2 * SPDX-License-Identifier: MIT
4 * Copyright © 2014-2016 Intel Corporation
7 #include "display/intel_frontbuffer.h"
10 #include "i915_gem_clflush.h"
11 #include "i915_gem_gtt.h"
12 #include "i915_gem_ioctls.h"
13 #include "i915_gem_object.h"
15 #include "i915_gem_lmem.h"
16 #include "i915_gem_mman.h"
18 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object
*obj
)
21 * We manually flush the CPU domain so that we can override and
22 * force the flush for the display, and perform it asyncrhonously.
24 i915_gem_object_flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
26 i915_gem_clflush_object(obj
, I915_CLFLUSH_FORCE
);
27 obj
->write_domain
= 0;
30 void i915_gem_object_flush_if_display(struct drm_i915_gem_object
*obj
)
32 if (!i915_gem_object_is_framebuffer(obj
))
35 i915_gem_object_lock(obj
, NULL
);
36 __i915_gem_object_flush_for_display(obj
);
37 i915_gem_object_unlock(obj
);
40 void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object
*obj
)
42 if (i915_gem_object_is_framebuffer(obj
))
43 __i915_gem_object_flush_for_display(obj
);
47 * Moves a single object to the WC read, and possibly write domain.
48 * @obj: object to act on
49 * @write: ask for write access or read only
51 * This function returns when the move is complete, including waiting on
55 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object
*obj
, bool write
)
59 assert_object_held(obj
);
61 ret
= i915_gem_object_wait(obj
,
62 I915_WAIT_INTERRUPTIBLE
|
63 (write
? I915_WAIT_ALL
: 0),
64 MAX_SCHEDULE_TIMEOUT
);
68 if (obj
->write_domain
== I915_GEM_DOMAIN_WC
)
71 /* Flush and acquire obj->pages so that we are coherent through
72 * direct access in memory with previous cached writes through
73 * shmemfs and that our cache domain tracking remains valid.
74 * For example, if the obj->filp was moved to swap without us
75 * being notified and releasing the pages, we would mistakenly
76 * continue to assume that the obj remained out of the CPU cached
79 ret
= i915_gem_object_pin_pages(obj
);
83 i915_gem_object_flush_write_domain(obj
, ~I915_GEM_DOMAIN_WC
);
85 /* Serialise direct access to this object with the barriers for
86 * coherent writes from the GPU, by effectively invalidating the
87 * WC domain upon first access.
89 if ((obj
->read_domains
& I915_GEM_DOMAIN_WC
) == 0)
92 /* It should now be out of any other write domains, and we can update
93 * the domain values for our changes.
95 GEM_BUG_ON((obj
->write_domain
& ~I915_GEM_DOMAIN_WC
) != 0);
96 obj
->read_domains
|= I915_GEM_DOMAIN_WC
;
98 obj
->read_domains
= I915_GEM_DOMAIN_WC
;
99 obj
->write_domain
= I915_GEM_DOMAIN_WC
;
100 obj
->mm
.dirty
= true;
103 i915_gem_object_unpin_pages(obj
);
108 * Moves a single object to the GTT read, and possibly write domain.
109 * @obj: object to act on
110 * @write: ask for write access or read only
112 * This function returns when the move is complete, including waiting on
116 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object
*obj
, bool write
)
120 assert_object_held(obj
);
122 ret
= i915_gem_object_wait(obj
,
123 I915_WAIT_INTERRUPTIBLE
|
124 (write
? I915_WAIT_ALL
: 0),
125 MAX_SCHEDULE_TIMEOUT
);
129 if (obj
->write_domain
== I915_GEM_DOMAIN_GTT
)
132 /* Flush and acquire obj->pages so that we are coherent through
133 * direct access in memory with previous cached writes through
134 * shmemfs and that our cache domain tracking remains valid.
