Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / gem / i915_gem_domain.c
blobfcce6909f201769876dea539f22681ff37d80ec6
1 /*
2 * SPDX-License-Identifier: MIT
4 * Copyright © 2014-2016 Intel Corporation
5 */
7 #include "display/intel_frontbuffer.h"
9 #include "i915_drv.h"
10 #include "i915_gem_clflush.h"
11 #include "i915_gem_gtt.h"
12 #include "i915_gem_ioctls.h"
13 #include "i915_gem_object.h"
14 #include "i915_vma.h"
15 #include "i915_gem_lmem.h"
16 #include "i915_gem_mman.h"
18 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
21 * We manually flush the CPU domain so that we can override and
22 * force the flush for the display, and perform it asyncrhonously.
24 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
25 if (obj->cache_dirty)
26 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
27 obj->write_domain = 0;
30 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
32 if (!i915_gem_object_is_framebuffer(obj))
33 return;
35 i915_gem_object_lock(obj, NULL);
36 __i915_gem_object_flush_for_display(obj);
37 i915_gem_object_unlock(obj);
40 void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object *obj)
42 if (i915_gem_object_is_framebuffer(obj))
43 __i915_gem_object_flush_for_display(obj);
46 /**
47 * Moves a single object to the WC read, and possibly write domain.
48 * @obj: object to act on
49 * @write: ask for write access or read only
51 * This function returns when the move is complete, including waiting on
52 * flushes to occur.
54 int
55 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
57 int ret;
59 assert_object_held(obj);
61 ret = i915_gem_object_wait(obj,
62 I915_WAIT_INTERRUPTIBLE |
63 (write ? I915_WAIT_ALL : 0),
64 MAX_SCHEDULE_TIMEOUT);
65 if (ret)
66 return ret;
68 if (obj->write_domain == I915_GEM_DOMAIN_WC)
69 return 0;
71 /* Flush and acquire obj->pages so that we are coherent through
72 * direct access in memory with previous cached writes through
73 * shmemfs and that our cache domain tracking remains valid.
74 * For example, if the obj->filp was moved to swap without us
75 * being notified and releasing the pages, we would mistakenly
76 * continue to assume that the obj remained out of the CPU cached
77 * domain.
79 ret = i915_gem_object_pin_pages(obj);
80 if (ret)
81 return ret;
83 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
85 /* Serialise direct access to this object with the barriers for
86 * coherent writes from the GPU, by effectively invalidating the
87 * WC domain upon first access.
89 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
90 mb();
92 /* It should now be out of any other write domains, and we can update
93 * the domain values for our changes.
95 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
96 obj->read_domains |= I915_GEM_DOMAIN_WC;
97 if (write) {
98 obj->read_domains = I915_GEM_DOMAIN_WC;
99 obj->write_domain = I915_GEM_DOMAIN_WC;
100 obj->mm.dirty = true;
103 i915_gem_object_unpin_pages(obj);
104 return 0;
108 * Moves a single object to the GTT read, and possibly write domain.
109 * @obj: object to act on
110 * @write: ask for write access or read only
112 * This function returns when the move is complete, including waiting on
113 * flushes to occur.
116 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
118 int ret;
120 assert_object_held(obj);
122 ret = i915_gem_object_wait(obj,
123 I915_WAIT_INTERRUPTIBLE |
124 (write ? I915_WAIT_ALL : 0),
125 MAX_SCHEDULE_TIMEOUT);
126 if (ret)
127 return ret;
129 if (obj->write_domain == I915_GEM_DOMAIN_GTT)
130 return 0;
132 /* Flush and acquire obj->pages so that we are coherent through
133 * direct access in memory with previous cached writes through
134 * shmemfs and that our cache domain tracking remains valid.
135 * For example, if the obj->filp was moved to swap without us
136 * being notified and releasing the pages, we would mistakenly
137 * continue to assume that the obj remained out of the CPU cached
138 * domain.
