2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 #include "kfd_smi_events.h"
34 #define MQD_SIZE_ALIGNED 768
37 * kfd_locked is used to lock the kfd driver during suspend or reset
38 * once locked, kfd driver will stop any further GPU execution.
39 * create process (open) will return -EAGAIN.
41 static atomic_t kfd_locked
= ATOMIC_INIT(0);
43 #ifdef CONFIG_DRM_AMDGPU_CIK
44 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd
;
46 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd
;
47 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd
;
48 extern const struct kfd2kgd_calls arcturus_kfd2kgd
;
49 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd
;
50 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd
;
52 static const struct kfd2kgd_calls
*kfd2kgd_funcs
[] = {
53 #ifdef KFD_SUPPORT_IOMMU_V2
54 #ifdef CONFIG_DRM_AMDGPU_CIK
55 [CHIP_KAVERI
] = &gfx_v7_kfd2kgd
,
57 [CHIP_CARRIZO
] = &gfx_v8_kfd2kgd
,
58 [CHIP_RAVEN
] = &gfx_v9_kfd2kgd
,
60 #ifdef CONFIG_DRM_AMDGPU_CIK
61 [CHIP_HAWAII
] = &gfx_v7_kfd2kgd
,
63 [CHIP_TONGA
] = &gfx_v8_kfd2kgd
,
64 [CHIP_FIJI
] = &gfx_v8_kfd2kgd
,
65 [CHIP_POLARIS10
] = &gfx_v8_kfd2kgd
,
66 [CHIP_POLARIS11
] = &gfx_v8_kfd2kgd
,
67 [CHIP_POLARIS12
] = &gfx_v8_kfd2kgd
,
68 [CHIP_VEGAM
] = &gfx_v8_kfd2kgd
,
69 [CHIP_VEGA10
] = &gfx_v9_kfd2kgd
,
70 [CHIP_VEGA12
] = &gfx_v9_kfd2kgd
,
71 [CHIP_VEGA20
] = &gfx_v9_kfd2kgd
,
72 [CHIP_RENOIR
] = &gfx_v9_kfd2kgd
,
73 [CHIP_ARCTURUS
] = &arcturus_kfd2kgd
,
74 [CHIP_NAVI10
] = &gfx_v10_kfd2kgd
,
75 [CHIP_NAVI12
] = &gfx_v10_kfd2kgd
,
76 [CHIP_NAVI14
] = &gfx_v10_kfd2kgd
,
77 [CHIP_SIENNA_CICHLID
] = &gfx_v10_3_kfd2kgd
,
78 [CHIP_NAVY_FLOUNDER
] = &gfx_v10_3_kfd2kgd
,
79 [CHIP_VANGOGH
] = &gfx_v10_3_kfd2kgd
,
80 [CHIP_DIMGREY_CAVEFISH
] = &gfx_v10_3_kfd2kgd
,
83 #ifdef KFD_SUPPORT_IOMMU_V2
84 static const struct kfd_device_info kaveri_device_info
= {
85 .asic_family
= CHIP_KAVERI
,
86 .asic_name
= "kaveri",
88 /* max num of queues for KV.TODO should be a dynamic value */
91 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
92 .event_interrupt_class
= &event_interrupt_class_cik
,
93 .num_of_watch_points
= 4,
94 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
95 .supports_cwsr
= false,
96 .needs_iommu_device
= true,
97 .needs_pci_atomics
= false,
98 .num_sdma_engines
= 2,
99 .num_xgmi_sdma_engines
= 0,
100 .num_sdma_queues_per_engine
= 2,
103 static const struct kfd_device_info carrizo_device_info
= {
104 .asic_family
= CHIP_CARRIZO
,
105 .asic_name
= "carrizo",
106 .max_pasid_bits
= 16,
107 /* max num of queues for CZ.TODO should be a dynamic value */
110 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
111 .event_interrupt_class
= &event_interrupt_class_cik
,
112 .num_of_watch_points
= 4,
113 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
114 .supports_cwsr
= true,
115 .needs_iommu_device
= true,
116 .needs_pci_atomics
= false,
117 .num_sdma_engines
= 2,
118 .num_xgmi_sdma_engines
= 0,
119 .num_sdma_queues_per_engine
= 2,
123 static const struct kfd_device_info raven_device_info
= {
124 .asic_family
= CHIP_RAVEN
,
125 .asic_name
= "raven",
126 .max_pasid_bits
= 16,
129 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
130 .event_interrupt_class
= &event_interrupt_class_v9
,
131 .num_of_watch_points
= 4,
132 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
133 .supports_cwsr
= true,
134 .needs_iommu_device
= true,
135 .needs_pci_atomics
= true,
136 .num_sdma_engines
= 1,
137 .num_xgmi_sdma_engines
= 0,
138 .num_sdma_queues_per_engine
= 2,
141 static const struct kfd_device_info hawaii_device_info
= {
142 .asic_family
= CHIP_HAWAII
,
143 .asic_name
= "hawaii",
144 .max_pasid_bits
= 16,
145 /* max num of queues for KV.TODO should be a dynamic value */
148 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
149 .event_interrupt_class
= &event_interrupt_class_cik
,
150 .num_of_watch_points
= 4,
151 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
152 .supports_cwsr
= false,
153 .needs_iommu_device
= false,
154 .needs_pci_atomics
= false,
155 .num_sdma_engines
= 2,
156 .num_xgmi_sdma_engines
= 0,
157 .num_sdma_queues_per_engine
= 2,
160 static const struct kfd_device_info tonga_device_info
= {
161 .asic_family
= CHIP_TONGA
,
162 .asic_name
= "tonga",
163 .max_pasid_bits
= 16,
166 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
167 .event_interrupt_class
= &event_interrupt_class_cik
,
168 .num_of_watch_points
