2 * Copyright © 2014-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 #include "display/intel_dp.h"
26 #include "intel_display_types.h"
27 #include "intel_dpio_phy.h"
28 #include "intel_sideband.h"
33 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
34 * ports. DPIO is the name given to such a display PHY. These PHYs
35 * don't follow the standard programming model using direct MMIO
36 * registers, and instead their registers must be accessed trough IOSF
37 * sideband. VLV has one such PHY for driving ports B and C, and CHV
38 * adds another PHY for driving port D. Each PHY responds to specific
41 * Each display PHY is made up of one or two channels. Each channel
42 * houses a common lane part which contains the PLL and other common
43 * logic. CH0 common lane also contains the IOSF-SB logic for the
44 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
45 * must be running when any DPIO registers are accessed.
47 * In addition to having their own registers, the PHYs are also
48 * controlled through some dedicated signals from the display
49 * controller. These include PLL reference clock enable, PLL enable,
50 * and CRI clock selection, for example.
52 * Eeach channel also has two splines (also called data lanes), and
53 * each spline is made up of one Physical Access Coding Sub-Layer
54 * (PCS) block and two TX lanes. So each channel has two PCS blocks
55 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
56 * data/clock pairs depending on the output type.
58 * Additionally the PHY also contains an AUX lane with AUX blocks
59 * for each channel. This is used for DP AUX communication, but
60 * this fact isn't really relevant for the driver since AUX is
61 * controlled from the display controller side. No DPIO registers
62 * need to be accessed during AUX communication,
64 * Generally on VLV/CHV the common lane corresponds to the pipe and
65 * the spline (PCS/TX) corresponds to the port.
67 * For dual channel PHY (VLV/CHV):
69 * pipe A == CMN/PLL/REF CH0
71 * pipe B == CMN/PLL/REF CH1
73 * port B == PCS/TX CH0
75 * port C == PCS/TX CH1
77 * This is especially important when we cross the streams
78 * ie. drive port B with pipe B, or port C with pipe A.
80 * For single channel PHY (CHV):
82 * pipe C == CMN/PLL/REF CH0
84 * port D == PCS/TX CH0
86 * On BXT the entire PHY channel corresponds to the port. That means
87 * the PLL is also now associated with the port rather than the pipe,
88 * and so the clock needs to be routed to the appropriate transcoder.
89 * Port A PLL is directly connected to transcoder EDP and port B/C
90 * PLLs can be routed to any transcoder A/B/C.
92 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
93 * digital port D (CHV) or port A (BXT). ::
96 * Dual channel PHY (VLV/CHV/BXT)
97 * ---------------------------------
99 * | CMN/PLL/REF | CMN/PLL/REF |
100 * |---------------|---------------| Display PHY
101 * | PCS01 | PCS23 | PCS01 | PCS23 |
102 * |-------|-------|-------|-------|
103 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
104 * ---------------------------------
105 * | DDI0 | DDI1 | DP/HDMI ports
106 * ---------------------------------
108 * Single channel PHY (CHV/BXT)
112 * |---------------| Display PHY
117 * | DDI2 | DP/HDMI port
122 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
124 struct bxt_ddi_phy_info
{
126 * @dual_channel: true if this phy has a second channel.
131 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
132 * Otherwise the GRC value will be copied from the phy indicated by
135 enum dpio_phy rcomp_phy
;
138 * @reset_delay: delay in us to wait before setting the common reset
139 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
144 * @pwron_mask: Mask with the appropriate bit set that would cause the
145 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
150 * @channel: struct containing per channel information.
154 * @channel.port: which port maps to this channel.
