2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include <linux/mm_types.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/mm.h>
28 #include <linux/uaccess.h>
29 #include <linux/mman.h>
30 #include <linux/memory.h>
32 #include "kfd_events.h"
33 #include "kfd_iommu.h"
34 #include <linux/device.h>
37 * Wrapper around wait_queue_entry_t
39 struct kfd_event_waiter
{
40 wait_queue_entry_t wait
;
41 struct kfd_event
*event
; /* Event to wait for */
42 bool activated
; /* Becomes true when event is signaled */
46 * Each signal event needs a 64-bit signal slot where the signaler will write
47 * a 1 before sending an interrupt. (This is needed because some interrupts
48 * do not contain enough spare data bits to identify an event.)
49 * We get whole pages and map them to the process VA.
50 * Individual signal events use their event_id as slot index.
52 struct kfd_signal_page
{
53 uint64_t *kernel_address
;
54 uint64_t __user
*user_address
;
55 bool need_to_free_pages
;
59 static uint64_t *page_slots(struct kfd_signal_page
*page
)
61 return page
->kernel_address
;
64 static struct kfd_signal_page
*allocate_signal_page(struct kfd_process
*p
)
67 struct kfd_signal_page
*page
;
69 page
= kzalloc(sizeof(*page
), GFP_KERNEL
);
73 backing_store
= (void *) __get_free_pages(GFP_KERNEL
,
74 get_order(KFD_SIGNAL_EVENT_LIMIT
* 8));
76 goto fail_alloc_signal_store
;
78 /* Initialize all events to unsignaled */
79 memset(backing_store
, (uint8_t) UNSIGNALED_EVENT_SLOT
,
80 KFD_SIGNAL_EVENT_LIMIT
* 8);
82 page
->kernel_address
= backing_store
;
83 page
->need_to_free_pages
= true;
84 pr_debug("Allocated new event signal page at %p, for process %p\n",
89 fail_alloc_signal_store
:
94 static int allocate_event_notification_slot(struct kfd_process
*p
,
99 if (!p
->signal_page
) {
100 p
->signal_page
= allocate_signal_page(p
);
103 /* Oldest user mode expects 256 event slots */
104 p
->signal_mapped_size
= 256*8;
108 * Compatibility with old user mode: Only use signal slots
109 * user mode has mapped, may be less than
110 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
111 * of the event limit without breaking user mode.
113 id
= idr_alloc(&p
->event_idr
, ev
, 0, p
->signal_mapped_size
/ 8,
119 page_slots(p
->signal_page
)[id
] = UNSIGNALED_EVENT_SLOT
;
125 * Assumes that p->event_mutex is held and of course that p is not going
126 * away (current or locked).
128 static struct kfd_event
*lookup_event_by_id(struct kfd_process
*p
, uint32_t id
)
130 return idr_find(&p
->event_idr
, id
);
134 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
135 * @p: Pointer to struct kfd_process
137 * @bits: Number of valid bits in @id
139 * Finds the first signaled event with a matching partial ID. If no
140 * matching signaled event is found, returns NULL. In that case the
141 * caller should assume that the partial ID is invalid and do an
142 * exhaustive search of all siglaned events.
144 * If multiple events with the same partial ID signal at the same
145 * time, they will be found one interrupt at a time, not necessarily
146 * in the same order the interrupts occurred. As long as the number of
147 * interrupts is correct, all signaled events will be seen by the
150 static struct kfd_event
*lookup_signaled_event_by_partial_id(
151 struct kfd_process
*p
, uint32_t id
, uint32_t bits
)
153 struct kfd_event
*ev
;
155 if (!p
->signal_page
|| id
>= KFD_SIGNAL_EVENT_LIMIT
)
158 /* Fast path for the common case that @id is not a partial ID
159 * and we only need a single lookup.
161 if (bits
> 31 || (1U << bits
) >= KFD_SIGNAL_EVENT_LIMIT
) {
162 if (page_slots(p
->signal_page
)[id
] == UNSIGNALED_EVENT_SLOT
)
165 return idr_find(&p
->event_idr
, id
);
168 /* General case for partial IDs: Iterate over all matching IDs
169 * and find the first one that has signaled.