= 4,
169 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
170 .supports_cwsr
= false,
171 .needs_iommu_device
= false,
172 .needs_pci_atomics
= true,
173 .num_sdma_engines
= 2,
174 .num_xgmi_sdma_engines
= 0,
175 .num_sdma_queues_per_engine
= 2,
178 static const struct kfd_device_info fiji_device_info
= {
179 .asic_family
= CHIP_FIJI
,
181 .max_pasid_bits
= 16,
184 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
185 .event_interrupt_class
= &event_interrupt_class_cik
,
186 .num_of_watch_points
= 4,
187 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
188 .supports_cwsr
= true,
189 .needs_iommu_device
= false,
190 .needs_pci_atomics
= true,
191 .num_sdma_engines
= 2,
192 .num_xgmi_sdma_engines
= 0,
193 .num_sdma_queues_per_engine
= 2,
196 static const struct kfd_device_info fiji_vf_device_info
= {
197 .asic_family
= CHIP_FIJI
,
199 .max_pasid_bits
= 16,
202 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
203 .event_interrupt_class
= &event_interrupt_class_cik
,
204 .num_of_watch_points
= 4,
205 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
206 .supports_cwsr
= true,
207 .needs_iommu_device
= false,
208 .needs_pci_atomics
= false,
209 .num_sdma_engines
= 2,
210 .num_xgmi_sdma_engines
= 0,
211 .num_sdma_queues_per_engine
= 2,
215 static const struct kfd_device_info polaris10_device_info
= {
216 .asic_family
= CHIP_POLARIS10
,
217 .asic_name
= "polaris10",
218 .max_pasid_bits
= 16,
221 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
222 .event_interrupt_class
= &event_interrupt_class_cik
,
223 .num_of_watch_points
= 4,
224 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
225 .supports_cwsr
= true,
226 .needs_iommu_device
= false,
227 .needs_pci_atomics
= true,
228 .num_sdma_engines
= 2,
229 .num_xgmi_sdma_engines
= 0,
230 .num_sdma_queues_per_engine
= 2,
233 static const struct kfd_device_info polaris10_vf_device_info
= {
234 .asic_family
= CHIP_POLARIS10
,
235 .asic_name
= "polaris10",
236 .max_pasid_bits
= 16,
239 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
240 .event_interrupt_class
= &event_interrupt_class_cik
,
241 .num_of_watch_points
= 4,
242 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
243 .supports_cwsr
= true,
244 .needs_iommu_device
= false,
245 .needs_pci_atomics
= false,
246 .num_sdma_engines
= 2,
247 .num_xgmi_sdma_engines
= 0,
248 .num_sdma_queues_per_engine
= 2,
251 static const struct kfd_device_info polaris11_device_info
= {
252 .asic_family
= CHIP_POLARIS11
,
253 .asic_name
= "polaris11",
254 .max_pasid_bits
= 16,
257 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
258 .event_interrupt_class
= &event_interrupt_class_cik
,
259 .num_of_watch_points
= 4,
260 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
261 .supports_cwsr
= true,
262 .needs_iommu_device
= false,
263 .needs_pci_atomics
= true,
264 .num_sdma_engines
= 2,
265 .num_xgmi_sdma_engines
= 0,
266 .num_sdma_queues_per_engine
= 2,
269 static const struct kfd_device_info polaris12_device_info
= {
270 .asic_family
= CHIP_POLARIS12
,
271 .asic_name
= "polaris12",
272 .max_pasid_bits
= 16,
275 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
276 .event_interrupt_class
= &event_interrupt_class_cik
,
277 .num_of_watch_points
= 4,
278 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
279 .supports_cwsr
= true,
280 .needs_iommu_device
= false,
281 .needs_pci_atomics
= true,
282 .num_sdma_engines
= 2,
283 .num_xgmi_sdma_engines
= 0,
284 .num_sdma_queues_per_engine
= 2,
287 static const struct kfd_device_info vegam_device_info
= {
288 .asic_family
= CHIP_VEGAM
,
289 .asic_name
= "vegam",
290 .max_pasid_bits
= 16,
293 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
294 .event_interrupt_class
= &event_interrupt_class_cik
,
295 .num_of_watch_points
= 4,
296 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
297 .supports_cwsr
= true,
298 .needs_iommu_device
= false,
299 .needs_pci_atomics
= true,
300 .num_sdma_engines
= 2,
301 .num_xgmi_sdma_engines
= 0,
302 .num_sdma_queues_per_engine
= 2,
305 static const struct kfd_device_info vega10_device_info
= {
306 .asic_family
= CHIP_VEGA10
,
307 .asic_name
= "vega10",
308 .max_pasid_bits
= 16,
311 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
312 .event_interrupt_class
= &event_interrupt_class_v9
,
313 .num_of_watch_points
= 4,
314 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
315 .supports_cwsr
= true,