160 static const struct bxt_ddi_phy_info bxt_ddi_phy_info
[] = {
162 .dual_channel
= true,
163 .rcomp_phy
= DPIO_PHY1
,
164 .pwron_mask
= BIT(0),
167 [DPIO_CH0
] = { .port
= PORT_B
},
168 [DPIO_CH1
] = { .port
= PORT_C
},
172 .dual_channel
= false,
174 .pwron_mask
= BIT(1),
177 [DPIO_CH0
] = { .port
= PORT_A
},
182 static const struct bxt_ddi_phy_info glk_ddi_phy_info
[] = {
184 .dual_channel
= false,
185 .rcomp_phy
= DPIO_PHY1
,
186 .pwron_mask
= BIT(0),
190 [DPIO_CH0
] = { .port
= PORT_B
},
194 .dual_channel
= false,
196 .pwron_mask
= BIT(3),
200 [DPIO_CH0
] = { .port
= PORT_A
},
204 .dual_channel
= false,
205 .rcomp_phy
= DPIO_PHY1
,
206 .pwron_mask
= BIT(1),
210 [DPIO_CH0
] = { .port
= PORT_C
},
215 static const struct bxt_ddi_phy_info
*
216 bxt_get_phy_list(struct drm_i915_private
*dev_priv
, int *count
)
218 if (IS_GEMINILAKE(dev_priv
)) {
219 *count
= ARRAY_SIZE(glk_ddi_phy_info
);
220 return glk_ddi_phy_info
;
222 *count
= ARRAY_SIZE(bxt_ddi_phy_info
);
223 return bxt_ddi_phy_info
;
227 static const struct bxt_ddi_phy_info
*
228 bxt_get_phy_info(struct drm_i915_private
*dev_priv
, enum dpio_phy phy
)
231 const struct bxt_ddi_phy_info
*phy_list
=
232 bxt_get_phy_list(dev_priv
, &count
);
234 return &phy_list
[phy
];
237 void bxt_port_to_phy_channel(struct drm_i915_private
*dev_priv
, enum port port
,
238 enum dpio_phy
*phy
, enum dpio_channel
*ch
)
240 const struct bxt_ddi_phy_info
*phy_info
, *phys
;
243 phys
= bxt_get_phy_list(dev_priv
, &count
);
245 for (i
= 0; i
< count
; i
++) {
248 if (port
== phy_info
->channel
[DPIO_CH0
].port
) {
254 if (phy_info
->dual_channel
&&
255 port
== phy_info
->channel
[DPIO_CH1
].port
) {
262 drm_WARN(&dev_priv
->drm
, 1, "PHY not found for PORT %c",
268 void bxt_ddi_phy_set_signal_level(struct drm_i915_private
*dev_priv
,
269 enum port port
, u32 margin
, u32 scale
,
270 u32 enable
, u32 deemphasis
)
274 enum dpio_channel ch
;
276 bxt_port_to_phy_channel(dev_priv
, port
, &phy
, &ch
);
279 * While we write to the group register to program all lanes at once we
280 * can read only lane registers and we pick lanes 0/1 for that.
282 val
= intel_de_read(dev_priv
, BXT_PORT_PCS_DW10_LN01(phy
, ch
));
283 val
&= ~(TX2_SWING_CALC_INIT
| TX1_SWING_CALC_INIT
);
284 intel_de_write(dev_priv
, BXT_PORT_PCS_DW10_GRP(phy
, ch
), val
);
286 val
= intel_de_read(dev_priv
, BXT_PORT_TX_DW2_LN0(phy
, ch
));
287 val
&= ~(MARGIN_000
| UNIQ_TRANS_SCALE
);
288 val
|= margin
<< MARGIN_000_SHIFT
| scale
<< UNIQ_TRANS_SCALE_SHIFT
;
289 intel_de_write(dev_priv
, BXT_PORT_TX_DW2_GRP(phy
, ch
), val
);
291 val
= intel_de_read(dev_priv
, BXT_PORT_TX_DW3_LN0(phy
, ch
));
292 val
&= ~SCALE_DCOMP_METHOD
;
294 val
|= SCALE_DCOMP_METHOD
;
296 if ((val
& UNIQUE_TRANGE_EN_METHOD
) && !(val
& SCALE_DCOMP_METHOD
))
297 drm_err(&dev_priv
->drm
,
298 "Disabled scaling while ouniqetrangenmethod was set");
300 intel_de_write(dev_priv
, BXT_PORT_TX_DW3_GRP(phy
, ch
), val
);
302 val
= intel_de_read(dev_priv
, BXT_PORT_TX_DW4_LN0(phy
, ch
));
304 val
|= deemphasis
<< DEEMPH_SHIFT
;
305 intel_de_write(dev_priv
, BXT_PORT_TX_DW4_GRP(phy
, ch
), val
);
307 val
= intel_de_read(dev_priv
, BXT_PORT_PCS_DW10_LN01(phy
, ch
));
308 val
|= TX2_SWING_CALC_INIT
| TX1_SWING_CALC_INIT
;
309 intel_de_write(dev_priv
, BXT_PORT_PCS_DW10_GRP(phy
, ch
), val
);
312 bool bxt_ddi_phy_is_enabled(struct drm_i915_private
*dev_priv
,
315 const struct bxt_ddi_phy_info
*phy_info
;
317 phy_info