171 for (ev
= NULL
; id
< KFD_SIGNAL_EVENT_LIMIT
&& !ev
; id
+= 1U << bits
) {
172 if (page_slots(p
->signal_page
)[id
] == UNSIGNALED_EVENT_SLOT
)
175 ev
= idr_find(&p
->event_idr
, id
);
181 static int create_signal_event(struct file
*devkfd
,
182 struct kfd_process
*p
,
183 struct kfd_event
*ev
)
187 if (p
->signal_mapped_size
&&
188 p
->signal_event_count
== p
->signal_mapped_size
/ 8) {
189 if (!p
->signal_event_limit_reached
) {
190 pr_debug("Signal event wasn't created because limit was reached\n");
191 p
->signal_event_limit_reached
= true;
196 ret
= allocate_event_notification_slot(p
, ev
);
198 pr_warn("Signal event wasn't created because out of kernel memory\n");
202 p
->signal_event_count
++;
204 ev
->user_signal_address
= &p
->signal_page
->user_address
[ev
->event_id
];
205 pr_debug("Signal event number %zu created with id %d, address %p\n",
206 p
->signal_event_count
, ev
->event_id
,
207 ev
->user_signal_address
);
212 static int create_other_event(struct kfd_process
*p
, struct kfd_event
*ev
)
214 /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
215 * intentional integer overflow to -1 without a compiler
216 * warning. idr_alloc treats a negative value as "maximum
219 int id
= idr_alloc(&p
->event_idr
, ev
, KFD_FIRST_NONSIGNAL_EVENT_ID
,
220 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID
+ 1,
230 void kfd_event_init_process(struct kfd_process
*p
)
232 mutex_init(&p
->event_mutex
);
233 idr_init(&p
->event_idr
);
234 p
->signal_page
= NULL
;
235 p
->signal_event_count
= 0;
238 static void destroy_event(struct kfd_process
*p
, struct kfd_event
*ev
)
240 struct kfd_event_waiter
*waiter
;
242 /* Wake up pending waiters. They will return failure */
243 list_for_each_entry(waiter
, &ev
->wq
.head
, wait
.entry
)
244 waiter
->event
= NULL
;
245 wake_up_all(&ev
->wq
);
247 if (ev
->type
== KFD_EVENT_TYPE_SIGNAL
||
248 ev
->type
== KFD_EVENT_TYPE_DEBUG
)
249 p
->signal_event_count
--;
251 idr_remove(&p
->event_idr
, ev
->event_id
);
255 static void destroy_events(struct kfd_process
*p
)
257 struct kfd_event
*ev
;
260 idr_for_each_entry(&p
->event_idr
, ev
, id
)
261 destroy_event(p
, ev
);
262 idr_destroy(&p
->event_idr
);
266 * We assume that the process is being destroyed and there is no need to
267 * unmap the pages or keep bookkeeping data in order.
