Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / gpu / drm / drm_vblank.c
blobd30e2f2b8f3c47bf13d9e7bb531f676537ca2806
1 /*
2 * drm_irq.c IRQ and vblank support
4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
5 * \author Gareth Hughes <gareth@valinux.com>
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
27 #include <linux/export.h>
28 #include <linux/kthread.h>
29 #include <linux/moduleparam.h>
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_drv.h>
33 #include <drm/drm_framebuffer.h>
34 #include <drm/drm_managed.h>
35 #include <drm/drm_modeset_helper_vtables.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_vblank.h>
39 #include "drm_internal.h"
40 #include "drm_trace.h"
42 /**
43 * DOC: vblank handling
45 * From the computer's perspective, every time the monitor displays
46 * a new frame the scanout engine has "scanned out" the display image
47 * from top to bottom, one row of pixels at a time. The current row
48 * of pixels is referred to as the current scanline.
50 * In addition to the display's visible area, there's usually a couple of
51 * extra scanlines which aren't actually displayed on the screen.
52 * These extra scanlines don't contain image data and are occasionally used
53 * for features like audio and infoframes. The region made up of these
54 * scanlines is referred to as the vertical blanking region, or vblank for
55 * short.
57 * For historical reference, the vertical blanking period was designed to
58 * give the electron gun (on CRTs) enough time to move back to the top of
59 * the screen to start scanning out the next frame. Similar for horizontal
60 * blanking periods. They were designed to give the electron gun enough
61 * time to move back to the other side of the screen to start scanning the
62 * next scanline.
64 * ::
67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
68 * top of | |
69 * display | |
70 * | New frame |
71 * | |
72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the
75 * | | frame as it
76 * | | travels down
77 * | | ("sacn out")
78 * | Old frame |
79 * | |
80 * | |
81 * | |
82 * | | physical
83 * | | bottom of
84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
89 * new frame
91 * "Physical top of display" is the reference point for the high-precision/
92 * corrected timestamp.
94 * On a lot of display hardware, programming needs to take effect during the
95 * vertical blanking period so that settings like gamma, the image buffer
96 * buffer to be scanned out, etc. can safely be changed without showing
97 * any visual artifacts on the screen. In some unforgiving hardware, some of
98 * this programming has to both start and end in the same vblank. To help
99 * with the timing of the hardware programming, an interrupt is usually
100 * available to notify the driver when it can start the updating of registers.
101 * The interrupt is in this context named the vblank interrupt.
103 * The vblank interrupt may be fired at different points depending on the
104 * hardware. Some hardware implementations will fire the interrupt when the
105 * new frame start, other implementations will fire the interrupt at different
106 * points in time.
108 * Vertical blanking plays a major role in graphics rendering. To achieve
109 * tear-free display, users must synchronize page flips and/or rendering to
110 * vertical blanking. The DRM API offers ioctls to perform page flips
111 * synchronized to vertical blanking and wait for vertical blanking.
113 * The DRM core handles most of the vertical blanking management logic, which
114 * involves filtering out spurious interrupts, keeping race-free blanking
115 * counters, coping with counter wrap-around and resets and keeping use counts.
116 * It relies on the driver to generate vertical blanking interrupts and
117 * optionally provide a hardware vertical blanking counter.
119 * Drivers must initialize the vertical blanking handling core with a call to
120 * drm_vblank_init(). Minimally, a driver needs to implement
121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
123 * support.
125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126 * themselves (for instance to handle page flipping operations). The DRM core
127 * maintains a vertical blanking use count to ensure that the interrupts are not
128 * disabled while a user still needs them. To increment the use count, drivers
129 * call drm_crtc_vblank_get() and release the vblank reference again with
130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131 * guaranteed to be enabled.
133 * On many hardware disabling the vblank interrupt cannot be done in a race-free
134 * manner, see &drm_driver.vblank_disable_immediate and
135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136 * vblanks after a timer has expired, which can be configured through the
137 * ``vblankoffdelay`` module parameter.
139 * Drivers for hardware without support for vertical-blanking interrupts
140 * must not call drm_vblank_init(). For such drivers, atomic helpers will
141 * automatically generate fake vblank events as part of the display update.
142 * This functionality also can be controlled by the driver by enabling and
143 * disabling struct drm_crtc_state.no_vblank.
146 /* Retry timestamp calculation up to 3 times to satisfy
147 * drm_timestamp_precision before giving up.
149 #define DRM_TIMESTAMP_MAXRETRIES 3
151 /* Threshold in nanoseconds for detection of redundant
152 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
156 static bool
157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
158 ktime_t *tvblank, bool in_vblank_irq);
160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */
162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */
164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
169 static void store_vblank(struct drm_device *dev, unsigned int pipe,
170 u32 vblank_count_inc,
171 ktime_t t_vblank, u32 last)
173 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
175 assert_spin_locked(&dev->vblank_time_lock);
177 vblank->last = last;
179 write_seqlock(&vblank->seqlock);
180 vblank->time = t_vblank;
181 atomic64_add(vblank_count_inc, &vblank->count);
182 write_sequnlock(&vblank->seqlock);
185 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
187 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
189 return vblank->max_vblank_count ?: dev->max_vblank_count;
193 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
194 * if there is no useable hardware frame counter available.
196 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
198 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
199 return 0;
202 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
204 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
205 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
207 if (drm_WARN_ON(dev, !crtc))
208 return 0;
210 if (crtc->funcs->get_vblank_counter)
211 return crtc->funcs->get_vblank_counter(crtc);
213 #ifdef CONFIG_DRM_LEGACY
214 else if (dev->driver->get_vblank_counter) {
215 return dev->driver->get_vblank_counter(dev, pipe);
217 #endif
219 return drm_vblank_no_hw_counter(dev, pipe);
223 * Reset the stored timestamp for the current vblank count to correspond
224 * to the last vblank occurred.
226 * Only to be called from drm_crtc_vblank_on().
228 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
229 * device vblank fields.
231 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
233 u32 cur_vblank;
234 bool rc;
235 ktime_t t_vblank;
236 int count = DRM_TIMESTAMP_MAXRETRIES;
238 spin_lock(&dev->vblank_time_lock);
241 * sample the current counter to avoid random jumps
242 * when drm_vblank_enable() applies the diff
244 do {
245 cur_vblank = __get_vblank_counter(dev, pipe);
246 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
247 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
250 * Only reinitialize corresponding vblank timestamp if high-precision query
251 * available and didn't fail. Otherwise reinitialize delayed at next vblank
252 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
254 if (!rc)
255 t_vblank = 0;
258 * +1 to make sure user will never see the same
259 * vblank counter value before and after a modeset
261 store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
263 spin_unlock(&dev->vblank_time_lock);
267 * Call back into the driver to update the appropriate vblank counter
268 * (specified by @pipe). Deal with wraparound, if it occurred, and
269 * update the last read value so we can deal with wraparound on the next
270 * call if necessary.
272 * Only necessary when going from off->on, to account for frames we
273 * didn't get an interrupt for.
275 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
276 * device vblank fields.
278 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
279 bool in_vblank_irq)
281 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
282 u32 cur_vblank, diff;
283 bool rc;
284 ktime_t t_vblank;
285 int count = DRM_TIMESTAMP_MAXRETRIES;
286 int framedur_ns = vblank->framedur_ns;
287 u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
290 * Interrupts were disabled prior to this call, so deal with counter
291 * wrap if needed.