= bxt_get_phy_info(dev_priv
, phy
);
319 if (!(intel_de_read(dev_priv
, BXT_P_CR_GT_DISP_PWRON
) & phy_info
->pwron_mask
))
322 if ((intel_de_read(dev_priv
, BXT_PORT_CL1CM_DW0(phy
)) &
323 (PHY_POWER_GOOD
| PHY_RESERVED
)) != PHY_POWER_GOOD
) {
324 drm_dbg(&dev_priv
->drm
,
325 "DDI PHY %d powered, but power hasn't settled\n", phy
);
330 if (!(intel_de_read(dev_priv
, BXT_PHY_CTL_FAMILY(phy
)) & COMMON_RESET_DIS
)) {
331 drm_dbg(&dev_priv
->drm
,
332 "DDI PHY %d powered, but still in reset\n", phy
);
340 static u32
bxt_get_grc(struct drm_i915_private
*dev_priv
, enum dpio_phy phy
)
342 u32 val
= intel_de_read(dev_priv
, BXT_PORT_REF_DW6(phy
));
344 return (val
& GRC_CODE_MASK
) >> GRC_CODE_SHIFT
;
347 static void bxt_phy_wait_grc_done(struct drm_i915_private
*dev_priv
,
350 if (intel_de_wait_for_set(dev_priv
, BXT_PORT_REF_DW3(phy
),
352 drm_err(&dev_priv
->drm
, "timeout waiting for PHY%d GRC\n",
356 static void _bxt_ddi_phy_init(struct drm_i915_private
*dev_priv
,
359 const struct bxt_ddi_phy_info
*phy_info
;
362 phy_info
= bxt_get_phy_info(dev_priv
, phy
);
364 if (bxt_ddi_phy_is_enabled(dev_priv
, phy
)) {
365 /* Still read out the GRC value for state verification */
366 if (phy_info
->rcomp_phy
!= -1)
367 dev_priv
->bxt_phy_grc
= bxt_get_grc(dev_priv
, phy
);
369 if (bxt_ddi_phy_verify_state(dev_priv
, phy
)) {
370 drm_dbg(&dev_priv
->drm
, "DDI PHY %d already enabled, "
371 "won't reprogram it\n", phy
);
375 drm_dbg(&dev_priv
->drm
,
376 "DDI PHY %d enabled with invalid state, "
377 "force reprogramming it\n", phy
);
380 val
= intel_de_read(dev_priv
, BXT_P_CR_GT_DISP_PWRON
);
381 val
|= phy_info
->pwron_mask
;
382 intel_de_write(dev_priv
, BXT_P_CR_GT_DISP_PWRON
, val
);
385 * The PHY registers start out inaccessible and respond to reads with
386 * all 1s. Eventually they become accessible as they power up, then
387 * the reserved bit will give the default 0. Poll on the reserved bit
388 * becoming 0 to find when the PHY is accessible.
389 * The flag should get set in 100us according to the HW team, but
390 * use 1ms due to occasional timeouts observed with that.
392 if (intel_wait_for_register_fw(&dev_priv
->uncore
,
393 BXT_PORT_CL1CM_DW0(phy
),
394 PHY_RESERVED
| PHY_POWER_GOOD
,
397 drm_err(&dev_priv
->drm
, "timeout during PHY%d power on\n",
400 /* Program PLL Rcomp code offset */
401 val
= intel_de_read(dev_priv
, BXT_PORT_CL1CM_DW9(phy
));
402 val
&= ~IREF0RC_OFFSET_MASK
;
403 val
|= 0xE4 << IREF0RC_OFFSET_SHIFT
;
404 intel_de_write(dev_priv
, BXT_PORT_CL1CM_DW9(phy
), val
);
406 val
= intel_de_read(dev_priv
, BXT_PORT_CL1CM_DW10(phy
));
407 val
&= ~IREF1RC_OFFSET_MASK
;
408 val
|= 0xE4 << IREF1RC_OFFSET_SHIFT
;
409 intel_de_write(dev_priv
, BXT_PORT_CL1CM_DW10(phy
), val
);
411 /* Program power gating */
412 val
= intel_de_read(dev_priv
, BXT_PORT_CL1CM_DW28(phy
));
413 val
|= OCL1_POWER_DOWN_EN
| DW28_OLDO_DYN_PWR_DOWN_EN
|
415 intel_de_write(dev_priv
, BXT_PORT_CL1CM_DW28(phy
), val
);
417 if (phy_info
->dual_channel
) {
418 val
= intel_de_read(dev_priv
, BXT_PORT_CL2CM_DW6(phy
));
419 val
|= DW6_OLDO_DYN_PWR_DOWN_EN
;
420 intel_de_write(dev_priv
, BXT_PORT_CL2CM_DW6(phy
), val
);
423 if (phy_info
->rcomp_phy
!= -1) {
426 bxt_phy_wait_grc_done(dev_priv
, phy_info
->rcomp_phy
);
429 * PHY0 isn't connected to an RCOMP resistor so copy over
430 * the corresponding calibrated value from PHY1, and disable
431 * the automatic calibration on PHY0.
