb(); /* read res_count before the DMA data */
762 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
763 if (*buffer_offset
> PAGE_SIZE
) {
765 ar_context_abort(ctx
, "corrupted descriptor");
771 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
772 unsigned int end_buffer_index
,
773 unsigned int end_buffer_offset
)
777 i
= ar_first_buffer_index(ctx
);
778 while (i
!= end_buffer_index
) {
779 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
780 ar_buffer_bus(ctx
, i
),
781 PAGE_SIZE
, DMA_FROM_DEVICE
);
782 i
= ar_next_buffer_index(i
);
784 if (end_buffer_offset
> 0)
785 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
786 ar_buffer_bus(ctx
, i
),
787 end_buffer_offset
, DMA_FROM_DEVICE
);
790 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
791 #define cond_le32_to_cpu(v) \
792 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
794 #define cond_le32_to_cpu(v) le32_to_cpu(v)
797 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
799 struct fw_ohci
*ohci
= ctx
->ohci
;
801 u32 status
, length
, tcode
;
804 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
805 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
806 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
808 tcode
= (p
.header
[0] >> 4) & 0x0f;
810 case TCODE_WRITE_QUADLET_REQUEST
:
811 case TCODE_READ_QUADLET_RESPONSE
:
812 p
.header
[3] = (__force __u32
) buffer
[3];
813 p
.header_length
= 16;
814 p
.payload_length
= 0;
817 case TCODE_READ_BLOCK_REQUEST
:
818 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
819 p
.header_length
= 16;
820 p
.payload_length
= 0;
823 case TCODE_WRITE_BLOCK_REQUEST
:
824 case TCODE_READ_BLOCK_RESPONSE
:
825 case TCODE_LOCK_REQUEST
:
826 case TCODE_LOCK_RESPONSE
:
827 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
828 p
.header_length
= 16;
829 p
.payload_length
= p
.header
[3] >> 16;
830 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
831 ar_context_abort(ctx
, "invalid packet length");
836 case TCODE_WRITE_RESPONSE
:
837 case TCODE_READ_QUADLET_REQUEST
:
838 case OHCI_TCODE_PHY_PACKET
:
839 p
.header_length
= 12;
840 p
.payload_length
= 0;
844 ar_context_abort(ctx
, "invalid tcode");
848 p
.payload
= (void *) buffer
+ p
.header_length
;
850 /* FIXME: What to do about evt_* errors? */
851 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
852 status
= cond_le32_to_cpu(buffer
[length
]);
853 evt
= (status
>> 16) & 0x1f;
856 p
.speed
= (status
>> 21) & 0x7;
857 p
.timestamp
= status
& 0xffff;
858 p
.generation
= ohci
->request_generation
;
860 log_ar_at_event(ohci
, 'R', p
.speed
, p
.header
, evt
);
863 * Several controllers, notably from NEC and VIA, forget to
864 * write ack_complete status at PHY packet reception.
866 if (evt
== OHCI1394_evt_no_status
&&
867 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
868 p
.ack
= ACK_COMPLETE
;
871 * The OHCI bus reset handler synthesizes a PHY packet with
872 * the new generation number when a bus reset happens (see
873 * section 8.4.2.3). This helps us determine when a request
874 * was received and make sure we send the response in the same
875 * generation. We only need this for requests; for responses
876 * we use the unique tlabel for finding the matching
879 * Alas some chips sometimes emit bus reset packets with a
880 * wrong generation. We set the correct generation for these
881 * at a slightly incorrect time (in bus_reset_work).
883 if (evt
== OHCI1394_evt_bus_reset
) {
884 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
885 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
886 } else if (ctx
== &ohci
->ar_request_ctx
) {
887 fw_core_handle_request(&ohci
->card
, &p
);
889 fw_core_handle_response(&ohci
->card
, &p
);
892 return buffer
+ length
+ 1;
895 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
900 next
= handle_ar_packet(ctx
, p
);
909 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
913 i
= ar_first_buffer_index(ctx
);
914 while (i
!= end_buffer
) {
915 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
916 ar_buffer_bus(ctx
, i
),
917 PAGE_SIZE
, DMA_FROM_DEVICE
);
918 ar_context_link_page(ctx
, i
);
919 i
= ar_next_buffer_index(i
);
923 static void ar_context_tasklet(unsigned long data
)
925 struct ar_context
*ctx
= (struct ar_context
*)data
;
926 unsigned int end_buffer_index
, end_buffer_offset
;
933 end_buffer_index
= ar_search_last_active_buffer(ctx
,
935 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
936 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
938 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
940 * The filled part of the overall buffer wraps around; handle
941 * all packets up to the buffer end here. If the last packet
942 * wraps around, its tail will be visible after the buffer end
943 * because the buffer start pages are mapped there again.
945 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
946 p
= handle_ar_packets(ctx
, p
, buffer_end
);
949 /* adjust p to point back into the actual buffer */
950 p
-= AR_BUFFERS
* PAGE_SIZE
;
953 p
= handle_ar_packets(ctx
, p
, end
);
956 ar_context_abort(ctx
, "inconsistent descriptor");
961 ar_recycle_buffers(ctx
, end_buffer_index
);
969 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
970 unsigned int descriptors_offset
, u32 regs
)
972 struct device
*dev
= ohci
->card
.device
;
975 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
976 struct descriptor
*d
;
980 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
982 for (i
= 0; i
< AR_BUFFERS
; i
++) {
983 ctx
->pages
[i
] = dma_alloc_pages(dev
, PAGE_SIZE
, &dma_addr
,
984 DMA_FROM_DEVICE
, GFP_KERNEL
);
987 set_page_private(ctx
->pages
[i
], dma_addr
);
988 dma_sync_single_for_device(dev
, dma_addr
, PAGE_SIZE
,
992 for (i
= 0; i
< AR_BUFFERS
; i
++)
993 pages
[i
] = ctx
->pages
[i
];
994 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
995 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
996 ctx
->buffer
= vmap(pages
, ARRAY_SIZE(pages
), VM_MAP
, PAGE_KERNEL
);
1000 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
1001 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
1003 for (i
= 0; i
< AR_BUFFERS
; i
++) {
1004 d
= &ctx
->descriptors
[i
];
1005 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
1006 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
1008 DESCRIPTOR_BRANCH_ALWAYS
);
1009 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
1010 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
1011 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
1017 ar_context_release(ctx
);
1022 static void ar_context_run(struct ar_context
*ctx
)
1026 for (i
= 0; i
< AR_BUFFERS
; i
++)
1027 ar_context_link_page(ctx
, i
);
1029 ctx
->pointer
= ctx
->buffer
;
1031 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1032 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1035 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1039 branch
= d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
);
1041 /* figure out which descriptor the branch address goes in */
1042 if (z
== 2 && branch
== cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
1048 static void context_tasklet(unsigned long data
)
1050 struct context
*ctx
= (struct context
*) data
;
1051 struct descriptor
*d
, *last
;
1054 struct descriptor_buffer
*desc
;
1056 desc
= list_entry(ctx
->buffer_list
.next
,
1057 struct descriptor_buffer
, list
);
1059 while (last
->branch_address
!= 0) {
1060 struct descriptor_buffer
*old_desc
= desc
;
1061 address
= le32_to_cpu(last
->branch_address
);
1064 ctx
->current_bus
= address
;
1066 /* If the branch address points to a buffer outside of the
1067 * current buffer, advance to the next buffer. */
1068 if (address
< desc
->buffer_bus
||
1069 address
>= desc
->buffer_bus
+ desc
->used
)
1070 desc
= list_entry(desc
->list
.next
,
1071 struct descriptor_buffer
, list
);
1072 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1073 last
= find_branch_descriptor(d
, z
);
1075 if (!ctx
->callback(ctx
, d
, last
))
1078 if (old_desc
!= desc
) {
1079 /* If we've advanced to the next buffer, move the
1080 * previous buffer to the free list. */
1081 unsigned long flags
;
1083 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1084 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1085 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1092 * Allocate a new buffer and add it to the list of free buffers for this
1093 * context. Must be called with ohci->lock held.
1095 static int context_add_buffer(struct context
*ctx
)
1097 struct descriptor_buffer
*desc
;
1098 dma_addr_t bus_addr
;
1102 * 16MB of descriptors should be far more than enough for any DMA
1103 * program. This will catch run-away userspace or DoS attacks.
1105 if (ctx
->total_allocation
>= 16*1024*1024)
1108 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
1109 &bus_addr
, GFP_ATOMIC
);
1113 offset
= (void *)&desc
->buffer
- (void *)desc
;
1115 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1116 * for descriptors, even 0x10-byte ones. This can cause page faults when
1117 * an IOMMU is in use and the oversized read crosses a page boundary.
1118 * Work around this by always leaving at least 0x10 bytes of padding.
1120 desc
->buffer_size
= PAGE_SIZE
- offset
- 0x10;
1121 desc
->buffer_bus
= bus_addr
+ offset
;
1124 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1125 ctx
->total_allocation
+= PAGE_SIZE
;
1130 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1131 u32 regs
, descriptor_callback_t callback
)
1135 ctx
->total_allocation
= 0;
1137 INIT_LIST_HEAD(&ctx
->buffer_list
);
1138 if (context_add_buffer(ctx
) < 0)
1141 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1142 struct descriptor_buffer
, list
);
1144 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1145 ctx
->callback
= callback
;
1148 * We put a dummy descriptor in the buffer that has a NULL
1149 * branch address and looks like it's been sent. That way we
1150 * have a descriptor to append DMA programs to.
