Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / display / intel_dpio_phy.c
blob514c4a7adffc8b7e364b9c5d6be33e343c616397
1 /*
2 * Copyright © 2014-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 #include "display/intel_dp.h"
26 #include "intel_display_types.h"
27 #include "intel_dpio_phy.h"
28 #include "intel_sideband.h"
30 /**
31 * DOC: DPIO
33 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
34 * ports. DPIO is the name given to such a display PHY. These PHYs
35 * don't follow the standard programming model using direct MMIO
36 * registers, and instead their registers must be accessed trough IOSF
37 * sideband. VLV has one such PHY for driving ports B and C, and CHV
38 * adds another PHY for driving port D. Each PHY responds to specific
39 * IOSF-SB port.
41 * Each display PHY is made up of one or two channels. Each channel
42 * houses a common lane part which contains the PLL and other common
43 * logic. CH0 common lane also contains the IOSF-SB logic for the
44 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
45 * must be running when any DPIO registers are accessed.
47 * In addition to having their own registers, the PHYs are also
48 * controlled through some dedicated signals from the display
49 * controller. These include PLL reference clock enable, PLL enable,
50 * and CRI clock selection, for example.
52 * Eeach channel also has two splines (also called data lanes), and
53 * each spline is made up of one Physical Access Coding Sub-Layer
54 * (PCS) block and two TX lanes. So each channel has two PCS blocks
55 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
56 * data/clock pairs depending on the output type.
58 * Additionally the PHY also contains an AUX lane with AUX blocks
59 * for each channel. This is used for DP AUX communication, but
60 * this fact isn't really relevant for the driver since AUX is
61 * controlled from the display controller side. No DPIO registers
62 * need to be accessed during AUX communication,
64 * Generally on VLV/CHV the common lane corresponds to the pipe and
65 * the spline (PCS/TX) corresponds to the port.
67 * For dual channel PHY (VLV/CHV):
69 * pipe A == CMN/PLL/REF CH0
71 * pipe B == CMN/PLL/REF CH1
73 * port B == PCS/TX CH0
75 * port C == PCS/TX CH1
77 * This is especially important when we cross the streams
78 * ie. drive port B with pipe B, or port C with pipe A.
80 * For single channel PHY (CHV):
82 * pipe C == CMN/PLL/REF CH0
84 * port D == PCS/TX CH0
86 * On BXT the entire PHY channel corresponds to the port. That means
87 * the PLL is also now associated with the port rather than the pipe,
88 * and so the clock needs to be routed to the appropriate transcoder.
89 * Port A PLL is directly connected to transcoder EDP and port B/C
90 * PLLs can be routed to any transcoder A/B/C.
92 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
93 * digital port D (CHV) or port A (BXT). ::
96 * Dual channel PHY (VLV/CHV/BXT)
97 * ---------------------------------
98 * | CH0 | CH1 |
99 * | CMN/PLL/REF | CMN/PLL/REF |
100 * |---------------|---------------| Display PHY
101 * | PCS01 | PCS23 | PCS01 | PCS23 |
102 * |-------|-------|-------|-------|
103 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
104 * ---------------------------------
105 * | DDI0 | DDI1 | DP/HDMI ports
106 * ---------------------------------
108 * Single channel PHY (CHV/BXT)
109 * -----------------
110 * | CH0 |
111 * | CMN/PLL/REF |
112 * |---------------| Display PHY
113 * | PCS01 | PCS23 |
114 * |-------|-------|
115 * |TX0|TX1|TX2|TX3|
116 * -----------------
117 * | DDI2 | DP/HDMI port
118 * -----------------
122 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
124 struct bxt_ddi_phy_info {
126 * @dual_channel: true if this phy has a second channel.
128 bool dual_channel;
131 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
132 * Otherwise the GRC value will be copied from the phy indicated by
133 * this field.
135 enum dpio_phy rcomp_phy;
138 * @reset_delay: delay in us to wait before setting the common reset
139 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
141 int reset_delay;
144 * @pwron_mask: Mask with the appropriate bit set that would cause the
145 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
147 u32 pwron_mask;
150 * @channel: struct containing per channel information.
152 struct {
154 * @channel.port: which port maps to this channel.