292 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events
293 * here if the register is small or we had vblank interrupts off for
294 * a long time.
296 * We repeat the hardware vblank counter & timestamp query until
297 * we get consistent results. This to prevent races between gpu
298 * updating its hardware counter while we are retrieving the
299 * corresponding vblank timestamp.
301 do {
302 cur_vblank = __get_vblank_counter(dev, pipe);
303 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
304 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
306 if (max_vblank_count) {
307 /* trust the hw counter when it's around */
308 diff = (cur_vblank - vblank->last) & max_vblank_count;
309 } else if (rc && framedur_ns) {
310 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
313 * Figure out how many vblanks we've missed based
314 * on the difference in the timestamps and the
315 * frame/field duration.
318 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
319 " diff_ns = %lld, framedur_ns = %d)\n",
320 pipe, (long long)diff_ns, framedur_ns);
322 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
324 if (diff == 0 && in_vblank_irq)
325 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
326 pipe);
327 } else {
328 /* some kind of default for drivers w/o accurate vbl timestamping */
329 diff = in_vblank_irq ? 1 : 0;
333 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
334 * interval? If so then vblank irqs keep running and it will likely
335 * happen that the hardware vblank counter is not trustworthy as it
336 * might reset at some point in that interval and vblank timestamps
337 * are not trustworthy either in that interval. Iow. this can result
338 * in a bogus diff >> 1 which must be avoided as it would cause
339 * random large forward jumps of the software vblank counter.
341 if (diff > 1 && (vblank->inmodeset & 0x2)) {
342 drm_dbg_vbl(dev,
343 "clamping vblank bump to 1 on crtc %u: diffr=%u"
344 " due to pre-modeset.\n", pipe, diff);
345 diff = 1;
348 drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
349 " current=%llu, diff=%u, hw=%u hw_last=%u\n",
350 pipe, (unsigned long long)atomic64_read(&vblank->count),
351 diff, cur_vblank, vblank->last);
353 if (diff == 0) {
354 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
355 return;
359 * Only reinitialize corresponding vblank timestamp if high-precision query
360 * available and didn't fail, or we were called from the vblank interrupt.
361 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
362 * for now, to mark the vblanktimestamp as invalid.
364 if (!rc && !in_vblank_irq)
365 t_vblank = 0;
367 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
370 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
372 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
373 u64 count;
375 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
376 return 0;
378 count = atomic64_read(&vblank->count);
381 * This read barrier corresponds to the implicit write barrier of the
382 * write seqlock in store_vblank(). Note that this is the only place
383 * where we need an explicit barrier, since all other access goes
384 * through drm_vblank_count_and_time(), which already has the required
385 * read barrier curtesy of the read seqlock.
387 smp_rmb();
389 return count;
393 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
394 * @crtc: which counter to retrieve
396 * This function is similar to drm_crtc_vblank_count() but this function
397 * interpolates to handle a race with vblank interrupts using the high precision
398 * timestamping support.
400 * This is mostly useful for hardware that can obtain the scanout position, but
401 * doesn't have a hardware frame counter.
403 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
405 struct drm_device *dev = crtc->dev;
406 unsigned int pipe = drm_crtc_index(crtc);
407 u64 vblank;
408 unsigned long flags;
410 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
411 !crtc->funcs->get_vblank_timestamp,
412 "This function requires support for accurate vblank timestamps.");
414 spin_lock_irqsave(&dev->vblank_time_lock, flags);
416 drm_update_vblank_count(dev, pipe, false);
417 vblank = drm_vblank_count(dev, pipe);
419 spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
421 return vblank;
423 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
425 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
427 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
428 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
430 if (drm_WARN_ON(dev, !crtc))
431 return;
433 if (crtc->funcs->disable_vblank)
434 crtc->funcs->disable_vblank(crtc);
436 #ifdef CONFIG_DRM_LEGACY
437 else {
438 dev->driver->disable_vblank(dev, pipe);
440 #endif
444 * Disable vblank irq's on crtc, make sure that last vblank count
445 * of hardware and corresponding consistent software vblank counter
446 * are preserved, even if there are any spurious vblank irq's after
447 * disable.
449 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
451 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
452 unsigned long irqflags;
454 assert_spin_locked(&dev->vbl_lock);
456 /* Prevent vblank irq processing while disabling vblank irqs,
457 * so no updates of timestamps or count can happen after we've
458 * disabled. Needed to prevent races in case of delayed irq's.
460 spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
463 * Update vblank count and disable vblank interrupts only if the
464 * interrupts were enabled. This avoids calling the ->disable_vblank()
465 * operation in atomic context with the hardware potentially runtime
466 * suspended.
468 if (!vblank->enabled)
469 goto out;
472 * Update the count and timestamp to maintain the
473 * appearance that the counter has been ticking all along until
474 * this time. This makes the count account for the entire time
475 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
477 drm_update_vblank_count(dev, pipe, false);
478 __disable_vblank(dev, pipe);
479 vblank->enabled = false;
481 out:
482 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
485 static void vblank_disable_fn(struct timer_list *t)
487 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
488 struct drm_device *dev = vblank->dev;
489 unsigned int pipe = vblank->pipe;
490 unsigned long irqflags;
492 spin_lock_irqsave(&dev->vbl_lock, irqflags);
493 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
494 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
495 drm_vblank_disable_and_save(dev, pipe);
497 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
500 static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
502 struct drm_vblank_crtc *vblank = ptr;
504 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
505 drm_core_check_feature(dev, DRIVER_MODESET));
507 drm_vblank_destroy_worker(vblank);
508 del_timer_sync(&vblank->disable_timer);
512 * drm_vblank_init - initialize vblank support
513 * @dev: DRM device
514 * @num_crtcs: number of CRTCs supported by @dev
516 * This function initializes vblank support for @num_crtcs display pipelines.
517 * Cleanup is handled automatically through a cleanup function added with
518 * drmm_add_action_or_reset().
520 * Returns:
521 * Zero on success or a negative error code on failure.
523 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
525 int ret;
526 unsigned int i;
528 spin_lock_init(&dev->vbl_lock);
529 spin_lock_init(&dev->vblank_time_lock);
531 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
532 if (!dev->vblank)
533 return -ENOMEM;
535 dev->num_crtcs = num_crtcs;
537 for (i = 0; i < num_crtcs; i++) {
538 struct drm_vblank_crtc *vblank = &dev->vblank[i];
540 vblank->dev = dev;
541 vblank->pipe = i;
542 init_waitqueue_head(&vblank->queue);
543 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
544 seqlock_init(&vblank->seqlock);
546 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
547 vblank);
548 if (ret)
549 return ret;
551 ret = drm_vblank_worker_init(vblank);
552 if (ret)
553 return ret;
556 return 0;
558 EXPORT_SYMBOL(drm_vblank_init);
561 * drm_dev_has_vblank - test if vblanking has been initialized for
562 * a device
563 * @dev: the device
565 * Drivers may call this function to test if vblank support is
566 * initialized for a device. For most hardware this means that vblanking
567 * can also be enabled.