316 .needs_iommu_device
= false,
317 .needs_pci_atomics
= false,
318 .num_sdma_engines
= 2,
319 .num_xgmi_sdma_engines
= 0,
320 .num_sdma_queues_per_engine
= 2,
323 static const struct kfd_device_info vega10_vf_device_info
= {
324 .asic_family
= CHIP_VEGA10
,
325 .asic_name
= "vega10",
326 .max_pasid_bits
= 16,
329 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
330 .event_interrupt_class
= &event_interrupt_class_v9
,
331 .num_of_watch_points
= 4,
332 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
333 .supports_cwsr
= true,
334 .needs_iommu_device
= false,
335 .needs_pci_atomics
= false,
336 .num_sdma_engines
= 2,
337 .num_xgmi_sdma_engines
= 0,
338 .num_sdma_queues_per_engine
= 2,
341 static const struct kfd_device_info vega12_device_info
= {
342 .asic_family
= CHIP_VEGA12
,
343 .asic_name
= "vega12",
344 .max_pasid_bits
= 16,
347 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
348 .event_interrupt_class
= &event_interrupt_class_v9
,
349 .num_of_watch_points
= 4,
350 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
351 .supports_cwsr
= true,
352 .needs_iommu_device
= false,
353 .needs_pci_atomics
= false,
354 .num_sdma_engines
= 2,
355 .num_xgmi_sdma_engines
= 0,
356 .num_sdma_queues_per_engine
= 2,
359 static const struct kfd_device_info vega20_device_info
= {
360 .asic_family
= CHIP_VEGA20
,
361 .asic_name
= "vega20",
362 .max_pasid_bits
= 16,
365 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
366 .event_interrupt_class
= &event_interrupt_class_v9
,
367 .num_of_watch_points
= 4,
368 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
369 .supports_cwsr
= true,
370 .needs_iommu_device
= false,
371 .needs_pci_atomics
= false,
372 .num_sdma_engines
= 2,
373 .num_xgmi_sdma_engines
= 0,
374 .num_sdma_queues_per_engine
= 8,
377 static const struct kfd_device_info arcturus_device_info
= {
378 .asic_family
= CHIP_ARCTURUS
,
379 .asic_name
= "arcturus",
380 .max_pasid_bits
= 16,
383 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
384 .event_interrupt_class
= &event_interrupt_class_v9
,
385 .num_of_watch_points
= 4,
386 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
387 .supports_cwsr
= true,
388 .needs_iommu_device
= false,
389 .needs_pci_atomics
= false,
390 .num_sdma_engines
= 2,
391 .num_xgmi_sdma_engines
= 6,
392 .num_sdma_queues_per_engine
= 8,
395 static const struct kfd_device_info renoir_device_info
= {
396 .asic_family
= CHIP_RENOIR
,
397 .asic_name
= "renoir",
398 .max_pasid_bits
= 16,
401 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
402 .event_interrupt_class
= &event_interrupt_class_v9
,
403 .num_of_watch_points
= 4,
404 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
405 .supports_cwsr
= true,
406 .needs_iommu_device
= false,
407 .needs_pci_atomics
= false,
408 .num_sdma_engines
= 1,
409 .num_xgmi_sdma_engines
= 0,
410 .num_sdma_queues_per_engine
= 2,
413 static const struct kfd_device_info navi10_device_info
= {
414 .asic_family
= CHIP_NAVI10
,
415 .asic_name
= "navi10",
416 .max_pasid_bits
= 16,
419 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
420 .event_interrupt_class
= &event_interrupt_class_v9
,
421 .num_of_watch_points
= 4,
422 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
423 .needs_iommu_device
= false,
424 .supports_cwsr
= true,
425 .needs_pci_atomics
= true,
426 .num_sdma_engines
= 2,
427 .num_xgmi_sdma_engines
= 0,
428 .num_sdma_queues_per_engine
= 8,
431 static const struct kfd_device_info navi12_device_info
= {
432 .asic_family
= CHIP_NAVI12
,
433 .asic_name
= "navi12",
434 .max_pasid_bits
= 16,
437 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
438 .event_interrupt_class
= &event_interrupt_class_v9
,
439 .num_of_watch_points
= 4,
440 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
441 .needs_iommu_device
= false,
442 .supports_cwsr
= true,
443 .needs_pci_atomics
= true,
444 .num_sdma_engines
= 2,
445 .num_xgmi_sdma_engines
= 0,
446 .num_sdma_queues_per_engine
= 8,
449 static const struct kfd_device_info navi14_device_info
= {
450 .asic_family
= CHIP_NAVI14
,
451 .asic_name
= "navi14",
452 .max_pasid_bits
= 16,
455 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
456 .event_interrupt_class
= &event_interrupt_class_v9
,
457 .num_of_watch_points
= 4,
458 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
459 .needs_iommu_device
= false,
460 .supports_cwsr
= true,
461 .needs_pci_atomics
= true,
462 .num_sdma_engines
