2 * Copyright © 2015-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Robert Bragg <robert@sixbynine.org>
29 * DOC: i915 Perf Overview
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
51 * DOC: i915 Perf History and Comparison with Core Perf
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
106 * - The perf based OA PMU driver broke some significant design assumptions:
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
205 #include "i915_drv.h"
206 #include "i915_perf.h"
208 /* HW requires this to be a power of two, between 128k and 16M, though driver
209 * is currently generally designed assuming the largest 16M size is used such
210 * that the overflow cases are unlikely in normal operation.
212 #define OA_BUFFER_SIZE SZ_16M
214 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
217 * DOC: OA Tail Pointer Race
219 * There's a HW race condition between OA unit tail pointer register updates and
220 * writes to memory whereby the tail pointer can sometimes get ahead of what's
221 * been written out to the OA buffer so far (in terms of what's visible to the
224 * Although this can be observed explicitly while copying reports to userspace
225 * by checking for a zeroed report-id field in tail reports, we want to account
226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
227 * redundant read() attempts.
229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
230 * in the OA buffer, starting from the tail reported by the HW until we find a
231 * report with its first 2 dwords not 0 meaning its previous report is
232 * completely in memory and ready to be read. Those dwords are also set to 0
233 * once read and the whole buffer is cleared upon OA buffer initialization. The
234 * first dword is the reason for this report while the second is the timestamp,
235 * making the chances of having those 2 fields at 0 fairly unlikely. A more
236 * detailed explanation is available in oa_buffer_check_unlocked().
238 * Most of the implementation details for this workaround are in
239 * oa_buffer_check_unlocked() and _append_oa_reports()
241 * Note for posterity: previously the driver used to define an effective tail
242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
244 * This was flawed considering that the OA unit may also automatically generate
245 * non-periodic reports (such as on context switch) or the OA unit may be
246 * enabled without any periodic sampling.
248 #define OA_TAIL_MARGIN_NSEC 100000ULL
249 #define INVALID_TAIL_PTR 0xffffffff
251 /* The default frequency for checking whether the OA unit has written new
252 * reports to the circular OA buffer...
254 #define DEFAULT_POLL_FREQUENCY_HZ 200
255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
258 static u32 i915_perf_stream_paranoid
= true;
260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
261 * of the 64bit timestamp bits to trigger reports from) but there's currently
262 * no known use case for sampling as infrequently as once per 47 thousand years.
264 * Since the timestamps included in OA reports are only 32bits it seems
265 * reasonable to limit the OA exponent where it's still possible to account for
266 * overflow in OA report timestamps.
268 #define OA_EXPONENT_MAX 31
270 #define INVALID_CTX_ID 0xffffffff
272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
273 #define OAREPORT_REASON_MASK 0x3f
274 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
275 #define OAREPORT_REASON_SHIFT 19
276 #define OAREPORT_REASON_TIMER (1<<0)
277 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
278 #define OAREPORT_REASON_CLK_RATIO (1<<5)
281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
283 * The highest sampling frequency we can theoretically program the OA unit
284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
286 * Initialized just before we register the sysctl parameter.
288 static int oa_sample_rate_hard_limit
;
290 /* Theoretically we can program the OA unit to sample every 160ns but don't
291 * allow that by default unless root...
293 * The default threshold of 100000Hz is based on perf's similar
294 * kernel.perf_event_max_sample_rate sysctl parameter.
296 static u32 i915_oa_max_sample_rate
= 100000;
298 /* XXX: beware if future OA HW adds new report formats that the current
299 * code assumes all reports have a power-of-two size and ~(size - 1) can
300 * be used as a mask to align the OA tail pointer.
302 static const struct i915_oa_format hsw_oa_formats
[I915_OA_FORMAT_MAX
] = {
303 [I915_OA_FORMAT_A13
] = { 0, 64 },
304 [I915_OA_FORMAT_A29
] = { 1, 128 },
305 [I915_OA_FORMAT_A13_B8_C8
] = { 2, 128 },
306 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
307 [I915_OA_FORMAT_B4_C8
] = { 4, 64 },
308 [I915_OA_FORMAT_A45_B8_C8
] = { 5, 256 },
309 [I915_OA_FORMAT_B4_C8_A16
] = { 6, 128 },
310 [I915_OA_FORMAT_C4_B8
] = { 7, 64 },
313 static const struct i915_oa_format gen8_plus_oa_formats
[I915_OA_FORMAT_MAX
] = {
314 [I915_OA_FORMAT_A12
] = { 0, 64 },
315 [I915_OA_FORMAT_A12_B8_C8
] = { 2, 128 },
316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8
] = { 5, 256 },
317 [I915_OA_FORMAT_C4_B8
] = { 7, 64 },
320 static const struct i915_oa_format gen12_oa_formats
[I915_OA_FORMAT_MAX
] = {
321 [I915_OA_FORMAT_A32u40_A4u32_B8_C8
] = { 5, 256 },
324 #define SAMPLE_OA_REPORT (1<<0)
327 * struct perf_open_properties - for validated properties given to open a stream
328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
329 * @single_context: Whether a single or all gpu contexts should be monitored
330 * @hold_preemption: Whether the preemption is disabled for the filtered
332 * @ctx_handle: A gem ctx handle for use with @single_context
333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
334 * @oa_format: An OA unit HW report format
335 * @oa_periodic: Whether to enable periodic OA unit sampling
336 * @oa_period_exponent: The OA unit sampling period is derived from this
337 * @engine: The engine (typically rcs0) being monitored by the OA unit
338 * @has_sseu: Whether @sseu was specified by userspace
339 * @sseu: internal SSEU configuration computed either from the userspace
340 * specified configuration in the opening parameters or a default value
341 * (see get_default_sseu_config())
342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
345 * As read_properties_unlocked() enumerates and validates the properties given
346 * to open a stream of metrics the configuration is built up in the structure
347 * which starts out zero initialized.
349 struct perf_open_properties
{
352 u64 single_context
:1;
353 u64 hold_preemption
:1;
356 /* OA sampling state */
360 int oa_period_exponent
;
362 struct intel_engine_cs
*engine
;
365 struct intel_sseu sseu
;
370 struct i915_oa_config_bo
{
371 struct llist_node node
;
373 struct i915_oa_config
*oa_config
;
374 struct i915_vma
*vma
;
377 static struct ctl_table_header
*sysctl_header
;
379 static enum hrtimer_restart
oa_poll_check_timer_cb(struct hrtimer
*hrtimer
);
381 void i915_oa_config_release(struct kref
*ref
)
383 struct i915_oa_config
*oa_config
=
384 container_of(ref
, typeof(*oa_config
), ref
);
386 kfree(oa_config
->flex_regs
);
387 kfree(oa_config
->b_counter_regs
);
388 kfree(oa_config
->mux_regs
);
390 kfree_rcu(oa_config
, rcu
);
393 struct i915_oa_config
*
394 i915_perf_get_oa_config(struct i915_perf
*perf
, int metrics_set
)
396 struct i915_oa_config
*oa_config
;
399 oa_config
= idr_find(&perf
->metrics_idr
, metrics_set
);
401 oa_config
= i915_oa_config_get(oa_config
);
407 static void free_oa_config_bo(struct i915_oa_config_bo
*oa_bo
)
409 i915_oa_config_put(oa_bo
->oa_config
);
410 i915_vma_put(oa_bo
->vma
);
414 static u32
gen12_oa_hw_tail_read(struct i915_perf_stream
*stream
)
416 struct intel_uncore
*uncore
= stream
->uncore
;
418 return intel_uncore_read(uncore
, GEN12_OAG_OATAILPTR
) &
419 GEN12_OAG_OATAILPTR_MASK
;
422 static u32
gen8_oa_hw_tail_read(struct i915_perf_stream
*stream
)
424 struct intel_uncore
*uncore
= stream
->uncore
;
426 return intel_uncore_read(uncore
, GEN8_OATAILPTR
) & GEN8_OATAILPTR_MASK
;
429 static u32
gen7_oa_hw_tail_read(struct i915_perf_stream
*stream
)
431 struct intel_uncore
*uncore
= stream
->uncore
;
432 u32 oastatus1
= intel_uncore_read(uncore
, GEN7_OASTATUS1
);
434 return oastatus1
& GEN7_OASTATUS1_TAIL_MASK
;
438 * oa_buffer_check_unlocked - check for data and update tail ptr state
439 * @stream: i915 stream instance
441 * This is either called via fops (for blocking reads in user ctx) or the poll
442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
443 * if there is data available for userspace to read.