569 * Atomic helpers use this function to initialize
570 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
572 * Returns:
573 * True if vblanking has been initialized for the given device, false
574 * otherwise.
576 bool drm_dev_has_vblank(const struct drm_device *dev)
578 return dev->num_crtcs != 0;
580 EXPORT_SYMBOL(drm_dev_has_vblank);
583 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
584 * @crtc: which CRTC's vblank waitqueue to retrieve
586 * This function returns a pointer to the vblank waitqueue for the CRTC.
587 * Drivers can use this to implement vblank waits using wait_event() and related
588 * functions.
590 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
592 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
594 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
598 * drm_calc_timestamping_constants - calculate vblank timestamp constants
599 * @crtc: drm_crtc whose timestamp constants should be updated.
600 * @mode: display mode containing the scanout timings
602 * Calculate and store various constants which are later needed by vblank and
603 * swap-completion timestamping, e.g, by
604 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
605 * CRTC's true scanout timing, so they take things like panel scaling or
606 * other adjustments into account.
608 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
609 const struct drm_display_mode *mode)
611 struct drm_device *dev = crtc->dev;
612 unsigned int pipe = drm_crtc_index(crtc);
613 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
614 int linedur_ns = 0, framedur_ns = 0;
615 int dotclock = mode->crtc_clock;
617 if (!drm_dev_has_vblank(dev))
618 return;
620 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
621 return;
623 /* Valid dotclock? */
624 if (dotclock > 0) {
625 int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
628 * Convert scanline length in pixels and video
629 * dot clock to line duration and frame duration
630 * in nanoseconds:
632 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
633 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
636 * Fields of interlaced scanout modes are only half a frame duration.
638 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
639 framedur_ns /= 2;
640 } else {
641 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
642 crtc->base.id);
645 vblank->linedur_ns = linedur_ns;
646 vblank->framedur_ns = framedur_ns;
647 vblank->hwmode = *mode;
649 drm_dbg_core(dev,
650 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
651 crtc->base.id, mode->crtc_htotal,
652 mode->crtc_vtotal, mode->crtc_vdisplay);
653 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
654 crtc->base.id, dotclock, framedur_ns, linedur_ns);
656 EXPORT_SYMBOL(drm_calc_timestamping_constants);
659 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
660 * timestamp helper
661 * @crtc: CRTC whose vblank timestamp to retrieve
662 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
663 * On return contains true maximum error of timestamp
664 * @vblank_time: Pointer to time which should receive the timestamp
665 * @in_vblank_irq:
666 * True when called from drm_crtc_handle_vblank(). Some drivers
667 * need to apply some workarounds for gpu-specific vblank irq quirks
668 * if flag is set.
669 * @get_scanout_position:
670 * Callback function to retrieve the scanout position. See
671 * @struct drm_crtc_helper_funcs.get_scanout_position.
673 * Implements calculation of exact vblank timestamps from given drm_display_mode
674 * timings and current video scanout position of a CRTC.
676 * The current implementation only handles standard video modes. For double scan
677 * and interlaced modes the driver is supposed to adjust the hardware mode
678 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
679 * match the scanout position reported.
681 * Note that atomic drivers must call drm_calc_timestamping_constants() before
682 * enabling a CRTC. The atomic helpers already take care of that in
683 * drm_atomic_helper_calc_timestamping_constants().
685 * Returns:
687 * Returns true on success, and false on failure, i.e. when no accurate
688 * timestamp could be acquired.
690 bool
691 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
692 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
693 bool in_vblank_irq,
694 drm_vblank_get_scanout_position_func get_scanout_position)
696 struct drm_device *dev = crtc->dev;
697 unsigned int pipe = crtc->index;
698 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
699 struct timespec64 ts_etime, ts_vblank_time;
700 ktime_t stime, etime;
701 bool vbl_status;
702 const struct drm_display_mode *mode;
703 int vpos, hpos, i;
704 int delta_ns, duration_ns;
706 if (pipe >= dev->num_crtcs) {
707 drm_err(dev, "Invalid crtc %u\n", pipe);
708 return false;
711 /* Scanout position query not supported? Should not happen. */
712 if (!get_scanout_position) {
713 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
714 return false;
717 if (drm_drv_uses_atomic_modeset(dev))
718 mode = &vblank->hwmode;
719 else
720 mode = &crtc->hwmode;
722 /* If mode timing undefined, just return as no-op:
723 * Happens during initial modesetting of a crtc.
725 if (mode->crtc_clock == 0) {
726 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
727 pipe);
728 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
729 return false;
732 /* Get current scanout position with system timestamp.
733 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
734 * if single query takes longer than max_error nanoseconds.
736 * This guarantees a tight bound on maximum error if
737 * code gets preempted or delayed for some reason.
739 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
741 * Get vertical and horizontal scanout position vpos, hpos,
742 * and bounding timestamps stime, etime, pre/post query.
744 vbl_status = get_scanout_position(crtc, in_vblank_irq,
745 &vpos, &hpos,
746 &stime, &etime,
747 mode);
749 /* Return as no-op if scanout query unsupported or failed. */
750 if (!vbl_status) {
751 drm_dbg_core(dev,
752 "crtc %u : scanoutpos query failed.\n",
753 pipe);
754 return false;
757 /* Compute uncertainty in timestamp of scanout position query. */
758 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
760 /* Accept result with < max_error nsecs timing uncertainty. */
761 if (duration_ns <= *max_error)
762 break;
765 /* Noisy system timing? */
766 if (i == DRM_TIMESTAMP_MAXRETRIES) {
767 drm_dbg_core(dev,
768 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
769 pipe, duration_ns / 1000, *max_error / 1000, i);
772 /* Return upper bound of timestamp precision error. */
773 *max_error = duration_ns;
775 /* Convert scanout position into elapsed time at raw_time query
776 * since start of scanout at first display scanline. delta_ns
777 * can be negative if start of scanout hasn't happened yet.
779 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
780 mode->crtc_clock);
782 /* Subtract time delta from raw timestamp to get final
783 * vblank_time timestamp for end of vblank.
785 *vblank_time = ktime_sub_ns(etime, delta_ns);
787 if (!drm_debug_enabled(DRM_UT_VBL))
788 return true;
790 ts_etime = ktime_to_timespec64(etime);
791 ts_vblank_time = ktime_to_timespec64(*vblank_time);
793 drm_dbg_vbl(dev,
794 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
795 pipe, hpos, vpos,
796 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
797 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
798 duration_ns / 1000, i);
800 return true;
802 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
805 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
806 * helper
807 * @crtc: CRTC whose vblank timestamp to retrieve
808 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
809 * On return contains true maximum error of timestamp
810 * @vblank_time: Pointer to time which should receive the timestamp
811 * @in_vblank_irq:
812 * True when called from drm_crtc_handle_vblank(). Some drivers
813 * need to apply some workarounds for gpu-specific vblank irq quirks
814 * if flag is set.
816 * Implements calculation of exact vblank timestamps from given drm_display_mode
817 * timings and current video scanout position of a CRTC. This can be directly
818 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
819 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
821 * The current implementation only handles standard video modes. For double scan
822 * and interlaced modes the driver is supposed to adjust the hardware mode
823 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
824 * match the scanout position reported.
826 * Note that atomic drivers must call drm_calc_timestamping_constants() before
827 * enabling a CRTC. The atomic helpers already take care of that in
828 * drm_atomic_helper_calc_timestamping_constants().