1152 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1153 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1154 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1155 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1156 ctx
->last
= ctx
->buffer_tail
->buffer
;
1157 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1163 static void context_release(struct context
*ctx
)
1165 struct fw_card
*card
= &ctx
->ohci
->card
;
1166 struct descriptor_buffer
*desc
, *tmp
;
1168 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
1169 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1171 ((void *)&desc
->buffer
- (void *)desc
));
1174 /* Must be called with ohci->lock held */
1175 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1176 int z
, dma_addr_t
*d_bus
)
1178 struct descriptor
*d
= NULL
;
1179 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1181 if (z
* sizeof(*d
) > desc
->buffer_size
)
1184 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1185 /* No room for the descriptor in this buffer, so advance to the
1188 if (desc
->list
.next
== &ctx
->buffer_list
) {
1189 /* If there is no free buffer next in the list,
1191 if (context_add_buffer(ctx
) < 0)
1194 desc
= list_entry(desc
->list
.next
,
1195 struct descriptor_buffer
, list
);
1196 ctx
->buffer_tail
= desc
;
1199 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1200 memset(d
, 0, z
* sizeof(*d
));
1201 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1206 static void context_run(struct context
*ctx
, u32 extra
)
1208 struct fw_ohci
*ohci
= ctx
->ohci
;
1210 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1211 le32_to_cpu(ctx
->last
->branch_address
));
1212 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1213 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1214 ctx
->running
= true;
1218 static void context_append(struct context
*ctx
,
1219 struct descriptor
*d
, int z
, int extra
)
1222 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1223 struct descriptor
*d_branch
;
1225 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1227 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1229 wmb(); /* finish init of new descriptors before branch_address update */
1231 d_branch
= find_branch_descriptor(ctx
->prev
, ctx
->prev_z
);
1232 d_branch
->branch_address
= cpu_to_le32(d_bus
| z
);
1235 * VT6306 incorrectly checks only the single descriptor at the
1236 * CommandPtr when the wake bit is written, so if it's a
1237 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1238 * the branch address in the first descriptor.
1240 * Not doing this for transmit contexts since not sure how it interacts
1241 * with skip addresses.
1243 if (unlikely(ctx
->ohci
->quirks
& QUIRK_IR_WAKE
) &&
1244 d_branch
!= ctx
->prev
&&
1245 (ctx
->prev
->control
& cpu_to_le16(DESCRIPTOR_CMD
)) ==
1246 cpu_to_le16(DESCRIPTOR_INPUT_MORE
)) {
1247 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1254 static void context_stop(struct context
*ctx
)
1256 struct fw_ohci
*ohci
= ctx
->ohci
;
1260 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1261 ctx
->running
= false;
1263 for (i
= 0; i
< 1000; i
++) {
1264 reg
= reg_read(ohci
, CONTROL_SET(ctx
->regs
));
1265 if ((reg
& CONTEXT_ACTIVE
) == 0)
1271 ohci_err(ohci
, "DMA context still active (0x%08x)\n", reg
);
1274 struct driver_data
{
1276 struct fw_packet
*packet
;
1280 * This function apppends a packet to the DMA queue for transmission.
1281 * Must always be called with the ochi->lock held to ensure proper
1282 * generation handling and locking around packet queue manipulation.
1284 static int at_context_queue_packet(struct context
*ctx
,
1285 struct fw_packet
*packet
)
1287 struct fw_ohci
*ohci
= ctx
->ohci
;
1288 dma_addr_t d_bus
, payload_bus
;
1289 struct driver_data
*driver_data
;
1290 struct descriptor
*d
, *last
;
1294 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1296 packet
->ack
= RCODE_SEND_ERROR
;
1300 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1301 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1304 * The DMA format for asynchronous link packets is different
1305 * from the IEEE1394 layout, so shift the fields around
1309 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1310 header
= (__le32
*) &d
[1];
1312 case TCODE_WRITE_QUADLET_REQUEST
:
1313 case TCODE_WRITE_BLOCK_REQUEST
:
1314 case TCODE_WRITE_RESPONSE
:
1315 case TCODE_READ_QUADLET_REQUEST
:
1316 case TCODE_READ_BLOCK_REQUEST
:
1317 case TCODE_READ_QUADLET_RESPONSE
:
1318 case TCODE_READ_BLOCK_RESPONSE
:
1319 case TCODE_LOCK_REQUEST
:
1320 case TCODE_LOCK_RESPONSE
:
1321 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1322 (packet
->speed
<< 16));
1323 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1324 (packet
->header
[0] & 0xffff0000));
1325 header
[2] = cpu_to_le32(packet
->header
[2]);
1327 if (TCODE_IS_BLOCK_PACKET(tcode
))
1328 header
[3] = cpu_to_le32(packet
->header
[3]);
1330 header
[3] = (__force __le32
) packet
->header
[3];
1332 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1335 case TCODE_LINK_INTERNAL
:
1336 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1337 (packet
->speed
<< 16));
1338 header
[1] = cpu_to_le32(packet
->header
[1]);
1339 header
[2] = cpu_to_le32(packet
->header
[2]);
1340 d
[0].req_count
= cpu_to_le16(12);
1342 if (is_ping_packet(&packet
->header
[1]))
1343 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1346 case TCODE_STREAM_DATA
:
1347 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1348 (packet
->speed
<< 16));
1349 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1350 d
[0].req_count
= cpu_to_le16(8);
1355 packet
->ack
= RCODE_SEND_ERROR
;
1359 BUILD_BUG_ON(sizeof(struct driver_data
) > sizeof(struct descriptor
));
1360 driver_data
= (struct driver_data
*) &d
[3];
1361 driver_data
->packet
= packet
;
1362 packet
->driver_data
= driver_data
;
1364 if (packet
->payload_length
> 0) {
1365 if (packet
->payload_length
> sizeof(driver_data
->inline_data
)) {
1366 payload_bus
= dma_map_single(ohci
->card
.device
,
1368 packet
->payload_length
,
1370 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1371 packet
->ack
= RCODE_SEND_ERROR
;
1374 packet
->payload_bus
= payload_bus
;
1375 packet
->payload_mapped
= true;
1377 memcpy(driver_data
->inline_data
, packet
->payload
,
1378 packet
->payload_length
);
1379 payload_bus
= d_bus
+ 3 * sizeof(*d
);
1382 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1383 d
[2].data_address
= cpu_to_le32(payload_bus
);
1391 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1392 DESCRIPTOR_IRQ_ALWAYS
|
1393 DESCRIPTOR_BRANCH_ALWAYS
);
1395 /* FIXME: Document how the locking works. */
1396 if (ohci
->generation
!= packet
->generation
) {
1397 if (packet
->payload_mapped
)
1398 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1399 packet
->payload_length
, DMA_TO_DEVICE
);
1400 packet
->ack
= RCODE_GENERATION
;
1404 context_append(ctx
, d
, z
, 4 - z
);
1407 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1409 context_run(ctx
, 0);
1414 static void at_context_flush(struct context
*ctx
)
1416 tasklet_disable(&ctx
->tasklet
);
1418 ctx
->flushing
= true;
1419 context_tasklet((unsigned long)ctx
);
1420 ctx
->flushing
= false;
1422 tasklet_enable(&ctx
->tasklet
);
1425 static int handle_at_packet(struct context
*context
,
1426 struct descriptor
*d
,
1427 struct descriptor
*last
)
1429 struct driver_data
*driver_data
;
1430 struct fw_packet
*packet
;
1431 struct fw_ohci
*ohci
= context
->ohci
;
1434 if (last
->transfer_status
== 0 && !context
->flushing
)
1435 /* This descriptor isn't done yet, stop iteration. */
1438 driver_data
= (struct driver_data
*) &d
[3];
1439 packet
= driver_data
->packet
;
1441 /* This packet was cancelled, just continue. */
1444 if (packet
->payload_mapped
)
1445 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1446 packet
->payload_length
, DMA_TO_DEVICE
);
1448 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1449 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1451 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, evt
);
1454 case OHCI1394_evt_timeout
:
1455 /* Async response transmit timed out. */
1456 packet
->ack
= RCODE_CANCELLED
;
1459 case OHCI1394_evt_flushed
:
1461 * The packet was flushed should give same error as
1462 * when we try to use a stale generation count.
1464 packet
->ack
= RCODE_GENERATION
;
1467 case OHCI1394_evt_missing_ack
:
1468 if (context
->flushing
)
1469 packet
->ack
= RCODE_GENERATION
;
1472 * Using a valid (current) generation count, but the
1473 * node is not on the bus or not sending acks.