433 val
= dev_priv
->bxt_phy_grc
= bxt_get_grc(dev_priv
,
434 phy_info
->rcomp_phy
);
435 grc_code
= val
<< GRC_CODE_FAST_SHIFT
|
436 val
<< GRC_CODE_SLOW_SHIFT
|
438 intel_de_write(dev_priv
, BXT_PORT_REF_DW6(phy
), grc_code
);
440 val
= intel_de_read(dev_priv
, BXT_PORT_REF_DW8(phy
));
441 val
|= GRC_DIS
| GRC_RDY_OVRD
;
442 intel_de_write(dev_priv
, BXT_PORT_REF_DW8(phy
), val
);
445 if (phy_info
->reset_delay
)
446 udelay(phy_info
->reset_delay
);
448 val
= intel_de_read(dev_priv
, BXT_PHY_CTL_FAMILY(phy
));
449 val
|= COMMON_RESET_DIS
;
450 intel_de_write(dev_priv
, BXT_PHY_CTL_FAMILY(phy
), val
);
453 void bxt_ddi_phy_uninit(struct drm_i915_private
*dev_priv
, enum dpio_phy phy
)
455 const struct bxt_ddi_phy_info
*phy_info
;
458 phy_info
= bxt_get_phy_info(dev_priv
, phy
);
460 val
= intel_de_read(dev_priv
, BXT_PHY_CTL_FAMILY(phy
));
461 val
&= ~COMMON_RESET_DIS
;
462 intel_de_write(dev_priv
, BXT_PHY_CTL_FAMILY(phy
), val
);
464 val
= intel_de_read(dev_priv
, BXT_P_CR_GT_DISP_PWRON
);
465 val
&= ~phy_info
->pwron_mask
;
466 intel_de_write(dev_priv
, BXT_P_CR_GT_DISP_PWRON
, val
);
469 void bxt_ddi_phy_init(struct drm_i915_private
*dev_priv
, enum dpio_phy phy
)
471 const struct bxt_ddi_phy_info
*phy_info
=
472 bxt_get_phy_info(dev_priv
, phy
);
473 enum dpio_phy rcomp_phy
= phy_info
->rcomp_phy
;
476 lockdep_assert_held(&dev_priv
->power_domains
.lock
);
480 was_enabled
= bxt_ddi_phy_is_enabled(dev_priv
, rcomp_phy
);
483 * We need to copy the GRC calibration value from rcomp_phy,
484 * so make sure it's powered up.
487 _bxt_ddi_phy_init(dev_priv
, rcomp_phy
);
489 _bxt_ddi_phy_init(dev_priv
, phy
);
492 bxt_ddi_phy_uninit(dev_priv
, rcomp_phy
);
495 static bool __printf(6, 7)
496 __phy_reg_verify_state(struct drm_i915_private
*dev_priv
, enum dpio_phy phy
,
497 i915_reg_t reg
, u32 mask
, u32 expected
,
498 const char *reg_fmt
, ...)
500 struct va_format vaf
;
504 val
= intel_de_read(dev_priv
, reg
);
505 if ((val
& mask
) == expected
)
508 va_start(args
, reg_fmt
);
512 drm_dbg(&dev_priv
->drm
, "DDI PHY %d reg %pV [%08x] state mismatch: "
513 "current %08x, expected %08x (mask %08x)\n",
514 phy
, &vaf
, reg
.reg
, val
, (val
& ~mask
) | expected
,
522 bool bxt_ddi_phy_verify_state(struct drm_i915_private
*dev_priv
,
525 const struct bxt_ddi_phy_info
*phy_info
;
529 phy_info
= bxt_get_phy_info(dev_priv
, phy
);
531 #define _CHK(reg, mask, exp, fmt, ...) \
532 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
535 if (!bxt_ddi_phy_is_enabled(dev_priv
, phy
))
540 /* PLL Rcomp code offset */
541 ok
&= _CHK(BXT_PORT_CL1CM_DW9(phy
),
542 IREF0RC_OFFSET_MASK
, 0xe4 << IREF0RC_OFFSET_SHIFT
,
543 "BXT_PORT_CL1CM_DW9(%d)", phy
);
544 ok
&= _CHK(BXT_PORT_CL1CM_DW10(phy
),
545 IREF1RC_OFFSET_MASK
, 0xe4 << IREF1RC_OFFSET_SHIFT
,
546 "BXT_PORT_CL1CM_DW10(%d)", phy
);
549 mask
= OCL1_POWER_DOWN_EN
| DW28_OLDO_DYN_PWR_DOWN_EN
| SUS_CLK_CONFIG
;
550 ok
&= _CHK(BXT_PORT_CL1CM_DW28(phy
), mask
, mask
,
551 "BXT_PORT_CL1CM_DW28(%d)", phy
);
553 if (phy_info
->dual_channel
)
554 ok
&= _CHK(BXT_PORT_CL2CM_DW6(phy
),
555 DW6_OLDO_DYN_PWR_DOWN_EN
, DW6_OLDO_DYN_PWR_DOWN_EN
,
556 "BXT_PORT_CL2CM_DW6(%d)", phy
);
558 if (phy_info
->rcomp_phy
!= -1) {
559 u32 grc_code
= dev_priv
->bxt_phy_grc
;
561 grc_code
= grc_code
<< GRC_CODE_FAST_SHIFT
|
562 grc_code
<< GRC_CODE_SLOW_SHIFT
|
564 mask
= GRC_CODE_FAST_MASK
| GRC_CODE_SLOW_MASK
|
566 ok
&= _CHK(BXT_PORT_REF_DW6(phy
), mask
, grc_code
,
567 "BXT_PORT_REF_DW6(%d)", phy
);
569 mask
= GRC_DIS
| GRC_RDY_OVRD
;
570 ok
&= _CHK(BXT_PORT_REF_DW8(phy
), mask
, mask
,
571 "BXT_PORT_REF_DW8(%d)", phy
);
579 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count
)
581 switch (lane_count
) {
585 return BIT(2) | BIT(0);