269 static void shutdown_signal_page(struct kfd_process
*p
)
271 struct kfd_signal_page
*page
= p
->signal_page
;
274 if (page
->need_to_free_pages
)
275 free_pages((unsigned long)page
->kernel_address
,
276 get_order(KFD_SIGNAL_EVENT_LIMIT
* 8));
281 void kfd_event_free_process(struct kfd_process
*p
)
284 shutdown_signal_page(p
);
287 static bool event_can_be_gpu_signaled(const struct kfd_event
*ev
)
289 return ev
->type
== KFD_EVENT_TYPE_SIGNAL
||
290 ev
->type
== KFD_EVENT_TYPE_DEBUG
;
293 static bool event_can_be_cpu_signaled(const struct kfd_event
*ev
)
295 return ev
->type
== KFD_EVENT_TYPE_SIGNAL
;
298 int kfd_event_page_set(struct kfd_process
*p
, void *kernel_address
,
301 struct kfd_signal_page
*page
;
306 page
= kzalloc(sizeof(*page
), GFP_KERNEL
);
310 /* Initialize all events to unsignaled */
311 memset(kernel_address
, (uint8_t) UNSIGNALED_EVENT_SLOT
,
312 KFD_SIGNAL_EVENT_LIMIT
* 8);
314 page
->kernel_address
= kernel_address
;
316 p
->signal_page
= page
;
317 p
->signal_mapped_size
= size
;
322 int kfd_event_create(struct file
*devkfd
, struct kfd_process
*p
,
323 uint32_t event_type
, bool auto_reset
, uint32_t node_id
,
324 uint32_t *event_id
, uint32_t *event_trigger_data
,
325 uint64_t *event_page_offset
, uint32_t *event_slot_index
)
328 struct kfd_event
*ev
= kzalloc(sizeof(*ev
), GFP_KERNEL
);
333 ev
->type
= event_type
;
334 ev
->auto_reset
= auto_reset
;
335 ev
->signaled
= false;
337 init_waitqueue_head(&ev
->wq
);
339 *event_page_offset
= 0;
341 mutex_lock(&p
->event_mutex
);
343 switch (event_type
) {
344 case KFD_EVENT_TYPE_SIGNAL
:
345 case KFD_EVENT_TYPE_DEBUG
:
346 ret
= create_signal_event(devkfd
, p
, ev
);
348 *event_page_offset
= KFD_MMAP_TYPE_EVENTS
;
349 *event_slot_index
= ev
->event_id
;
353 ret
= create_other_event(p
, ev
);
358 *event_id
= ev
->event_id
;
359 *event_trigger_data
= ev
->event_id
;
364 mutex_unlock(&p
->event_mutex
);
369 /* Assumes that p is current. */
370 int kfd_event_destroy(struct kfd_process
*p
, uint32_t event_id
)
372 struct kfd_event
*ev
;
375 mutex_lock(&p
->event_mutex
);
377 ev
= lookup_event_by_id(p
, event_id
);
380 destroy_event(p
, ev
);
384 mutex_unlock(&p
->event_mutex
);
388 static void set_event(struct kfd_event
*ev
)
390 struct kfd_event_waiter
*waiter
;
392 /* Auto reset if the list is non-empty and we're waking
393 * someone. waitqueue_active is safe here because we're
394 * protected by the p->event_mutex, which is also held when
395 * updating the wait queues in kfd_wait_on_events.
397 ev
->signaled
= !ev
->auto_reset
|| !waitqueue_active(&ev
->wq
);
399 list_for_each_entry(waiter
, &ev
->wq
.head
, wait
.entry
)
400 waiter
->activated
= true;
402 wake_up_all(&ev
->wq
);
405 /* Assumes that p is current. */
406 int kfd_set_event(struct kfd_process
*p
, uint32_t event_id
)
409 struct kfd_event
*ev
;
411 mutex_lock(&p
->event_mutex
);
413 ev
= lookup_event_by_id(p
, event_id
);
415 if (ev
&& event_can_be_cpu_signaled(ev
))
420 mutex_unlock(&p
->event_mutex
);
424 static void reset_event(struct kfd_event
*ev
)
426 ev
->signaled
= false;
429 /* Assumes that p is current. */
430 int kfd_reset_event(struct kfd_process
*p
, uint32_t event_id
)
433 struct kfd_event
*ev
;
435 mutex_lock(&p
->event_mutex
);
437 ev
= lookup_event_by_id(p
, event_id
);
439 if (ev
&& event_can_be_cpu_signaled(ev
))
444 mutex_unlock(&p
->event_mutex
);
449 static void acknowledge_signal(struct kfd_process
*p
, struct kfd_event
*ev
)
451 page_slots(p
->signal_page
)[ev
->event_id
] = UNSIGNALED_EVENT_SLOT
;
454 static void set_event_from_interrupt(struct kfd_process
*p
,
455 struct kfd_event
*ev
)
457 if (ev
&& event_can_be_gpu_signaled(ev
)) {
458 acknowledge_signal(p
, ev
);
463 void kfd_signal_event_interrupt(u32 pasid
, uint32_t partial_id
,
464 uint32_t valid_id_bits
)
466 struct kfd_event
*ev
= NULL
;
469 * Because we are called from arbitrary context (workqueue) as opposed
470 * to process context, kfd_process could attempt to exit while we are
471 * running so the lookup function increments the process ref count.