140 ret = i915_gem_object_pin_pages(obj);
141 if (ret)
142 return ret;
144 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
146 /* Serialise direct access to this object with the barriers for
147 * coherent writes from the GPU, by effectively invalidating the
148 * GTT domain upon first access.
150 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
151 mb();
153 /* It should now be out of any other write domains, and we can update
154 * the domain values for our changes.
156 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
157 obj->read_domains |= I915_GEM_DOMAIN_GTT;
158 if (write) {
159 struct i915_vma *vma;
161 obj->read_domains = I915_GEM_DOMAIN_GTT;
162 obj->write_domain = I915_GEM_DOMAIN_GTT;
163 obj->mm.dirty = true;
165 spin_lock(&obj->vma.lock);
166 for_each_ggtt_vma(vma, obj)
167 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
168 i915_vma_set_ggtt_write(vma);
169 spin_unlock(&obj->vma.lock);
172 i915_gem_object_unpin_pages(obj);
173 return 0;
177 * Changes the cache-level of an object across all VMA.
178 * @obj: object to act on
179 * @cache_level: new cache level to set for the object
181 * After this function returns, the object will be in the new cache-level
182 * across all GTT and the contents of the backing storage will be coherent,
183 * with respect to the new cache-level. In order to keep the backing storage
184 * coherent for all users, we only allow a single cache level to be set
185 * globally on the object and prevent it from being changed whilst the
186 * hardware is reading from the object. That is if the object is currently
187 * on the scanout it will be set to uncached (or equivalent display
188 * cache coherency) and all non-MOCS GPU access will also be uncached so
189 * that all direct access to the scanout remains coherent.
191 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
192 enum i915_cache_level cache_level)
194 int ret;
196 if (obj->cache_level == cache_level)
197 return 0;
199 ret = i915_gem_object_wait(obj,
200 I915_WAIT_INTERRUPTIBLE |
201 I915_WAIT_ALL,
202 MAX_SCHEDULE_TIMEOUT);
203 if (ret)
204 return ret;
206 /* Always invalidate stale cachelines */
207 if (obj->cache_level != cache_level) {
208 i915_gem_object_set_cache_coherency(obj, cache_level);
209 obj->cache_dirty = true;
212 /* The cache-level will be applied when each vma is rebound. */
213 return i915_gem_object_unbind(obj,
214 I915_GEM_OBJECT_UNBIND_ACTIVE |
215 I915_GEM_OBJECT_UNBIND_BARRIER);
218 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
219 struct drm_file *file)
221 struct drm_i915_gem_caching *args = data;
222 struct drm_i915_gem_object *obj;
223 int err = 0;
225 rcu_read_lock();
226 obj = i915_gem_object_lookup_rcu(file, args->handle);
227 if (!obj) {
228 err = -ENOENT;
229 goto out;
232 switch (obj->cache_level) {
233 case I915_CACHE_LLC:
234 case I915_CACHE_L3_LLC:
235 args->caching = I915_CACHING_CACHED;
236 break;
238 case I915_CACHE_WT:
239 args->caching = I915_CACHING_DISPLAY;
240 break;
242 default:
243 args->caching = I915_CACHING_NONE;
244 break;
246 out:
247 rcu_read_unlock();
248 return err;
251 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
252 struct drm_file *file)
254 struct drm_i915_private *i915 = to_i915(dev);
255 struct drm_i915_gem_caching *args = data;
256 struct drm_i915_gem_object *obj;
257 enum i915_cache_level level;
258 int ret = 0;
260 switch (args->caching) {
261 case I915_CACHING_NONE:
262 level = I915_CACHE_NONE;
263 break;
264 case I915_CACHING_CACHED:
266 * Due to a HW issue on BXT A stepping, GPU stores via a
267 * snooped mapping may leave stale data in a corresponding CPU
268 * cacheline, whereas normally such cachelines would get
269 * invalidated.