135 * For example, if the obj->filp was moved to swap without us
136 * being notified and releasing the pages, we would mistakenly
137 * continue to assume that the obj remained out of the CPU cached
140 ret
= i915_gem_object_pin_pages(obj
);
144 i915_gem_object_flush_write_domain(obj
, ~I915_GEM_DOMAIN_GTT
);
146 /* Serialise direct access to this object with the barriers for
147 * coherent writes from the GPU, by effectively invalidating the
148 * GTT domain upon first access.
150 if ((obj
->read_domains
& I915_GEM_DOMAIN_GTT
) == 0)
153 /* It should now be out of any other write domains, and we can update
154 * the domain values for our changes.
156 GEM_BUG_ON((obj
->write_domain
& ~I915_GEM_DOMAIN_GTT
) != 0);
157 obj
->read_domains
|= I915_GEM_DOMAIN_GTT
;
159 struct i915_vma
*vma
;
161 obj
->read_domains
= I915_GEM_DOMAIN_GTT
;
162 obj
->write_domain
= I915_GEM_DOMAIN_GTT
;
163 obj
->mm
.dirty
= true;
165 spin_lock(&obj
->vma
.lock
);
166 for_each_ggtt_vma(vma
, obj
)
167 if (i915_vma_is_bound(vma
, I915_VMA_GLOBAL_BIND
))
168 i915_vma_set_ggtt_write(vma
);
169 spin_unlock(&obj
->vma
.lock
);
172 i915_gem_object_unpin_pages(obj
);
177 * Changes the cache-level of an object across all VMA.
178 * @obj: object to act on
179 * @cache_level: new cache level to set for the object
181 * After this function returns, the object will be in the new cache-level
182 * across all GTT and the contents of the backing storage will be coherent,
183 * with respect to the new cache-level. In order to keep the backing storage
184 * coherent for all users, we only allow a single cache level to be set
185 * globally on the object and prevent it from being changed whilst the
186 * hardware is reading from the object. That is if the object is currently
187 * on the scanout it will be set to uncached (or equivalent display
188 * cache coherency) and all non-MOCS GPU access will also be uncached so
189 * that all direct access to the scanout remains coherent.
191 int i915_gem_object_set_cache_level(struct drm_i915_gem_object
*obj
,
192 enum i915_cache_level cache_level
)
196 if (obj
->cache_level
== cache_level
)
199 ret
= i915_gem_object_wait(obj
,
200 I915_WAIT_INTERRUPTIBLE
|
202 MAX_SCHEDULE_TIMEOUT
);
206 /* Always invalidate stale cachelines */
207 if (obj
->cache_level
!= cache_level
) {
208 i915_gem_object_set_cache_coherency(obj
, cache_level
);
209 obj
->cache_dirty
= true;
212 /* The cache-level will be applied when each vma is rebound. */
213 return i915_gem_object_unbind(obj
,
214 I915_GEM_OBJECT_UNBIND_ACTIVE
|
215 I915_GEM_OBJECT_UNBIND_BARRIER
);
218 int i915_gem_get_caching_ioctl(struct drm_device
*dev
, void *data
,
219 struct drm_file
*file
)
221 struct drm_i915_gem_caching
*args
= data
;
222 struct drm_i915_gem_object
*obj
;
226 obj
= i915_gem_object_lookup_rcu(file
, args
->handle
);
232 switch (obj
->cache_level
) {
234 case I915_CACHE_L3_LLC
:
235 args
->caching
= I915_CACHING_CACHED
;
239 args
->caching
= I915_CACHING_DISPLAY
;
243 args
->caching
= I915_CACHING_NONE
;
251 int i915_gem_set_caching_ioctl(struct drm_device
*dev
, void *data
,
252 struct drm_file
*file
)
254 struct drm_i915_private
*i915
= to_i915(dev
);
255 struct drm_i915_gem_caching
*args
= data
;
256 struct drm_i915_gem_object
*obj
;
257 enum i915_cache_level level
;
260 switch (args
->caching
) {
261 case I915_CACHING_NONE
:
262 level
= I915_CACHE_NONE
;
264 case I915_CACHING_CACHED
:
266 * Due to a HW issue on BXT A stepping, GPU stores via a
267 * snooped mapping may leave stale data in a corresponding CPU
268 * cacheline, whereas normally such cachelines would get
271 if (!HAS_LLC(i915
) && !HAS_SNOOP(i915
))
274 level
= I915_CACHE_LLC
;
276 case I915_CACHING_DISPLAY
:
277 level
= HAS_WT(i915
) ? I915_CACHE_WT
: I915_CACHE_NONE
;
283 obj
= i915_gem_object_lookup(file
, args
->handle
);
288 * The caching mode of proxy object is handled by its generator, and
289 * not allowed to be changed by userspace.