587 return BIT(3) | BIT(2) | BIT(0);
589 MISSING_CASE(lane_count
);
595 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder
*encoder
,
596 u8 lane_lat_optim_mask
)
598 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
599 enum port port
= encoder
->port
;
601 enum dpio_channel ch
;
604 bxt_port_to_phy_channel(dev_priv
, port
, &phy
, &ch
);
606 for (lane
= 0; lane
< 4; lane
++) {
607 u32 val
= intel_de_read(dev_priv
,
608 BXT_PORT_TX_DW14_LN(phy
, ch
, lane
));
611 * Note that on CHV this flag is called UPAR, but has
614 val
&= ~LATENCY_OPTIM
;
615 if (lane_lat_optim_mask
& BIT(lane
))
616 val
|= LATENCY_OPTIM
;
618 intel_de_write(dev_priv
, BXT_PORT_TX_DW14_LN(phy
, ch
, lane
),
624 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder
*encoder
)
626 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
627 enum port port
= encoder
->port
;
629 enum dpio_channel ch
;
633 bxt_port_to_phy_channel(dev_priv
, port
, &phy
, &ch
);
636 for (lane
= 0; lane
< 4; lane
++) {
637 u32 val
= intel_de_read(dev_priv
,
638 BXT_PORT_TX_DW14_LN(phy
, ch
, lane
));
640 if (val
& LATENCY_OPTIM
)
647 void chv_set_phy_signal_level(struct intel_encoder
*encoder
,
648 const struct intel_crtc_state
*crtc_state
,
649 u32 deemph_reg_value
, u32 margin_reg_value
,
650 bool uniq_trans_scale
)
652 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
653 struct intel_digital_port
*dig_port
= enc_to_dig_port(encoder
);
654 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
655 enum dpio_channel ch
= vlv_dig_port_to_channel(dig_port
);
656 enum pipe pipe
= crtc
->pipe
;
660 vlv_dpio_get(dev_priv
);
662 /* Clear calc init */
663 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW10(ch
));
664 val
&= ~(DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
);
665 val
&= ~(DPIO_PCS_TX1DEEMP_MASK
| DPIO_PCS_TX2DEEMP_MASK
);
666 val
|= DPIO_PCS_TX1DEEMP_9P5
| DPIO_PCS_TX2DEEMP_9P5
;
667 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW10(ch
), val
);
669 if (crtc_state
->lane_count
> 2) {
670 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW10(ch
));
671 val
&= ~(DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
);
672 val
&= ~(DPIO_PCS_TX1DEEMP_MASK
| DPIO_PCS_TX2DEEMP_MASK
);
673 val
|= DPIO_PCS_TX1DEEMP_9P5
| DPIO_PCS_TX2DEEMP_9P5
;
674 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW10(ch
), val
);
677 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW9(ch
));
678 val
&= ~(DPIO_PCS_TX1MARGIN_MASK
| DPIO_PCS_TX2MARGIN_MASK
);
679 val
|= DPIO_PCS_TX1MARGIN_000
| DPIO_PCS_TX2MARGIN_000
;
680 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW9(ch
), val
);
682 if (crtc_state
->lane_count
> 2) {
683 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW9(ch
));
684 val
&= ~(DPIO_PCS_TX1MARGIN_MASK
| DPIO_PCS_TX2MARGIN_MASK
);
685 val
|= DPIO_PCS_TX1MARGIN_000
| DPIO_PCS_TX2MARGIN_000
;
686 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW9(ch
), val
);
689 /* Program swing deemph */
690 for (i
= 0; i
< crtc_state
->lane_count
; i
++) {
691 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_TX_DW4(ch
, i
));
692 val
&= ~DPIO_SWING_DEEMPH9P5_MASK
;
693 val
|= deemph_reg_value
<< DPIO_SWING_DEEMPH9P5_SHIFT
;
694 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW4(ch
, i
), val
);
697 /* Program swing margin */
698 for (i
= 0; i
< crtc_state
->lane_count
; i
++) {
699 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_TX_DW2(ch
, i
));
701 val
&= ~DPIO_SWING_MARGIN000_MASK
;
702 val
|= margin_reg_value
<< DPIO_SWING_MARGIN000_SHIFT
;
705 * Supposedly this value shouldn't matter when unique transition
706 * scale is disabled, but in fact it does matter. Let's just
707 * always program the same value and hope it's OK.