473 struct kfd_process
*p
= kfd_lookup_process_by_pasid(pasid
);
476 return; /* Presumably process exited. */
478 mutex_lock(&p
->event_mutex
);
481 ev
= lookup_signaled_event_by_partial_id(p
, partial_id
,
484 set_event_from_interrupt(p
, ev
);
485 } else if (p
->signal_page
) {
487 * Partial ID lookup failed. Assume that the event ID
488 * in the interrupt payload was invalid and do an
489 * exhaustive search of signaled events.
491 uint64_t *slots
= page_slots(p
->signal_page
);
495 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
496 partial_id
, valid_id_bits
);
498 if (p
->signal_event_count
< KFD_SIGNAL_EVENT_LIMIT
/ 64) {
499 /* With relatively few events, it's faster to
500 * iterate over the event IDR
502 idr_for_each_entry(&p
->event_idr
, ev
, id
) {
503 if (id
>= KFD_SIGNAL_EVENT_LIMIT
)
506 if (slots
[id
] != UNSIGNALED_EVENT_SLOT
)
507 set_event_from_interrupt(p
, ev
);
510 /* With relatively many events, it's faster to
511 * iterate over the signal slots and lookup
512 * only signaled events from the IDR.
514 for (id
= 0; id
< KFD_SIGNAL_EVENT_LIMIT
; id
++)
515 if (slots
[id
] != UNSIGNALED_EVENT_SLOT
) {
516 ev
= lookup_event_by_id(p
, id
);
517 set_event_from_interrupt(p
, ev
);
522 mutex_unlock(&p
->event_mutex
);
523 kfd_unref_process(p
);
526 static struct kfd_event_waiter
*alloc_event_waiters(uint32_t num_events
)
528 struct kfd_event_waiter
*event_waiters
;
531 event_waiters
= kmalloc_array(num_events
,
532 sizeof(struct kfd_event_waiter
),
535 for (i
= 0; (event_waiters
) && (i
< num_events
) ; i
++) {
536 init_wait(&event_waiters
[i
].wait
);
537 event_waiters
[i
].activated
= false;
540 return event_waiters
;
543 static int init_event_waiter_get_status(struct kfd_process
*p
,
544 struct kfd_event_waiter
*waiter
,
547 struct kfd_event
*ev
= lookup_event_by_id(p
, event_id
);
553 waiter
->activated
= ev
->signaled
;
554 ev
->signaled
= ev
->signaled
&& !ev
->auto_reset
;
559 static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter
*waiter
)
561 struct kfd_event
*ev
= waiter
->event
;
563 /* Only add to the wait list if we actually need to
564 * wait on this event.
566 if (!waiter
->activated
)
567 add_wait_queue(&ev
->wq
, &waiter
->wait
);
570 /* test_event_condition - Test condition of events being waited for
571 * @all: Return completion only if all events have signaled
572 * @num_events: Number of events to wait for
573 * @event_waiters: Array of event waiters, one per event
575 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
576 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
577 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
578 * the events have been destroyed.
580 static uint32_t test_event_condition(bool all
, uint32_t num_events
,
581 struct kfd_event_waiter
*event_waiters
)
584 uint32_t activated_count
= 0;
586 for (i
= 0; i
< num_events
; i
++) {
587 if (!event_waiters
[i
].event
)
588 return KFD_IOC_WAIT_RESULT_FAIL
;
590 if (event_waiters
[i
].activated
) {
592 return KFD_IOC_WAIT_RESULT_COMPLETE
;
598 return activated_count
== num_events
?