445 * This function is central to providing a workaround for the OA unit tail
446 * pointer having a race with respect to what data is visible to the CPU.
447 * It is responsible for reading tail pointers from the hardware and giving
448 * the pointers time to 'age' before they are made available for reading.
449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
451 * Besides returning true when there is data available to read() this function
452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
455 * Note: It's safe to read OA config state here unlocked, assuming that this is
456 * only called while the stream is enabled, while the global OA configuration
459 * Returns: %true if the OA buffer contains data, else %false
461 static bool oa_buffer_check_unlocked(struct i915_perf_stream
*stream
)
463 u32 gtt_offset
= i915_ggtt_offset(stream
->oa_buffer
.vma
);
464 int report_size
= stream
->oa_buffer
.format_size
;
470 /* We have to consider the (unlikely) possibility that read() errors
471 * could result in an OA buffer reset which might reset the head and
474 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
476 hw_tail
= stream
->perf
->ops
.oa_hw_tail_read(stream
);
478 /* The tail pointer increases in 64 byte increments,
479 * not in report_size steps...
481 hw_tail
&= ~(report_size
- 1);
483 now
= ktime_get_mono_fast_ns();
485 if (hw_tail
== stream
->oa_buffer
.aging_tail
&&
486 (now
- stream
->oa_buffer
.aging_timestamp
) > OA_TAIL_MARGIN_NSEC
) {
487 /* If the HW tail hasn't move since the last check and the HW
488 * tail has been aging for long enough, declare it the new
491 stream
->oa_buffer
.tail
= stream
->oa_buffer
.aging_tail
;
493 u32 head
, tail
, aged_tail
;
495 /* NB: The head we observe here might effectively be a little
496 * out of date. If a read() is in progress, the head could be
497 * anywhere between this head and stream->oa_buffer.tail.
499 head
= stream
->oa_buffer
.head
- gtt_offset
;
500 aged_tail
= stream
->oa_buffer
.tail
- gtt_offset
;
502 hw_tail
-= gtt_offset
;
505 /* Walk the stream backward until we find a report with dword 0
506 * & 1 not at 0. Since the circular buffer pointers progress by
507 * increments of 64 bytes and that reports can be up to 256
508 * bytes long, we can't tell whether a report has fully landed
509 * in memory before the first 2 dwords of the following report
510 * have effectively landed.
512 * This is assuming that the writes of the OA unit land in
513 * memory in the order they were written to.
514 * If not : (╯°□°)╯︵ ┻━┻
516 while (OA_TAKEN(tail
, aged_tail
) >= report_size
) {
517 u32
*report32
= (void *)(stream
->oa_buffer
.vaddr
+ tail
);
519 if (report32
[0] != 0 || report32
[1] != 0)
522 tail
= (tail
- report_size
) & (OA_BUFFER_SIZE
- 1);
525 if (OA_TAKEN(hw_tail
, tail
) > report_size
&&
526 __ratelimit(&stream
->perf
->tail_pointer_race
))
527 DRM_NOTE("unlanded report(s) head=0x%x "
528 "tail=0x%x hw_tail=0x%x\n",
529 head
, tail
, hw_tail
);
531 stream
->oa_buffer
.tail
= gtt_offset
+ tail
;
532 stream
->oa_buffer
.aging_tail
= gtt_offset
+ hw_tail
;
533 stream
->oa_buffer
.aging_timestamp
= now
;
536 pollin
= OA_TAKEN(stream
->oa_buffer
.tail
- gtt_offset
,
537 stream
->oa_buffer
.head
- gtt_offset
) >= report_size
;
539 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
545 * append_oa_status - Appends a status record to a userspace read() buffer.
546 * @stream: An i915-perf stream opened for OA metrics
547 * @buf: destination buffer given by userspace
548 * @count: the number of bytes userspace wants to read
549 * @offset: (inout): the current position for writing into @buf
550 * @type: The kind of status to report to userspace
552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
553 * into the userspace read() buffer.
555 * The @buf @offset will only be updated on success.
557 * Returns: 0 on success, negative error code on failure.
559 static int append_oa_status(struct i915_perf_stream
*stream
,
563 enum drm_i915_perf_record_type type
)
565 struct drm_i915_perf_record_header header
= { type
, 0, sizeof(header
) };
567 if ((count
- *offset
) < header
.size
)
570 if (copy_to_user(buf
+ *offset
, &header
, sizeof(header
)))
573 (*offset
) += header
.size
;
579 * append_oa_sample - Copies single OA report into userspace read() buffer.
580 * @stream: An i915-perf stream opened for OA metrics
581 * @buf: destination buffer given by userspace
582 * @count: the number of bytes userspace wants to read
583 * @offset: (inout): the current position for writing into @buf
584 * @report: A single OA report to (optionally) include as part of the sample
586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
587 * properties when opening a stream, tracked as `stream->sample_flags`. This
588 * function copies the requested components of a single sample to the given
591 * The @buf @offset will only be updated on success.
593 * Returns: 0 on success, negative error code on failure.
595 static int append_oa_sample(struct i915_perf_stream
*stream
,
601 int report_size
= stream
->oa_buffer
.format_size
;
602 struct drm_i915_perf_record_header header
;
603 u32 sample_flags
= stream
->sample_flags
;
605 header
.type
= DRM_I915_PERF_RECORD_SAMPLE
;
607 header
.size
= stream
->sample_size
;
609 if ((count
- *offset
) < header
.size
)
613 if (copy_to_user(buf
, &header
, sizeof(header
)))
615 buf
+= sizeof(header
);
617 if (sample_flags
& SAMPLE_OA_REPORT
) {
618 if (copy_to_user(buf
, report
, report_size
))
622 (*offset
) += header
.size
;
628 * gen8_append_oa_reports - Copies all buffered OA reports into
629 * userspace read() buffer.
630 * @stream: An i915-perf stream opened for OA metrics
631 * @buf: destination buffer given by userspace
632 * @count: the number of bytes userspace wants to read
633 * @offset: (inout): the current position for writing into @buf
635 * Notably any error condition resulting in a short read (-%ENOSPC or
636 * -%EFAULT) will be returned even though one or more records may
637 * have been successfully copied. In this case it's up to the caller
638 * to decide if the error should be squashed before returning to
641 * Note: reports are consumed from the head, and appended to the
642 * tail, so the tail chases the head?... If you think that's mad
643 * and back-to-front you're not alone, but this follows the
644 * Gen PRM naming convention.
646 * Returns: 0 on success, negative error code on failure.
648 static int gen8_append_oa_reports(struct i915_perf_stream
*stream
,
653 struct intel_uncore
*uncore
= stream
->uncore
;
654 int report_size
= stream
->oa_buffer
.format_size
;
655 u8
*oa_buf_base
= stream
->oa_buffer
.vaddr
;
656 u32 gtt_offset
= i915_ggtt_offset(stream
->oa_buffer
.vma
);
657 u32 mask
= (OA_BUFFER_SIZE
- 1);
658 size_t start_offset
= *offset
;
664 if (drm_WARN_ON(&uncore
->i915
->drm
, !stream
->enabled
))
667 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
669 head
= stream
->oa_buffer
.head
;
670 tail
= stream
->oa_buffer
.tail
;
672 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
675 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
676 * while indexing relative to oa_buf_base.