709 val
&= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT
);
710 val
|= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT
;
712 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW2(ch
, i
), val
);
716 * The document said it needs to set bit 27 for ch0 and bit 26
717 * for ch1. Might be a typo in the doc.
718 * For now, for this unique transition scale selection, set bit
719 * 27 for ch0 and ch1.
721 for (i
= 0; i
< crtc_state
->lane_count
; i
++) {
722 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_TX_DW3(ch
, i
));
723 if (uniq_trans_scale
)
724 val
|= DPIO_TX_UNIQ_TRANS_SCALE_EN
;
726 val
&= ~DPIO_TX_UNIQ_TRANS_SCALE_EN
;
727 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW3(ch
, i
), val
);
730 /* Start swing calculation */
731 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW10(ch
));
732 val
|= DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
;
733 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW10(ch
), val
);
735 if (crtc_state
->lane_count
> 2) {
736 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW10(ch
));
737 val
|= DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
;
738 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW10(ch
), val
);
741 vlv_dpio_put(dev_priv
);
744 void chv_data_lane_soft_reset(struct intel_encoder
*encoder
,
745 const struct intel_crtc_state
*crtc_state
,
748 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
749 enum dpio_channel ch
= vlv_dig_port_to_channel(enc_to_dig_port(encoder
));
750 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
751 enum pipe pipe
= crtc
->pipe
;
754 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW0(ch
));
756 val
&= ~(DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
);
758 val
|= DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
;
759 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW0(ch
), val
);
761 if (crtc_state
->lane_count
> 2) {
762 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW0(ch
));
764 val
&= ~(DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
);
766 val
|= DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
;
767 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW0(ch
), val
);
770 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW1(ch
));
771 val
|= CHV_PCS_REQ_SOFTRESET_EN
;
773 val
&= ~DPIO_PCS_CLK_SOFT_RESET
;
775 val
|= DPIO_PCS_CLK_SOFT_RESET
;
776 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW1(ch
), val
);
778 if (crtc_state
->lane_count
> 2) {
779 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW1(ch
));
780 val
|= CHV_PCS_REQ_SOFTRESET_EN
;
782 val
&= ~DPIO_PCS_CLK_SOFT_RESET
;
784 val
|= DPIO_PCS_CLK_SOFT_RESET
;
785 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW1(ch
), val
);
789 void chv_phy_pre_pll_enable(struct intel_encoder
*encoder
,
790 const struct intel_crtc_state
*crtc_state
)
792 struct intel_digital_port
*dig_port
= enc_to_dig_port(encoder
);
793 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
794 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
795 enum dpio_channel ch
= vlv_dig_port_to_channel(dig_port
);
796 enum pipe pipe
= crtc
->pipe
;
797 unsigned int lane_mask
=
798 intel_dp_unused_lane_mask(crtc_state
->lane_count
);
802 * Must trick the second common lane into life.
803 * Otherwise we can't even access the PLL.