= 2,
463 .num_xgmi_sdma_engines
= 0,
464 .num_sdma_queues_per_engine
= 8,
467 static const struct kfd_device_info sienna_cichlid_device_info
= {
468 .asic_family
= CHIP_SIENNA_CICHLID
,
469 .asic_name
= "sienna_cichlid",
470 .max_pasid_bits
= 16,
473 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
474 .event_interrupt_class
= &event_interrupt_class_v9
,
475 .num_of_watch_points
= 4,
476 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
477 .needs_iommu_device
= false,
478 .supports_cwsr
= true,
479 .needs_pci_atomics
= true,
480 .num_sdma_engines
= 4,
481 .num_xgmi_sdma_engines
= 0,
482 .num_sdma_queues_per_engine
= 8,
485 static const struct kfd_device_info navy_flounder_device_info
= {
486 .asic_family
= CHIP_NAVY_FLOUNDER
,
487 .asic_name
= "navy_flounder",
488 .max_pasid_bits
= 16,
491 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
492 .event_interrupt_class
= &event_interrupt_class_v9
,
493 .num_of_watch_points
= 4,
494 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
495 .needs_iommu_device
= false,
496 .supports_cwsr
= true,
497 .needs_pci_atomics
= true,
498 .num_sdma_engines
= 2,
499 .num_xgmi_sdma_engines
= 0,
500 .num_sdma_queues_per_engine
= 8,
503 static const struct kfd_device_info vangogh_device_info
= {
504 .asic_family
= CHIP_VANGOGH
,
505 .asic_name
= "vangogh",
506 .max_pasid_bits
= 16,
509 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
510 .event_interrupt_class
= &event_interrupt_class_v9
,
511 .num_of_watch_points
= 4,
512 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
513 .needs_iommu_device
= false,
514 .supports_cwsr
= true,
515 .needs_pci_atomics
= false,
516 .num_sdma_engines
= 1,
517 .num_xgmi_sdma_engines
= 0,
518 .num_sdma_queues_per_engine
= 2,
521 static const struct kfd_device_info dimgrey_cavefish_device_info
= {
522 .asic_family
= CHIP_DIMGREY_CAVEFISH
,
523 .asic_name
= "dimgrey_cavefish",
524 .max_pasid_bits
= 16,
527 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
528 .event_interrupt_class
= &event_interrupt_class_v9
,
529 .num_of_watch_points
= 4,
530 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
531 .needs_iommu_device
= false,
532 .supports_cwsr
= true,
533 .needs_pci_atomics
= true,
534 .num_sdma_engines
= 2,
535 .num_xgmi_sdma_engines
= 0,
536 .num_sdma_queues_per_engine
= 8,
540 /* For each entry, [0] is regular and [1] is virtualisation device. */
541 static const struct kfd_device_info
*kfd_supported_devices
[][2] = {
542 #ifdef KFD_SUPPORT_IOMMU_V2
543 [CHIP_KAVERI
] = {&kaveri_device_info
, NULL
},
544 [CHIP_CARRIZO
] = {&carrizo_device_info
, NULL
},
546 [CHIP_RAVEN
] = {&raven_device_info
, NULL
},
547 [CHIP_HAWAII
] = {&hawaii_device_info
, NULL
},
548 [CHIP_TONGA
] = {&tonga_device_info
, NULL
},
549 [CHIP_FIJI
] = {&fiji_device_info
, &fiji_vf_device_info
},
550 [CHIP_POLARIS10
] = {&polaris10_device_info
, &polaris10_vf_device_info
},
551 [CHIP_POLARIS11
] = {&polaris11_device_info
, NULL
},
552 [CHIP_POLARIS12
] = {&polaris12_device_info
, NULL
},
553 [CHIP_VEGAM
] = {&vegam_device_info
, NULL
},
554 [CHIP_VEGA10
] = {&vega10_device_info
, &vega10_vf_device_info
},
555 [CHIP_VEGA12
] = {&vega12_device_info
, NULL
},
556 [CHIP_VEGA20
] = {&vega20_device_info
, NULL
},
557 [CHIP_RENOIR
] = {&renoir_device_info
, NULL
},
558 [CHIP_ARCTURUS
] = {&arcturus_device_info
, &arcturus_device_info
},
559 [CHIP_NAVI10
] = {&navi10_device_info
, NULL
},
560 [CHIP_NAVI12
] = {&navi12_device_info
, &navi12_device_info
},
561 [CHIP_NAVI14
] = {&navi14_device_info
, NULL
},
562 [CHIP_SIENNA_CICHLID
] = {&sienna_cichlid_device_info
, &sienna_cichlid_device_info
},
563 [CHIP_NAVY_FLOUNDER
] = {&navy_flounder_device_info
, &navy_flounder_device_info
},
564 [CHIP_VANGOGH
] = {&vangogh_device_info
, NULL
},
565 [CHIP_DIMGREY_CAVEFISH
] = {&dimgrey_cavefish_device_info
, &dimgrey_cavefish_device_info
},
568 static int kfd_gtt_sa_init(struct kfd_dev
*kfd
, unsigned int buf_size
,
569 unsigned int chunk_size
);
570 static void kfd_gtt_sa_fini(struct kfd_dev
*kfd
);
572 static int kfd_resume(struct kfd_dev
*kfd
);
574 struct kfd_dev
*kgd2kfd_probe(struct kgd_dev
*kgd
,
575 struct pci_dev
*pdev
, unsigned int asic_type
, bool vf
)
578 const struct kfd_device_info
*device_info
;
579 const struct kfd2kgd_calls
*f2g
;
581 if (asic_type
>= sizeof(kfd_supported_devices
) / (sizeof(void *) * 2)
582 || asic_type
>= sizeof(kfd2kgd_funcs
) / sizeof(void *)) {