599 KFD_IOC_WAIT_RESULT_COMPLETE
: KFD_IOC_WAIT_RESULT_TIMEOUT
;
603 * Copy event specific data, if defined.
604 * Currently only memory exception events have additional data to copy to user
606 static int copy_signaled_event_data(uint32_t num_events
,
607 struct kfd_event_waiter
*event_waiters
,
608 struct kfd_event_data __user
*data
)
610 struct kfd_hsa_memory_exception_data
*src
;
611 struct kfd_hsa_memory_exception_data __user
*dst
;
612 struct kfd_event_waiter
*waiter
;
613 struct kfd_event
*event
;
616 for (i
= 0; i
< num_events
; i
++) {
617 waiter
= &event_waiters
[i
];
618 event
= waiter
->event
;
619 if (waiter
->activated
&& event
->type
== KFD_EVENT_TYPE_MEMORY
) {
620 dst
= &data
[i
].memory_exception_data
;
621 src
= &event
->memory_exception_data
;
622 if (copy_to_user(dst
, src
,
623 sizeof(struct kfd_hsa_memory_exception_data
)))
634 static long user_timeout_to_jiffies(uint32_t user_timeout_ms
)
636 if (user_timeout_ms
== KFD_EVENT_TIMEOUT_IMMEDIATE
)
639 if (user_timeout_ms
== KFD_EVENT_TIMEOUT_INFINITE
)
640 return MAX_SCHEDULE_TIMEOUT
;
643 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
644 * but we consider them finite.
645 * This hack is wrong, but nobody is likely to notice.
647 user_timeout_ms
= min_t(uint32_t, user_timeout_ms
, 0x7FFFFFFF);
649 return msecs_to_jiffies(user_timeout_ms
) + 1;
652 static void free_waiters(uint32_t num_events
, struct kfd_event_waiter
*waiters
)
656 for (i
= 0; i
< num_events
; i
++)
657 if (waiters
[i
].event
)
658 remove_wait_queue(&waiters
[i
].event
->wq
,
664 int kfd_wait_on_events(struct kfd_process
*p
,
665 uint32_t num_events
, void __user
*data
,
666 bool all
, uint32_t user_timeout_ms
,
667 uint32_t *wait_result
)
669 struct kfd_event_data __user
*events
=
670 (struct kfd_event_data __user
*) data
;
674 struct kfd_event_waiter
*event_waiters
= NULL
;
675 long timeout
= user_timeout_to_jiffies(user_timeout_ms
);
677 event_waiters
= alloc_event_waiters(num_events
);
678 if (!event_waiters
) {
683 mutex_lock(&p
->event_mutex
);
685 for (i
= 0; i
< num_events
; i
++) {
686 struct kfd_event_data event_data
;
688 if (copy_from_user(&event_data
, &events
[i
],
689 sizeof(struct kfd_event_data
))) {
694 ret
= init_event_waiter_get_status(p
, &event_waiters
[i
],
695 event_data
.event_id
);
700 /* Check condition once. */
701 *wait_result
= test_event_condition(all
, num_events
, event_waiters
);
702 if (*wait_result
== KFD_IOC_WAIT_RESULT_COMPLETE
) {
703 ret
= copy_signaled_event_data(num_events
,
704 event_waiters
, events
);
706 } else if (WARN_ON(*wait_result
== KFD_IOC_WAIT_RESULT_FAIL
)) {
707 /* This should not happen. Events shouldn't be
708 * destroyed while we're holding the event_mutex
713 /* Add to wait lists if we need to wait. */
714 for (i
= 0; i
< num_events
; i
++)
715 init_event_waiter_add_to_waitlist(&event_waiters
[i
]);
717 mutex_unlock(&p
->event_mutex
);
720 if (fatal_signal_pending(current
)) {
725 if (signal_pending(current
)) {
727 * This is wrong when a nonzero, non-infinite timeout
728 * is specified. We need to use
729 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
730 * contains a union with data for each user and it's
731 * in generic kernel code that I don't want to
738 /* Set task state to interruptible sleep before
739 * checking wake-up conditions. A concurrent wake-up
740 * will put the task back into runnable state. In that
741 * case schedule_timeout will not put the task to
742 * sleep and we'll get a chance to re-check the
743 * updated conditions almost immediately. Otherwise,
744 * this race condition would lead to a soft hang or a
747 set_current_state(TASK_INTERRUPTIBLE
);
749 *wait_result
= test_event_condition(all
, num_events
,
751 if (*wait_result
!= KFD_IOC_WAIT_RESULT_TIMEOUT
)
757 timeout
= schedule_timeout(timeout
);
759 __set_current_state(TASK_RUNNING
);
761 /* copy_signaled_event_data may sleep. So this has to happen
762 * after the task state is set back to RUNNING.