805 if (ch
== DPIO_CH0
&& pipe
== PIPE_B
)
806 dig_port
->release_cl2_override
=
807 !chv_phy_powergate_ch(dev_priv
, DPIO_PHY0
, DPIO_CH1
, true);
809 chv_phy_powergate_lanes(encoder
, true, lane_mask
);
811 vlv_dpio_get(dev_priv
);
813 /* Assert data lane reset */
814 chv_data_lane_soft_reset(encoder
, crtc_state
, true);
816 /* program left/right clock distribution */
817 if (pipe
!= PIPE_B
) {
818 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
);
819 val
&= ~(CHV_BUFLEFTENA1_MASK
| CHV_BUFRIGHTENA1_MASK
);
821 val
|= CHV_BUFLEFTENA1_FORCE
;
823 val
|= CHV_BUFRIGHTENA1_FORCE
;
824 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
, val
);
826 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
);
827 val
&= ~(CHV_BUFLEFTENA2_MASK
| CHV_BUFRIGHTENA2_MASK
);
829 val
|= CHV_BUFLEFTENA2_FORCE
;
831 val
|= CHV_BUFRIGHTENA2_FORCE
;
832 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
, val
);
835 /* program clock channel usage */
836 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW8(ch
));
837 val
|= CHV_PCS_USEDCLKCHANNEL_OVRRIDE
;
839 val
&= ~CHV_PCS_USEDCLKCHANNEL
;
841 val
|= CHV_PCS_USEDCLKCHANNEL
;
842 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW8(ch
), val
);
844 if (crtc_state
->lane_count
> 2) {
845 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW8(ch
));
846 val
|= CHV_PCS_USEDCLKCHANNEL_OVRRIDE
;
848 val
&= ~CHV_PCS_USEDCLKCHANNEL
;
850 val
|= CHV_PCS_USEDCLKCHANNEL
;
851 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW8(ch
), val
);
855 * This a a bit weird since generally CL
856 * matches the pipe, but here we need to
857 * pick the CL based on the port.
859 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_CMN_DW19(ch
));
861 val
&= ~CHV_CMN_USEDCLKCHANNEL
;
863 val
|= CHV_CMN_USEDCLKCHANNEL
;
864 vlv_dpio_write(dev_priv
, pipe
, CHV_CMN_DW19(ch
), val
);
866 vlv_dpio_put(dev_priv
);
869 void chv_phy_pre_encoder_enable(struct intel_encoder
*encoder
,
870 const struct intel_crtc_state
*crtc_state
)
872 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
873 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
874 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
875 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
876 enum dpio_channel ch
= vlv_dig_port_to_channel(dig_port
);
877 enum pipe pipe
= crtc
->pipe
;
878 int data
, i
, stagger
;
881 vlv_dpio_get(dev_priv
);
883 /* allow hardware to manage TX FIFO reset source */
884 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW11(ch
));
885 val
&= ~DPIO_LANEDESKEW_STRAP_OVRD
;
886 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW11(ch
), val
);
888 if (crtc_state
->lane_count
> 2) {
889 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW11(ch
));
890 val
&= ~DPIO_LANEDESKEW_STRAP_OVRD
;
891 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW11(ch
), val
);
894 /* Program Tx lane latency optimal setting*/
895 for (i
= 0; i
< crtc_state
->lane_count
; i
++) {
896 /* Set the upar bit */
897 if (crtc_state
->lane_count
== 1)
900 data
= (i
== 1) ? 0x0 : 0x1;
901 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW14(ch
, i
),
902 data
<< DPIO_UPAR_SHIFT
);
905 /* Data lane stagger programming */
906 if (crtc_state
->port_clock
> 270000)
908 else if (crtc_state
->port_clock
> 135000)
910 else if (crtc_state
->port_clock
> 67500)
912 else if (crtc_state
->port_clock
> 33750)
917 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW11(ch
));
918 val
|= DPIO_TX2_STAGGER_MASK(0x1f);
919 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW11(ch
), val
);
921 if (crtc_state
->lane_count
> 2) {
922 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW11(ch
));
923 val
|= DPIO_TX2_STAGGER_MASK(0x1f);
924 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW11(ch
), val
);
927 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW12(ch
),
928 DPIO_LANESTAGGER_STRAP(stagger
) |
929 DPIO_LANESTAGGER_STRAP_OVRD
|
930 DPIO_TX1_STAGGER_MASK(0x1f) |
931 DPIO_TX1_STAGGER_MULT(6) |
932 DPIO_TX2_STAGGER_MULT(0));
934 if (crtc_state
->lane_count
> 2) {
935 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW12(ch
),
936 DPIO_LANESTAGGER_STRAP(stagger
) |
937 DPIO_LANESTAGGER_STRAP_OVRD
|
938 DPIO_TX1_STAGGER_MASK(0x1f) |
939 DPIO_TX1_STAGGER_MULT(7) |
940 DPIO_TX2_STAGGER_MULT(5));
943 /* Deassert data lane reset */
944 chv_data_lane_soft_reset(encoder
, crtc_state
, false);
946 vlv_dpio_put(dev_priv
);
949 void chv_phy_release_cl2_override(struct intel_encoder
*encoder
)
951 struct intel_digital_port
*dig_port
= enc_to_dig_port(encoder
);
952 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
954 if (dig_port
->release_cl2_override
) {
955 chv_phy_powergate_ch(dev_priv
, DPIO_PHY0
, DPIO_CH1
, false);
956 dig_port
->release_cl2_override
= false;
960 void chv_phy_post_pll_disable(struct intel_encoder
*encoder
,
961 const struct intel_crtc_state
*old_crtc_state
)
963 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
964 enum pipe pipe
= to_intel_crtc(old_crtc_state
->uapi
.crtc
)->pipe
;
967 vlv_dpio_get(dev_priv
);
969 /* disable left/right clock distribution */
970 if (pipe
!= PIPE_B
) {
971 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
);
972 val
&= ~(CHV_BUFLEFTENA1_MASK
| CHV_BUFRIGHTENA1_MASK
);
973 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
, val
);
975 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
);
976 val
&= ~(CHV_BUFLEFTENA2_MASK
| CHV_BUFRIGHTENA2_MASK
);
977 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
, val
);
980 vlv_dpio_put(dev_priv
);
983 * Leave the power down bit cleared for at least one
984 * lane so that chv_powergate_phy_ch() will power
985 * on something when the channel is otherwise unused.