291 if (i915_gem_object_is_proxy(obj
)) {
296 ret
= i915_gem_object_lock_interruptible(obj
, NULL
);
300 ret
= i915_gem_object_set_cache_level(obj
, level
);
301 i915_gem_object_unlock(obj
);
304 i915_gem_object_put(obj
);
309 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
310 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
311 * (for pageflips). We only flush the caches while preparing the buffer for
312 * display, the callers are responsible for frontbuffer flush.
315 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object
*obj
,
317 const struct i915_ggtt_view
*view
,
320 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
321 struct i915_gem_ww_ctx ww
;
322 struct i915_vma
*vma
;
325 /* Frame buffer must be in LMEM (no migration yet) */
326 if (HAS_LMEM(i915
) && !i915_gem_object_is_lmem(obj
))
327 return ERR_PTR(-EINVAL
);
329 i915_gem_ww_ctx_init(&ww
, true);
331 ret
= i915_gem_object_lock(obj
, &ww
);
335 * The display engine is not coherent with the LLC cache on gen6. As
336 * a result, we make sure that the pinning that is about to occur is
337 * done with uncached PTEs. This is lowest common denominator for all
340 * However for gen6+, we could do better by using the GFDT bit instead
341 * of uncaching, which would allow us to flush all the LLC-cached data
342 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
344 ret
= i915_gem_object_set_cache_level(obj
,
346 I915_CACHE_WT
: I915_CACHE_NONE
);
351 * As the user may map the buffer once pinned in the display plane
352 * (e.g. libkms for the bootup splash), we have to ensure that we
353 * always use map_and_fenceable for all scanout buffers. However,
354 * it may simply be too big to fit into mappable, in which case
355 * put it anyway and hope that userspace can cope (but always first
356 * try to preserve the existing ABI).
358 vma
= ERR_PTR(-ENOSPC
);
359 if ((flags
& PIN_MAPPABLE
) == 0 &&
360 (!view
|| view
->type
== I915_GGTT_VIEW_NORMAL
))
361 vma
= i915_gem_object_ggtt_pin_ww(obj
, &ww
, view
, 0, alignment
,
362 flags
| PIN_MAPPABLE
|
364 if (IS_ERR(vma
) && vma
!= ERR_PTR(-EDEADLK
))
365 vma
= i915_gem_object_ggtt_pin_ww(obj
, &ww
, view
, 0,
372 vma
->display_alignment
= max_t(u64
, vma
->display_alignment
, alignment
);
374 i915_gem_object_flush_if_display_locked(obj
);
377 if (ret
== -EDEADLK
) {
378 ret
= i915_gem_ww_ctx_backoff(&ww
);
382 i915_gem_ww_ctx_fini(&ww
);
390 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object
*obj
)
392 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
393 struct i915_vma
*vma
;
395 if (list_empty(&obj
->vma
.list
))
398 mutex_lock(&i915
->ggtt
.vm
.mutex
);
399 spin_lock(&obj
->vma
.lock
);
400 for_each_ggtt_vma(vma
, obj
) {
401 if (!drm_mm_node_allocated(&vma
->node
))
404 GEM_BUG_ON(vma
->vm
!= &i915
->ggtt
.vm
);
405 list_move_tail(&vma
->vm_link
, &vma
->vm
->bound_list
);
407 spin_unlock(&obj
->vma
.lock
);
408 mutex_unlock(&i915
->ggtt
.vm
.mutex
);
410 if (i915_gem_object_is_shrinkable(obj
)) {
413 spin_lock_irqsave(&i915
->mm
.obj_lock
, flags
);
415 if (obj
->mm
.madv
== I915_MADV_WILLNEED
&&
416 !atomic_read(&obj
->mm
.shrink_pin
))
417 list_move_tail(&obj
->mm
.link
, &i915
->mm
.shrink_list
);
419 spin_unlock_irqrestore(&i915
->mm
.obj_lock
, flags
);
424 i915_gem_object_unpin_from_display_plane(struct i915_vma
*vma
)
426 /* Bump the LRU to try and avoid premature eviction whilst flipping */
427 i915_gem_object_bump_inactive_ggtt(vma
->obj
);
433 * Moves a single object to the CPU read, and possibly write domain.