1475 packet
->ack
= RCODE_NO_ACK
;
1479 case ACK_COMPLETE
+ 0x10:
1480 case ACK_PENDING
+ 0x10:
1481 case ACK_BUSY_X
+ 0x10:
1482 case ACK_BUSY_A
+ 0x10:
1483 case ACK_BUSY_B
+ 0x10:
1484 case ACK_DATA_ERROR
+ 0x10:
1485 case ACK_TYPE_ERROR
+ 0x10:
1486 packet
->ack
= evt
- 0x10;
1489 case OHCI1394_evt_no_status
:
1490 if (context
->flushing
) {
1491 packet
->ack
= RCODE_GENERATION
;
1497 packet
->ack
= RCODE_SEND_ERROR
;
1501 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1506 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1507 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1508 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1509 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1510 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1512 static void handle_local_rom(struct fw_ohci
*ohci
,
1513 struct fw_packet
*packet
, u32 csr
)
1515 struct fw_packet response
;
1516 int tcode
, length
, i
;
1518 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1519 if (TCODE_IS_BLOCK_PACKET(tcode
))
1520 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1524 i
= csr
- CSR_CONFIG_ROM
;
1525 if (i
+ length
> CONFIG_ROM_SIZE
) {
1526 fw_fill_response(&response
, packet
->header
,
1527 RCODE_ADDRESS_ERROR
, NULL
, 0);
1528 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1529 fw_fill_response(&response
, packet
->header
,
1530 RCODE_TYPE_ERROR
, NULL
, 0);
1532 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1533 (void *) ohci
->config_rom
+ i
, length
);
1536 fw_core_handle_response(&ohci
->card
, &response
);
1539 static void handle_local_lock(struct fw_ohci
*ohci
,
1540 struct fw_packet
*packet
, u32 csr
)
1542 struct fw_packet response
;
1543 int tcode
, length
, ext_tcode
, sel
, try;
1544 __be32
*payload
, lock_old
;
1545 u32 lock_arg
, lock_data
;
1547 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1548 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1549 payload
= packet
->payload
;
1550 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1552 if (tcode
== TCODE_LOCK_REQUEST
&&
1553 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1554 lock_arg
= be32_to_cpu(payload
[0]);
1555 lock_data
= be32_to_cpu(payload
[1]);
1556 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1560 fw_fill_response(&response
, packet
->header
,
1561 RCODE_TYPE_ERROR
, NULL
, 0);
1565 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1566 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1567 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1568 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1570 for (try = 0; try < 20; try++)
1571 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1572 lock_old
= cpu_to_be32(reg_read(ohci
,
1574 fw_fill_response(&response
, packet
->header
,
1576 &lock_old
, sizeof(lock_old
));
1580 ohci_err(ohci
, "swap not done (CSR lock timeout)\n");
1581 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1584 fw_core_handle_response(&ohci
->card
, &response
);
1587 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1591 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1592 packet
->ack
= ACK_PENDING
;
1593 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1597 ((unsigned long long)
1598 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1600 csr
= offset
- CSR_REGISTER_BASE
;
1602 /* Handle config rom reads. */
1603 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1604 handle_local_rom(ctx
->ohci
, packet
, csr
);
1606 case CSR_BUS_MANAGER_ID
:
1607 case CSR_BANDWIDTH_AVAILABLE
:
1608 case CSR_CHANNELS_AVAILABLE_HI
:
1609 case CSR_CHANNELS_AVAILABLE_LO
:
1610 handle_local_lock(ctx
->ohci
, packet
, csr
);
1613 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1614 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1616 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1620 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1621 packet
->ack
= ACK_COMPLETE
;
1622 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1626 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1628 unsigned long flags
;
1631 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1633 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1634 ctx
->ohci
->generation
== packet
->generation
) {
1635 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1636 handle_local_request(ctx
, packet
);
1640 ret
= at_context_queue_packet(ctx
, packet
);
1641 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1644 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1648 static void detect_dead_context(struct fw_ohci
*ohci
,
1649 const char *name
, unsigned int regs
)
1653 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1654 if (ctl
& CONTEXT_DEAD
)
1655 ohci_err(ohci
, "DMA context %s has stopped, error code: %s\n",
1656 name
, evts
[ctl
& 0x1f]);
1659 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1664 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1665 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1666 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1667 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1668 for (i
= 0; i
< 32; ++i
) {
1669 if (!(ohci
->it_context_support
& (1 << i
)))
1671 sprintf(name
, "IT%u", i
);
1672 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1674 for (i
= 0; i
< 32; ++i
) {
1675 if (!(ohci
->ir_context_support
& (1 << i
)))
1677 sprintf(name
, "IR%u", i
);
1678 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1680 /* TODO: maybe try to flush and restart the dead contexts */
1683 static u32
cycle_timer_ticks(u32 cycle_timer
)
1687 ticks
= cycle_timer
& 0xfff;
1688 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1689 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1695 * Some controllers exhibit one or more of the following bugs when updating the
1696 * iso cycle timer register:
1697 * - When the lowest six bits are wrapping around to zero, a read that happens
1698 * at the same time will return garbage in the lowest ten bits.
1699 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1700 * not incremented for about 60 ns.
1701 * - Occasionally, the entire register reads zero.
1703 * To catch these, we read the register three times and ensure that the
1704 * difference between each two consecutive reads is approximately the same, i.e.
1705 * less than twice the other. Furthermore, any negative difference indicates an
1706 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1707 * execute, so we have enough precision to compute the ratio of the differences.)
1709 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1716 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1718 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1721 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1725 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1726 t0
= cycle_timer_ticks(c0
);
1727 t1
= cycle_timer_ticks(c1
);
1728 t2
= cycle_timer_ticks(c2
);
1731 } while ((diff01
<= 0 || diff12
<= 0 ||
1732 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1740 * This function has to be called at least every 64 seconds. The bus_time
1741 * field stores not only the upper 25 bits of the BUS_TIME register but also
1742 * the most significant bit of the cycle timer in bit 6 so that we can detect
1743 * changes in this bit.
1745 static u32
update_bus_time(struct fw_ohci
*ohci
)
1747 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1749 if (unlikely(!ohci
->bus_time_running
)) {
1750 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_cycle64Seconds
);
1751 ohci
->bus_time
= (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1752 (cycle_time_seconds
& 0x40);
1753 ohci
->bus_time_running
= true;
1756 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1757 ohci
->bus_time
+= 0x40;
1759 return ohci
->bus_time
| cycle_time_seconds
;
1762 static int get_status_for_port(struct fw_ohci
*ohci
, int port_index
)
1766 mutex_lock(&ohci
->phy_reg_mutex
);
1767 reg
= write_phy_reg(ohci
, 7, port_index
);
1769 reg
= read_phy_reg(ohci
, 8);
1770 mutex_unlock(&ohci
->phy_reg_mutex
);
1774 switch (reg
& 0x0f) {
1776 return 2; /* is child node (connected to parent node) */
1778 return 3; /* is parent node (connected to child node) */
1780 return 1; /* not connected */
1783 static int get_self_id_pos(struct fw_ohci
*ohci
, u32 self_id
,
1789 for (i
= 0; i
< self_id_count
; i
++) {
1790 entry
= ohci
->self_id_buffer
[i
];
1791 if ((self_id
& 0xff000000) == (entry
& 0xff000000))
1793 if ((self_id
& 0xff000000) < (entry
& 0xff000000))
1799 static int initiated_reset(struct fw_ohci
*ohci
)
1804 mutex_lock(&ohci
->phy_reg_mutex
);
1805 reg
= write_phy_reg(ohci
, 7, 0xe0); /* Select page 7 */
1807 reg
= read_phy_reg(ohci
, 8);
1809 reg
= write_phy_reg(ohci
, 8, reg
); /* set PMODE bit */
1811 reg
= read_phy_reg(ohci
, 12); /* read register 12 */
1813 if ((reg
& 0x08) == 0x08) {
1814 /* bit 3 indicates "initiated reset" */
1820 mutex_unlock(&ohci
->phy_reg_mutex
);
1825 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1826 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1827 * Construct the selfID from phy register contents.
1829 static int find_and_insert_self_id(struct fw_ohci
*ohci
, int self_id_count
)
1831 int reg
, i
, pos
, status
;
1832 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1833 u32 self_id
= 0x8040c800;
1835 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1836 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1838 "node ID not valid, new bus reset in progress\n");
1841 self_id
|= ((reg
& 0x3f) << 24); /* phy ID */
1843 reg
= ohci_read_phy_reg(&ohci
->card
, 4);
1846 self_id
|= ((reg
& 0x07) << 8); /* power class */
1848 reg
= ohci_read_phy_reg(&ohci
->card
, 1);
1851 self_id
|= ((reg
& 0x3f) << 16); /* gap count */
1853 for (i
= 0; i
< 3; i
++) {
1854 status
= get_status_for_port(ohci
, i
);
1857 self_id
|= ((status
& 0x3) << (6 - (i
* 2)));
1860 self_id
|= initiated_reset(ohci
);
1862 pos
= get_self_id_pos(ohci
, self_id
, self_id_count
);
1864 memmove(&(ohci
->self_id_buffer
[pos
+1]),
1865 &(ohci
->self_id_buffer
[pos
]),
1866 (self_id_count
- pos
) * sizeof(*ohci
->self_id_buffer
));
1867 ohci
->self_id_buffer
[pos
] = self_id
;
1870 return self_id_count
;
1873 static void bus_reset_work(struct work_struct
*work
)
1875 struct fw_ohci
*ohci
=
1876 container_of(work
, struct fw_ohci
, bus_reset_work
);
1877 int self_id_count
, generation
, new_generation
, i
, j
;
1879 void *free_rom
= NULL
;
1880 dma_addr_t free_rom_bus
= 0;
1883 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1884 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1886 "node ID not valid, new bus reset in progress\n");
1889 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1890 ohci_notice(ohci
, "malconfigured bus\n");
1893 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1894 OHCI1394_NodeID_nodeNumber
);
1896 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1897 if (!(ohci
->is_root
&& is_new_root
))
1898 reg_write(ohci
, OHCI1394_LinkControlSet
,
1899 OHCI1394_LinkControl_cycleMaster
);
1900 ohci
->is_root
= is_new_root
;
1902 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1903 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1904 ohci_notice(ohci
, "self ID receive error\n");
1908 * The count in the SelfIDCount register is the number of
1909 * bytes in the self ID receive buffer. Since we also receive
1910 * the inverted quadlets and a header quadlet, we shift one
1911 * bit extra to get the actual number of self IDs.
1913 self_id_count
= (reg
>> 3) & 0xff;
1915 if (self_id_count
> 252) {
1916 ohci_notice(ohci
, "bad selfIDSize (%08x)\n", reg
);
1920 generation
= (cond_le32_to_cpu(ohci
->self_id
[0]) >> 16) & 0xff;
1923 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1924 u32 id
= cond_le32_to_cpu(ohci
->self_id
[i
]);
1925 u32 id2
= cond_le32_to_cpu(ohci
->self_id
[i
+ 1]);
1929 * If the invalid data looks like a cycle start packet,
1930 * it's likely to be the result of the cycle master
1931 * having a wrong gap count. In this case, the self IDs
1932 * so far are valid and should be processed so that the
1933 * bus manager can then correct the gap count.