583 dev_err(kfd_device
, "asic_type %d out of range\n", asic_type
);
584 return NULL
; /* asic_type out of range */
587 device_info
= kfd_supported_devices
[asic_type
][vf
];
588 f2g
= kfd2kgd_funcs
[asic_type
];
590 if (!device_info
|| !f2g
) {
591 dev_err(kfd_device
, "%s %s not supported in kfd\n",
592 amdgpu_asic_name
[asic_type
], vf
? "VF" : "");
596 kfd
= kzalloc(sizeof(*kfd
), GFP_KERNEL
);
600 /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
601 * 32 and 64-bit requests are possible and must be
604 kfd
->pci_atomic_requested
= amdgpu_amdkfd_have_atomics_support(kgd
);
605 if (device_info
->needs_pci_atomics
&&
606 !kfd
->pci_atomic_requested
) {
608 "skipped device %x:%x, PCI rejects atomics\n",
609 pdev
->vendor
, pdev
->device
);
615 kfd
->device_info
= device_info
;
617 kfd
->init_complete
= false;
619 atomic_set(&kfd
->compute_profile
, 0);
621 mutex_init(&kfd
->doorbell_mutex
);
622 memset(&kfd
->doorbell_available_index
, 0,
623 sizeof(kfd
->doorbell_available_index
));
625 atomic_set(&kfd
->sram_ecc_flag
, 0);
627 ida_init(&kfd
->doorbell_ida
);
632 static void kfd_cwsr_init(struct kfd_dev
*kfd
)
634 if (cwsr_enable
&& kfd
->device_info
->supports_cwsr
) {
635 if (kfd
->device_info
->asic_family
< CHIP_VEGA10
) {
636 BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex
) > PAGE_SIZE
);
637 kfd
->cwsr_isa
= cwsr_trap_gfx8_hex
;
638 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_gfx8_hex
);
639 } else if (kfd
->device_info
->asic_family
== CHIP_ARCTURUS
) {
640 BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex
) > PAGE_SIZE
);
641 kfd
->cwsr_isa
= cwsr_trap_arcturus_hex
;
642 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_arcturus_hex
);
643 } else if (kfd
->device_info
->asic_family
< CHIP_NAVI10
) {
644 BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex
) > PAGE_SIZE
);
645 kfd
->cwsr_isa
= cwsr_trap_gfx9_hex
;
646 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_gfx9_hex
);
647 } else if (kfd
->device_info
->asic_family
< CHIP_SIENNA_CICHLID
) {
648 BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex
) > PAGE_SIZE
);
649 kfd
->cwsr_isa
= cwsr_trap_nv1x_hex
;
650 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_nv1x_hex
);
652 BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex
) > PAGE_SIZE
);
653 kfd
->cwsr_isa
= cwsr_trap_gfx10_hex
;
654 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_gfx10_hex
);
657 kfd
->cwsr_enabled
= true;
661 static int kfd_gws_init(struct kfd_dev
*kfd
)
665 if (kfd
->dqm
->sched_policy
== KFD_SCHED_POLICY_NO_HWS
)
669 || (kfd
->device_info
->asic_family
== CHIP_VEGA10
670 && kfd
->mec2_fw_version
>= 0x81b3)
671 || (kfd
->device_info
->asic_family
>= CHIP_VEGA12
672 && kfd
->device_info
->asic_family
<= CHIP_RAVEN
673 && kfd
->mec2_fw_version
>= 0x1b3)
674 || (kfd
->device_info
->asic_family
== CHIP_ARCTURUS
675 && kfd
->mec2_fw_version
>= 0x30))
676 ret
= amdgpu_amdkfd_alloc_gws(kfd
->kgd
,
677 amdgpu_amdkfd_get_num_gws(kfd
->kgd
), &kfd
->gws
);
682 static void kfd_smi_init(struct kfd_dev
*dev
) {
683 INIT_LIST_HEAD(&dev
->smi_clients
);
684 spin_lock_init(&dev
->smi_lock
);
687 bool kgd2kfd_device_init(struct kfd_dev
*kfd
,
688 struct drm_device
*ddev
,
689 const struct kgd2kfd_shared_resources
*gpu_resources
)
694 kfd
->mec_fw_version
= amdgpu_amdkfd_get_fw_version(kfd
->kgd
,
696 kfd
->mec2_fw_version
= amdgpu_amdkfd_get_fw_version(kfd
->kgd
,
698 kfd
->sdma_fw_version
= amdgpu_amdkfd_get_fw_version(kfd
->kgd
,
700 kfd
->shared_resources
= *gpu_resources
;
702 kfd
->vm_info
.first_vmid_kfd
= ffs(gpu_resources
->compute_vmid_bitmap
)-1;
703 kfd
->vm_info
.last_vmid_kfd
= fls(gpu_resources
->compute_vmid_bitmap
)-1;
704 kfd
->vm_info
.vmid_num_kfd
= kfd
->vm_info
.last_vmid_kfd
705 - kfd
->vm_info
.first_vmid_kfd
+ 1;
707 /* Verify module parameters regarding mapped process number*/
708 if ((hws_max_conc_proc
< 0)
709 || (hws_max_conc_proc
> kfd
->vm_info
.vmid_num_kfd
)) {
711 "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
712 hws_max_conc_proc
, kfd
->vm_info
.vmid_num_kfd
,
713 kfd
->vm_info
.vmid_num_kfd
);
714 kfd
->max_proc_per_quantum
= kfd
->vm_info
.vmid_num_kfd
;
716 kfd
->max_proc_per_quantum
= hws_max_conc_proc
;
718 /* calculate max size of mqds needed for queues */
719 size
= max_num_of_queues_per_device
*
720 kfd
->device_info
->mqd_size_aligned
;
723 * calculate max size of runlist packet.