434 * @obj: object to act on
435 * @write: requesting write or read-only access
437 * This function returns when the move is complete, including waiting on
441 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object
*obj
, bool write
)
445 assert_object_held(obj
);
447 ret
= i915_gem_object_wait(obj
,
448 I915_WAIT_INTERRUPTIBLE
|
449 (write
? I915_WAIT_ALL
: 0),
450 MAX_SCHEDULE_TIMEOUT
);
454 i915_gem_object_flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
456 /* Flush the CPU cache if it's still invalid. */
457 if ((obj
->read_domains
& I915_GEM_DOMAIN_CPU
) == 0) {
458 i915_gem_clflush_object(obj
, I915_CLFLUSH_SYNC
);
459 obj
->read_domains
|= I915_GEM_DOMAIN_CPU
;
462 /* It should now be out of any other write domains, and we can update
463 * the domain values for our changes.
465 GEM_BUG_ON(obj
->write_domain
& ~I915_GEM_DOMAIN_CPU
);
467 /* If we're writing through the CPU, then the GPU read domains will
468 * need to be invalidated at next use.
471 __start_cpu_write(obj
);
477 * Called when user space prepares to use an object with the CPU, either
478 * through the mmap ioctl's mapping or a GTT mapping.
480 * @data: ioctl data blob
484 i915_gem_set_domain_ioctl(struct drm_device
*dev
, void *data
,
485 struct drm_file
*file
)
487 struct drm_i915_gem_set_domain
*args
= data
;
488 struct drm_i915_gem_object
*obj
;
489 u32 read_domains
= args
->read_domains
;
490 u32 write_domain
= args
->write_domain
;
493 /* Only handle setting domains to types used by the CPU. */
494 if ((write_domain
| read_domains
) & I915_GEM_GPU_DOMAINS
)
498 * Having something in the write domain implies it's in the read
499 * domain, and only that read domain. Enforce that in the request.
501 if (write_domain
&& read_domains
!= write_domain
)
507 obj
= i915_gem_object_lookup(file
, args
->handle
);
512 * Try to flush the object off the GPU without holding the lock.
513 * We will repeat the flush holding the lock in the normal manner
514 * to catch cases where we are gazumped.
516 err
= i915_gem_object_wait(obj
,
517 I915_WAIT_INTERRUPTIBLE
|
519 (write_domain
? I915_WAIT_ALL
: 0),
520 MAX_SCHEDULE_TIMEOUT
);
525 * Proxy objects do not control access to the backing storage, ergo
526 * they cannot be used as a means to manipulate the cache domain
527 * tracking for that backing storage. The proxy object is always
528 * considered to be outside of any cache domain.
530 if (i915_gem_object_is_proxy(obj
)) {
536 * Flush and acquire obj->pages so that we are coherent through
537 * direct access in memory with previous cached writes through
538 * shmemfs and that our cache domain tracking remains valid.
539 * For example, if the obj->filp was moved to swap without us
540 * being notified and releasing the pages, we would mistakenly
541 * continue to assume that the obj remained out of the CPU cached
544 err
= i915_gem_object_pin_pages(obj
);
549 * Already in the desired write domain? Nothing for us to do!