1935 if (id
== 0xffff008f) {
1936 ohci_notice(ohci
, "ignoring spurious self IDs\n");
1941 ohci_notice(ohci
, "bad self ID %d/%d (%08x != ~%08x)\n",
1942 j
, self_id_count
, id
, id2
);
1945 ohci
->self_id_buffer
[j
] = id
;
1948 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
1949 self_id_count
= find_and_insert_self_id(ohci
, self_id_count
);
1950 if (self_id_count
< 0) {
1952 "could not construct local self ID\n");
1957 if (self_id_count
== 0) {
1958 ohci_notice(ohci
, "no self IDs\n");
1964 * Check the consistency of the self IDs we just read. The
1965 * problem we face is that a new bus reset can start while we
1966 * read out the self IDs from the DMA buffer. If this happens,
1967 * the DMA buffer will be overwritten with new self IDs and we
1968 * will read out inconsistent data. The OHCI specification
1969 * (section 11.2) recommends a technique similar to
1970 * linux/seqlock.h, where we remember the generation of the
1971 * self IDs in the buffer before reading them out and compare
1972 * it to the current generation after reading them out. If
1973 * the two generations match we know we have a consistent set
1977 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1978 if (new_generation
!= generation
) {
1979 ohci_notice(ohci
, "new bus reset, discarding self ids\n");
1983 /* FIXME: Document how the locking works. */
1984 spin_lock_irq(&ohci
->lock
);
1986 ohci
->generation
= -1; /* prevent AT packet queueing */
1987 context_stop(&ohci
->at_request_ctx
);
1988 context_stop(&ohci
->at_response_ctx
);
1990 spin_unlock_irq(&ohci
->lock
);
1993 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1994 * packets in the AT queues and software needs to drain them.
1995 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1997 at_context_flush(&ohci
->at_request_ctx
);
1998 at_context_flush(&ohci
->at_response_ctx
);
2000 spin_lock_irq(&ohci
->lock
);
2002 ohci
->generation
= generation
;
2003 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
2005 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
2006 ohci
->request_generation
= generation
;
2009 * This next bit is unrelated to the AT context stuff but we
2010 * have to do it under the spinlock also. If a new config rom
2011 * was set up before this reset, the old one is now no longer
2012 * in use and we can free it. Update the config rom pointers
2013 * to point to the current config rom and clear the
2014 * next_config_rom pointer so a new update can take place.
2017 if (ohci
->next_config_rom
!= NULL
) {
2018 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
2019 free_rom
= ohci
->config_rom
;
2020 free_rom_bus
= ohci
->config_rom_bus
;
2022 ohci
->config_rom
= ohci
->next_config_rom
;
2023 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
2024 ohci
->next_config_rom
= NULL
;
2027 * Restore config_rom image and manually update
2028 * config_rom registers. Writing the header quadlet
2029 * will indicate that the config rom is ready, so we
2032 reg_write(ohci
, OHCI1394_BusOptions
,
2033 be32_to_cpu(ohci
->config_rom
[2]));
2034 ohci
->config_rom
[0] = ohci
->next_header
;
2035 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
2036 be32_to_cpu(ohci
->next_header
));
2039 if (param_remote_dma
) {
2040 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
2041 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
2044 spin_unlock_irq(&ohci
->lock
);
2047 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2048 free_rom
, free_rom_bus
);
2050 log_selfids(ohci
, generation
, self_id_count
);
2052 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
2053 self_id_count
, ohci
->self_id_buffer
,
2054 ohci
->csr_state_setclear_abdicate
);
2055 ohci
->csr_state_setclear_abdicate
= false;
2058 static irqreturn_t
irq_handler(int irq
, void *data
)
2060 struct fw_ohci
*ohci
= data
;
2061 u32 event
, iso_event
;
2064 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
2066 if (!event
|| !~event
)
2070 * busReset and postedWriteErr must not be cleared yet
2071 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2073 reg_write(ohci
, OHCI1394_IntEventClear
,
2074 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
2075 log_irqs(ohci
, event
);
2077 if (event
& OHCI1394_selfIDComplete
)
2078 queue_work(selfid_workqueue
, &ohci
->bus_reset_work
);
2080 if (event
& OHCI1394_RQPkt
)
2081 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
2083 if (event
& OHCI1394_RSPkt
)
2084 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
2086 if (event
& OHCI1394_reqTxComplete
)
2087 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
2089 if (event
& OHCI1394_respTxComplete
)
2090 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
2092 if (event
& OHCI1394_isochRx
) {
2093 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
2094 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
2097 i
= ffs(iso_event
) - 1;
2099 &ohci
->ir_context_list
[i
].context
.tasklet
);
2100 iso_event
&= ~(1 << i
);
2104 if (event
& OHCI1394_isochTx
) {
2105 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
2106 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
2109 i
= ffs(iso_event
) - 1;
2111 &ohci
->it_context_list
[i
].context
.tasklet
);
2112 iso_event
&= ~(1 << i
);
2116 if (unlikely(event
& OHCI1394_regAccessFail
))
2117 ohci_err(ohci
, "register access failure\n");
2119 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
2120 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
2121 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
2122 reg_write(ohci
, OHCI1394_IntEventClear
,
2123 OHCI1394_postedWriteErr
);
2124 if (printk_ratelimit())
2125 ohci_err(ohci
, "PCI posted write error\n");
2128 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
2129 if (printk_ratelimit())
2130 ohci_notice(ohci
, "isochronous cycle too long\n");
2131 reg_write(ohci
, OHCI1394_LinkControlSet
,
2132 OHCI1394_LinkControl_cycleMaster
);
2135 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
2137 * We need to clear this event bit in order to make
2138 * cycleMatch isochronous I/O work. In theory we should
2139 * stop active cycleMatch iso contexts now and restart
2140 * them at least two cycles later. (FIXME?)
2142 if (printk_ratelimit())
2143 ohci_notice(ohci
, "isochronous cycle inconsistent\n");
2146 if (unlikely(event
& OHCI1394_unrecoverableError
))
2147 handle_dead_contexts(ohci
);
2149 if (event
& OHCI1394_cycle64Seconds
) {
2150 spin_lock(&ohci
->lock
);
2151 update_bus_time(ohci
);
2152 spin_unlock(&ohci
->lock
);
2159 static int software_reset(struct fw_ohci
*ohci
)
2164 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
2165 for (i
= 0; i
< 500; i
++) {
2166 val
= reg_read(ohci
, OHCI1394_HCControlSet
);
2168 return -ENODEV
; /* Card was ejected. */
2170 if (!(val
& OHCI1394_HCControl_softReset
))
2179 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
2181 size_t size
= length
* 4;
2183 memcpy(dest
, src
, size
);
2184 if (size
< CONFIG_ROM_SIZE
)
2185 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
2188 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
2191 int ret
, clear
, set
, offset
;
2193 /* Check if the driver should configure link and PHY. */
2194 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
2195 OHCI1394_HCControl_programPhyEnable
))
2198 /* Paranoia: check whether the PHY supports 1394a, too. */
2199 enable_1394a
= false;
2200 ret
= read_phy_reg(ohci
, 2);
2203 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
2204 ret
= read_paged_phy_reg(ohci
, 1, 8);
2208 enable_1394a
= true;
2211 if (ohci
->quirks
& QUIRK_NO_1394A
)
2212 enable_1394a
= false;
2214 /* Configure PHY and link consistently. */
2217 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2219 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2222 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2227 offset
= OHCI1394_HCControlSet
;
2229 offset
= OHCI1394_HCControlClear
;
2230 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2232 /* Clean up: configuration has been taken care of. */
2233 reg_write(ohci
, OHCI1394_HCControlClear
,
2234 OHCI1394_HCControl_programPhyEnable
);
2239 static int probe_tsb41ba3d(struct fw_ohci
*ohci
)
2241 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2242 static const u8 id
[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2245 reg
= read_phy_reg(ohci
, 2);
2248 if ((reg
& PHY_EXTENDED_REGISTERS
) != PHY_EXTENDED_REGISTERS
)
2251 for (i
= ARRAY_SIZE(id
) - 1; i
>= 0; i
--) {
2252 reg
= read_paged_phy_reg(ohci
, 1, i
+ 10);
2261 static int ohci_enable(struct fw_card
*card
,
2262 const __be32
*config_rom
, size_t length
)
2264 struct fw_ohci
*ohci
= fw_ohci(card
);
2265 u32 lps
, version
, irqs
;
2268 ret
= software_reset(ohci
);
2270 ohci_err(ohci
, "failed to reset ohci card\n");
2275 * Now enable LPS, which we need in order to start accessing
2276 * most of the registers. In fact, on some cards (ALI M5251),
2277 * accessing registers in the SClk domain without LPS enabled
2278 * will lock up the machine. Wait 50msec to make sure we have
2279 * full link enabled. However, with some cards (well, at least
2280 * a JMicron PCIe card), we have to try again sometimes.
2282 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2283 * cannot actually use the phy at that time. These need tens of
2284 * millisecods pause between LPS write and first phy access too.