724 * There can be only 2 packets at once
726 size
+= (KFD_MAX_NUM_OF_PROCESSES
* sizeof(struct pm4_mes_map_process
) +
727 max_num_of_queues_per_device
* sizeof(struct pm4_mes_map_queues
)
728 + sizeof(struct pm4_mes_runlist
)) * 2;
730 /* Add size of HIQ & DIQ */
731 size
+= KFD_KERNEL_QUEUE_SIZE
* 2;
733 /* add another 512KB for all other allocations on gart (HPD, fences) */
736 if (amdgpu_amdkfd_alloc_gtt_mem(
737 kfd
->kgd
, size
, &kfd
->gtt_mem
,
738 &kfd
->gtt_start_gpu_addr
, &kfd
->gtt_start_cpu_ptr
,
740 dev_err(kfd_device
, "Could not allocate %d bytes\n", size
);
741 goto alloc_gtt_mem_failure
;
744 dev_info(kfd_device
, "Allocated %d bytes on gart\n", size
);
746 /* Initialize GTT sa with 512 byte chunk size */
747 if (kfd_gtt_sa_init(kfd
, size
, 512) != 0) {
748 dev_err(kfd_device
, "Error initializing gtt sub-allocator\n");
749 goto kfd_gtt_sa_init_error
;
752 if (kfd_doorbell_init(kfd
)) {
754 "Error initializing doorbell aperture\n");
755 goto kfd_doorbell_error
;
758 kfd
->hive_id
= amdgpu_amdkfd_get_hive_id(kfd
->kgd
);
760 kfd
->noretry
= amdgpu_amdkfd_get_noretry(kfd
->kgd
);
762 if (kfd_interrupt_init(kfd
)) {
763 dev_err(kfd_device
, "Error initializing interrupts\n");
764 goto kfd_interrupt_error
;
767 kfd
->dqm
= device_queue_manager_init(kfd
);
769 dev_err(kfd_device
, "Error initializing queue manager\n");
770 goto device_queue_manager_error
;
773 /* If supported on this device, allocate global GWS that is shared
774 * by all KFD processes
776 if (kfd_gws_init(kfd
)) {
777 dev_err(kfd_device
, "Could not allocate %d gws\n",
778 amdgpu_amdkfd_get_num_gws(kfd
->kgd
));
782 /* If CRAT is broken, won't set iommu enabled */
783 kfd_double_confirm_iommu_support(kfd
);
785 if (kfd_iommu_device_init(kfd
)) {
786 dev_err(kfd_device
, "Error initializing iommuv2\n");
787 goto device_iommu_error
;
793 goto kfd_resume_error
;
797 if (kfd_topology_add_device(kfd
)) {
798 dev_err(kfd_device
, "Error adding device to topology\n");
799 goto kfd_topology_add_device_error
;
804 kfd
->init_complete
= true;
805 dev_info(kfd_device
, "added device %x:%x\n", kfd
->pdev
->vendor
,
808 pr_debug("Starting kfd with the following scheduling policy %d\n",
809 kfd
->dqm
->sched_policy
);
813 kfd_topology_add_device_error
:
817 device_queue_manager_uninit(kfd
->dqm
);
818 device_queue_manager_error
:
819 kfd_interrupt_exit(kfd
);
821 kfd_doorbell_fini(kfd
);
823 kfd_gtt_sa_fini(kfd
);
824 kfd_gtt_sa_init_error
:
825 amdgpu_amdkfd_free_gtt_mem(kfd
->kgd
, kfd
->gtt_mem
);
826 alloc_gtt_mem_failure
:
828 amdgpu_amdkfd_free_gws(kfd
->kgd
, kfd
->gws
);
830 "device %x:%x NOT added due to errors\n",
831 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
833 return kfd
->init_complete
;
836 void kgd2kfd_device_exit(struct kfd_dev
*kfd
)
838 if (kfd
->init_complete
) {
839 kgd2kfd_suspend(kfd
, false);
840 device_queue_manager_uninit(kfd
->dqm
);
841 kfd_interrupt_exit(kfd
);
842 kfd_topology_remove_device(kfd
);
843 kfd_doorbell_fini(kfd
);
844 ida_destroy(&kfd
->doorbell_ida
);
845 kfd_gtt_sa_fini(kfd
);
846 amdgpu_amdkfd_free_gtt_mem(kfd
->kgd
, kfd
->gtt_mem
);
848 amdgpu_amdkfd_free_gws(kfd
->kgd
, kfd
->gws
);
854 int kgd2kfd_pre_reset(struct kfd_dev
*kfd
)
856 if (!kfd
->init_complete
)
859 kfd_smi_event_update_gpu_reset(kfd
, false);
861 kfd
->dqm
->ops
.pre_reset(kfd
->dqm
);
863 kgd2kfd_suspend(kfd
, false);
865 kfd_signal_reset_event(kfd
);
870 * Fix me. KFD won't be able to resume existing process for now.
871 * We will keep all existing process in a evicted state and
872 * wait the process to be terminated.
875 int kgd2kfd_post_reset(struct kfd_dev
*kfd
)
879 if (!kfd
->init_complete
)
882 ret
= kfd_resume(kfd
);
885 atomic_dec(&kfd_locked
);
887 atomic_set(&kfd
->sram_ecc_flag
, 0);
889 kfd_smi_event_update_gpu_reset(kfd
, true);
894 bool kfd_is_locked(void)
896 return (atomic_read(&kfd_locked
) > 0);
899 void kgd2kfd_suspend(struct kfd_dev
*kfd
, bool run_pm
)
901 if (!kfd
->init_complete
)
904 /* for runtime suspend, skip locking kfd */
906 /* For first KFD device suspend all the KFD processes */
907 if (atomic_inc_return(&kfd_locked
) == 1)
908 kfd_suspend_all_processes();
911 kfd
->dqm
->ops
.stop(kfd
->dqm
);
912 kfd_iommu_suspend(kfd
);
915 int kgd2kfd_resume(struct kfd_dev
*kfd
, bool run_pm
)
919 if (!kfd
->init_complete
)
922 ret
= kfd_resume(kfd
);
926 /* for runtime resume, skip unlocking kfd */
928 count
= atomic_dec_return(&kfd_locked
);
929 WARN_ONCE(count
< 0, "KFD suspend / resume ref. error");
931 ret
= kfd_resume_all_processes();