830 * Returns:
832 * Returns true on success, and false on failure, i.e. when no accurate
833 * timestamp could be acquired.
835 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
836 int *max_error,
837 ktime_t *vblank_time,
838 bool in_vblank_irq)
840 return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
841 crtc, max_error, vblank_time, in_vblank_irq,
842 crtc->helper_private->get_scanout_position);
844 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
847 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
848 * vblank interval
849 * @dev: DRM device
850 * @pipe: index of CRTC whose vblank timestamp to retrieve
851 * @tvblank: Pointer to target time which should receive the timestamp
852 * @in_vblank_irq:
853 * True when called from drm_crtc_handle_vblank(). Some drivers
854 * need to apply some workarounds for gpu-specific vblank irq quirks
855 * if flag is set.
857 * Fetches the system timestamp corresponding to the time of the most recent
858 * vblank interval on specified CRTC. May call into kms-driver to
859 * compute the timestamp with a high-precision GPU specific method.
861 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
862 * call, i.e., it isn't very precisely locked to the true vblank.
864 * Returns:
865 * True if timestamp is considered to be very precise, false otherwise.
867 static bool
868 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
869 ktime_t *tvblank, bool in_vblank_irq)
871 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
872 bool ret = false;
874 /* Define requested maximum error on timestamps (nanoseconds). */
875 int max_error = (int) drm_timestamp_precision * 1000;
877 /* Query driver if possible and precision timestamping enabled. */
878 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
879 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
881 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
882 tvblank, in_vblank_irq);
885 /* GPU high precision timestamp query unsupported or failed.
886 * Return current monotonic/gettimeofday timestamp as best estimate.
888 if (!ret)
889 *tvblank = ktime_get();
891 return ret;
895 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
896 * @crtc: which counter to retrieve
898 * Fetches the "cooked" vblank count value that represents the number of
899 * vblank events since the system was booted, including lost events due to
900 * modesetting activity. Note that this timer isn't correct against a racing
901 * vblank interrupt (since it only reports the software vblank counter), see
902 * drm_crtc_accurate_vblank_count() for such use-cases.
904 * Note that for a given vblank counter value drm_crtc_handle_vblank()
905 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
906 * provide a barrier: Any writes done before calling
907 * drm_crtc_handle_vblank() will be visible to callers of the later
908 * functions, iff the vblank count is the same or a later one.
910 * See also &drm_vblank_crtc.count.
912 * Returns:
913 * The software vblank counter.
915 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
917 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
919 EXPORT_SYMBOL(drm_crtc_vblank_count);
922 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
923 * system timestamp corresponding to that vblank counter value.
924 * @dev: DRM device
925 * @pipe: index of CRTC whose counter to retrieve
926 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
928 * Fetches the "cooked" vblank count value that represents the number of
929 * vblank events since the system was booted, including lost events due to
930 * modesetting activity. Returns corresponding system timestamp of the time
931 * of the vblank interval that corresponds to the current vblank counter value.
933 * This is the legacy version of drm_crtc_vblank_count_and_time().
935 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
936 ktime_t *vblanktime)
938 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
939 u64 vblank_count;
940 unsigned int seq;
942 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
943 *vblanktime = 0;
944 return 0;
947 do {
948 seq = read_seqbegin(&vblank->seqlock);
949 vblank_count = atomic64_read(&vblank->count);
950 *vblanktime = vblank->time;
951 } while (read_seqretry(&vblank->seqlock, seq));
953 return vblank_count;
957 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
958 * and the system timestamp corresponding to that vblank counter value
959 * @crtc: which counter to retrieve
960 * @vblanktime: Pointer to time to receive the vblank timestamp.
962 * Fetches the "cooked" vblank count value that represents the number of
963 * vblank events since the system was booted, including lost events due to
964 * modesetting activity. Returns corresponding system timestamp of the time
965 * of the vblank interval that corresponds to the current vblank counter value.
967 * Note that for a given vblank counter value drm_crtc_handle_vblank()
968 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
969 * provide a barrier: Any writes done before calling
970 * drm_crtc_handle_vblank() will be visible to callers of the later
971 * functions, iff the vblank count is the same or a later one.
973 * See also &drm_vblank_crtc.count.
975 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
976 ktime_t *vblanktime)
978 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
979 vblanktime);
981 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
983 static void send_vblank_event(struct drm_device *dev,
984 struct drm_pending_vblank_event *e,
985 u64 seq, ktime_t now)
987 struct timespec64 tv;
989 switch (e->event.base.type) {
990 case DRM_EVENT_VBLANK:
991 case DRM_EVENT_FLIP_COMPLETE:
992 tv = ktime_to_timespec64(now);
993 e->event.vbl.sequence = seq;
995 * e->event is a user space structure, with hardcoded unsigned
996 * 32-bit seconds/microseconds. This is safe as we always use
997 * monotonic timestamps since linux-4.15
999 e->event.vbl.tv_sec = tv.tv_sec;
1000 e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1001 break;
1002 case DRM_EVENT_CRTC_SEQUENCE:
1003 if (seq)
1004 e->event.seq.sequence = seq;
1005 e->event.seq.time_ns = ktime_to_ns(now);
1006 break;
1008 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1009 drm_send_event_locked(dev, &e->base);
1013 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1014 * @crtc: the source CRTC of the vblank event
1015 * @e: the event to send
1017 * A lot of drivers need to generate vblank events for the very next vblank
1018 * interrupt. For example when the page flip interrupt happens when the page
1019 * flip gets armed, but not when it actually executes within the next vblank
1020 * period. This helper function implements exactly the required vblank arming
1021 * behaviour.
1023 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1024 * atomic commit must ensure that the next vblank happens at exactly the same
1025 * time as the atomic commit is committed to the hardware. This function itself
1026 * does **not** protect against the next vblank interrupt racing with either this
1027 * function call or the atomic commit operation. A possible sequence could be:
1029 * 1. Driver commits new hardware state into vblank-synchronized registers.
1030 * 2. A vblank happens, committing the hardware state. Also the corresponding
1031 * vblank interrupt is fired off and fully processed by the interrupt
1032 * handler.
1033 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1034 * 4. The event is only send out for the next vblank, which is wrong.
1036 * An equivalent race can happen when the driver calls
1037 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1039 * The only way to make this work safely is to prevent the vblank from firing
1040 * (and the hardware from committing anything else) until the entire atomic
1041 * commit sequence has run to completion. If the hardware does not have such a
1042 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1043 * Instead drivers need to manually send out the event from their interrupt
1044 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1045 * possible race with the hardware committing the atomic update.
1047 * Caller must hold a vblank reference for the event @e acquired by a
1048 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1050 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1051 struct drm_pending_vblank_event *e)
1053 struct drm_device *dev = crtc->dev;
1054 unsigned int pipe = drm_crtc_index(crtc);
1056 assert_spin_locked(&dev->event_lock);
1058 e->pipe = pipe;
1059 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1060 list_add_tail(&e->base.link, &dev->vblank_event_list);
1062 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1065 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1066 * @crtc: the source CRTC of the vblank event
1067 * @e: the event to send
1069 * Updates sequence # and timestamp on event for the most recently processed
1070 * vblank, and sends it to userspace. Caller must hold event lock.