2287 reg_write(ohci
, OHCI1394_HCControlSet
,
2288 OHCI1394_HCControl_LPS
|
2289 OHCI1394_HCControl_postedWriteEnable
);
2292 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
2294 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2295 OHCI1394_HCControl_LPS
;
2299 ohci_err(ohci
, "failed to set Link Power Status\n");
2303 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
2304 ret
= probe_tsb41ba3d(ohci
);
2308 ohci_notice(ohci
, "local TSB41BA3D phy\n");
2310 ohci
->quirks
&= ~QUIRK_TI_SLLZ059
;
2313 reg_write(ohci
, OHCI1394_HCControlClear
,
2314 OHCI1394_HCControl_noByteSwapData
);
2316 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2317 reg_write(ohci
, OHCI1394_LinkControlSet
,
2318 OHCI1394_LinkControl_cycleTimerEnable
|
2319 OHCI1394_LinkControl_cycleMaster
);
2321 reg_write(ohci
, OHCI1394_ATRetries
,
2322 OHCI1394_MAX_AT_REQ_RETRIES
|
2323 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2324 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2327 ohci
->bus_time_running
= false;
2329 for (i
= 0; i
< 32; i
++)
2330 if (ohci
->ir_context_support
& (1 << i
))
2331 reg_write(ohci
, OHCI1394_IsoRcvContextControlClear(i
),
2332 IR_CONTEXT_MULTI_CHANNEL_MODE
);
2334 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2335 if (version
>= OHCI_VERSION_1_1
) {
2336 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2338 card
->broadcast_channel_auto_allocated
= true;
2341 /* Get implemented bits of the priority arbitration request counter. */
2342 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2343 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2344 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2345 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2347 reg_write(ohci
, OHCI1394_PhyUpperBound
, FW_MAX_PHYSICAL_RANGE
>> 16);
2348 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2349 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2351 ret
= configure_1394a_enhancements(ohci
);
2355 /* Activate link_on bit and contender bit in our self ID packets.*/
2356 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2361 * When the link is not yet enabled, the atomic config rom
2362 * update mechanism described below in ohci_set_config_rom()
2363 * is not active. We have to update ConfigRomHeader and
2364 * BusOptions manually, and the write to ConfigROMmap takes
2365 * effect immediately. We tie this to the enabling of the
2366 * link, so we have a valid config rom before enabling - the
2367 * OHCI requires that ConfigROMhdr and BusOptions have valid
2368 * values before enabling.
2370 * However, when the ConfigROMmap is written, some controllers
2371 * always read back quadlets 0 and 2 from the config rom to
2372 * the ConfigRomHeader and BusOptions registers on bus reset.
2373 * They shouldn't do that in this initial case where the link
2374 * isn't enabled. This means we have to use the same
2375 * workaround here, setting the bus header to 0 and then write
2376 * the right values in the bus reset tasklet.
2380 ohci
->next_config_rom
=
2381 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2382 &ohci
->next_config_rom_bus
,
2384 if (ohci
->next_config_rom
== NULL
)
2387 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2390 * In the suspend case, config_rom is NULL, which
2391 * means that we just reuse the old config rom.
2393 ohci
->next_config_rom
= ohci
->config_rom
;
2394 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2397 ohci
->next_header
= ohci
->next_config_rom
[0];
2398 ohci
->next_config_rom
[0] = 0;
2399 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2400 reg_write(ohci
, OHCI1394_BusOptions
,
2401 be32_to_cpu(ohci
->next_config_rom
[2]));
2402 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2404 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2406 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2407 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2408 OHCI1394_isochTx
| OHCI1394_isochRx
|
2409 OHCI1394_postedWriteErr
|
2410 OHCI1394_selfIDComplete
|
2411 OHCI1394_regAccessFail
|
2412 OHCI1394_cycleInconsistent
|
2413 OHCI1394_unrecoverableError
|
2414 OHCI1394_cycleTooLong
|
2415 OHCI1394_masterIntEnable
;
2416 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
2417 irqs
|= OHCI1394_busReset
;
2418 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2420 reg_write(ohci
, OHCI1394_HCControlSet
,
2421 OHCI1394_HCControl_linkEnable
|
2422 OHCI1394_HCControl_BIBimageValid
);
2424 reg_write(ohci
, OHCI1394_LinkControlSet
,
2425 OHCI1394_LinkControl_rcvSelfID
|
2426 OHCI1394_LinkControl_rcvPhyPkt
);
2428 ar_context_run(&ohci
->ar_request_ctx
);
2429 ar_context_run(&ohci
->ar_response_ctx
);
2433 /* We are ready to go, reset bus to finish initialization. */
2434 fw_schedule_bus_reset(&ohci
->card
, false, true);
2439 static int ohci_set_config_rom(struct fw_card
*card
,
2440 const __be32
*config_rom
, size_t length
)
2442 struct fw_ohci
*ohci
;
2443 __be32
*next_config_rom
;
2444 dma_addr_t next_config_rom_bus
;
2446 ohci
= fw_ohci(card
);
2449 * When the OHCI controller is enabled, the config rom update
2450 * mechanism is a bit tricky, but easy enough to use. See
2451 * section 5.5.6 in the OHCI specification.
2453 * The OHCI controller caches the new config rom address in a
2454 * shadow register (ConfigROMmapNext) and needs a bus reset
2455 * for the changes to take place. When the bus reset is
2456 * detected, the controller loads the new values for the
2457 * ConfigRomHeader and BusOptions registers from the specified
2458 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2459 * shadow register. All automatically and atomically.
2461 * Now, there's a twist to this story. The automatic load of
2462 * ConfigRomHeader and BusOptions doesn't honor the
2463 * noByteSwapData bit, so with a be32 config rom, the
2464 * controller will load be32 values in to these registers
2465 * during the atomic update, even on litte endian
2466 * architectures. The workaround we use is to put a 0 in the
2467 * header quadlet; 0 is endian agnostic and means that the
2468 * config rom isn't ready yet. In the bus reset tasklet we
2469 * then set up the real values for the two registers.
2471 * We use ohci->lock to avoid racing with the code that sets
2472 * ohci->next_config_rom to NULL (see bus_reset_work).
2476 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2477 &next_config_rom_bus
, GFP_KERNEL
);
2478 if (next_config_rom
== NULL
)
2481 spin_lock_irq(&ohci
->lock
);
2484 * If there is not an already pending config_rom update,
2485 * push our new allocation into the ohci->next_config_rom
2486 * and then mark the local variable as null so that we
2487 * won't deallocate the new buffer.
2489 * OTOH, if there is a pending config_rom update, just
2490 * use that buffer with the new config_rom data, and
2491 * let this routine free the unused DMA allocation.
2494 if (ohci
->next_config_rom
== NULL
) {
2495 ohci
->next_config_rom
= next_config_rom
;
2496 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2497 next_config_rom
= NULL
;
2500 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2502 ohci
->next_header
= config_rom
[0];
2503 ohci
->next_config_rom
[0] = 0;
2505 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2507 spin_unlock_irq(&ohci
->lock
);
2509 /* If we didn't use the DMA allocation, delete it. */
2510 if (next_config_rom
!= NULL
)
2511 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2512 next_config_rom
, next_config_rom_bus
);
2515 * Now initiate a bus reset to have the changes take
2516 * effect. We clean up the old config rom memory and DMA
2517 * mappings in the bus reset tasklet, since the OHCI
2518 * controller could need to access it before the bus reset
2522 fw_schedule_bus_reset(&ohci
->card
, true, true);
2527 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2529 struct fw_ohci
*ohci
= fw_ohci(card
);
2531 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2534 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2536 struct fw_ohci
*ohci
= fw_ohci(card
);
2538 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2541 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2543 struct fw_ohci
*ohci
= fw_ohci(card
);
2544 struct context
*ctx
= &ohci
->at_request_ctx
;
2545 struct driver_data
*driver_data
= packet
->driver_data
;
2548 tasklet_disable(&ctx
->tasklet
);
2550 if (packet
->ack
!= 0)
2553 if (packet
->payload_mapped
)
2554 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2555 packet
->payload_length
, DMA_TO_DEVICE
);
2557 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, 0x20);
2558 driver_data
->packet
= NULL
;
2559 packet
->ack
= RCODE_CANCELLED
;
2560 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2563 tasklet_enable(&ctx
->tasklet
);
2568 static int ohci_enable_phys_dma(struct fw_card
*card
,
2569 int node_id
, int generation
)
2571 struct fw_ohci
*ohci
= fw_ohci(card
);
2572 unsigned long flags
;
2575 if (param_remote_dma
)
2579 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2580 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2583 spin_lock_irqsave(&ohci
->lock
, flags
);
2585 if (ohci
->generation
!= generation
) {
2591 * Note, if the node ID contains a non-local bus ID, physical DMA is
2592 * enabled for _all_ nodes on remote buses.
2595 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2597 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2599 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2603 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2608 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2610 struct fw_ohci
*ohci
= fw_ohci(card
);
2611 unsigned long flags
;
2614 switch (csr_offset
) {
2615 case CSR_STATE_CLEAR
:
2617 if (ohci
->is_root
&&
2618 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2619 OHCI1394_LinkControl_cycleMaster
))
2620 value
= CSR_STATE_BIT_CMSTR
;
2623 if (ohci
->csr_state_setclear_abdicate
)
2624 value
|= CSR_STATE_BIT_ABDICATE
;
2629 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2631 case CSR_CYCLE_TIME
:
2632 return get_cycle_time(ohci
);
2636 * We might be called just after the cycle timer has wrapped
2637 * around but just before the cycle64Seconds handler, so we
2638 * better check here, too, if the bus time needs to be updated.