156 enum port port;
157 } channel[2];
160 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
161 [DPIO_PHY0] = {
162 .dual_channel = true,
163 .rcomp_phy = DPIO_PHY1,
164 .pwron_mask = BIT(0),
166 .channel = {
167 [DPIO_CH0] = { .port = PORT_B },
168 [DPIO_CH1] = { .port = PORT_C },
171 [DPIO_PHY1] = {
172 .dual_channel = false,
173 .rcomp_phy = -1,
174 .pwron_mask = BIT(1),
176 .channel = {
177 [DPIO_CH0] = { .port = PORT_A },
182 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
183 [DPIO_PHY0] = {
184 .dual_channel = false,
185 .rcomp_phy = DPIO_PHY1,
186 .pwron_mask = BIT(0),
187 .reset_delay = 20,
189 .channel = {
190 [DPIO_CH0] = { .port = PORT_B },
193 [DPIO_PHY1] = {
194 .dual_channel = false,
195 .rcomp_phy = -1,
196 .pwron_mask = BIT(3),
197 .reset_delay = 20,
199 .channel = {
200 [DPIO_CH0] = { .port = PORT_A },
203 [DPIO_PHY2] = {
204 .dual_channel = false,
205 .rcomp_phy = DPIO_PHY1,
206 .pwron_mask = BIT(1),
207 .reset_delay = 20,
209 .channel = {
210 [DPIO_CH0] = { .port = PORT_C },
215 static const struct bxt_ddi_phy_info *
216 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
218 if (IS_GEMINILAKE(dev_priv)) {
219 *count = ARRAY_SIZE(glk_ddi_phy_info);
220 return glk_ddi_phy_info;
221 } else {
222 *count = ARRAY_SIZE(bxt_ddi_phy_info);
223 return bxt_ddi_phy_info;
227 static const struct bxt_ddi_phy_info *
228 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
230 int count;
231 const struct bxt_ddi_phy_info *phy_list =
232 bxt_get_phy_list(dev_priv, &count);
234 return &phy_list[phy];
237 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
238 enum dpio_phy *phy, enum dpio_channel *ch)
240 const struct bxt_ddi_phy_info *phy_info, *phys;
241 int i, count;
243 phys = bxt_get_phy_list(dev_priv, &count);
245 for (i = 0; i < count; i++) {
246 phy_info = &phys[i];
248 if (port == phy_info->channel[DPIO_CH0].port) {
249 *phy = i;
250 *ch = DPIO_CH0;
251 return;
254 if (phy_info->dual_channel &&
255 port == phy_info->channel[DPIO_CH1].port) {
256 *phy = i;
257 *ch = DPIO_CH1;
258 return;
262 drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
263 port_name(port));
264 *phy = DPIO_PHY0;
265 *ch = DPIO_CH0;
268 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
269 enum port port, u32 margin, u32 scale,
270 u32 enable, u32 deemphasis)
272 u32 val;
273 enum dpio_phy phy;
274 enum dpio_channel ch;
276 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
279 * While we write to the group register to program all lanes at once we
280 * can read only lane registers and we pick lanes 0/1 for that.
282 val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
283 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
284 intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
286 val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch));
287 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
288 val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
289 intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val);
291 val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch));
292 val &= ~SCALE_DCOMP_METHOD;
293 if (enable)
294 val |= SCALE_DCOMP_METHOD;
296 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
297 drm_err(&dev_priv->drm,
298 "Disabled scaling while ouniqetrangenmethod was set");
300 intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val);
302 val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch));
303 val &= ~DE_EMPHASIS;
304 val |= deemphasis << DEEMPH_SHIFT;
305 intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val);
307 val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
308 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
309 intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
312 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
313 enum dpio_phy phy)
315 const struct bxt_ddi_phy_info *phy_info;
317 phy_info = bxt_get_phy_info(dev_priv, phy);
319 if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
320 return false;
322 if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
323 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
324 drm_dbg(&dev_priv->drm,
325 "DDI PHY %d powered, but power hasn't settled\n", phy);
327 return false;
330 if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
331 drm_dbg(&dev_priv->drm,
332 "DDI PHY %d powered, but still in reset\n", phy);
334 return false;
337 return true;
340 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
342 u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
344 return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
347 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
348 enum dpio_phy phy)
350 if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
351 GRC_DONE, 10))
352 drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
353 phy);
356 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
357 enum dpio_phy phy)
359 const struct bxt_ddi_phy_info *phy_info;
360 u32 val;
362 phy_info = bxt_get_phy_info(dev_priv, phy);
364 if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
365 /* Still read out the GRC value for state verification */
366 if (phy_info->rcomp_phy != -1)
367 dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
369 if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
370 drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
371 "won't reprogram it\n", phy);
372 return;
375 drm_dbg(&dev_priv->drm,
376 "DDI PHY %d enabled with invalid state, "
377 "force reprogramming it\n", phy);
380 val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
381 val |= phy_info->pwron_mask;
382 intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
385 * The PHY registers start out inaccessible and respond to reads with
386 * all 1s. Eventually they become accessible as they power up, then
387 * the reserved bit will give the default 0. Poll on the reserved bit
388 * becoming 0 to find when the PHY is accessible.