1072 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1073 * situation, especially to send out events for atomic commit operations.
1075 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1076 struct drm_pending_vblank_event *e)
1078 struct drm_device *dev = crtc->dev;
1079 u64 seq;
1080 unsigned int pipe = drm_crtc_index(crtc);
1081 ktime_t now;
1083 if (drm_dev_has_vblank(dev)) {
1084 seq = drm_vblank_count_and_time(dev, pipe, &now);
1085 } else {
1086 seq = 0;
1088 now = ktime_get();
1090 e->pipe = pipe;
1091 send_vblank_event(dev, e, seq, now);
1093 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1095 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1097 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1098 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1100 if (drm_WARN_ON(dev, !crtc))
1101 return 0;
1103 if (crtc->funcs->enable_vblank)
1104 return crtc->funcs->enable_vblank(crtc);
1106 #ifdef CONFIG_DRM_LEGACY
1107 else if (dev->driver->enable_vblank) {
1108 return dev->driver->enable_vblank(dev, pipe);
1110 #endif
1112 return -EINVAL;
1115 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1117 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1118 int ret = 0;
1120 assert_spin_locked(&dev->vbl_lock);
1122 spin_lock(&dev->vblank_time_lock);
1124 if (!vblank->enabled) {
1126 * Enable vblank irqs under vblank_time_lock protection.
1127 * All vblank count & timestamp updates are held off
1128 * until we are done reinitializing master counter and
1129 * timestamps. Filtercode in drm_handle_vblank() will
1130 * prevent double-accounting of same vblank interval.
1132 ret = __enable_vblank(dev, pipe);
1133 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1134 pipe, ret);
1135 if (ret) {
1136 atomic_dec(&vblank->refcount);
1137 } else {
1138 drm_update_vblank_count(dev, pipe, 0);
1139 /* drm_update_vblank_count() includes a wmb so we just
1140 * need to ensure that the compiler emits the write
1141 * to mark the vblank as enabled after the call
1142 * to drm_update_vblank_count().
1144 WRITE_ONCE(vblank->enabled, true);
1148 spin_unlock(&dev->vblank_time_lock);
1150 return ret;
1153 int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1155 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1156 unsigned long irqflags;
1157 int ret = 0;
1159 if (!drm_dev_has_vblank(dev))
1160 return -EINVAL;
1162 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1163 return -EINVAL;
1165 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1166 /* Going from 0->1 means we have to enable interrupts again */
1167 if (atomic_add_return(1, &vblank->refcount) == 1) {
1168 ret = drm_vblank_enable(dev, pipe);
1169 } else {
1170 if (!vblank->enabled) {
1171 atomic_dec(&vblank->refcount);
1172 ret = -EINVAL;
1175 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1177 return ret;
1181 * drm_crtc_vblank_get - get a reference count on vblank events
1182 * @crtc: which CRTC to own
1184 * Acquire a reference count on vblank events to avoid having them disabled
1185 * while in use.
1187 * Returns:
1188 * Zero on success or a negative error code on failure.
1190 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1192 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1194 EXPORT_SYMBOL(drm_crtc_vblank_get);
1196 void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1198 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1200 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1201 return;
1203 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1204 return;
1206 /* Last user schedules interrupt disable */
1207 if (atomic_dec_and_test(&vblank->refcount)) {
1208 if (drm_vblank_offdelay == 0)
1209 return;
1210 else if (drm_vblank_offdelay < 0)
1211 vblank_disable_fn(&vblank->disable_timer);
1212 else if (!dev->vblank_disable_immediate)
1213 mod_timer(&vblank->disable_timer,
1214 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1219 * drm_crtc_vblank_put - give up ownership of vblank events
1220 * @crtc: which counter to give up
1222 * Release ownership of a given vblank counter, turning off interrupts
1223 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1225 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1227 drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1229 EXPORT_SYMBOL(drm_crtc_vblank_put);
1232 * drm_wait_one_vblank - wait for one vblank
1233 * @dev: DRM device
1234 * @pipe: CRTC index
1236 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1237 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1238 * due to lack of driver support or because the crtc is off.
1240 * This is the legacy version of drm_crtc_wait_one_vblank().
1242 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1244 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1245 int ret;
1246 u64 last;
1248 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1249 return;
1251 ret = drm_vblank_get(dev, pipe);
1252 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1253 pipe, ret))
1254 return;
1256 last = drm_vblank_count(dev, pipe);
1258 ret = wait_event_timeout(vblank->queue,
1259 last != drm_vblank_count(dev, pipe),
1260 msecs_to_jiffies(100));
1262 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1264 drm_vblank_put(dev, pipe);
1266 EXPORT_SYMBOL(drm_wait_one_vblank);
1269 * drm_crtc_wait_one_vblank - wait for one vblank
1270 * @crtc: DRM crtc
1272 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1273 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1274 * due to lack of driver support or because the crtc is off.
1276 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1278 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1280 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1283 * drm_crtc_vblank_off - disable vblank events on a CRTC
1284 * @crtc: CRTC in question
1286 * Drivers can use this function to shut down the vblank interrupt handling when
1287 * disabling a crtc. This function ensures that the latest vblank frame count is
1288 * stored so that drm_vblank_on can restore it again.
1290 * Drivers must use this function when the hardware vblank counter can get
1291 * reset, e.g. when suspending or disabling the @crtc in general.
1293 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1295 struct drm_device *dev = crtc->dev;
1296 unsigned int pipe = drm_crtc_index(crtc);
1297 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1298 struct drm_pending_vblank_event *e, *t;
1299 ktime_t now;
1300 u64 seq;
1302 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1303 return;
1306 * Grab event_lock early to prevent vblank work from being scheduled
1307 * while we're in the middle of shutting down vblank interrupts
1309 spin_lock_irq(&dev->event_lock);
1311 spin_lock(&dev->vbl_lock);
1312 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1313 pipe, vblank->enabled, vblank->inmodeset);
1315 /* Avoid redundant vblank disables without previous
1316 * drm_crtc_vblank_on(). */
1317 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1318 drm_vblank_disable_and_save(dev, pipe);
1320 wake_up(&vblank->queue);
1323 * Prevent subsequent drm_vblank_get() from re-enabling
1324 * the vblank interrupt by bumping the refcount.
1326 if (!vblank->inmodeset) {
1327 atomic_inc(&vblank->refcount);
1328 vblank->inmodeset = 1;
1330 spin_unlock(&dev->vbl_lock);
1332 /* Send any queued vblank events, lest the natives grow disquiet */
1333 seq = drm_vblank_count_and_time(dev, pipe, &now);
1335 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1336 if (e->pipe != pipe)
1337 continue;
1338 drm_dbg_core(dev, "Sending premature vblank event on disable: "
1339 "wanted %llu, current %llu\n",
1340 e->sequence, seq);
1341 list_del(&e->base.link);
1342 drm_vblank_put(dev, pipe);
1343 send_vblank_event(dev, e, seq, now);
1346 /* Cancel any leftover pending vblank work */
1347 drm_vblank_cancel_pending_works(vblank);
1349 spin_unlock_irq(&dev->event_lock);
1351 /* Will be reset by the modeset helpers when re-enabling the crtc by
1352 * calling drm_calc_timestamping_constants(). */
1353 vblank->hwmode.crtc_clock = 0;
1355 /* Wait for any vblank work that's still executing to finish */
1356 drm_vblank_flush_worker(vblank);
1358 EXPORT_SYMBOL(drm_crtc_vblank_off);
1361 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1362 * @crtc: CRTC in question
1364 * Drivers can use this function to reset the vblank state to off at load time.