682 * An out of bounds or misaligned head or tail pointer implies a driver
683 * bug since we validate + align the tail pointers we read from the
684 * hardware and we are in full control of the head pointer which should
685 * only be incremented by multiples of the report size (notably also
686 * all a power of two).
688 if (drm_WARN_ONCE(&uncore
->i915
->drm
,
689 head
> OA_BUFFER_SIZE
|| head
% report_size
||
690 tail
> OA_BUFFER_SIZE
|| tail
% report_size
,
691 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
697 (taken
= OA_TAKEN(tail
, head
));
698 head
= (head
+ report_size
) & mask
) {
699 u8
*report
= oa_buf_base
+ head
;
700 u32
*report32
= (void *)report
;
705 * All the report sizes factor neatly into the buffer
706 * size so we never expect to see a report split
707 * between the beginning and end of the buffer.
709 * Given the initial alignment check a misalignment
710 * here would imply a driver bug that would result
713 if (drm_WARN_ON(&uncore
->i915
->drm
,
714 (OA_BUFFER_SIZE
- head
) < report_size
)) {
715 drm_err(&uncore
->i915
->drm
,
716 "Spurious OA head ptr: non-integral report offset\n");
721 * The reason field includes flags identifying what
722 * triggered this specific report (mostly timer
723 * triggered or e.g. due to a context switch).
725 * This field is never expected to be zero so we can
726 * check that the report isn't invalid before copying
729 reason
= ((report32
[0] >> OAREPORT_REASON_SHIFT
) &
730 (IS_GEN(stream
->perf
->i915
, 12) ?
731 OAREPORT_REASON_MASK_EXTENDED
:
732 OAREPORT_REASON_MASK
));
734 if (__ratelimit(&stream
->perf
->spurious_report_rs
))
735 DRM_NOTE("Skipping spurious, invalid OA report\n");
739 ctx_id
= report32
[2] & stream
->specific_ctx_id_mask
;
742 * Squash whatever is in the CTX_ID field if it's marked as
743 * invalid to be sure we avoid false-positive, single-context
746 * Note: that we don't clear the valid_ctx_bit so userspace can
747 * understand that the ID has been squashed by the kernel.
749 if (!(report32
[0] & stream
->perf
->gen8_valid_ctx_bit
) &&
750 INTEL_GEN(stream
->perf
->i915
) <= 11)
751 ctx_id
= report32
[2] = INVALID_CTX_ID
;
754 * NB: For Gen 8 the OA unit no longer supports clock gating
755 * off for a specific context and the kernel can't securely
756 * stop the counters from updating as system-wide / global
759 * Automatic reports now include a context ID so reports can be
760 * filtered on the cpu but it's not worth trying to
761 * automatically subtract/hide counter progress for other
762 * contexts while filtering since we can't stop userspace
763 * issuing MI_REPORT_PERF_COUNT commands which would still
764 * provide a side-band view of the real values.
766 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
767 * to normalize counters for a single filtered context then it
768 * needs be forwarded bookend context-switch reports so that it
769 * can track switches in between MI_REPORT_PERF_COUNT commands
770 * and can itself subtract/ignore the progress of counters
771 * associated with other contexts. Note that the hardware
772 * automatically triggers reports when switching to a new
773 * context which are tagged with the ID of the newly active
774 * context. To avoid the complexity (and likely fragility) of
775 * reading ahead while parsing reports to try and minimize
776 * forwarding redundant context switch reports (i.e. between
777 * other, unrelated contexts) we simply elect to forward them
780 * We don't rely solely on the reason field to identify context
781 * switches since it's not-uncommon for periodic samples to
782 * identify a switch before any 'context switch' report.
784 if (!stream
->perf
->exclusive_stream
->ctx
||
785 stream
->specific_ctx_id
== ctx_id
||
786 stream
->oa_buffer
.last_ctx_id
== stream
->specific_ctx_id
||
787 reason
& OAREPORT_REASON_CTX_SWITCH
) {
790 * While filtering for a single context we avoid
791 * leaking the IDs of other contexts.
793 if (stream
->perf
->exclusive_stream
->ctx
&&
794 stream
->specific_ctx_id
!= ctx_id
) {
795 report32
[2] = INVALID_CTX_ID
;
798 ret
= append_oa_sample(stream
, buf
, count
, offset
,
803 stream
->oa_buffer
.last_ctx_id
= ctx_id
;
807 * Clear out the first 2 dword as a mean to detect unlanded
814 if (start_offset
!= *offset
) {
815 i915_reg_t oaheadptr
;
817 oaheadptr
= IS_GEN(stream
->perf
->i915
, 12) ?
818 GEN12_OAG_OAHEADPTR
: GEN8_OAHEADPTR
;
820 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
823 * We removed the gtt_offset for the copy loop above, indexing
824 * relative to oa_buf_base so put back here...
827 intel_uncore_write(uncore
, oaheadptr
,
828 head
& GEN12_OAG_OAHEADPTR_MASK
);
829 stream
->oa_buffer
.head
= head
;
831 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
838 * gen8_oa_read - copy status records then buffered OA reports
839 * @stream: An i915-perf stream opened for OA metrics
840 * @buf: destination buffer given by userspace
841 * @count: the number of bytes userspace wants to read
842 * @offset: (inout): the current position for writing into @buf
844 * Checks OA unit status registers and if necessary appends corresponding
845 * status records for userspace (such as for a buffer full condition) and then
846 * initiate appending any buffered OA reports.
848 * Updates @offset according to the number of bytes successfully copied into
849 * the userspace buffer.
851 * NB: some data may be successfully copied to the userspace buffer
852 * even if an error is returned, and this is reflected in the
855 * Returns: zero on success or a negative error code
857 static int gen8_oa_read(struct i915_perf_stream
*stream
,
862 struct intel_uncore
*uncore
= stream
->uncore
;
864 i915_reg_t oastatus_reg
;
867 if (drm_WARN_ON(&uncore
->i915
->drm
, !stream
->oa_buffer
.vaddr
))
870 oastatus_reg
= IS_GEN(stream
->perf
->i915
, 12) ?
871 GEN12_OAG_OASTATUS
: GEN8_OASTATUS
;
873 oastatus
= intel_uncore_read(uncore
, oastatus_reg
);
876 * We treat OABUFFER_OVERFLOW as a significant error:
878 * Although theoretically we could handle this more gracefully
879 * sometimes, some Gens don't correctly suppress certain
880 * automatically triggered reports in this condition and so we
881 * have to assume that old reports are now being trampled
884 * Considering how we don't currently give userspace control
885 * over the OA buffer size and always configure a large 16MB
886 * buffer, then a buffer overflow does anyway likely indicate
887 * that something has gone quite badly wrong.
889 if (oastatus
& GEN8_OASTATUS_OABUFFER_OVERFLOW
) {
890 ret
= append_oa_status(stream
, buf
, count
, offset
,
891 DRM_I915_PERF_RECORD_OA_BUFFER_LOST
);
895 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
896 stream
->period_exponent
);
898 stream
->perf
->ops
.oa_disable(stream
);
899 stream
->perf
->ops
.oa_enable(stream
);
902 * Note: .oa_enable() is expected to re-init the oabuffer and
903 * reset GEN8_OASTATUS for us
905 oastatus
= intel_uncore_read(uncore
, oastatus_reg
);
908 if (oastatus
& GEN8_OASTATUS_REPORT_LOST
) {
909 ret
= append_oa_status(stream
, buf
, count
, offset
,
910 DRM_I915_PERF_RECORD_OA_REPORT_LOST
);
914 intel_uncore_rmw(uncore
, oastatus_reg
,
915 GEN8_OASTATUS_COUNTER_OVERFLOW
|
916 GEN8_OASTATUS_REPORT_LOST
,
917 IS_GEN_RANGE(uncore
->i915
, 8, 11) ?