389 * The flag should get set in 100us according to the HW team, but
390 * use 1ms due to occasional timeouts observed with that.
392 if (intel_wait_for_register_fw(&dev_priv->uncore,
393 BXT_PORT_CL1CM_DW0(phy),
394 PHY_RESERVED | PHY_POWER_GOOD,
395 PHY_POWER_GOOD,
397 drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
398 phy);
400 /* Program PLL Rcomp code offset */
401 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW9(phy));
402 val &= ~IREF0RC_OFFSET_MASK;
403 val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
404 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW9(phy), val);
406 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW10(phy));
407 val &= ~IREF1RC_OFFSET_MASK;
408 val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
409 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW10(phy), val);
411 /* Program power gating */
412 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW28(phy));
413 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
414 SUS_CLK_CONFIG;
415 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW28(phy), val);
417 if (phy_info->dual_channel) {
418 val = intel_de_read(dev_priv, BXT_PORT_CL2CM_DW6(phy));
419 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
420 intel_de_write(dev_priv, BXT_PORT_CL2CM_DW6(phy), val);
423 if (phy_info->rcomp_phy != -1) {
424 u32 grc_code;
426 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
429 * PHY0 isn't connected to an RCOMP resistor so copy over
430 * the corresponding calibrated value from PHY1, and disable
431 * the automatic calibration on PHY0.
433 val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
434 phy_info->rcomp_phy);
435 grc_code = val << GRC_CODE_FAST_SHIFT |
436 val << GRC_CODE_SLOW_SHIFT |
437 val;
438 intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
440 val = intel_de_read(dev_priv, BXT_PORT_REF_DW8(phy));
441 val |= GRC_DIS | GRC_RDY_OVRD;
442 intel_de_write(dev_priv, BXT_PORT_REF_DW8(phy), val);
445 if (phy_info->reset_delay)
446 udelay(phy_info->reset_delay);
448 val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
449 val |= COMMON_RESET_DIS;
450 intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
453 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
455 const struct bxt_ddi_phy_info *phy_info;
456 u32 val;
458 phy_info = bxt_get_phy_info(dev_priv, phy);
460 val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
461 val &= ~COMMON_RESET_DIS;
462 intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
464 val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
465 val &= ~phy_info->pwron_mask;
466 intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
469 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
471 const struct bxt_ddi_phy_info *phy_info =
472 bxt_get_phy_info(dev_priv, phy);
473 enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
474 bool was_enabled;
476 lockdep_assert_held(&dev_priv->power_domains.lock);
478 was_enabled = true;
479 if (rcomp_phy != -1)
480 was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
483 * We need to copy the GRC calibration value from rcomp_phy,
484 * so make sure it's powered up.
486 if (!was_enabled)
487 _bxt_ddi_phy_init(dev_priv, rcomp_phy);
489 _bxt_ddi_phy_init(dev_priv, phy);
491 if (!was_enabled)
492 bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
495 static bool __printf(6, 7)
496 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
497 i915_reg_t reg, u32 mask, u32 expected,
498 const char *reg_fmt, ...)