2640 spin_lock_irqsave(&ohci
->lock
, flags
);
2641 value
= update_bus_time(ohci
);
2642 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2645 case CSR_BUSY_TIMEOUT
:
2646 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2647 return (value
>> 4) & 0x0ffff00f;
2649 case CSR_PRIORITY_BUDGET
:
2650 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2651 (ohci
->pri_req_max
<< 8);
2659 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2661 struct fw_ohci
*ohci
= fw_ohci(card
);
2662 unsigned long flags
;
2664 switch (csr_offset
) {
2665 case CSR_STATE_CLEAR
:
2666 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2667 reg_write(ohci
, OHCI1394_LinkControlClear
,
2668 OHCI1394_LinkControl_cycleMaster
);
2671 if (value
& CSR_STATE_BIT_ABDICATE
)
2672 ohci
->csr_state_setclear_abdicate
= false;
2676 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2677 reg_write(ohci
, OHCI1394_LinkControlSet
,
2678 OHCI1394_LinkControl_cycleMaster
);
2681 if (value
& CSR_STATE_BIT_ABDICATE
)
2682 ohci
->csr_state_setclear_abdicate
= true;
2686 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2690 case CSR_CYCLE_TIME
:
2691 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2692 reg_write(ohci
, OHCI1394_IntEventSet
,
2693 OHCI1394_cycleInconsistent
);
2698 spin_lock_irqsave(&ohci
->lock
, flags
);
2699 ohci
->bus_time
= (update_bus_time(ohci
) & 0x40) |
2701 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2704 case CSR_BUSY_TIMEOUT
:
2705 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2706 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2707 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2711 case CSR_PRIORITY_BUDGET
:
2712 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2722 static void flush_iso_completions(struct iso_context
*ctx
)
2724 ctx
->base
.callback
.sc(&ctx
->base
, ctx
->last_timestamp
,
2725 ctx
->header_length
, ctx
->header
,
2726 ctx
->base
.callback_data
);
2727 ctx
->header_length
= 0;
2730 static void copy_iso_headers(struct iso_context
*ctx
, const u32
*dma_hdr
)
2734 if (ctx
->header_length
+ ctx
->base
.header_size
> PAGE_SIZE
) {
2735 if (ctx
->base
.drop_overflow_headers
)
2737 flush_iso_completions(ctx
);
2740 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2741 ctx
->last_timestamp
= (u16
)le32_to_cpu((__force __le32
)dma_hdr
[0]);
2744 * The two iso header quadlets are byteswapped to little
2745 * endian by the controller, but we want to present them
2746 * as big endian for consistency with the bus endianness.
2748 if (ctx
->base
.header_size
> 0)
2749 ctx_hdr
[0] = swab32(dma_hdr
[1]); /* iso packet header */
2750 if (ctx
->base
.header_size
> 4)
2751 ctx_hdr
[1] = swab32(dma_hdr
[0]); /* timestamp */
2752 if (ctx
->base
.header_size
> 8)
2753 memcpy(&ctx_hdr
[2], &dma_hdr
[2], ctx
->base
.header_size
- 8);
2754 ctx
->header_length
+= ctx
->base
.header_size
;
2757 static int handle_ir_packet_per_buffer(struct context
*context
,
2758 struct descriptor
*d
,
2759 struct descriptor
*last
)
2761 struct iso_context
*ctx
=
2762 container_of(context
, struct iso_context
, context
);
2763 struct descriptor
*pd
;
2766 for (pd
= d
; pd
<= last
; pd
++)
2767 if (pd
->transfer_status
)
2770 /* Descriptor(s) not done yet, stop iteration */
2773 while (!(d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))) {
2775 buffer_dma
= le32_to_cpu(d
->data_address
);
2776 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2777 buffer_dma
& PAGE_MASK
,
2778 buffer_dma
& ~PAGE_MASK
,
2779 le16_to_cpu(d
->req_count
),
2783 copy_iso_headers(ctx
, (u32
*) (last
+ 1));
2785 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2786 flush_iso_completions(ctx
);
2791 /* d == last because each descriptor block is only a single descriptor. */
2792 static int handle_ir_buffer_fill(struct context
*context
,
2793 struct descriptor
*d
,
2794 struct descriptor
*last
)
2796 struct iso_context
*ctx
=
2797 container_of(context
, struct iso_context
, context
);
2798 unsigned int req_count
, res_count
, completed
;
2801 req_count
= le16_to_cpu(last
->req_count
);
2802 res_count
= le16_to_cpu(READ_ONCE(last
->res_count
));
2803 completed
= req_count
- res_count
;
2804 buffer_dma
= le32_to_cpu(last
->data_address
);
2806 if (completed
> 0) {
2807 ctx
->mc_buffer_bus
= buffer_dma
;
2808 ctx
->mc_completed
= completed
;
2812 /* Descriptor(s) not done yet, stop iteration */
2815 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2816 buffer_dma
& PAGE_MASK
,
2817 buffer_dma
& ~PAGE_MASK
,
2818 completed
, DMA_FROM_DEVICE
);
2820 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
)) {
2821 ctx
->base
.callback
.mc(&ctx
->base
,
2822 buffer_dma
+ completed
,
2823 ctx
->base
.callback_data
);
2824 ctx
->mc_completed
= 0;
2830 static void flush_ir_buffer_fill(struct iso_context
*ctx
)
2832 dma_sync_single_range_for_cpu(ctx
->context
.ohci
->card
.device
,
2833 ctx
->mc_buffer_bus
& PAGE_MASK
,
2834 ctx
->mc_buffer_bus
& ~PAGE_MASK
,
2835 ctx
->mc_completed
, DMA_FROM_DEVICE
);
2837 ctx
->base
.callback
.mc(&ctx
->base
,
2838 ctx
->mc_buffer_bus
+ ctx
->mc_completed
,
2839 ctx
->base
.callback_data
);
2840 ctx
->mc_completed
= 0;
2843 static inline void sync_it_packet_for_cpu(struct context
*context
,
2844 struct descriptor
*pd
)
2849 /* only packets beginning with OUTPUT_MORE* have data buffers */
2850 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2853 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2857 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2858 * data buffer is in the context program's coherent page and must not
2861 if ((le32_to_cpu(pd
->data_address
) & PAGE_MASK
) ==
2862 (context
->current_bus
& PAGE_MASK
)) {
2863 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2869 buffer_dma
= le32_to_cpu(pd
->data_address
);
2870 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2871 buffer_dma
& PAGE_MASK
,
2872 buffer_dma
& ~PAGE_MASK
,
2873 le16_to_cpu(pd
->req_count
),
2875 control
= pd
->control
;
2877 } while (!(control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
)));
2880 static int handle_it_packet(struct context
*context
,
2881 struct descriptor
*d
,
2882 struct descriptor
*last
)
2884 struct iso_context
*ctx
=
2885 container_of(context
, struct iso_context
, context
);
2886 struct descriptor
*pd
;
2889 for (pd
= d
; pd
<= last
; pd
++)
2890 if (pd
->transfer_status
)
2893 /* Descriptor(s) not done yet, stop iteration */
2896 sync_it_packet_for_cpu(context
, d
);
2898 if (ctx
->header_length
+ 4 > PAGE_SIZE
) {
2899 if (ctx
->base
.drop_overflow_headers
)
2901 flush_iso_completions(ctx
);
2904 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2905 ctx
->last_timestamp
= le16_to_cpu(last
->res_count
);
2906 /* Present this value as big-endian to match the receive code */
2907 *ctx_hdr
= cpu_to_be32((le16_to_cpu(pd
->transfer_status
) << 16) |
2908 le16_to_cpu(pd
->res_count
));
2909 ctx
->header_length
+= 4;
2911 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2912 flush_iso_completions(ctx
);
2917 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2919 u32 hi
= channels
>> 32, lo
= channels
;
2921 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2922 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2923 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2924 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2925 ohci
->mc_channels
= channels
;
2928 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2929 int type
, int channel
, size_t header_size
)
2931 struct fw_ohci
*ohci
= fw_ohci(card
);
2932 struct iso_context
*ctx
;
2933 descriptor_callback_t callback
;
2936 int index
, ret
= -EBUSY
;
2938 spin_lock_irq(&ohci
->lock
);
2941 case FW_ISO_CONTEXT_TRANSMIT
:
2942 mask
= &ohci
->it_context_mask
;
2943 callback
= handle_it_packet
;
2944 index
= ffs(*mask
) - 1;
2946 *mask
&= ~(1 << index
);
2947 regs
= OHCI1394_IsoXmitContextBase(index
);
2948 ctx
= &ohci
->it_context_list
[index
];
2952 case FW_ISO_CONTEXT_RECEIVE
:
2953 channels
= &ohci
->ir_context_channels
;
2954 mask
= &ohci
->ir_context_mask
;
2955 callback
= handle_ir_packet_per_buffer
;
2956 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2958 *channels
&= ~(1ULL << channel
);
2959 *mask
&= ~(1 << index
);
2960 regs
= OHCI1394_IsoRcvContextBase(index
);
2961 ctx
= &ohci
->ir_context_list
[index
];
2965 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2966 mask
= &ohci
->ir_context_mask
;
2967 callback
= handle_ir_buffer_fill
;
2968 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2970 ohci
->mc_allocated
= true;
2971 *mask
&= ~(1 << index
);
2972 regs
= OHCI1394_IsoRcvContextBase(index
);
2973 ctx
= &ohci
->ir_context_list
[index
];
2982 spin_unlock_irq(&ohci
->lock
);
2985 return ERR_PTR(ret
);
2987 memset(ctx
, 0, sizeof(*ctx
));
2988 ctx
->header_length
= 0;
2989 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
2990 if (ctx
->header
== NULL
) {
2994 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
2996 goto out_with_header
;
2998 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
) {
2999 set_multichannel_mask(ohci
, 0);
3000 ctx
->mc_completed
= 0;
3006 free_page((unsigned long)ctx
->header
);
3008 spin_lock_irq(&ohci
->lock
);
3011 case FW_ISO_CONTEXT_RECEIVE
:
3012 *channels
|= 1ULL << channel
;
3015 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3016 ohci
->mc_allocated
= false;
3019 *mask
|= 1 << index
;
3021 spin_unlock_irq(&ohci
->lock
);
3023 return ERR_PTR(ret
);
3026 static int ohci_start_iso(struct fw_iso_context
*base
,
3027 s32 cycle
, u32 sync
, u32 tags
)
3029 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3030 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
3031 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
3034 /* the controller cannot start without any queued packets */
3035 if (ctx
->context
.last
->branch_address
== 0)
3038 switch (ctx
->base
.type
) {
3039 case FW_ISO_CONTEXT_TRANSMIT
:
3040 index
= ctx
- ohci
->it_context_list
;
3043 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
3044 (cycle
& 0x7fff) << 16;
3046 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
3047 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
3048 context_run(&ctx
->context
, match
);
3051 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3052 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
3054 case FW_ISO_CONTEXT_RECEIVE
:
3055 index
= ctx
- ohci
->ir_context_list
;
3056 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
3058 match
|= (cycle
& 0x07fff) << 12;
3059 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
3062 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
3063 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