764 if (!ret
&& *wait_result
== KFD_IOC_WAIT_RESULT_COMPLETE
)
765 ret
= copy_signaled_event_data(num_events
,
766 event_waiters
, events
);
768 mutex_lock(&p
->event_mutex
);
770 free_waiters(num_events
, event_waiters
);
771 mutex_unlock(&p
->event_mutex
);
774 *wait_result
= KFD_IOC_WAIT_RESULT_FAIL
;
775 else if (*wait_result
== KFD_IOC_WAIT_RESULT_FAIL
)
781 int kfd_event_mmap(struct kfd_process
*p
, struct vm_area_struct
*vma
)
784 struct kfd_signal_page
*page
;
787 /* check required size doesn't exceed the allocated size */
788 if (get_order(KFD_SIGNAL_EVENT_LIMIT
* 8) <
789 get_order(vma
->vm_end
- vma
->vm_start
)) {
790 pr_err("Event page mmap requested illegal size\n");
794 page
= p
->signal_page
;
796 /* Probably KFD bug, but mmap is user-accessible. */
797 pr_debug("Signal page could not be found\n");
801 pfn
= __pa(page
->kernel_address
);
804 vma
->vm_flags
|= VM_IO
| VM_DONTCOPY
| VM_DONTEXPAND
| VM_NORESERVE
805 | VM_DONTDUMP
| VM_PFNMAP
;
807 pr_debug("Mapping signal page\n");
808 pr_debug(" start user address == 0x%08lx\n", vma
->vm_start
);
809 pr_debug(" end user address == 0x%08lx\n", vma
->vm_end
);
810 pr_debug(" pfn == 0x%016lX\n", pfn
);
811 pr_debug(" vm_flags == 0x%08lX\n", vma
->vm_flags
);
812 pr_debug(" size == 0x%08lX\n",
813 vma
->vm_end
- vma
->vm_start
);
815 page
->user_address
= (uint64_t __user
*)vma
->vm_start
;
817 /* mapping the page to user process */
818 ret
= remap_pfn_range(vma
, vma
->vm_start
, pfn
,
819 vma
->vm_end
- vma
->vm_start
, vma
->vm_page_prot
);
821 p
->signal_mapped_size
= vma
->vm_end
- vma
->vm_start
;
827 * Assumes that p->event_mutex is held and of course
828 * that p is not going away (current or locked).