500 struct va_format vaf;
501 va_list args;
502 u32 val;
504 val = intel_de_read(dev_priv, reg);
505 if ((val & mask) == expected)
506 return true;
508 va_start(args, reg_fmt);
509 vaf.fmt = reg_fmt;
510 vaf.va = &args;
512 drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
513 "current %08x, expected %08x (mask %08x)\n",
514 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
515 mask);
517 va_end(args);
519 return false;
522 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
523 enum dpio_phy phy)
525 const struct bxt_ddi_phy_info *phy_info;
526 u32 mask;
527 bool ok;
529 phy_info = bxt_get_phy_info(dev_priv, phy);
531 #define _CHK(reg, mask, exp, fmt, ...) \
532 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
533 ## __VA_ARGS__)
535 if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
536 return false;
538 ok = true;
540 /* PLL Rcomp code offset */
541 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
542 IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
543 "BXT_PORT_CL1CM_DW9(%d)", phy);
544 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
545 IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
546 "BXT_PORT_CL1CM_DW10(%d)", phy);
548 /* Power gating */
549 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
550 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
551 "BXT_PORT_CL1CM_DW28(%d)", phy);
553 if (phy_info->dual_channel)
554 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
555 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
556 "BXT_PORT_CL2CM_DW6(%d)", phy);
558 if (phy_info->rcomp_phy != -1) {
559 u32 grc_code = dev_priv->bxt_phy_grc;
561 grc_code = grc_code << GRC_CODE_FAST_SHIFT |
562 grc_code << GRC_CODE_SLOW_SHIFT |
563 grc_code;
564 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
565 GRC_CODE_NOM_MASK;
566 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
567 "BXT_PORT_REF_DW6(%d)", phy);
569 mask = GRC_DIS | GRC_RDY_OVRD;
570 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
571 "BXT_PORT_REF_DW8(%d)", phy);
574 return ok;
575 #undef _CHK
579 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
581 switch (lane_count) {
582 case 1:
583 return 0;
584 case 2:
585 return BIT(2) | BIT(0);
586 case 4:
587 return BIT(3) | BIT(2) | BIT(0);
588 default:
589 MISSING_CASE(lane_count);
591 return 0;
595 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
596 u8 lane_lat_optim_mask)
598 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
599 enum port port = encoder->port;
600 enum dpio_phy phy;
601 enum dpio_channel ch;
602 int lane;
604 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
606 for (lane = 0; lane < 4; lane++) {
607 u32 val = intel_de_read(dev_priv,
608 BXT_PORT_TX_DW14_LN(phy, ch, lane));
611 * Note that on CHV this flag is called UPAR, but has
612 * the same function.
614 val &= ~LATENCY_OPTIM;
615 if (lane_lat_optim_mask & BIT(lane))
616 val |= LATENCY_OPTIM;
618 intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
619 val);
624 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
626 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
627 enum port port = encoder->port;
628 enum dpio_phy phy;
629 enum dpio_channel ch;
630 int lane;
631 u8 mask;
633 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
635 mask = 0;
636 for (lane = 0; lane < 4; lane++) {
637 u32 val = intel_de_read(dev_priv,
638 BXT_PORT_TX_DW14_LN(phy, ch, lane));
640 if (val & LATENCY_OPTIM)
641 mask |= BIT(lane);
644 return mask;
647 void chv_set_phy_signal_level(struct intel_encoder *encoder,
648 const struct intel_crtc_state *crtc_state,
649 u32 deemph_reg_value, u32 margin_reg_value,
650 bool uniq_trans_scale)
652 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
653 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
654 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
655 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
656 enum pipe pipe = crtc->pipe;
657 u32 val;
658 int i;
660 vlv_dpio_get(dev_priv);
662 /* Clear calc init */
663 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
664 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
665 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
666 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
667 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
669 if (crtc_state->lane_count > 2) {
670 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
671 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
672 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
673 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
674 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
677 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
678 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
679 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
680 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
682 if (crtc_state->lane_count > 2) {
683 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
684 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
685 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
686 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
689 /* Program swing deemph */
690 for (i = 0; i < crtc_state->lane_count; i++) {
691 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
692 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
693 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
694 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
697 /* Program swing margin */
698 for (i = 0; i < crtc_state->lane_count; i++) {
699 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
701 val &= ~DPIO_SWING_MARGIN000_MASK;
702 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
705 * Supposedly this value shouldn't matter when unique transition
706 * scale is disabled, but in fact it does matter. Let's just
707 * always program the same value and hope it's OK.
709 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
710 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
712 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
716 * The document said it needs to set bit 27 for ch0 and bit 26
717 * for ch1. Might be a typo in the doc.
718 * For now, for this unique transition scale selection, set bit
719 * 27 for ch0 and ch1.