1365 * Drivers should use this together with the drm_crtc_vblank_off() and
1366 * drm_crtc_vblank_on() functions. The difference compared to
1367 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1368 * and hence doesn't need to call any driver hooks.
1370 * This is useful for recovering driver state e.g. on driver load, or on resume.
1372 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1374 struct drm_device *dev = crtc->dev;
1375 unsigned int pipe = drm_crtc_index(crtc);
1376 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1378 spin_lock_irq(&dev->vbl_lock);
1380 * Prevent subsequent drm_vblank_get() from enabling the vblank
1381 * interrupt by bumping the refcount.
1383 if (!vblank->inmodeset) {
1384 atomic_inc(&vblank->refcount);
1385 vblank->inmodeset = 1;
1387 spin_unlock_irq(&dev->vbl_lock);
1389 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1390 drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1392 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1395 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1396 * @crtc: CRTC in question
1397 * @max_vblank_count: max hardware vblank counter value
1399 * Update the maximum hardware vblank counter value for @crtc
1400 * at runtime. Useful for hardware where the operation of the
1401 * hardware vblank counter depends on the currently active
1402 * display configuration.
1404 * For example, if the hardware vblank counter does not work
1405 * when a specific connector is active the maximum can be set
1406 * to zero. And when that specific connector isn't active the
1407 * maximum can again be set to the appropriate non-zero value.
1409 * If used, must be called before drm_vblank_on().
1411 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1412 u32 max_vblank_count)
1414 struct drm_device *dev = crtc->dev;
1415 unsigned int pipe = drm_crtc_index(crtc);
1416 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1418 drm_WARN_ON(dev, dev->max_vblank_count);
1419 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1421 vblank->max_vblank_count = max_vblank_count;
1423 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1426 * drm_crtc_vblank_on - enable vblank events on a CRTC
1427 * @crtc: CRTC in question
1429 * This functions restores the vblank interrupt state captured with
1430 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1431 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1432 * unbalanced and so can also be unconditionally called in driver load code to
1433 * reflect the current hardware state of the crtc.
1435 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1437 struct drm_device *dev = crtc->dev;
1438 unsigned int pipe = drm_crtc_index(crtc);
1439 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1441 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1442 return;
1444 spin_lock_irq(&dev->vbl_lock);
1445 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1446 pipe, vblank->enabled, vblank->inmodeset);
1448 /* Drop our private "prevent drm_vblank_get" refcount */
1449 if (vblank->inmodeset) {
1450 atomic_dec(&vblank->refcount);
1451 vblank->inmodeset = 0;
1454 drm_reset_vblank_timestamp(dev, pipe);
1457 * re-enable interrupts if there are users left, or the
1458 * user wishes vblank interrupts to be enabled all the time.
1460 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1461 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1462 spin_unlock_irq(&dev->vbl_lock);
1464 EXPORT_SYMBOL(drm_crtc_vblank_on);
1467 * drm_vblank_restore - estimate missed vblanks and update vblank count.
1468 * @dev: DRM device
1469 * @pipe: CRTC index
1471 * Power manamement features can cause frame counter resets between vblank
1472 * disable and enable. Drivers can use this function in their
1473 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1474 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1475 * vblank counter.
1477 * This function is the legacy version of drm_crtc_vblank_restore().
1479 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1481 ktime_t t_vblank;
1482 struct drm_vblank_crtc *vblank;
1483 int framedur_ns;
1484 u64 diff_ns;
1485 u32 cur_vblank, diff = 1;
1486 int count = DRM_TIMESTAMP_MAXRETRIES;
1488 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1489 return;
1491 assert_spin_locked(&dev->vbl_lock);
1492 assert_spin_locked(&dev->vblank_time_lock);
1494 vblank = &dev->vblank[pipe];
1495 drm_WARN_ONCE(dev,
1496 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1497 "Cannot compute missed vblanks without frame duration\n");
1498 framedur_ns = vblank->framedur_ns;
1500 do {
1501 cur_vblank = __get_vblank_counter(dev, pipe);
1502 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1503 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1505 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1506 if (framedur_ns)
1507 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1510 drm_dbg_vbl(dev,
1511 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1512 diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1513 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1515 EXPORT_SYMBOL(drm_vblank_restore);
1518 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1519 * @crtc: CRTC in question
1521 * Power manamement features can cause frame counter resets between vblank
1522 * disable and enable. Drivers can use this function in their
1523 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1524 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1525 * vblank counter.
1527 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1529 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1531 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1533 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1534 unsigned int pipe)
1536 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1538 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1539 if (!drm_dev_has_vblank(dev))
1540 return;
1542 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1543 return;
1546 * To avoid all the problems that might happen if interrupts
1547 * were enabled/disabled around or between these calls, we just
1548 * have the kernel take a reference on the CRTC (just once though
1549 * to avoid corrupting the count if multiple, mismatch calls occur),
1550 * so that interrupts remain enabled in the interim.
1552 if (!vblank->inmodeset) {
1553 vblank->inmodeset = 0x1;
1554 if (drm_vblank_get(dev, pipe) == 0)
1555 vblank->inmodeset |= 0x2;
1559 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1560 unsigned int pipe)
1562 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1564 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1565 if (!drm_dev_has_vblank(dev))
1566 return;
1568 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1569 return;
1571 if (vblank->inmodeset) {
1572 spin_lock_irq(&dev->vbl_lock);
1573 drm_reset_vblank_timestamp(dev, pipe);
1574 spin_unlock_irq(&dev->vbl_lock);
1576 if (vblank->inmodeset & 0x2)
1577 drm_vblank_put(dev, pipe);
1579 vblank->inmodeset = 0;
1583 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1584 struct drm_file *file_priv)
1586 struct drm_modeset_ctl *modeset = data;
1587 unsigned int pipe;
1589 /* If drm_vblank_init() hasn't been called yet, just no-op */
1590 if (!drm_dev_has_vblank(dev))
1591 return 0;
1593 /* KMS drivers handle this internally */
1594 if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1595 return 0;
1597 pipe = modeset->crtc;
1598 if (pipe >= dev->num_crtcs)
1599 return -EINVAL;
1601 switch (modeset->cmd) {
1602 case _DRM_PRE_MODESET:
1603 drm_legacy_vblank_pre_modeset(dev, pipe);
1604 break;
1605 case _DRM_POST_MODESET:
1606 drm_legacy_vblank_post_modeset(dev, pipe);
1607 break;
1608 default:
1609 return -EINVAL;
1612 return 0;
1615 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1616 u64 req_seq,
1617 union drm_wait_vblank *vblwait,
1618 struct drm_file *file_priv)
1620 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1621 struct drm_pending_vblank_event *e;
1622 ktime_t now;
1623 u64 seq;
1624 int ret;
1626 e = kzalloc(sizeof(*e), GFP_KERNEL);
1627 if (e == NULL) {
1628 ret = -ENOMEM;
1629 goto err_put;
1632 e->pipe = pipe;
1633 e->event.base.type = DRM_EVENT_VBLANK;
1634 e->event.base.length = sizeof(e->event.vbl);
1635 e->event.vbl.user_data = vblwait->request.signal;
1636 e->event.vbl.crtc_id = 0;
1637 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1638 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1640 if (crtc)
1641 e->event.vbl.crtc_id = crtc->base.id;
1644 spin_lock_irq(&dev->event_lock);
1647 * drm_crtc_vblank_off() might have been called after we called
1648 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1649 * vblank disable, so no need for further locking. The reference from
1650 * drm_vblank_get() protects against vblank disable from another source.