271 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
272 return -ENODEV;
274 level = I915_CACHE_LLC;
275 break;
276 case I915_CACHING_DISPLAY:
277 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
278 break;
279 default:
280 return -EINVAL;
283 obj = i915_gem_object_lookup(file, args->handle);
284 if (!obj)
285 return -ENOENT;
288 * The caching mode of proxy object is handled by its generator, and
289 * not allowed to be changed by userspace.
291 if (i915_gem_object_is_proxy(obj)) {
292 ret = -ENXIO;
293 goto out;
296 ret = i915_gem_object_lock_interruptible(obj, NULL);
297 if (ret)
298 goto out;
300 ret = i915_gem_object_set_cache_level(obj, level);
301 i915_gem_object_unlock(obj);
303 out:
304 i915_gem_object_put(obj);
305 return ret;
309 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
310 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
311 * (for pageflips). We only flush the caches while preparing the buffer for
312 * display, the callers are responsible for frontbuffer flush.
314 struct i915_vma *
315 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
316 u32 alignment,
317 const struct i915_ggtt_view *view,
318 unsigned int flags)
320 struct drm_i915_private *i915 = to_i915(obj->base.dev);
321 struct i915_gem_ww_ctx ww;
322 struct i915_vma *vma;
323 int ret;
325 /* Frame buffer must be in LMEM (no migration yet) */
326 if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
327 return ERR_PTR(-EINVAL);
329 i915_gem_ww_ctx_init(&ww, true);
330 retry:
331 ret = i915_gem_object_lock(obj, &ww);
332 if (ret)
333 goto err;
335 * The display engine is not coherent with the LLC cache on gen6. As
336 * a result, we make sure that the pinning that is about to occur is
337 * done with uncached PTEs. This is lowest common denominator for all
338 * chipsets.
340 * However for gen6+, we could do better by using the GFDT bit instead
341 * of uncaching, which would allow us to flush all the LLC-cached data
342 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
344 ret = i915_gem_object_set_cache_level(obj,
345 HAS_WT(i915) ?
346 I915_CACHE_WT : I915_CACHE_NONE);
347 if (ret)
348 goto err;
351 * As the user may map the buffer once pinned in the display plane
352 * (e.g. libkms for the bootup splash), we have to ensure that we
353 * always use map_and_fenceable for all scanout buffers. However,
354 * it may simply be too big to fit into mappable, in which case
355 * put it anyway and hope that userspace can cope (but always first
356 * try to preserve the existing ABI).
358 vma = ERR_PTR(-ENOSPC);
359 if ((flags & PIN_MAPPABLE) == 0 &&
360 (!view || view->type == I915_GGTT_VIEW_NORMAL))
361 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, view, 0, alignment,
362 flags | PIN_MAPPABLE |
363 PIN_NONBLOCK);
364 if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK))
365 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, view, 0,
366 alignment, flags);
367 if (IS_ERR(vma)) {
368 ret = PTR_ERR(vma);
369 goto err;
372 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
374 i915_gem_object_flush_if_display_locked(obj);
376 err:
377 if (ret == -EDEADLK) {
378 ret = i915_gem_ww_ctx_backoff(&ww);
379 if (!ret)
380 goto retry;
382 i915_gem_ww_ctx_fini(&ww);
384 if (ret)
385 return ERR_PTR(ret);
387 return vma;
390 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
392 struct drm_i915_private *i915 = to_i915(obj->base.dev);
393 struct i915_vma *vma;
395 if (list_empty(&obj->vma.list))
396 return;
398 mutex_lock(&i915->ggtt.vm.mutex);
399 spin_lock(&obj->vma.lock);
400 for_each_ggtt_vma(vma, obj) {
401 if (!drm_mm_node_allocated(&vma->node))
402 continue;
404 GEM_BUG_ON(vma->vm != &i915->ggtt.vm);
405 list_move_tail(&vma->vm_link, &vma->vm->bound_list);
407 spin_unlock(&obj->vma.lock);
408 mutex_unlock(&i915->ggtt.vm.mutex);
410 if (i915_gem_object_is_shrinkable(obj)) {
411 unsigned long flags;
413 spin_lock_irqsave(&i915->mm.obj_lock, flags);
415 if (obj->mm.madv == I915_MADV_WILLNEED &&
416 !atomic_read(&obj->mm.shrink_pin))
417 list_move_tail(&obj->mm.link, &i915->mm.shrink_list);
419 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
423 void
424 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
426 /* Bump the LRU to try and avoid premature eviction whilst flipping */
427 i915_gem_object_bump_inactive_ggtt(vma->obj);
429 i915_vma_unpin(vma);
433 * Moves a single object to the CPU read, and possibly write domain.