937 static int kfd_resume(struct kfd_dev
*kfd
)
941 err
= kfd_iommu_resume(kfd
);
944 "Failed to resume IOMMU for device %x:%x\n",
945 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
949 err
= kfd
->dqm
->ops
.start(kfd
->dqm
);
952 "Error starting queue manager for device %x:%x\n",
953 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
954 goto dqm_start_error
;
960 kfd_iommu_suspend(kfd
);
964 static inline void kfd_queue_work(struct workqueue_struct
*wq
,
965 struct work_struct
*work
)
969 cpu
= new_cpu
= smp_processor_id();
971 new_cpu
= cpumask_next(new_cpu
, cpu_online_mask
) % nr_cpu_ids
;
972 if (cpu_to_node(new_cpu
) == numa_node_id())
974 } while (cpu
!= new_cpu
);
976 queue_work_on(new_cpu
, wq
, work
);
979 /* This is called directly from KGD at ISR. */
980 void kgd2kfd_interrupt(struct kfd_dev
*kfd
, const void *ih_ring_entry
)
982 uint32_t patched_ihre
[KFD_MAX_RING_ENTRY_SIZE
];
983 bool is_patched
= false;
986 if (!kfd
->init_complete
)
989 if (kfd
->device_info
->ih_ring_entry_size
> sizeof(patched_ihre
)) {
990 dev_err_once(kfd_device
, "Ring entry too small\n");
994 spin_lock_irqsave(&kfd
->interrupt_lock
, flags
);
996 if (kfd
->interrupts_active
997 && interrupt_is_wanted(kfd
, ih_ring_entry
,
998 patched_ihre
, &is_patched
)
999 && enqueue_ih_ring_entry(kfd
,
1000 is_patched
? patched_ihre
: ih_ring_entry
))
1001 kfd_queue_work(kfd
->ih_wq
, &kfd
->interrupt_work
);
1003 spin_unlock_irqrestore(&kfd
->interrupt_lock
, flags
);
1006 int kgd2kfd_quiesce_mm(struct mm_struct
*mm
)
1008 struct kfd_process
*p
;
1011 /* Because we are called from arbitrary context (workqueue) as opposed
1012 * to process context, kfd_process could attempt to exit while we are
1013 * running so the lookup function increments the process ref count.
1015 p
= kfd_lookup_process_by_mm(mm
);
1019 WARN(debug_evictions
, "Evicting pid %d", p
->lead_thread
->pid
);
1020 r
= kfd_process_evict_queues(p
);
1022 kfd_unref_process(p
);
1026 int kgd2kfd_resume_mm(struct mm_struct
*mm
)
1028 struct kfd_process
*p
;
1031 /* Because we are called from arbitrary context (workqueue) as opposed
1032 * to process context, kfd_process could attempt to exit while we are
1033 * running so the lookup function increments the process ref count.
1035 p
= kfd_lookup_process_by_mm(mm
);
1039 r
= kfd_process_restore_queues(p
);
1041 kfd_unref_process(p
);
1045 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1046 * prepare for safe eviction of KFD BOs that belong to the specified
1049 * @mm: mm_struct that identifies the specified KFD process
1050 * @fence: eviction fence attached to KFD process BOs
1053 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct
*mm
,
1054 struct dma_fence
*fence
)
1056 struct kfd_process
*p
;
1057 unsigned long active_time
;
1058 unsigned long delay_jiffies
= msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS
);
1063 if (dma_fence_is_signaled(fence
))
1066 p
= kfd_lookup_process_by_mm(mm
);
1070 if (fence
->seqno
== p
->last_eviction_seqno
)
1073 p
->last_eviction_seqno
= fence
->seqno
;
1075 /* Avoid KFD process starvation. Wait for at least
1076 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1078 active_time
= get_jiffies_64() - p
->last_restore_timestamp
;
1079 if (delay_jiffies
> active_time
)
1080 delay_jiffies
-= active_time
;
1084 /* During process initialization eviction_work.dwork is initialized
1085 * to kfd_evict_bo_worker
1087 WARN(debug_evictions
, "Scheduling eviction of pid %d in %ld jiffies",
1088 p
->lead_thread
->pid
, delay_jiffies
);
1089 schedule_delayed_work(&p
->eviction_work
, delay_jiffies
);
1091 kfd_unref_process(p
);
1095 static int kfd_gtt_sa_init(struct kfd_dev
*kfd
, unsigned int buf_size
,
1096 unsigned int chunk_size
)
1098 unsigned int num_of_longs
;
1100 if (WARN_ON(buf_size
< chunk_size
))
1102 if (WARN_ON(buf_size
== 0))
1104 if (WARN_ON(chunk_size
== 0))
1107 kfd
->gtt_sa_chunk_size
= chunk_size
;
1108 kfd
->gtt_sa_num_of_chunks
= buf_size
/ chunk_size
;
1110 num_of_longs
= (kfd
->gtt_sa_num_of_chunks
+ BITS_PER_LONG
- 1) /
1113 kfd
->gtt_sa_bitmap
= kcalloc(num_of_longs
, sizeof(long), GFP_KERNEL
);
1115 if (!kfd
->gtt_sa_bitmap
)
1118 pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1119 kfd
->gtt_sa_num_of_chunks
, kfd
->gtt_sa_bitmap
);
1121 mutex_init(&kfd
->gtt_sa_lock
);
1127 static void kfd_gtt_sa_fini(struct kfd_dev
*kfd
)
1129 mutex_destroy(&kfd
->gtt_sa_lock
);
1130 kfree(kfd
->gtt_sa_bitmap
);
1133 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr
,
1134 unsigned int bit_num