1652 if (!READ_ONCE(vblank->enabled)) {
1653 ret = -EINVAL;
1654 goto err_unlock;
1657 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1658 &e->event.base);
1660 if (ret)
1661 goto err_unlock;
1663 seq = drm_vblank_count_and_time(dev, pipe, &now);
1665 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1666 req_seq, seq, pipe);
1668 trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1670 e->sequence = req_seq;
1671 if (drm_vblank_passed(seq, req_seq)) {
1672 drm_vblank_put(dev, pipe);
1673 send_vblank_event(dev, e, seq, now);
1674 vblwait->reply.sequence = seq;
1675 } else {
1676 /* drm_handle_vblank_events will call drm_vblank_put */
1677 list_add_tail(&e->base.link, &dev->vblank_event_list);
1678 vblwait->reply.sequence = req_seq;
1681 spin_unlock_irq(&dev->event_lock);
1683 return 0;
1685 err_unlock:
1686 spin_unlock_irq(&dev->event_lock);
1687 kfree(e);
1688 err_put:
1689 drm_vblank_put(dev, pipe);
1690 return ret;
1693 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1695 if (vblwait->request.sequence)
1696 return false;
1698 return _DRM_VBLANK_RELATIVE ==
1699 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1700 _DRM_VBLANK_EVENT |
1701 _DRM_VBLANK_NEXTONMISS));
1705 * Widen a 32-bit param to 64-bits.
1707 * \param narrow 32-bit value (missing upper 32 bits)
1708 * \param near 64-bit value that should be 'close' to near
1710 * This function returns a 64-bit value using the lower 32-bits from
1711 * 'narrow' and constructing the upper 32-bits so that the result is
1712 * as close as possible to 'near'.
1715 static u64 widen_32_to_64(u32 narrow, u64 near)
1717 return near + (s32) (narrow - near);
1720 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1721 struct drm_wait_vblank_reply *reply)
1723 ktime_t now;
1724 struct timespec64 ts;
1727 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1728 * to store the seconds. This is safe as we always use monotonic
1729 * timestamps since linux-4.15.
1731 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1732 ts = ktime_to_timespec64(now);
1733 reply->tval_sec = (u32)ts.tv_sec;
1734 reply->tval_usec = ts.tv_nsec / 1000;
1737 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1738 struct drm_file *file_priv)
1740 struct drm_crtc *crtc;
1741 struct drm_vblank_crtc *vblank;
1742 union drm_wait_vblank *vblwait = data;
1743 int ret;
1744 u64 req_seq, seq;
1745 unsigned int pipe_index;
1746 unsigned int flags, pipe, high_pipe;
1748 if (!dev->irq_enabled)
1749 return -EOPNOTSUPP;
1751 if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1752 return -EINVAL;
1754 if (vblwait->request.type &
1755 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1756 _DRM_VBLANK_HIGH_CRTC_MASK)) {
1757 drm_dbg_core(dev,
1758 "Unsupported type value 0x%x, supported mask 0x%x\n",
1759 vblwait->request.type,
1760 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1761 _DRM_VBLANK_HIGH_CRTC_MASK));
1762 return -EINVAL;
1765 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1766 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1767 if (high_pipe)
1768 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1769 else
1770 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1772 /* Convert lease-relative crtc index into global crtc index */
1773 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1774 pipe = 0;
1775 drm_for_each_crtc(crtc, dev) {
1776 if (drm_lease_held(file_priv, crtc->base.id)) {
1777 if (pipe_index == 0)
1778 break;
1779 pipe_index--;
1781 pipe++;
1783 } else {
1784 pipe = pipe_index;
1787 if (pipe >= dev->num_crtcs)
1788 return -EINVAL;
1790 vblank = &dev->vblank[pipe];
1792 /* If the counter is currently enabled and accurate, short-circuit
1793 * queries to return the cached timestamp of the last vblank.
1795 if (dev->vblank_disable_immediate &&
1796 drm_wait_vblank_is_query(vblwait) &&
1797 READ_ONCE(vblank->enabled)) {
1798 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1799 return 0;
1802 ret = drm_vblank_get(dev, pipe);
1803 if (ret) {
1804 drm_dbg_core(dev,
1805 "crtc %d failed to acquire vblank counter, %d\n",
1806 pipe, ret);
1807 return ret;
1809 seq = drm_vblank_count(dev, pipe);
1811 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1812 case _DRM_VBLANK_RELATIVE:
1813 req_seq = seq + vblwait->request.sequence;
1814 vblwait->request.sequence = req_seq;
1815 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1816 break;
1817 case _DRM_VBLANK_ABSOLUTE:
1818 req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1819 break;
1820 default:
1821 ret = -EINVAL;
1822 goto done;
1825 if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1826 drm_vblank_passed(seq, req_seq)) {
1827 req_seq = seq + 1;
1828 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1829 vblwait->request.sequence = req_seq;
1832 if (flags & _DRM_VBLANK_EVENT) {
1833 /* must hold on to the vblank ref until the event fires
1834 * drm_vblank_put will be called asynchronously
1836 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1839 if (req_seq != seq) {
1840 int wait;
1842 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1843 req_seq, pipe);
1844 wait = wait_event_interruptible_timeout(vblank->queue,
1845 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1846 !READ_ONCE(vblank->enabled),
1847 msecs_to_jiffies(3000));
1849 switch (wait) {
1850 case 0:
1851 /* timeout */
1852 ret = -EBUSY;
1853 break;
1854 case -ERESTARTSYS:
1855 /* interrupted by signal */
1856 ret = -EINTR;
1857 break;
1858 default:
1859 ret = 0;
1860 break;
1864 if (ret != -EINTR) {
1865 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1867 drm_dbg_core(dev, "crtc %d returning %u to client\n",
1868 pipe, vblwait->reply.sequence);
1869 } else {
1870 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1871 pipe);
1874 done:
1875 drm_vblank_put(dev, pipe);
1876 return ret;
1879 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1881 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1882 bool high_prec = false;
1883 struct drm_pending_vblank_event *e, *t;
1884 ktime_t now;
1885 u64 seq;
1887 assert_spin_locked(&dev->event_lock);
1889 seq = drm_vblank_count_and_time(dev, pipe, &now);
1891 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1892 if (e->pipe != pipe)
1893 continue;
1894 if (!drm_vblank_passed(seq, e->sequence))
1895 continue;
1897 drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1898 e->sequence, seq);
1900 list_del(&e->base.link);
1901 drm_vblank_put(dev, pipe);
1902 send_vblank_event(dev, e, seq, now);
1905 if (crtc && crtc->funcs->get_vblank_timestamp)
1906 high_prec = true;
1908 trace_drm_vblank_event(pipe, seq, now, high_prec);
1912 * drm_handle_vblank - handle a vblank event
1913 * @dev: DRM device
1914 * @pipe: index of CRTC where this event occurred
1916 * Drivers should call this routine in their vblank interrupt handlers to
1917 * update the vblank counter and send any signals that may be pending.