830 static void lookup_events_by_type_and_signal(struct kfd_process
*p
,
831 int type
, void *event_data
)
833 struct kfd_hsa_memory_exception_data
*ev_data
;
834 struct kfd_event
*ev
;
836 bool send_signal
= true;
838 ev_data
= (struct kfd_hsa_memory_exception_data
*) event_data
;
840 id
= KFD_FIRST_NONSIGNAL_EVENT_ID
;
841 idr_for_each_entry_continue(&p
->event_idr
, ev
, id
)
842 if (ev
->type
== type
) {
845 "Event found: id %X type %d",
846 ev
->event_id
, ev
->type
);
848 if (ev
->type
== KFD_EVENT_TYPE_MEMORY
&& ev_data
)
849 ev
->memory_exception_data
= *ev_data
;
852 if (type
== KFD_EVENT_TYPE_MEMORY
) {
854 "Sending SIGSEGV to process %d (pasid 0x%x)",
855 p
->lead_thread
->pid
, p
->pasid
);
856 send_sig(SIGSEGV
, p
->lead_thread
, 0);
859 /* Send SIGTERM no event of type "type" has been found*/
863 "Sending SIGTERM to process %d (pasid 0x%x)",
864 p
->lead_thread
->pid
, p
->pasid
);
865 send_sig(SIGTERM
, p
->lead_thread
, 0);
868 "Process %d (pasid 0x%x) got unhandled exception",
869 p
->lead_thread
->pid
, p
->pasid
);
874 #ifdef KFD_SUPPORT_IOMMU_V2
875 void kfd_signal_iommu_event(struct kfd_dev
*dev
, u32 pasid
,
876 unsigned long address
, bool is_write_requested
,
877 bool is_execute_requested
)
879 struct kfd_hsa_memory_exception_data memory_exception_data
;
880 struct vm_area_struct
*vma
;
883 * Because we are called from arbitrary context (workqueue) as opposed
884 * to process context, kfd_process could attempt to exit while we are
885 * running so the lookup function increments the process ref count.
887 struct kfd_process
*p
= kfd_lookup_process_by_pasid(pasid
);
888 struct mm_struct
*mm
;
891 return; /* Presumably process exited. */
893 /* Take a safe reference to the mm_struct, which may otherwise
894 * disappear even while the kfd_process is still referenced.
896 mm
= get_task_mm(p
->lead_thread
);
898 kfd_unref_process(p
);
899 return; /* Process is exiting */
902 memset(&memory_exception_data
, 0, sizeof(memory_exception_data
));
905 vma
= find_vma(mm
, address
);
907 memory_exception_data
.gpu_id
= dev
->id
;
908 memory_exception_data
.va
= address
;
909 /* Set failure reason */
910 memory_exception_data
.failure
.NotPresent
= 1;
911 memory_exception_data
.failure
.NoExecute
= 0;
912 memory_exception_data
.failure
.ReadOnly
= 0;
913 if (vma
&& address
>= vma
->vm_start
) {
914 memory_exception_data
.failure
.NotPresent
= 0;
916 if (is_write_requested
&& !(vma
->vm_flags
& VM_WRITE
))
917 memory_exception_data
.failure
.ReadOnly
= 1;
919 memory_exception_data
.failure
.ReadOnly
= 0;
921 if (is_execute_requested
&& !(vma
->vm_flags
& VM_EXEC
))
922 memory_exception_data
.failure
.NoExecute
= 1;
924 memory_exception_data
.failure
.NoExecute
= 0;
927 mmap_read_unlock(mm
);
930 pr_debug("notpresent %d, noexecute %d, readonly %d\n",
931 memory_exception_data
.failure
.NotPresent
,
932 memory_exception_data
.failure
.NoExecute
,
933 memory_exception_data
.failure
.ReadOnly
);
935 /* Workaround on Raven to not kill the process when memory is freed
936 * before IOMMU is able to finish processing all the excessive PPRs
938 if (dev
->device_info
->asic_family
!= CHIP_RAVEN
&&
939 dev
->device_info
->asic_family
!= CHIP_RENOIR
) {
940 mutex_lock(&p
->event_mutex
);
942 /* Lookup events by type and signal them */
943 lookup_events_by_type_and_signal(p
, KFD_EVENT_TYPE_MEMORY
,
944 &memory_exception_data
);
946 mutex_unlock(&p
->event_mutex
);
949 kfd_unref_process(p
);
951 #endif /* KFD_SUPPORT_IOMMU_V2 */
953 void kfd_signal_hw_exception_event(u32 pasid
)
956 * Because we are called from arbitrary context (workqueue) as opposed
957 * to process context, kfd_process could attempt to exit while we are
958 * running so the lookup function increments the process ref count.