,
1135 unsigned int chunk_size
)
1137 return start_addr
+ bit_num
* chunk_size
;
1140 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr
,
1141 unsigned int bit_num
,
1142 unsigned int chunk_size
)
1144 return (uint32_t *) ((uint64_t) start_addr
+ bit_num
* chunk_size
);
1147 int kfd_gtt_sa_allocate(struct kfd_dev
*kfd
, unsigned int size
,
1148 struct kfd_mem_obj
**mem_obj
)
1150 unsigned int found
, start_search
, cur_size
;
1155 if (size
> kfd
->gtt_sa_num_of_chunks
* kfd
->gtt_sa_chunk_size
)
1158 *mem_obj
= kzalloc(sizeof(struct kfd_mem_obj
), GFP_KERNEL
);
1162 pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj
, size
);
1166 mutex_lock(&kfd
->gtt_sa_lock
);
1168 kfd_gtt_restart_search
:
1169 /* Find the first chunk that is free */
1170 found
= find_next_zero_bit(kfd
->gtt_sa_bitmap
,
1171 kfd
->gtt_sa_num_of_chunks
,
1174 pr_debug("Found = %d\n", found
);
1176 /* If there wasn't any free chunk, bail out */
1177 if (found
== kfd
->gtt_sa_num_of_chunks
)
1178 goto kfd_gtt_no_free_chunk
;
1180 /* Update fields of mem_obj */
1181 (*mem_obj
)->range_start
= found
;
1182 (*mem_obj
)->range_end
= found
;
1183 (*mem_obj
)->gpu_addr
= kfd_gtt_sa_calc_gpu_addr(
1184 kfd
->gtt_start_gpu_addr
,
1186 kfd
->gtt_sa_chunk_size
);
1187 (*mem_obj
)->cpu_ptr
= kfd_gtt_sa_calc_cpu_addr(
1188 kfd
->gtt_start_cpu_ptr
,
1190 kfd
->gtt_sa_chunk_size
);
1192 pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1193 (uint64_t *) (*mem_obj
)->gpu_addr
, (*mem_obj
)->cpu_ptr
);
1195 /* If we need only one chunk, mark it as allocated and get out */
1196 if (size
<= kfd
->gtt_sa_chunk_size
) {
1197 pr_debug("Single bit\n");
1198 set_bit(found
, kfd
->gtt_sa_bitmap
);
1202 /* Otherwise, try to see if we have enough contiguous chunks */
1203 cur_size
= size
- kfd
->gtt_sa_chunk_size
;
1205 (*mem_obj
)->range_end
=
1206 find_next_zero_bit(kfd
->gtt_sa_bitmap
,
1207 kfd
->gtt_sa_num_of_chunks
, ++found
);
1209 * If next free chunk is not contiguous than we need to
1210 * restart our search from the last free chunk we found (which
1211 * wasn't contiguous to the previous ones
1213 if ((*mem_obj
)->range_end
!= found
) {
1214 start_search
= found
;
1215 goto kfd_gtt_restart_search
;
1219 * If we reached end of buffer, bail out with error
1221 if (found
== kfd
->gtt_sa_num_of_chunks
)
1222 goto kfd_gtt_no_free_chunk
;
1224 /* Check if we don't need another chunk */
1225 if (cur_size
<= kfd
->gtt_sa_chunk_size
)
1228 cur_size
-= kfd
->gtt_sa_chunk_size
;
1230 } while (cur_size
> 0);
1232 pr_debug("range_start = %d, range_end = %d\n",
1233 (*mem_obj
)->range_start
, (*mem_obj
)->range_end
);
1235 /* Mark the chunks as allocated */
1236 for (found
= (*mem_obj
)->range_start
;
1237 found
<= (*mem_obj
)->range_end
;
1239 set_bit(found
, kfd
->gtt_sa_bitmap
);
1242 mutex_unlock(&kfd
->gtt_sa_lock
);
1245 kfd_gtt_no_free_chunk
:
1246 pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj
);
1247 mutex_unlock(&kfd
->gtt_sa_lock
);
1252 int kfd_gtt_sa_free(struct kfd_dev
*kfd
, struct kfd_mem_obj
*mem_obj
)
1256 /* Act like kfree when trying to free a NULL object */
1260 pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1261 mem_obj
, mem_obj
->range_start
, mem_obj
->range_end
);
1263 mutex_lock(&kfd
->gtt_sa_lock
);
1265 /* Mark the chunks as free */
1266 for (bit
= mem_obj
->range_start
;
1267 bit
<= mem_obj
->range_end
;
1269 clear_bit(bit
, kfd
->gtt_sa_bitmap
);
1271 mutex_unlock(&kfd
->gtt_sa_lock
);
1277 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev
*kfd
)
1280 atomic_inc(&kfd
->sram_ecc_flag
);
1283 void kfd_inc_compute_active(struct kfd_dev
*kfd
)
1285 if (atomic_inc_return(&kfd
->compute_profile
) == 1)
1286 amdgpu_amdkfd_set_compute_idle(kfd
->kgd
, false);
1289 void kfd_dec_compute_active(struct kfd_dev
*kfd
)
1291 int count
= atomic_dec_return(&kfd
->compute_profile
);
1294 amdgpu_amdkfd_set_compute_idle(kfd
->kgd
, true);
1295 WARN_ONCE(count
< 0, "Compute profile ref. count error");
1298 void kgd2kfd_smi_event_throttle(struct kfd_dev
*kfd
, uint32_t throttle_bitmask
)
1301 kfd_smi_event_update_thermal_throttling(kfd
, throttle_bitmask
);
1304 #if defined(CONFIG_DEBUG_FS)
1306 /* This function will send a package to HIQ to hang the HWS
1307 * which will trigger a GPU reset and bring the HWS back to normal state
1309 int kfd_debugfs_hang_hws(struct kfd_dev
*dev
)
1313 if (dev
->dqm
->sched_policy
!= KFD_SCHED_POLICY_HWS
) {
1314 pr_err("HWS is not enabled");
1318 r
= pm_debugfs_hang_hws(&dev
->dqm
->packets
);
1320 r
= dqm_debugfs_execute_queues(dev
->dqm
);