1919 * This is the legacy version of drm_crtc_handle_vblank().
1921 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1923 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1924 unsigned long irqflags;
1925 bool disable_irq;
1927 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1928 return false;
1930 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1931 return false;
1933 spin_lock_irqsave(&dev->event_lock, irqflags);
1935 /* Need timestamp lock to prevent concurrent execution with
1936 * vblank enable/disable, as this would cause inconsistent
1937 * or corrupted timestamps and vblank counts.
1939 spin_lock(&dev->vblank_time_lock);
1941 /* Vblank irq handling disabled. Nothing to do. */
1942 if (!vblank->enabled) {
1943 spin_unlock(&dev->vblank_time_lock);
1944 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1945 return false;
1948 drm_update_vblank_count(dev, pipe, true);
1950 spin_unlock(&dev->vblank_time_lock);
1952 wake_up(&vblank->queue);
1954 /* With instant-off, we defer disabling the interrupt until after
1955 * we finish processing the following vblank after all events have
1956 * been signaled. The disable has to be last (after
1957 * drm_handle_vblank_events) so that the timestamp is always accurate.
1959 disable_irq = (dev->vblank_disable_immediate &&
1960 drm_vblank_offdelay > 0 &&
1961 !atomic_read(&vblank->refcount));
1963 drm_handle_vblank_events(dev, pipe);
1964 drm_handle_vblank_works(vblank);
1966 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1968 if (disable_irq)
1969 vblank_disable_fn(&vblank->disable_timer);
1971 return true;
1973 EXPORT_SYMBOL(drm_handle_vblank);
1976 * drm_crtc_handle_vblank - handle a vblank event
1977 * @crtc: where this event occurred
1979 * Drivers should call this routine in their vblank interrupt handlers to
1980 * update the vblank counter and send any signals that may be pending.
1982 * This is the native KMS version of drm_handle_vblank().
1984 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1985 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1986 * provide a barrier: Any writes done before calling
1987 * drm_crtc_handle_vblank() will be visible to callers of the later
1988 * functions, iff the vblank count is the same or a later one.
1990 * See also &drm_vblank_crtc.count.
1992 * Returns:
1993 * True if the event was successfully handled, false on failure.
1995 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1997 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1999 EXPORT_SYMBOL(drm_crtc_handle_vblank);
2002 * Get crtc VBLANK count.
2004 * \param dev DRM device
2005 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
2006 * \param file_priv drm file private for the user's open file descriptor
2009 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2010 struct drm_file *file_priv)
2012 struct drm_crtc *crtc;
2013 struct drm_vblank_crtc *vblank;
2014 int pipe;
2015 struct drm_crtc_get_sequence *get_seq = data;
2016 ktime_t now;
2017 bool vblank_enabled;
2018 int ret;
2020 if (!drm_core_check_feature(dev, DRIVER_MODESET))
2021 return -EOPNOTSUPP;
2023 if (!dev->irq_enabled)
2024 return -EOPNOTSUPP;
2026 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2027 if (!crtc)
2028 return -ENOENT;
2030 pipe = drm_crtc_index(crtc);
2032 vblank = &dev->vblank[pipe];
2033 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
2035 if (!vblank_enabled) {
2036 ret = drm_crtc_vblank_get(crtc);
2037 if (ret) {
2038 drm_dbg_core(dev,
2039 "crtc %d failed to acquire vblank counter, %d\n",
2040 pipe, ret);
2041 return ret;
2044 drm_modeset_lock(&crtc->mutex, NULL);
2045 if (crtc->state)
2046 get_seq->active = crtc->state->enable;
2047 else
2048 get_seq->active = crtc->enabled;
2049 drm_modeset_unlock(&crtc->mutex);
2050 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2051 get_seq->sequence_ns = ktime_to_ns(now);
2052 if (!vblank_enabled)
2053 drm_crtc_vblank_put(crtc);
2054 return 0;
2058 * Queue a event for VBLANK sequence
2060 * \param dev DRM device
2061 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
2062 * \param file_priv drm file private for the user's open file descriptor
2065 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2066 struct drm_file *file_priv)
2068 struct drm_crtc *crtc;
2069 struct drm_vblank_crtc *vblank;
2070 int pipe;
2071 struct drm_crtc_queue_sequence *queue_seq = data;
2072 ktime_t now;
2073 struct drm_pending_vblank_event *e;
2074 u32 flags;
2075 u64 seq;
2076 u64 req_seq;
2077 int ret;
2079 if (!drm_core_check_feature(dev, DRIVER_MODESET))
2080 return -EOPNOTSUPP;
2082 if (!dev->irq_enabled)
2083 return -EOPNOTSUPP;
2085 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2086 if (!crtc)
2087 return -ENOENT;
2089 flags = queue_seq->flags;
2090 /* Check valid flag bits */
2091 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2092 DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2093 return -EINVAL;
2095 pipe = drm_crtc_index(crtc);
2097 vblank = &dev->vblank[pipe];
2099 e = kzalloc(sizeof(*e), GFP_KERNEL);
2100 if (e == NULL)
2101 return -ENOMEM;
2103 ret = drm_crtc_vblank_get(crtc);
2104 if (ret) {
2105 drm_dbg_core(dev,
2106 "crtc %d failed to acquire vblank counter, %d\n",
2107 pipe, ret);
2108 goto err_free;
2111 seq = drm_vblank_count_and_time(dev, pipe, &now);
2112 req_seq = queue_seq->sequence;
2114 if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2115 req_seq += seq;
2117 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2118 req_seq = seq + 1;
2120 e->pipe = pipe;
2121 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2122 e->event.base.length = sizeof(e->event.seq);
2123 e->event.seq.user_data = queue_seq->user_data;
2125 spin_lock_irq(&dev->event_lock);
2128 * drm_crtc_vblank_off() might have been called after we called
2129 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2130 * vblank disable, so no need for further locking. The reference from
2131 * drm_crtc_vblank_get() protects against vblank disable from another source.
2133 if (!READ_ONCE(vblank->enabled)) {
2134 ret = -EINVAL;
2135 goto err_unlock;
2138 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2139 &e->event.base);
2141 if (ret)
2142 goto err_unlock;
2144 e->sequence = req_seq;
2146 if (drm_vblank_passed(seq, req_seq)) {
2147 drm_crtc_vblank_put(crtc);
2148 send_vblank_event(dev, e, seq, now);
2149 queue_seq->sequence = seq;
2150 } else {
2151 /* drm_handle_vblank_events will call drm_vblank_put */
2152 list_add_tail(&e->base.link, &dev->vblank_event_list);
2153 queue_seq->sequence = req_seq;
2156 spin_unlock_irq(&dev->event_lock);
2157 return 0;
2159 err_unlock:
2160 spin_unlock_irq(&dev->event_lock);
2161 drm_crtc_vblank_put(crtc);
2162 err_free:
2163 kfree(e);
2164 return ret;