918 (GEN8_OASTATUS_HEAD_POINTER_WRAP
|
919 GEN8_OASTATUS_TAIL_POINTER_WRAP
) : 0);
922 return gen8_append_oa_reports(stream
, buf
, count
, offset
);
926 * gen7_append_oa_reports - Copies all buffered OA reports into
927 * userspace read() buffer.
928 * @stream: An i915-perf stream opened for OA metrics
929 * @buf: destination buffer given by userspace
930 * @count: the number of bytes userspace wants to read
931 * @offset: (inout): the current position for writing into @buf
933 * Notably any error condition resulting in a short read (-%ENOSPC or
934 * -%EFAULT) will be returned even though one or more records may
935 * have been successfully copied. In this case it's up to the caller
936 * to decide if the error should be squashed before returning to
939 * Note: reports are consumed from the head, and appended to the
940 * tail, so the tail chases the head?... If you think that's mad
941 * and back-to-front you're not alone, but this follows the
942 * Gen PRM naming convention.
944 * Returns: 0 on success, negative error code on failure.
946 static int gen7_append_oa_reports(struct i915_perf_stream
*stream
,
951 struct intel_uncore
*uncore
= stream
->uncore
;
952 int report_size
= stream
->oa_buffer
.format_size
;
953 u8
*oa_buf_base
= stream
->oa_buffer
.vaddr
;
954 u32 gtt_offset
= i915_ggtt_offset(stream
->oa_buffer
.vma
);
955 u32 mask
= (OA_BUFFER_SIZE
- 1);
956 size_t start_offset
= *offset
;
962 if (drm_WARN_ON(&uncore
->i915
->drm
, !stream
->enabled
))
965 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
967 head
= stream
->oa_buffer
.head
;
968 tail
= stream
->oa_buffer
.tail
;
970 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
972 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
973 * while indexing relative to oa_buf_base.
978 /* An out of bounds or misaligned head or tail pointer implies a driver
979 * bug since we validate + align the tail pointers we read from the
980 * hardware and we are in full control of the head pointer which should
981 * only be incremented by multiples of the report size (notably also
982 * all a power of two).
984 if (drm_WARN_ONCE(&uncore
->i915
->drm
,
985 head
> OA_BUFFER_SIZE
|| head
% report_size
||
986 tail
> OA_BUFFER_SIZE
|| tail
% report_size
,
987 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
993 (taken
= OA_TAKEN(tail
, head
));
994 head
= (head
+ report_size
) & mask
) {
995 u8
*report
= oa_buf_base
+ head
;
996 u32
*report32
= (void *)report
;
998 /* All the report sizes factor neatly into the buffer
999 * size so we never expect to see a report split
1000 * between the beginning and end of the buffer.
1002 * Given the initial alignment check a misalignment
1003 * here would imply a driver bug that would result
1006 if (drm_WARN_ON(&uncore
->i915
->drm
,
1007 (OA_BUFFER_SIZE
- head
) < report_size
)) {
1008 drm_err(&uncore
->i915
->drm
,
1009 "Spurious OA head ptr: non-integral report offset\n");
1013 /* The report-ID field for periodic samples includes
1014 * some undocumented flags related to what triggered
1015 * the report and is never expected to be zero so we
1016 * can check that the report isn't invalid before
1017 * copying it to userspace...
1019 if (report32
[0] == 0) {
1020 if (__ratelimit(&stream
->perf
->spurious_report_rs
))
1021 DRM_NOTE("Skipping spurious, invalid OA report\n");
1025 ret
= append_oa_sample(stream
, buf
, count
, offset
, report
);
1029 /* Clear out the first 2 dwords as a mean to detect unlanded
1036 if (start_offset
!= *offset
) {
1037 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
1039 /* We removed the gtt_offset for the copy loop above, indexing
1040 * relative to oa_buf_base so put back here...
1044 intel_uncore_write(uncore
, GEN7_OASTATUS2
,
1045 (head
& GEN7_OASTATUS2_HEAD_MASK
) |
1046 GEN7_OASTATUS2_MEM_SELECT_GGTT
);
1047 stream
->oa_buffer
.head
= head
;
1049 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
1056 * gen7_oa_read - copy status records then buffered OA reports
1057 * @stream: An i915-perf stream opened for OA metrics
1058 * @buf: destination buffer given by userspace
1059 * @count: the number of bytes userspace wants to read
1060 * @offset: (inout): the current position for writing into @buf
1062 * Checks Gen 7 specific OA unit status registers and if necessary appends
1063 * corresponding status records for userspace (such as for a buffer full
1064 * condition) and then initiate appending any buffered OA reports.
1066 * Updates @offset according to the number of bytes successfully copied into
1067 * the userspace buffer.
1069 * Returns: zero on success or a negative error code
1071 static int gen7_oa_read(struct i915_perf_stream
*stream
,
1076 struct intel_uncore
*uncore
= stream
->uncore
;
1080 if (drm_WARN_ON(&uncore
->i915
->drm
, !stream
->oa_buffer
.vaddr
))
1083 oastatus1
= intel_uncore_read(uncore
, GEN7_OASTATUS1
);
1085 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1086 * bits while the OA unit is enabled (while the tail pointer
1087 * may be updated asynchronously) so we ignore status bits
1088 * that have already been reported to userspace.
1090 oastatus1
&= ~stream
->perf
->gen7_latched_oastatus1
;
1092 /* We treat OABUFFER_OVERFLOW as a significant error:
1094 * - The status can be interpreted to mean that the buffer is
1095 * currently full (with a higher precedence than OA_TAKEN()
1096 * which will start to report a near-empty buffer after an
1097 * overflow) but it's awkward that we can't clear the status
1098 * on Haswell, so without a reset we won't be able to catch
1101 * - Since it also implies the HW has started overwriting old
1102 * reports it may also affect our sanity checks for invalid
1103 * reports when copying to userspace that assume new reports
1104 * are being written to cleared memory.
1106 * - In the future we may want to introduce a flight recorder
1107 * mode where the driver will automatically maintain a safe
1108 * guard band between head/tail, avoiding this overflow
1109 * condition, but we avoid the added driver complexity for
1112 if (unlikely(oastatus1
& GEN7_OASTATUS1_OABUFFER_OVERFLOW
)) {
1113 ret
= append_oa_status(stream
, buf
, count
, offset
,
1114 DRM_I915_PERF_RECORD_OA_BUFFER_LOST
);
1118 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1119 stream
->period_exponent
);
1121 stream
->perf
->ops
.oa_disable(stream
);
1122 stream
->perf
->ops
.oa_enable(stream
);
1124 oastatus1
= intel_uncore_read(uncore
, GEN7_OASTATUS1
);
1127 if (unlikely(oastatus1
& GEN7_OASTATUS1_REPORT_LOST
)) {
1128 ret
= append_oa_status(stream
, buf
, count
, offset
,
1129 DRM_I915_PERF_RECORD_OA_REPORT_LOST
);
1132 stream
->perf
->gen7_latched_oastatus1
|=
1133 GEN7_OASTATUS1_REPORT_LOST
;
1136 return gen7_append_oa_reports(stream
, buf
, count
, offset
);
1140 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1141 * @stream: An i915-perf stream opened for OA metrics
1143 * Called when userspace tries to read() from a blocking stream FD opened
1144 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1145 * OA buffer and wakes us.
1147 * Note: it's acceptable to have this return with some false positives
1148 * since any subsequent read handling will return -EAGAIN if there isn't
1149 * really data ready for userspace yet.