960 struct kfd_process
*p
= kfd_lookup_process_by_pasid(pasid
);
963 return; /* Presumably process exited. */
965 mutex_lock(&p
->event_mutex
);
967 /* Lookup events by type and signal them */
968 lookup_events_by_type_and_signal(p
, KFD_EVENT_TYPE_HW_EXCEPTION
, NULL
);
970 mutex_unlock(&p
->event_mutex
);
971 kfd_unref_process(p
);
974 void kfd_signal_vm_fault_event(struct kfd_dev
*dev
, u32 pasid
,
975 struct kfd_vm_fault_info
*info
)
977 struct kfd_event
*ev
;
979 struct kfd_process
*p
= kfd_lookup_process_by_pasid(pasid
);
980 struct kfd_hsa_memory_exception_data memory_exception_data
;
983 return; /* Presumably process exited. */
984 memset(&memory_exception_data
, 0, sizeof(memory_exception_data
));
985 memory_exception_data
.gpu_id
= dev
->id
;
986 memory_exception_data
.failure
.imprecise
= true;
987 /* Set failure reason */
989 memory_exception_data
.va
= (info
->page_addr
) << PAGE_SHIFT
;
990 memory_exception_data
.failure
.NotPresent
=
991 info
->prot_valid
? 1 : 0;
992 memory_exception_data
.failure
.NoExecute
=
993 info
->prot_exec
? 1 : 0;
994 memory_exception_data
.failure
.ReadOnly
=
995 info
->prot_write
? 1 : 0;
996 memory_exception_data
.failure
.imprecise
= 0;
998 mutex_lock(&p
->event_mutex
);
1000 id
= KFD_FIRST_NONSIGNAL_EVENT_ID
;
1001 idr_for_each_entry_continue(&p
->event_idr
, ev
, id
)
1002 if (ev
->type
== KFD_EVENT_TYPE_MEMORY
) {
1003 ev
->memory_exception_data
= memory_exception_data
;
1007 mutex_unlock(&p
->event_mutex
);
1008 kfd_unref_process(p
);
1011 void kfd_signal_reset_event(struct kfd_dev
*dev
)
1013 struct kfd_hsa_hw_exception_data hw_exception_data
;
1014 struct kfd_hsa_memory_exception_data memory_exception_data
;
1015 struct kfd_process
*p
;
1016 struct kfd_event
*ev
;
1019 int reset_cause
= atomic_read(&dev
->sram_ecc_flag
) ?
1020 KFD_HW_EXCEPTION_ECC
:
1021 KFD_HW_EXCEPTION_GPU_HANG
;
1023 /* Whole gpu reset caused by GPU hang and memory is lost */
1024 memset(&hw_exception_data
, 0, sizeof(hw_exception_data
));
1025 hw_exception_data
.gpu_id
= dev
->id
;
1026 hw_exception_data
.memory_lost
= 1;
1027 hw_exception_data
.reset_cause
= reset_cause
;
1029 memset(&memory_exception_data
, 0, sizeof(memory_exception_data
));
1030 memory_exception_data
.ErrorType
= KFD_MEM_ERR_SRAM_ECC
;
1031 memory_exception_data
.gpu_id
= dev
->id
;
1032 memory_exception_data
.failure
.imprecise
= true;
1034 idx
= srcu_read_lock(&kfd_processes_srcu
);
1035 hash_for_each_rcu(kfd_processes_table
, temp
, p
, kfd_processes
) {
1036 mutex_lock(&p
->event_mutex
);
1037 id
= KFD_FIRST_NONSIGNAL_EVENT_ID
;
1038 idr_for_each_entry_continue(&p
->event_idr
, ev
, id
) {
1039 if (ev
->type
== KFD_EVENT_TYPE_HW_EXCEPTION
) {
1040 ev
->hw_exception_data
= hw_exception_data
;
1043 if (ev
->type
== KFD_EVENT_TYPE_MEMORY
&&
1044 reset_cause
== KFD_HW_EXCEPTION_ECC
) {
1045 ev
->memory_exception_data
= memory_exception_data
;
1049 mutex_unlock(&p
->event_mutex
);
1051 srcu_read_unlock(&kfd_processes_srcu
, idx
);