434 * @obj: object to act on
435 * @write: requesting write or read-only access
437 * This function returns when the move is complete, including waiting on
438 * flushes to occur.
441 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
443 int ret;
445 assert_object_held(obj);
447 ret = i915_gem_object_wait(obj,
448 I915_WAIT_INTERRUPTIBLE |
449 (write ? I915_WAIT_ALL : 0),
450 MAX_SCHEDULE_TIMEOUT);
451 if (ret)
452 return ret;
454 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
456 /* Flush the CPU cache if it's still invalid. */
457 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
458 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
459 obj->read_domains |= I915_GEM_DOMAIN_CPU;
462 /* It should now be out of any other write domains, and we can update
463 * the domain values for our changes.
465 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
467 /* If we're writing through the CPU, then the GPU read domains will
468 * need to be invalidated at next use.
470 if (write)
471 __start_cpu_write(obj);
473 return 0;
477 * Called when user space prepares to use an object with the CPU, either
478 * through the mmap ioctl's mapping or a GTT mapping.
479 * @dev: drm device
480 * @data: ioctl data blob
481 * @file: drm file
484 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
485 struct drm_file *file)
487 struct drm_i915_gem_set_domain *args = data;
488 struct drm_i915_gem_object *obj;
489 u32 read_domains = args->read_domains;
490 u32 write_domain = args->write_domain;
491 int err;
493 /* Only handle setting domains to types used by the CPU. */
494 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
495 return -EINVAL;
498 * Having something in the write domain implies it's in the read
499 * domain, and only that read domain. Enforce that in the request.
501 if (write_domain && read_domains != write_domain)
502 return -EINVAL;
504 if (!read_domains)
505 return 0;
507 obj = i915_gem_object_lookup(file, args->handle);
508 if (!obj)
509 return -ENOENT;
512 * Try to flush the object off the GPU without holding the lock.
513 * We will repeat the flush holding the lock in the normal manner
514 * to catch cases where we are gazumped.
516 err = i915_gem_object_wait(obj,
517 I915_WAIT_INTERRUPTIBLE |
518 I915_WAIT_PRIORITY |
519 (write_domain ? I915_WAIT_ALL : 0),
520 MAX_SCHEDULE_TIMEOUT);
521 if (err)
522 goto out;
525 * Proxy objects do not control access to the backing storage, ergo
526 * they cannot be used as a means to manipulate the cache domain
527 * tracking for that backing storage. The proxy object is always
528 * considered to be outside of any cache domain.
530 if (i915_gem_object_is_proxy(obj)) {
531 err = -ENXIO;
532 goto out;
536 * Flush and acquire obj->pages so that we are coherent through
537 * direct access in memory with previous cached writes through
538 * shmemfs and that our cache domain tracking remains valid.
539 * For example, if the obj->filp was moved to swap without us
540 * being notified and releasing the pages, we would mistakenly
541 * continue to assume that the obj remained out of the CPU cached
542 * domain.
544 err = i915_gem_object_pin_pages(obj);
545 if (err)
546 goto out;
549 * Already in the desired write domain? Nothing for us to do!