1151 * Returns: zero on success or a negative error code
1153 static int i915_oa_wait_unlocked(struct i915_perf_stream
*stream
)
1155 /* We would wait indefinitely if periodic sampling is not enabled */
1156 if (!stream
->periodic
)
1159 return wait_event_interruptible(stream
->poll_wq
,
1160 oa_buffer_check_unlocked(stream
));
1164 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1165 * @stream: An i915-perf stream opened for OA metrics
1166 * @file: An i915 perf stream file
1167 * @wait: poll() state table
1169 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1170 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1171 * when it sees data ready to read in the circular OA buffer.
1173 static void i915_oa_poll_wait(struct i915_perf_stream
*stream
,
1177 poll_wait(file
, &stream
->poll_wq
, wait
);
1181 * i915_oa_read - just calls through to &i915_oa_ops->read
1182 * @stream: An i915-perf stream opened for OA metrics
1183 * @buf: destination buffer given by userspace
1184 * @count: the number of bytes userspace wants to read
1185 * @offset: (inout): the current position for writing into @buf
1187 * Updates @offset according to the number of bytes successfully copied into
1188 * the userspace buffer.
1190 * Returns: zero on success or a negative error code
1192 static int i915_oa_read(struct i915_perf_stream
*stream
,
1197 return stream
->perf
->ops
.read(stream
, buf
, count
, offset
);
1200 static struct intel_context
*oa_pin_context(struct i915_perf_stream
*stream
)
1202 struct i915_gem_engines_iter it
;
1203 struct i915_gem_context
*ctx
= stream
->ctx
;
1204 struct intel_context
*ce
;
1205 struct i915_gem_ww_ctx ww
;
1208 for_each_gem_engine(ce
, i915_gem_context_lock_engines(ctx
), it
) {
1209 if (ce
->engine
!= stream
->engine
) /* first match! */
1215 i915_gem_context_unlock_engines(ctx
);
1218 return ERR_PTR(err
);
1220 i915_gem_ww_ctx_init(&ww
, true);
1223 * As the ID is the gtt offset of the context's vma we
1224 * pin the vma to ensure the ID remains fixed.
1226 err
= intel_context_pin_ww(ce
, &ww
);
1227 if (err
== -EDEADLK
) {
1228 err
= i915_gem_ww_ctx_backoff(&ww
);
1232 i915_gem_ww_ctx_fini(&ww
);
1235 return ERR_PTR(err
);
1237 stream
->pinned_ctx
= ce
;
1238 return stream
->pinned_ctx
;
1242 * oa_get_render_ctx_id - determine and hold ctx hw id
1243 * @stream: An i915-perf stream opened for OA metrics
1245 * Determine the render context hw id, and ensure it remains fixed for the
1246 * lifetime of the stream. This ensures that we don't have to worry about
1247 * updating the context ID in OACONTROL on the fly.
1249 * Returns: zero on success or a negative error code
1251 static int oa_get_render_ctx_id(struct i915_perf_stream
*stream
)
1253 struct intel_context
*ce
;
1255 ce
= oa_pin_context(stream
);
1259 switch (INTEL_GEN(ce
->engine
->i915
)) {
1262 * On Haswell we don't do any post processing of the reports
1263 * and don't need to use the mask.
1265 stream
->specific_ctx_id
= i915_ggtt_offset(ce
->state
);
1266 stream
->specific_ctx_id_mask
= 0;
1273 if (intel_engine_in_execlists_submission_mode(ce
->engine
)) {
1274 stream
->specific_ctx_id_mask
=
1275 (1U << GEN8_CTX_ID_WIDTH
) - 1;
1276 stream
->specific_ctx_id
= stream
->specific_ctx_id_mask
;
1279 * When using GuC, the context descriptor we write in
1280 * i915 is read by GuC and rewritten before it's
1281 * actually written into the hardware. The LRCA is
1282 * what is put into the context id field of the
1283 * context descriptor by GuC. Because it's aligned to
1284 * a page, the lower 12bits are always at 0 and
1285 * dropped by GuC. They won't be part of the context
1286 * ID in the OA reports, so squash those lower bits.
1288 stream
->specific_ctx_id
= ce
->lrc
.lrca
>> 12;
1291 * GuC uses the top bit to signal proxy submission, so
1294 stream
->specific_ctx_id_mask
=
1295 (1U << (GEN8_CTX_ID_WIDTH
- 1)) - 1;
1301 stream
->specific_ctx_id_mask
=
1302 ((1U << GEN11_SW_CTX_ID_WIDTH
) - 1) << (GEN11_SW_CTX_ID_SHIFT
- 32);
1304 * Pick an unused context id
1305 * 0 - BITS_PER_LONG are used by other contexts
1306 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1308 stream
->specific_ctx_id
= (GEN12_MAX_CONTEXT_HW_ID
- 1) << (GEN11_SW_CTX_ID_SHIFT
- 32);
1313 MISSING_CASE(INTEL_GEN(ce
->engine
->i915
));
1316 ce
->tag
= stream
->specific_ctx_id
;
1318 drm_dbg(&stream
->perf
->i915
->drm
,
1319 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1320 stream
->specific_ctx_id
,
1321 stream
->specific_ctx_id_mask
);
1327 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1328 * @stream: An i915-perf stream opened for OA metrics
1330 * In case anything needed doing to ensure the context HW ID would remain valid
1331 * for the lifetime of the stream, then that can be undone here.
1333 static void oa_put_render_ctx_id(struct i915_perf_stream
*stream
)
1335 struct intel_context
*ce
;
1337 ce
= fetch_and_zero(&stream
->pinned_ctx
);
1339 ce
->tag
= 0; /* recomputed on next submission after parking */
1340 intel_context_unpin(ce
);
1343 stream
->specific_ctx_id
= INVALID_CTX_ID
;
1344 stream
->specific_ctx_id_mask
= 0;
1348 free_oa_buffer(struct i915_perf_stream
*stream
)
1350 i915_vma_unpin_and_release(&stream
->oa_buffer
.vma
,
1351 I915_VMA_RELEASE_MAP
);
1353 stream
->oa_buffer
.vaddr
= NULL
;
1357 free_oa_configs(struct i915_perf_stream
*stream
)
1359 struct i915_oa_config_bo
*oa_bo
, *tmp
;
1361 i915_oa_config_put(stream
->oa_config
);
1362 llist_for_each_entry_safe(oa_bo
, tmp
, stream
->oa_config_bos
.first
, node
)
1363 free_oa_config_bo(oa_bo
);
1367 free_noa_wait(struct i915_perf_stream
*stream
)
1369 i915_vma_unpin_and_release(&stream
->noa_wait
, 0);
1372 static void i915_oa_stream_destroy(struct i915_perf_stream
*stream
)
1374 struct i915_perf
*perf
= stream
->perf
;
1376 BUG_ON(stream
!= perf
->exclusive_stream
);
1379 * Unset exclusive_stream first, it will be checked while disabling
1380 * the metric set on gen8+.
1382 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1384 WRITE_ONCE(perf
->exclusive_stream
, NULL
);
1385 perf
->ops
.disable_metric_set(stream
);
1387 free_oa_buffer(stream
);
1389 intel_uncore_forcewake_put(stream
->uncore
, FORCEWAKE_ALL
);
1390 intel_engine_pm_put(stream
->engine
);
1393 oa_put_render_ctx_id(stream
);
1395 free_oa_configs(stream
);
1396 free_noa_wait(stream
);
1398 if (perf
->spurious_report_rs
.missed
) {
1399 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1400 perf
->spurious_report_rs
.missed
);
1404 static void gen7_init_oa_buffer(struct i915_perf_stream
*stream
)
1406 struct intel_uncore
*uncore
= stream
->uncore
;
1407 u32 gtt_offset
= i915_ggtt_offset(stream
->oa_buffer
.vma
);
1408 unsigned long flags
;
1410 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
1412 /* Pre-DevBDW: OABUFFER must be set with counters off,
1413 * before OASTATUS1, but after OASTATUS2
1415 intel_uncore_write(uncore
, GEN7_OASTATUS2
, /* head */
1416 gtt_offset
| GEN7_OASTATUS2_MEM_SELECT_GGTT
);
1417 stream
->oa_buffer
.head
= gtt_offset
;
1419 intel_uncore_write(uncore
, GEN7_OABUFFER
, gtt_offset
);
1421 intel_uncore_write(uncore
, GEN7_OASTATUS1
, /* tail */
1422 gtt_offset
| OABUFFER_SIZE_16M
);
1424 /* Mark that we need updated tail pointers to read from... */
1425 stream
->oa_buffer
.aging_tail
= INVALID_TAIL_PTR
;
1426 stream
->oa_buffer
.tail
= gtt_offset
;
1428 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
1430 /* On Haswell we have to track which OASTATUS1 flags we've
1431 * already seen since they can't be cleared while periodic
1432 * sampling is enabled.