551 * We apply a little bit of cunning here to catch a broader set of
552 * no-ops. If obj->write_domain is set, we must be in the same
553 * obj->read_domains, and only that domain. Therefore, if that
554 * obj->write_domain matches the request read_domains, we are
555 * already in the same read/write domain and can skip the operation,
556 * without having to further check the requested write_domain.
558 if (READ_ONCE(obj
->write_domain
) == read_domains
)
561 err
= i915_gem_object_lock_interruptible(obj
, NULL
);
565 if (read_domains
& I915_GEM_DOMAIN_WC
)
566 err
= i915_gem_object_set_to_wc_domain(obj
, write_domain
);
567 else if (read_domains
& I915_GEM_DOMAIN_GTT
)
568 err
= i915_gem_object_set_to_gtt_domain(obj
, write_domain
);
570 err
= i915_gem_object_set_to_cpu_domain(obj
, write_domain
);
572 /* And bump the LRU for this access */
573 i915_gem_object_bump_inactive_ggtt(obj
);
575 i915_gem_object_unlock(obj
);
578 i915_gem_object_invalidate_frontbuffer(obj
, ORIGIN_CPU
);
581 i915_gem_object_unpin_pages(obj
);
583 i915_gem_object_put(obj
);
588 * Pins the specified object's pages and synchronizes the object with
589 * GPU accesses. Sets needs_clflush to non-zero if the caller should
590 * flush the object from the CPU cache.
592 int i915_gem_object_prepare_read(struct drm_i915_gem_object
*obj
,
593 unsigned int *needs_clflush
)
598 if (!i915_gem_object_has_struct_page(obj
))
601 assert_object_held(obj
);
603 ret
= i915_gem_object_wait(obj
,
604 I915_WAIT_INTERRUPTIBLE
,
605 MAX_SCHEDULE_TIMEOUT
);
609 ret
= i915_gem_object_pin_pages(obj
);
613 if (obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_READ
||
614 !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
615 ret
= i915_gem_object_set_to_cpu_domain(obj
, false);
622 i915_gem_object_flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
624 /* If we're not in the cpu read domain, set ourself into the gtt
625 * read domain and manually flush cachelines (if required). This
626 * optimizes for the case when the gpu will dirty the data
627 * anyway again before the next pread happens.
629 if (!obj
->cache_dirty
&&
630 !(obj
->read_domains
& I915_GEM_DOMAIN_CPU
))
631 *needs_clflush
= CLFLUSH_BEFORE
;
634 /* return with the pages pinned */
638 i915_gem_object_unpin_pages(obj
);
642 int i915_gem_object_prepare_write(struct drm_i915_gem_object
*obj
,
643 unsigned int *needs_clflush
)
648 if (!i915_gem_object_has_struct_page(obj
))
651 assert_object_held(obj
);
653 ret
= i915_gem_object_wait(obj
,
654 I915_WAIT_INTERRUPTIBLE
|
656 MAX_SCHEDULE_TIMEOUT
);
660 ret
= i915_gem_object_pin_pages(obj
);
664 if (obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_WRITE
||
665 !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
666 ret
= i915_gem_object_set_to_cpu_domain(obj
, true);
673 i915_gem_object_flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
675 /* If we're not in the cpu write domain, set ourself into the
676 * gtt write domain and manually flush cachelines (as required).
677 * This optimizes for the case when the gpu will use the data
678 * right away and we therefore have to clflush anyway.
680 if (!obj
->cache_dirty
) {
681 *needs_clflush
|= CLFLUSH_AFTER
;
684 * Same trick applies to invalidate partially written
685 * cachelines read before writing.
687 if (!(obj
->read_domains
& I915_GEM_DOMAIN_CPU
))
688 *needs_clflush
|= CLFLUSH_BEFORE
;
692 i915_gem_object_invalidate_frontbuffer(obj
, ORIGIN_CPU
);
693 obj
->mm
.dirty
= true;
694 /* return with the pages pinned */
698 i915_gem_object_unpin_pages(obj
);