551 * We apply a little bit of cunning here to catch a broader set of
552 * no-ops. If obj->write_domain is set, we must be in the same
553 * obj->read_domains, and only that domain. Therefore, if that
554 * obj->write_domain matches the request read_domains, we are
555 * already in the same read/write domain and can skip the operation,
556 * without having to further check the requested write_domain.
558 if (READ_ONCE(obj->write_domain) == read_domains)
559 goto out_unpin;
561 err = i915_gem_object_lock_interruptible(obj, NULL);
562 if (err)
563 goto out_unpin;
565 if (read_domains & I915_GEM_DOMAIN_WC)
566 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
567 else if (read_domains & I915_GEM_DOMAIN_GTT)
568 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
569 else
570 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
572 /* And bump the LRU for this access */
573 i915_gem_object_bump_inactive_ggtt(obj);
575 i915_gem_object_unlock(obj);
577 if (write_domain)
578 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
580 out_unpin:
581 i915_gem_object_unpin_pages(obj);
582 out:
583 i915_gem_object_put(obj);
584 return err;
588 * Pins the specified object's pages and synchronizes the object with
589 * GPU accesses. Sets needs_clflush to non-zero if the caller should
590 * flush the object from the CPU cache.
592 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
593 unsigned int *needs_clflush)
595 int ret;
597 *needs_clflush = 0;
598 if (!i915_gem_object_has_struct_page(obj))
599 return -ENODEV;
601 assert_object_held(obj);
603 ret = i915_gem_object_wait(obj,
604 I915_WAIT_INTERRUPTIBLE,
605 MAX_SCHEDULE_TIMEOUT);
606 if (ret)
607 return ret;
609 ret = i915_gem_object_pin_pages(obj);
610 if (ret)
611 return ret;
613 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
614 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
615 ret = i915_gem_object_set_to_cpu_domain(obj, false);
616 if (ret)
617 goto err_unpin;
618 else
619 goto out;
622 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
624 /* If we're not in the cpu read domain, set ourself into the gtt
625 * read domain and manually flush cachelines (if required). This
626 * optimizes for the case when the gpu will dirty the data
627 * anyway again before the next pread happens.
629 if (!obj->cache_dirty &&
630 !(obj->read_domains & I915_GEM_DOMAIN_CPU))
631 *needs_clflush = CLFLUSH_BEFORE;
633 out:
634 /* return with the pages pinned */
635 return 0;
637 err_unpin:
638 i915_gem_object_unpin_pages(obj);
639 return ret;
642 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
643 unsigned int *needs_clflush)
645 int ret;
647 *needs_clflush = 0;
648 if (!i915_gem_object_has_struct_page(obj))
649 return -ENODEV;
651 assert_object_held(obj);
653 ret = i915_gem_object_wait(obj,
654 I915_WAIT_INTERRUPTIBLE |
655 I915_WAIT_ALL,
656 MAX_SCHEDULE_TIMEOUT);
657 if (ret)
658 return ret;
660 ret = i915_gem_object_pin_pages(obj);
661 if (ret)
662 return ret;
664 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
665 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
666 ret = i915_gem_object_set_to_cpu_domain(obj, true);
667 if (ret)
668 goto err_unpin;
669 else
670 goto out;
673 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
675 /* If we're not in the cpu write domain, set ourself into the
676 * gtt write domain and manually flush cachelines (as required).
677 * This optimizes for the case when the gpu will use the data
678 * right away and we therefore have to clflush anyway.
680 if (!obj->cache_dirty) {
681 *needs_clflush |= CLFLUSH_AFTER;
684 * Same trick applies to invalidate partially written
685 * cachelines read before writing.
687 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
688 *needs_clflush |= CLFLUSH_BEFORE;
691 out:
692 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
693 obj->mm.dirty = true;
694 /* return with the pages pinned */
695 return 0;
697 err_unpin:
698 i915_gem_object_unpin_pages(obj);
699 return ret;