1434 stream
->perf
->gen7_latched_oastatus1
= 0;
1436 /* NB: although the OA buffer will initially be allocated
1437 * zeroed via shmfs (and so this memset is redundant when
1438 * first allocating), we may re-init the OA buffer, either
1439 * when re-enabling a stream or in error/reset paths.
1441 * The reason we clear the buffer for each re-init is for the
1442 * sanity check in gen7_append_oa_reports() that looks at the
1443 * report-id field to make sure it's non-zero which relies on
1444 * the assumption that new reports are being written to zeroed
1447 memset(stream
->oa_buffer
.vaddr
, 0, OA_BUFFER_SIZE
);
1450 static void gen8_init_oa_buffer(struct i915_perf_stream
*stream
)
1452 struct intel_uncore
*uncore
= stream
->uncore
;
1453 u32 gtt_offset
= i915_ggtt_offset(stream
->oa_buffer
.vma
);
1454 unsigned long flags
;
1456 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
1458 intel_uncore_write(uncore
, GEN8_OASTATUS
, 0);
1459 intel_uncore_write(uncore
, GEN8_OAHEADPTR
, gtt_offset
);
1460 stream
->oa_buffer
.head
= gtt_offset
;
1462 intel_uncore_write(uncore
, GEN8_OABUFFER_UDW
, 0);
1467 * "This MMIO must be set before the OATAILPTR
1468 * register and after the OAHEADPTR register. This is
1469 * to enable proper functionality of the overflow
1472 intel_uncore_write(uncore
, GEN8_OABUFFER
, gtt_offset
|
1473 OABUFFER_SIZE_16M
| GEN8_OABUFFER_MEM_SELECT_GGTT
);
1474 intel_uncore_write(uncore
, GEN8_OATAILPTR
, gtt_offset
& GEN8_OATAILPTR_MASK
);
1476 /* Mark that we need updated tail pointers to read from... */
1477 stream
->oa_buffer
.aging_tail
= INVALID_TAIL_PTR
;
1478 stream
->oa_buffer
.tail
= gtt_offset
;
1481 * Reset state used to recognise context switches, affecting which
1482 * reports we will forward to userspace while filtering for a single
1485 stream
->oa_buffer
.last_ctx_id
= INVALID_CTX_ID
;
1487 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
1490 * NB: although the OA buffer will initially be allocated
1491 * zeroed via shmfs (and so this memset is redundant when
1492 * first allocating), we may re-init the OA buffer, either
1493 * when re-enabling a stream or in error/reset paths.
1495 * The reason we clear the buffer for each re-init is for the
1496 * sanity check in gen8_append_oa_reports() that looks at the
1497 * reason field to make sure it's non-zero which relies on
1498 * the assumption that new reports are being written to zeroed
1501 memset(stream
->oa_buffer
.vaddr
, 0, OA_BUFFER_SIZE
);
1504 static void gen12_init_oa_buffer(struct i915_perf_stream
*stream
)
1506 struct intel_uncore
*uncore
= stream
->uncore
;
1507 u32 gtt_offset
= i915_ggtt_offset(stream
->oa_buffer
.vma
);
1508 unsigned long flags
;
1510 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
1512 intel_uncore_write(uncore
, GEN12_OAG_OASTATUS
, 0);
1513 intel_uncore_write(uncore
, GEN12_OAG_OAHEADPTR
,
1514 gtt_offset
& GEN12_OAG_OAHEADPTR_MASK
);
1515 stream
->oa_buffer
.head
= gtt_offset
;
1520 * "This MMIO must be set before the OATAILPTR
1521 * register and after the OAHEADPTR register. This is
1522 * to enable proper functionality of the overflow
1525 intel_uncore_write(uncore
, GEN12_OAG_OABUFFER
, gtt_offset
|
1526 OABUFFER_SIZE_16M
| GEN8_OABUFFER_MEM_SELECT_GGTT
);
1527 intel_uncore_write(uncore
, GEN12_OAG_OATAILPTR
,
1528 gtt_offset
& GEN12_OAG_OATAILPTR_MASK
);
1530 /* Mark that we need updated tail pointers to read from... */
1531 stream
->oa_buffer
.aging_tail
= INVALID_TAIL_PTR
;
1532 stream
->oa_buffer
.tail
= gtt_offset
;
1535 * Reset state used to recognise context switches, affecting which
1536 * reports we will forward to userspace while filtering for a single
1539 stream
->oa_buffer
.last_ctx_id
= INVALID_CTX_ID
;
1541 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
1544 * NB: although the OA buffer will initially be allocated
1545 * zeroed via shmfs (and so this memset is redundant when
1546 * first allocating), we may re-init the OA buffer, either
1547 * when re-enabling a stream or in error/reset paths.
1549 * The reason we clear the buffer for each re-init is for the
1550 * sanity check in gen8_append_oa_reports() that looks at the
1551 * reason field to make sure it's non-zero which relies on
1552 * the assumption that new reports are being written to zeroed
1555 memset(stream
->oa_buffer
.vaddr
, 0,
1556 stream
->oa_buffer
.vma
->size
);
1559 static int alloc_oa_buffer(struct i915_perf_stream
*stream
)
1561 struct drm_i915_private
*i915
= stream
->perf
->i915
;
1562 struct drm_i915_gem_object
*bo
;
1563 struct i915_vma
*vma
;
1566 if (drm_WARN_ON(&i915
->drm
, stream
->oa_buffer
.vma
))
1569 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE
);
1570 BUILD_BUG_ON(OA_BUFFER_SIZE
< SZ_128K
|| OA_BUFFER_SIZE
> SZ_16M
);
1572 bo
= i915_gem_object_create_shmem(stream
->perf
->i915
, OA_BUFFER_SIZE
);
1574 drm_err(&i915
->drm
, "Failed to allocate OA buffer\n");
1578 i915_gem_object_set_cache_coherency(bo
, I915_CACHE_LLC
);
1580 /* PreHSW required 512K alignment, HSW requires 16M */
1581 vma
= i915_gem_object_ggtt_pin(bo
, NULL
, 0, SZ_16M
, 0);
1586 stream
->oa_buffer
.vma
= vma
;
1588 stream
->oa_buffer
.vaddr
=
1589 i915_gem_object_pin_map(bo
, I915_MAP_WB
);
1590 if (IS_ERR(stream
->oa_buffer
.vaddr
)) {
1591 ret
= PTR_ERR(stream
->oa_buffer
.vaddr
);
1598 __i915_vma_unpin(vma
);
1601 i915_gem_object_put(bo
);
1603 stream
->oa_buffer
.vaddr
= NULL
;
1604 stream
->oa_buffer
.vma
= NULL
;
1609 static u32
*save_restore_register(struct i915_perf_stream
*stream
, u32
*cs
,
1610 bool save
, i915_reg_t reg
, u32 offset
,
1616 cmd
= save
? MI_STORE_REGISTER_MEM
: MI_LOAD_REGISTER_MEM
;
1617 cmd
|= MI_SRM_LRM_GLOBAL_GTT
;
1618 if (INTEL_GEN(stream
->perf
->i915
) >= 8)
1621 for (d
= 0; d
< dword_count
; d
++) {
1623 *cs
++ = i915_mmio_reg_offset(reg
) + 4 * d
;
1624 *cs
++ = intel_gt_scratch_offset(stream
->engine
->gt
,
1632 static int alloc_noa_wait(struct i915_perf_stream
*stream
)
1634 struct drm_i915_private
*i915
= stream
->perf
->i915
;
1635 struct drm_i915_gem_object
*bo
;
1636 struct i915_vma
*vma
;
1637 const u64 delay_ticks
= 0xffffffffffffffff -
1638 i915_cs_timestamp_ns_to_ticks(i915
, atomic64_read(&stream
->perf
->noa_programming_delay
));
1639 const u32 base
= stream
->engine
->mmio_base
;
1640 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1641 u32
*batch
, *ts0
, *cs
, *jump
;
1652 bo
= i915_gem_object_create_internal(i915
, 4096);
1655 "Failed to allocate NOA wait batchbuffer\n");
1660 * We pin in GGTT because we jump into this buffer now because
1661 * multiple OA config BOs will have a jump to this address and it
1662 * needs to be fixed during the lifetime of the i915/perf stream.