3064 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
3065 context_run(&ctx
->context
, control
);
3076 static int ohci_stop_iso(struct fw_iso_context
*base
)
3078 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3079 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3082 switch (ctx
->base
.type
) {
3083 case FW_ISO_CONTEXT_TRANSMIT
:
3084 index
= ctx
- ohci
->it_context_list
;
3085 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
3088 case FW_ISO_CONTEXT_RECEIVE
:
3089 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3090 index
= ctx
- ohci
->ir_context_list
;
3091 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
3095 context_stop(&ctx
->context
);
3096 tasklet_kill(&ctx
->context
.tasklet
);
3101 static void ohci_free_iso_context(struct fw_iso_context
*base
)
3103 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3104 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3105 unsigned long flags
;
3108 ohci_stop_iso(base
);
3109 context_release(&ctx
->context
);
3110 free_page((unsigned long)ctx
->header
);
3112 spin_lock_irqsave(&ohci
->lock
, flags
);
3114 switch (base
->type
) {
3115 case FW_ISO_CONTEXT_TRANSMIT
:
3116 index
= ctx
- ohci
->it_context_list
;
3117 ohci
->it_context_mask
|= 1 << index
;
3120 case FW_ISO_CONTEXT_RECEIVE
:
3121 index
= ctx
- ohci
->ir_context_list
;
3122 ohci
->ir_context_mask
|= 1 << index
;
3123 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
3126 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3127 index
= ctx
- ohci
->ir_context_list
;
3128 ohci
->ir_context_mask
|= 1 << index
;
3129 ohci
->ir_context_channels
|= ohci
->mc_channels
;
3130 ohci
->mc_channels
= 0;
3131 ohci
->mc_allocated
= false;
3135 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3138 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
3140 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3141 unsigned long flags
;
3144 switch (base
->type
) {
3145 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3147 spin_lock_irqsave(&ohci
->lock
, flags
);
3149 /* Don't allow multichannel to grab other contexts' channels. */
3150 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
3151 *channels
= ohci
->ir_context_channels
;
3154 set_multichannel_mask(ohci
, *channels
);
3158 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3169 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
3172 struct iso_context
*ctx
;
3174 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
3175 ctx
= &ohci
->ir_context_list
[i
];
3176 if (ctx
->context
.running
)
3177 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3180 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
3181 ctx
= &ohci
->it_context_list
[i
];
3182 if (ctx
->context
.running
)
3183 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3188 static int queue_iso_transmit(struct iso_context
*ctx
,
3189 struct fw_iso_packet
*packet
,
3190 struct fw_iso_buffer
*buffer
,
3191 unsigned long payload
)
3193 struct descriptor
*d
, *last
, *pd
;
3194 struct fw_iso_packet
*p
;
3196 dma_addr_t d_bus
, page_bus
;
3197 u32 z
, header_z
, payload_z
, irq
;
3198 u32 payload_index
, payload_end_index
, next_page_index
;
3199 int page
, end_page
, i
, length
, offset
;
3202 payload_index
= payload
;
3208 if (p
->header_length
> 0)
3211 /* Determine the first page the payload isn't contained in. */
3212 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
3213 if (p
->payload_length
> 0)
3214 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
3220 /* Get header size in number of descriptors. */
3221 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
3223 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
3228 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
3229 d
[0].req_count
= cpu_to_le16(8);
3231 * Link the skip address to this descriptor itself. This causes
3232 * a context to skip a cycle whenever lost cycles or FIFO
3233 * overruns occur, without dropping the data. The application
3234 * should then decide whether this is an error condition or not.
3235 * FIXME: Make the context's cycle-lost behaviour configurable?
3237 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
3239 header
= (__le32
*) &d
[1];
3240 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
3241 IT_HEADER_TAG(p
->tag
) |
3242 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
3243 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
3244 IT_HEADER_SPEED(ctx
->base
.speed
));
3246 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
3247 p
->payload_length
));
3250 if (p
->header_length
> 0) {
3251 d
[2].req_count
= cpu_to_le16(p
->header_length
);
3252 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
3253 memcpy(&d
[z
], p
->header
, p
->header_length
);
3256 pd
= d
+ z
- payload_z
;
3257 payload_end_index
= payload_index
+ p
->payload_length
;
3258 for (i
= 0; i
< payload_z
; i
++) {
3259 page
= payload_index
>> PAGE_SHIFT
;
3260 offset
= payload_index
& ~PAGE_MASK
;
3261 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
3263 min(next_page_index
, payload_end_index
) - payload_index
;
3264 pd
[i
].req_count
= cpu_to_le16(length
);
3266 page_bus
= page_private(buffer
->pages
[page
]);
3267 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
3269 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3270 page_bus
, offset
, length
,
3273 payload_index
+= length
;
3277 irq
= DESCRIPTOR_IRQ_ALWAYS
;
3279 irq
= DESCRIPTOR_NO_IRQ
;
3281 last
= z
== 2 ? d
: d
+ z
- 1;
3282 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
3284 DESCRIPTOR_BRANCH_ALWAYS
|
3287 context_append(&ctx
->context
, d
, z
, header_z
);
3292 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
3293 struct fw_iso_packet
*packet
,
3294 struct fw_iso_buffer
*buffer
,
3295 unsigned long payload
)
3297 struct device
*device
= ctx
->context
.ohci
->card
.device
;
3298 struct descriptor
*d
, *pd
;
3299 dma_addr_t d_bus
, page_bus
;
3300 u32 z
, header_z
, rest
;
3302 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
3305 * The OHCI controller puts the isochronous header and trailer in the
3306 * buffer, so we need at least 8 bytes.
3308 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
3309 header_size
= max(ctx
->base
.header_size
, (size_t)8);
3311 /* Get header size in number of descriptors. */
3312 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
3313 page
= payload
>> PAGE_SHIFT
;
3314 offset
= payload
& ~PAGE_MASK
;
3315 payload_per_buffer
= packet
->payload_length
/ packet_count
;
3317 for (i
= 0; i
< packet_count
; i
++) {
3318 /* d points to the header descriptor */
3319 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
3320 d
= context_get_descriptors(&ctx
->context
,
3321 z
+ header_z
, &d_bus
);
3325 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3326 DESCRIPTOR_INPUT_MORE
);
3327 if (packet
->skip
&& i
== 0)
3328 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3329 d
->req_count
= cpu_to_le16(header_size
);
3330 d
->res_count
= d
->req_count
;
3331 d
->transfer_status
= 0;
3332 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
3334 rest
= payload_per_buffer
;
3336 for (j
= 1; j
< z
; j
++) {
3338 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3339 DESCRIPTOR_INPUT_MORE
);
3341 if (offset
+ rest
< PAGE_SIZE
)
3344 length
= PAGE_SIZE
- offset
;
3345 pd
->req_count
= cpu_to_le16(length
);
3346 pd
->res_count
= pd
->req_count
;
3347 pd
->transfer_status
= 0;
3349 page_bus
= page_private(buffer
->pages
[page
]);
3350 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3352 dma_sync_single_range_for_device(device
, page_bus
,
3356 offset
= (offset
+ length
) & ~PAGE_MASK
;
3361 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3362 DESCRIPTOR_INPUT_LAST
|
3363 DESCRIPTOR_BRANCH_ALWAYS
);
3364 if (packet
->interrupt
&& i
== packet_count
- 1)
3365 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3367 context_append(&ctx
->context
, d
, z
, header_z
);
3373 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3374 struct fw_iso_packet
*packet
,
3375 struct fw_iso_buffer
*buffer
,
3376 unsigned long payload
)
3378 struct descriptor
*d
;
3379 dma_addr_t d_bus
, page_bus
;
3380 int page
, offset
, rest
, z
, i
, length
;
3382 page
= payload
>> PAGE_SHIFT
;
3383 offset
= payload
& ~PAGE_MASK
;
3384 rest
= packet
->payload_length
;
3386 /* We need one descriptor for each page in the buffer. */
3387 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3389 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3392 for (i
= 0; i
< z
; i
++) {
3393 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3397 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3398 DESCRIPTOR_BRANCH_ALWAYS
);
3399 if (packet
->skip
&& i
== 0)
3400 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3401 if (packet
->interrupt
&& i
== z
- 1)
3402 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3404 if (offset
+ rest
< PAGE_SIZE
)
3407 length
= PAGE_SIZE
- offset
;
3408 d
->req_count
= cpu_to_le16(length
);
3409 d
->res_count
= d
->req_count
;
3410 d
->transfer_status
= 0;
3412 page_bus
= page_private(buffer
->pages
[page
]);
3413 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3415 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3416 page_bus
, offset
, length
,
3423 context_append(&ctx
->context
, d
, 1, 0);
3429 static int ohci_queue_iso(struct fw_iso_context
*base
,
3430 struct fw_iso_packet
*packet
,
3431 struct fw_iso_buffer
*buffer
,
3432 unsigned long payload
)
3434 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3435 unsigned long flags
;
3438 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
3439 switch (base
->type
) {
3440 case FW_ISO_CONTEXT_TRANSMIT
:
3441 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3443 case FW_ISO_CONTEXT_RECEIVE
:
3444 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3446 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3447 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3450 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
3455 static void ohci_flush_queue_iso(struct fw_iso_context
*base
)
3457 struct context
*ctx
=
3458 &container_of(base
, struct iso_context
, base
)->context
;
3460 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
3463 static int ohci_flush_iso_completions(struct fw_iso_context
*base
)
3465 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3468 tasklet_disable(&ctx
->context
.tasklet
);
3470 if (!test_and_set_bit_lock(0, &ctx
->flushing_completions
)) {
3471 context_tasklet((unsigned long)&ctx
->context
);
3473 switch (base
->type
) {
3474 case FW_ISO_CONTEXT_TRANSMIT
:
3475 case FW_ISO_CONTEXT_RECEIVE
:
3476 if (ctx
->header_length