986 * When the port is off and the override is removed
987 * the lanes power down anyway, so otherwise it doesn't
988 * really matter what the state of power down bits is
991 chv_phy_powergate_lanes(encoder
, false, 0x0);
994 void vlv_set_phy_signal_level(struct intel_encoder
*encoder
,
995 const struct intel_crtc_state
*crtc_state
,
996 u32 demph_reg_value
, u32 preemph_reg_value
,
997 u32 uniqtranscale_reg_value
, u32 tx3_demph
)
999 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
1000 struct intel_digital_port
*dig_port
= enc_to_dig_port(encoder
);
1001 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
1002 enum dpio_channel port
= vlv_dig_port_to_channel(dig_port
);
1003 enum pipe pipe
= crtc
->pipe
;
1005 vlv_dpio_get(dev_priv
);
1007 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW5(port
), 0x00000000);
1008 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW4(port
), demph_reg_value
);
1009 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW2(port
),
1010 uniqtranscale_reg_value
);
1011 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW3(port
), 0x0C782040);
1014 vlv_dpio_write(dev_priv
, pipe
, VLV_TX3_DW4(port
), tx3_demph
);
1016 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW11(port
), 0x00030000);
1017 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW9(port
), preemph_reg_value
);
1018 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW5(port
), DPIO_TX_OCALINIT_EN
);
1020 vlv_dpio_put(dev_priv
);
1023 void vlv_phy_pre_pll_enable(struct intel_encoder
*encoder
,
1024 const struct intel_crtc_state
*crtc_state
)
1026 struct intel_digital_port
*dig_port
= enc_to_dig_port(encoder
);
1027 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
1028 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
1029 enum dpio_channel port
= vlv_dig_port_to_channel(dig_port
);
1030 enum pipe pipe
= crtc
->pipe
;
1032 /* Program Tx lane resets to default */
1033 vlv_dpio_get(dev_priv
);
1035 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW0(port
),
1036 DPIO_PCS_TX_LANE2_RESET
|
1037 DPIO_PCS_TX_LANE1_RESET
);
1038 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW1(port
),
1039 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN
|
1040 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN
|
1041 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT
) |
1042 DPIO_PCS_CLK_SOFT_RESET
);
1044 /* Fix up inter-pair skew failure */
1045 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW12(port
), 0x00750f00);
1046 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW11(port
), 0x00001500);
1047 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW14(port
), 0x40400000);
1049 vlv_dpio_put(dev_priv
);
1052 void vlv_phy_pre_encoder_enable(struct intel_encoder
*encoder
,
1053 const struct intel_crtc_state
*crtc_state
)
1055 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
1056 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
1057 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
1058 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
1059 enum dpio_channel port
= vlv_dig_port_to_channel(dig_port
);
1060 enum pipe pipe
= crtc
->pipe
;
1063 vlv_dpio_get(dev_priv
);
1065 /* Enable clock channels for this port */
1066 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW8(port
));
1073 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW8(port
), val
);
1075 /* Program lane clock */
1076 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW14(port
), 0x00760018);
1077 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW23(port
), 0x00400888);
1079 vlv_dpio_put(dev_priv
);
1082 void vlv_phy_reset_lanes(struct intel_encoder
*encoder
,
1083 const struct intel_crtc_state
*old_crtc_state
)
1085 struct intel_digital_port
*dig_port
= enc_to_dig_port(encoder
);
1086 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
1087 struct intel_crtc
*crtc
= to_intel_crtc(old_crtc_state
->uapi
.crtc
);
1088 enum dpio_channel port
= vlv_dig_port_to_channel(dig_port
);
1089 enum pipe pipe
= crtc
->pipe
;
1091 vlv_dpio_get(dev_priv
);
1092 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW0(port
), 0x00000000);
1093 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW1(port
), 0x00e00060);
1094 vlv_dpio_put(dev_priv
);