1664 vma
= i915_gem_object_ggtt_pin(bo
, NULL
, 0, 0, PIN_HIGH
);
1670 batch
= cs
= i915_gem_object_pin_map(bo
, I915_MAP_WB
);
1671 if (IS_ERR(batch
)) {
1672 ret
= PTR_ERR(batch
);
1676 /* Save registers. */
1677 for (i
= 0; i
< N_CS_GPR
; i
++)
1678 cs
= save_restore_register(
1679 stream
, cs
, true /* save */, CS_GPR(i
),
1680 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR
+ 8 * i
, 2);
1681 cs
= save_restore_register(
1682 stream
, cs
, true /* save */, MI_PREDICATE_RESULT_1
,
1683 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1
, 1);
1685 /* First timestamp snapshot location. */
1689 * Initial snapshot of the timestamp register to implement the wait.
1690 * We work with 32b values, so clear out the top 32b bits of the
1691 * register because the ALU works 64bits.
1693 *cs
++ = MI_LOAD_REGISTER_IMM(1);
1694 *cs
++ = i915_mmio_reg_offset(CS_GPR(START_TS
)) + 4;
1696 *cs
++ = MI_LOAD_REGISTER_REG
| (3 - 2);
1697 *cs
++ = i915_mmio_reg_offset(RING_TIMESTAMP(base
));
1698 *cs
++ = i915_mmio_reg_offset(CS_GPR(START_TS
));
1701 * This is the location we're going to jump back into until the
1702 * required amount of time has passed.
1707 * Take another snapshot of the timestamp register. Take care to clear
1708 * up the top 32bits of CS_GPR(1) as we're using it for other
1711 *cs
++ = MI_LOAD_REGISTER_IMM(1);
1712 *cs
++ = i915_mmio_reg_offset(CS_GPR(NOW_TS
)) + 4;
1714 *cs
++ = MI_LOAD_REGISTER_REG
| (3 - 2);
1715 *cs
++ = i915_mmio_reg_offset(RING_TIMESTAMP(base
));
1716 *cs
++ = i915_mmio_reg_offset(CS_GPR(NOW_TS
));
1719 * Do a diff between the 2 timestamps and store the result back into
1723 *cs
++ = MI_MATH_LOAD(MI_MATH_REG_SRCA
, MI_MATH_REG(NOW_TS
));
1724 *cs
++ = MI_MATH_LOAD(MI_MATH_REG_SRCB
, MI_MATH_REG(START_TS
));
1725 *cs
++ = MI_MATH_SUB
;
1726 *cs
++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS
), MI_MATH_REG_ACCU
);
1727 *cs
++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE
), MI_MATH_REG_CF
);
1730 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1731 * timestamp have rolled over the 32bits) into the predicate register
1732 * to be used for the predicated jump.
1734 *cs
++ = MI_LOAD_REGISTER_REG
| (3 - 2);
1735 *cs
++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE
));
1736 *cs
++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1
);
1738 /* Restart from the beginning if we had timestamps roll over. */
1739 *cs
++ = (INTEL_GEN(i915
) < 8 ?
1740 MI_BATCH_BUFFER_START
:
1741 MI_BATCH_BUFFER_START_GEN8
) |
1743 *cs
++ = i915_ggtt_offset(vma
) + (ts0
- batch
) * 4;
1747 * Now add the diff between to previous timestamps and add it to :
1748 * (((1 * << 64) - 1) - delay_ns)
1750 * When the Carry Flag contains 1 this means the elapsed time is
1751 * longer than the expected delay, and we can exit the wait loop.
1753 *cs
++ = MI_LOAD_REGISTER_IMM(2);
1754 *cs
++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET
));
1755 *cs
++ = lower_32_bits(delay_ticks
);
1756 *cs
++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET
)) + 4;
1757 *cs
++ = upper_32_bits(delay_ticks
);
1760 *cs
++ = MI_MATH_LOAD(MI_MATH_REG_SRCA
, MI_MATH_REG(DELTA_TS
));
1761 *cs
++ = MI_MATH_LOAD(MI_MATH_REG_SRCB
, MI_MATH_REG(DELTA_TARGET
));
1762 *cs
++ = MI_MATH_ADD
;
1763 *cs
++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE
), MI_MATH_REG_CF
);
1765 *cs
++ = MI_ARB_CHECK
;
1768 * Transfer the result into the predicate register to be used for the
1771 *cs
++ = MI_LOAD_REGISTER_REG
| (3 - 2);
1772 *cs
++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE
));
1773 *cs
++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1
);
1775 /* Predicate the jump. */
1776 *cs
++ = (INTEL_GEN(i915
) < 8 ?
1777 MI_BATCH_BUFFER_START
:
1778 MI_BATCH_BUFFER_START_GEN8
) |
1780 *cs
++ = i915_ggtt_offset(vma
) + (jump
- batch
) * 4;
1783 /* Restore registers. */
1784 for (i
= 0; i
< N_CS_GPR
; i
++)
1785 cs
= save_restore_register(
1786 stream
, cs
, false /* restore */, CS_GPR(i
),
1787 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR
+ 8 * i
, 2);
1788 cs
= save_restore_register(
1789 stream
, cs
, false /* restore */, MI_PREDICATE_RESULT_1
,
1790 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1
, 1);
1792 /* And return to the ring. */
1793 *cs
++ = MI_BATCH_BUFFER_END
;
1795 GEM_BUG_ON(cs
- batch
> PAGE_SIZE
/ sizeof(*batch
));
1797 i915_gem_object_flush_map(bo
);
1798 __i915_gem_object_release_map(bo
);
1800 stream
->noa_wait
= vma
;
1804 i915_vma_unpin_and_release(&vma
, 0);
1806 i915_gem_object_put(bo
);
1810 static u32
*write_cs_mi_lri(u32
*cs
,
1811 const struct i915_oa_reg
*reg_data
,
1816 for (i
= 0; i
< n_regs
; i
++) {
1817 if ((i
% MI_LOAD_REGISTER_IMM_MAX_REGS
) == 0) {
1818 u32 n_lri
= min_t(u32
,
1820 MI_LOAD_REGISTER_IMM_MAX_REGS
);
1822 *cs
++ = MI_LOAD_REGISTER_IMM(n_lri
);
1824 *cs
++ = i915_mmio_reg_offset(reg_data
[i
].addr
);
1825 *cs
++ = reg_data
[i
].value
;
1831 static int num_lri_dwords(int num_regs
)
1836 count
+= DIV_ROUND_UP(num_regs
, MI_LOAD_REGISTER_IMM_MAX_REGS
);
1837 count
+= num_regs
* 2;
1843 static struct i915_oa_config_bo
*
1844 alloc_oa_config_buffer(struct i915_perf_stream
*stream
,
1845 struct i915_oa_config
*oa_config
)
1847 struct drm_i915_gem_object
*obj
;
1848 struct i915_oa_config_bo
*oa_bo
;
1849 size_t config_length
= 0;
1853 oa_bo
= kzalloc(sizeof(*oa_bo
), GFP_KERNEL
);
1855 return ERR_PTR(-ENOMEM
);
1857 config_length
+= num_lri_dwords(oa_config
->mux_regs_len
);
1858 config_length
+= num_lri_dwords(oa_config
->b_counter_regs_len
);
1859 config_length
+= num_lri_dwords(oa_config
->flex_regs_len
);
1860 config_length
+= 3; /* MI_BATCH_BUFFER_START */
1861 config_length
= ALIGN(sizeof(u32
) * config_length
, I915_GTT_PAGE_SIZE
);
1863 obj
= i915_gem_object_create_shmem(stream
->perf
->i915
, config_length
);
1869 cs
= i915_gem_object_pin_map(obj
, I915_MAP_WB
);
1875 cs
= write_cs_mi_lri(cs
,
1876 oa_config
->mux_regs
,
1877 oa_config
->mux_regs_len
);
1878 cs
= write_cs_mi_lri(cs
,
1879 oa_config
->b_counter_regs
,
1880 oa_config
->b_counter_regs_len
);
1881 cs
= write_cs_mi_lri(cs
,
1882 oa_config
->flex_regs
,
1883 oa_config
->flex_regs_len
);
1885 /* Jump into the active wait. */
1886 *cs
++ = (INTEL_GEN(stream
->perf
->i915
) < 8 ?