!= 0)
3477 flush_iso_completions(ctx
);
3479 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3480 if (ctx
->mc_completed
!= 0)
3481 flush_ir_buffer_fill(ctx
);
3487 clear_bit_unlock(0, &ctx
->flushing_completions
);
3488 smp_mb__after_atomic();
3491 tasklet_enable(&ctx
->context
.tasklet
);
3496 static const struct fw_card_driver ohci_driver
= {
3497 .enable
= ohci_enable
,
3498 .read_phy_reg
= ohci_read_phy_reg
,
3499 .update_phy_reg
= ohci_update_phy_reg
,
3500 .set_config_rom
= ohci_set_config_rom
,
3501 .send_request
= ohci_send_request
,
3502 .send_response
= ohci_send_response
,
3503 .cancel_packet
= ohci_cancel_packet
,
3504 .enable_phys_dma
= ohci_enable_phys_dma
,
3505 .read_csr
= ohci_read_csr
,
3506 .write_csr
= ohci_write_csr
,
3508 .allocate_iso_context
= ohci_allocate_iso_context
,
3509 .free_iso_context
= ohci_free_iso_context
,
3510 .set_iso_channels
= ohci_set_iso_channels
,
3511 .queue_iso
= ohci_queue_iso
,
3512 .flush_queue_iso
= ohci_flush_queue_iso
,
3513 .flush_iso_completions
= ohci_flush_iso_completions
,
3514 .start_iso
= ohci_start_iso
,
3515 .stop_iso
= ohci_stop_iso
,
3518 #ifdef CONFIG_PPC_PMAC
3519 static void pmac_ohci_on(struct pci_dev
*dev
)
3521 if (machine_is(powermac
)) {
3522 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3525 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3526 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3531 static void pmac_ohci_off(struct pci_dev
*dev
)
3533 if (machine_is(powermac
)) {
3534 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3537 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3538 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3543 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3544 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3545 #endif /* CONFIG_PPC_PMAC */
3547 static int pci_probe(struct pci_dev
*dev
,
3548 const struct pci_device_id
*ent
)
3550 struct fw_ohci
*ohci
;
3551 u32 bus_options
, max_receive
, link_speed
, version
;
3556 if (dev
->vendor
== PCI_VENDOR_ID_PINNACLE_SYSTEMS
) {
3557 dev_err(&dev
->dev
, "Pinnacle MovieBoard is not yet supported\n");
3561 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
3567 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3571 err
= pci_enable_device(dev
);
3573 dev_err(&dev
->dev
, "failed to enable OHCI hardware\n");
3577 pci_set_master(dev
);
3578 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3579 pci_set_drvdata(dev
, ohci
);
3581 spin_lock_init(&ohci
->lock
);
3582 mutex_init(&ohci
->phy_reg_mutex
);
3584 INIT_WORK(&ohci
->bus_reset_work
, bus_reset_work
);
3586 if (!(pci_resource_flags(dev
, 0) & IORESOURCE_MEM
) ||
3587 pci_resource_len(dev
, 0) < OHCI1394_REGISTER_SIZE
) {
3588 ohci_err(ohci
, "invalid MMIO resource\n");
3593 err
= pci_request_region(dev
, 0, ohci_driver_name
);
3595 ohci_err(ohci
, "MMIO resource unavailable\n");
3599 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
3600 if (ohci
->registers
== NULL
) {
3601 ohci_err(ohci
, "failed to remap registers\n");
3606 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3607 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3608 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3609 ohci_quirks
[i
].device
== dev
->device
) &&
3610 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3611 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3612 ohci
->quirks
= ohci_quirks
[i
].flags
;
3616 ohci
->quirks
= param_quirks
;
3619 * Because dma_alloc_coherent() allocates at least one page,
3620 * we save space by using a common buffer for the AR request/
3621 * response descriptors and the self IDs buffer.
3623 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3624 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3625 ohci
->misc_buffer
= dma_alloc_coherent(ohci
->card
.device
,
3627 &ohci
->misc_buffer_bus
,
3629 if (!ohci
->misc_buffer
) {
3634 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3635 OHCI1394_AsReqRcvContextControlSet
);
3639 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3640 OHCI1394_AsRspRcvContextControlSet
);
3642 goto fail_arreq_ctx
;
3644 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3645 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3647 goto fail_arrsp_ctx
;
3649 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3650 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3652 goto fail_atreq_ctx
;
3654 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3655 ohci
->ir_context_channels
= ~0ULL;
3656 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3657 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3658 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3659 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3660 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3661 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
3663 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3664 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3665 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3666 if (!ohci
->it_context_support
) {
3667 ohci_notice(ohci
, "overriding IsoXmitIntMask\n");
3668 ohci
->it_context_support
= 0xf;
3670 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3671 ohci
->it_context_mask
= ohci
->it_context_support
;
3672 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3673 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3674 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
3676 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
3681 ohci
->self_id
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3682 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3684 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3685 max_receive
= (bus_options
>> 12) & 0xf;
3686 link_speed
= bus_options
& 0x7;
3687 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3688 reg_read(ohci
, OHCI1394_GUIDLo
);
3690 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
3691 pci_enable_msi(dev
);
3692 if (request_irq(dev
->irq
, irq_handler
,
3693 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
3694 ohci_driver_name
, ohci
)) {
3695 ohci_err(ohci
, "failed to allocate interrupt %d\n", dev
->irq
);
3700 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
3704 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3706 "added OHCI v%x.%x device as card %d, "
3707 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3708 version
>> 16, version
& 0xff, ohci
->card
.index
,
3709 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
,
3710 reg_read(ohci
, OHCI1394_PhyUpperBound
) ?
3716 free_irq(dev
->irq
, ohci
);
3718 pci_disable_msi(dev
);
3720 kfree(ohci
->ir_context_list
);
3721 kfree(ohci
->it_context_list
);
3722 context_release(&ohci
->at_response_ctx
);
3724 context_release(&ohci
->at_request_ctx
);
3726 ar_context_release(&ohci
->ar_response_ctx
);
3728 ar_context_release(&ohci
->ar_request_ctx
);
3730 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3731 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3733 pci_iounmap(dev
, ohci
->registers
);
3735 pci_release_region(dev
, 0);
3737 pci_disable_device(dev
);
3745 static void pci_remove(struct pci_dev
*dev
)
3747 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3750 * If the removal is happening from the suspend state, LPS won't be
3751 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3753 if (reg_read(ohci
, OHCI1394_HCControlSet
) & OHCI1394_HCControl_LPS
) {
3754 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3757 cancel_work_sync(&ohci
->bus_reset_work
);
3758 fw_core_remove_card(&ohci
->card
);
3761 * FIXME: Fail all pending packets here, now that the upper
3762 * layers can't queue any more.
3765 software_reset(ohci
);
3766 free_irq(dev
->irq
, ohci
);
3768 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3769 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3770 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3771 if (ohci
->config_rom
)
3772 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3773 ohci
->config_rom
, ohci
->config_rom_bus
);
3774 ar_context_release(&ohci
->ar_request_ctx
);
3775 ar_context_release(&ohci
->ar_response_ctx
);
3776 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3777 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3778 context_release(&ohci
->at_request_ctx
);
3779 context_release(&ohci
->at_response_ctx
);
3780 kfree(ohci
->it_context_list
);
3781 kfree(ohci
->ir_context_list
);
3782 pci_disable_msi(dev
);
3783 pci_iounmap(dev
, ohci
->registers
);
3784 pci_release_region(dev
, 0);
3785 pci_disable_device(dev
);
3789 dev_notice(&dev
->dev
, "removed fw-ohci device\n");
3793 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3795 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3798 software_reset(ohci
);
3799 err
= pci_save_state(dev
);
3801 ohci_err(ohci
, "pci_save_state failed\n");
3804 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3806 ohci_err(ohci
, "pci_set_power_state failed with %d\n", err
);
3812 static int pci_resume(struct pci_dev
*dev
)
3814 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3818 pci_set_power_state(dev
, PCI_D0
);
3819 pci_restore_state(dev
);
3820 err
= pci_enable_device(dev
);
3822 ohci_err(ohci
, "pci_enable_device failed\n");
3826 /* Some systems don't setup GUID register on resume from ram */
3827 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3828 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3829 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3830 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3833 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3837 ohci_resume_iso_dma(ohci
);
3843 static const struct pci_device_id pci_table
[] = {
3844 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3848 MODULE_DEVICE_TABLE(pci
, pci_table
);
3850 static struct pci_driver fw_ohci_pci_driver
= {
3851 .name
= ohci_driver_name
,
3852 .id_table
= pci_table
,
3854 .remove
= pci_remove
,
3856 .resume
= pci_resume
,
3857 .suspend
= pci_suspend
,
3861 static int __init
fw_ohci_init(void)
3863 selfid_workqueue
= alloc_workqueue(KBUILD_MODNAME
, WQ_MEM_RECLAIM
, 0);
3864 if (!selfid_workqueue
)
3867 return pci_register_driver(&fw_ohci_pci_driver
);
3870 static void __exit
fw_ohci_cleanup(void)
3872 pci_unregister_driver(&fw_ohci_pci_driver
);
3873 destroy_workqueue(selfid_workqueue
);
3876 module_init(fw_ohci_init
);
3877 module_exit(fw_ohci_cleanup
);
3879 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3880 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3881 MODULE_LICENSE("GPL");
3883 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3884 MODULE_ALIAS("ohci1394");