721 for (i = 0; i < crtc_state->lane_count; i++) {
722 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
723 if (uniq_trans_scale)
724 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
725 else
726 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
727 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
730 /* Start swing calculation */
731 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
732 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
733 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
735 if (crtc_state->lane_count > 2) {
736 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
737 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
738 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
741 vlv_dpio_put(dev_priv);
744 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
745 const struct intel_crtc_state *crtc_state,
746 bool reset)
748 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
749 enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
750 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
751 enum pipe pipe = crtc->pipe;
752 u32 val;
754 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
755 if (reset)
756 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
757 else
758 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
759 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
761 if (crtc_state->lane_count > 2) {
762 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
763 if (reset)
764 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
765 else
766 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
767 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
770 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
771 val |= CHV_PCS_REQ_SOFTRESET_EN;
772 if (reset)
773 val &= ~DPIO_PCS_CLK_SOFT_RESET;
774 else
775 val |= DPIO_PCS_CLK_SOFT_RESET;
776 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
778 if (crtc_state->lane_count > 2) {
779 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
780 val |= CHV_PCS_REQ_SOFTRESET_EN;
781 if (reset)
782 val &= ~DPIO_PCS_CLK_SOFT_RESET;
783 else
784 val |= DPIO_PCS_CLK_SOFT_RESET;
785 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
789 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
790 const struct intel_crtc_state *crtc_state)
792 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
793 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
794 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
795 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
796 enum pipe pipe = crtc->pipe;
797 unsigned int lane_mask =
798 intel_dp_unused_lane_mask(crtc_state->lane_count);
799 u32 val;
802 * Must trick the second common lane into life.
803 * Otherwise we can't even access the PLL.
805 if (ch == DPIO_CH0 && pipe == PIPE_B)
806 dig_port->release_cl2_override =
807 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
809 chv_phy_powergate_lanes(encoder, true, lane_mask);
811 vlv_dpio_get(dev_priv);
813 /* Assert data lane reset */
814 chv_data_lane_soft_reset(encoder, crtc_state, true);
816 /* program left/right clock distribution */
817 if (pipe != PIPE_B) {
818 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
819 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
820 if (ch == DPIO_CH0)
821 val |= CHV_BUFLEFTENA1_FORCE;
822 if (ch == DPIO_CH1)
823 val |= CHV_BUFRIGHTENA1_FORCE;
824 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
825 } else {
826 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
827 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
828 if (ch == DPIO_CH0)
829 val |= CHV_BUFLEFTENA2_FORCE;
830 if (ch == DPIO_CH1)
831 val |= CHV_BUFRIGHTENA2_FORCE;
832 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
835 /* program clock channel usage */
836 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
837 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
838 if (pipe != PIPE_B)
839 val &= ~CHV_PCS_USEDCLKCHANNEL;
840 else
841 val |= CHV_PCS_USEDCLKCHANNEL;
842 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
844 if (crtc_state->lane_count > 2) {
845 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
846 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
847 if (pipe != PIPE_B)
848 val &= ~CHV_PCS_USEDCLKCHANNEL;
849 else
850 val |= CHV_PCS_USEDCLKCHANNEL;
851 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
855 * This a a bit weird since generally CL
856 * matches the pipe, but here we need to
857 * pick the CL based on the port.
859 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
860 if (pipe != PIPE_B)
861 val &= ~CHV_CMN_USEDCLKCHANNEL;
862 else
863 val |= CHV_CMN_USEDCLKCHANNEL;
864 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
866 vlv_dpio_put(dev_priv);
869 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
870 const struct intel_crtc_state *crtc_state)
872 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
873 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
874 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
875 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
876 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
877 enum pipe pipe = crtc->pipe;
878 int data, i, stagger;
879 u32 val;
881 vlv_dpio_get(dev_priv);
883 /* allow hardware to manage TX FIFO reset source */
884 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
885 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
886 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
888 if (crtc_state->lane_count > 2) {
889 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
890 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
891 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
894 /* Program Tx lane latency optimal setting*/
895 for (i = 0; i < crtc_state->lane_count; i++) {
896 /* Set the upar bit */
897 if (crtc_state->lane_count == 1)
898 data = 0x0;
899 else
900 data = (i == 1) ? 0x0 : 0x1;
901 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
902 data << DPIO_UPAR_SHIFT);
905 /* Data lane stagger programming */
906 if (crtc_state->port_clock > 270000)
907 stagger = 0x18;
908 else if (crtc_state->port_clock > 135000)
909 stagger = 0xd;
910 else if (crtc_state->port_clock > 67500)
911 stagger = 0x7;
912 else if (crtc_state->port_clock > 33750)
913 stagger = 0x4;
914 else
915 stagger = 0x2;
917 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
918 val |= DPIO_TX2_STAGGER_MASK(0x1f);
919 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
921 if (crtc_state->lane_count > 2) {
922 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
923 val |= DPIO_TX2_STAGGER_MASK(0x1f);
924 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
927 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
928 DPIO_LANESTAGGER_STRAP(stagger) |
929 DPIO_LANESTAGGER_STRAP_OVRD |
930 DPIO_TX1_STAGGER_MASK(0x1f) |
931 DPIO_TX1_STAGGER_MULT(6) |
932 DPIO_TX2_STAGGER_MULT(0));
934 if (crtc_state->lane_count > 2) {
935 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
936 DPIO_LANESTAGGER_STRAP(stagger) |
937 DPIO_LANESTAGGER_STRAP_OVRD |
938 DPIO_TX1_STAGGER_MASK(0x1f) |
939 DPIO_TX1_STAGGER_MULT(7) |
940 DPIO_TX2_STAGGER_MULT(5));
943 /* Deassert data lane reset */
944 chv_data_lane_soft_reset(encoder, crtc_state, false);
946 vlv_dpio_put(dev_priv);
949 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
951 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
952 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
954 if (dig_port->release_cl2_override) {
955 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
956 dig_port->release_cl2_override = false;
960 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
961 const struct intel_crtc_state *old_crtc_state)
963 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
964 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
965 u32 val;
967 vlv_dpio_get(dev_priv);
969 /* disable left/right clock distribution */
970 if (pipe != PIPE_B) {
971 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
972 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
973 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
974 } else {
975 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
976 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
977 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
980 vlv_dpio_put(dev_priv);
983 * Leave the power down bit cleared for at least one
984 * lane so that chv_powergate_phy_ch() will power
985 * on something when the channel is otherwise unused.
986 * When the port is off and the override is removed
987 * the lanes power down anyway, so otherwise it doesn't
988 * really matter what the state of power down bits is
989 * after this.
991 chv_phy_powergate_lanes(encoder, false, 0x0);
994 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
995 const struct intel_crtc_state *crtc_state,
996 u32 demph_reg_value, u32 preemph_reg_value,
997 u32 uniqtranscale_reg_value, u32 tx3_demph)
999 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1000 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1001 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1002 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1003 enum pipe pipe = crtc->pipe;
1005 vlv_dpio_get(dev_priv);
1007 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
1008 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
1009 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
1010 uniqtranscale_reg_value);
1011 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1013 if (tx3_demph)
1014 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1016 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1017 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1018 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1020 vlv_dpio_put(dev_priv);
1023 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1024 const struct intel_crtc_state *crtc_state)
1026 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1027 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1028 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1029 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1030 enum pipe pipe = crtc->pipe;
1032 /* Program Tx lane resets to default */
1033 vlv_dpio_get(dev_priv);
1035 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1036 DPIO_PCS_TX_LANE2_RESET |
1037 DPIO_PCS_TX_LANE1_RESET);
1038 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1039 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1040 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1041 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1042 DPIO_PCS_CLK_SOFT_RESET);
1044 /* Fix up inter-pair skew failure */
1045 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1046 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1047 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1049 vlv_dpio_put(dev_priv);
1052 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1053 const struct intel_crtc_state *crtc_state)
1055 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1056 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1057 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1058 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1059 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1060 enum pipe pipe = crtc->pipe;
1061 u32 val;
1063 vlv_dpio_get(dev_priv);
1065 /* Enable clock channels for this port */
1066 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1067 val = 0;
1068 if (pipe)
1069 val |= (1<<21);
1070 else
1071 val &= ~(1<<21);
1072 val |= 0x001000c4;
1073 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1075 /* Program lane clock */
1076 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1077 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1079 vlv_dpio_put(dev_priv);
1082 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1083 const struct intel_crtc_state *old_crtc_state)
1085 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1086 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1087 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1088 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1089 enum pipe pipe = crtc->pipe;
1091 vlv_dpio_get(dev_priv);
1092 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1093 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1094 vlv_dpio_put(dev_priv);