1887 MI_BATCH_BUFFER_START
:
1888 MI_BATCH_BUFFER_START_GEN8
);
1889 *cs
++ = i915_ggtt_offset(stream
->noa_wait
);
1892 i915_gem_object_flush_map(obj
);
1893 __i915_gem_object_release_map(obj
);
1895 oa_bo
->vma
= i915_vma_instance(obj
,
1896 &stream
->engine
->gt
->ggtt
->vm
,
1898 if (IS_ERR(oa_bo
->vma
)) {
1899 err
= PTR_ERR(oa_bo
->vma
);
1903 oa_bo
->oa_config
= i915_oa_config_get(oa_config
);
1904 llist_add(&oa_bo
->node
, &stream
->oa_config_bos
);
1909 i915_gem_object_put(obj
);
1912 return ERR_PTR(err
);
1915 static struct i915_vma
*
1916 get_oa_vma(struct i915_perf_stream
*stream
, struct i915_oa_config
*oa_config
)
1918 struct i915_oa_config_bo
*oa_bo
;
1921 * Look for the buffer in the already allocated BOs attached
1924 llist_for_each_entry(oa_bo
, stream
->oa_config_bos
.first
, node
) {
1925 if (oa_bo
->oa_config
== oa_config
&&
1926 memcmp(oa_bo
->oa_config
->uuid
,
1928 sizeof(oa_config
->uuid
)) == 0)
1932 oa_bo
= alloc_oa_config_buffer(stream
, oa_config
);
1934 return ERR_CAST(oa_bo
);
1937 return i915_vma_get(oa_bo
->vma
);
1941 emit_oa_config(struct i915_perf_stream
*stream
,
1942 struct i915_oa_config
*oa_config
,
1943 struct intel_context
*ce
,
1944 struct i915_active
*active
)
1946 struct i915_request
*rq
;
1947 struct i915_vma
*vma
;
1948 struct i915_gem_ww_ctx ww
;
1951 vma
= get_oa_vma(stream
, oa_config
);
1953 return PTR_ERR(vma
);
1955 i915_gem_ww_ctx_init(&ww
, true);
1957 err
= i915_gem_object_lock(vma
->obj
, &ww
);
1961 err
= i915_vma_pin_ww(vma
, &ww
, 0, 0, PIN_GLOBAL
| PIN_HIGH
);
1965 intel_engine_pm_get(ce
->engine
);
1966 rq
= i915_request_create(ce
);
1967 intel_engine_pm_put(ce
->engine
);
1973 if (!IS_ERR_OR_NULL(active
)) {
1974 /* After all individual context modifications */
1975 err
= i915_request_await_active(rq
, active
,
1976 I915_ACTIVE_AWAIT_ACTIVE
);
1978 goto err_add_request
;
1980 err
= i915_active_add_request(active
, rq
);
1982 goto err_add_request
;
1985 err
= i915_request_await_object(rq
, vma
->obj
, 0);
1987 err
= i915_vma_move_to_active(vma
, rq
, 0);
1989 goto err_add_request
;
1991 err
= rq
->engine
->emit_bb_start(rq
,
1993 I915_DISPATCH_SECURE
);
1995 goto err_add_request
;
1998 i915_request_add(rq
);
2000 i915_vma_unpin(vma
);
2002 if (err
== -EDEADLK
) {
2003 err
= i915_gem_ww_ctx_backoff(&ww
);
2008 i915_gem_ww_ctx_fini(&ww
);
2013 static struct intel_context
*oa_context(struct i915_perf_stream
*stream
)
2015 return stream
->pinned_ctx
?: stream
->engine
->kernel_context
;
2019 hsw_enable_metric_set(struct i915_perf_stream
*stream
,
2020 struct i915_active
*active
)
2022 struct intel_uncore
*uncore
= stream
->uncore
;
2027 * OA unit is using “crclk” for its functionality. When trunk
2028 * level clock gating takes place, OA clock would be gated,
2029 * unable to count the events from non-render clock domain.
2030 * Render clock gating must be disabled when OA is enabled to
2031 * count the events from non-render domain. Unit level clock
2032 * gating for RCS should also be disabled.
2034 intel_uncore_rmw(uncore
, GEN7_MISCCPCTL
,
2035 GEN7_DOP_CLOCK_GATE_ENABLE
, 0);
2036 intel_uncore_rmw(uncore
, GEN6_UCGCTL1
,
2037 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE
);
2039 return emit_oa_config(stream
,
2040 stream
->oa_config
, oa_context(stream
),
2044 static void hsw_disable_metric_set(struct i915_perf_stream
*stream
)
2046 struct intel_uncore
*uncore
= stream
->uncore
;
2048 intel_uncore_rmw(uncore
, GEN6_UCGCTL1
,
2049 GEN6_CSUNIT_CLOCK_GATE_DISABLE
, 0);
2050 intel_uncore_rmw(uncore
, GEN7_MISCCPCTL
,
2051 0, GEN7_DOP_CLOCK_GATE_ENABLE
);
2053 intel_uncore_rmw(uncore
, GDT_CHICKEN_BITS
, GT_NOA_ENABLE
, 0);
2056 static u32
oa_config_flex_reg(const struct i915_oa_config
*oa_config
,
2059 u32 mmio
= i915_mmio_reg_offset(reg
);
2063 * This arbitrary default will select the 'EU FPU0 Pipeline
2064 * Active' event. In the future it's anticipated that there
2065 * will be an explicit 'No Event' we can select, but not yet...
2070 for (i
= 0; i
< oa_config
->flex_regs_len
; i
++) {
2071 if (i915_mmio_reg_offset(oa_config
->flex_regs
[i
].addr
) == mmio
)
2072 return oa_config
->flex_regs
[i
].value
;
2078 * NB: It must always remain pointer safe to run this even if the OA unit
2079 * has been disabled.
2081 * It's fine to put out-of-date values into these per-context registers
2082 * in the case that the OA unit has been disabled.
2085 gen8_update_reg_state_unlocked(const struct intel_context
*ce
,
2086 const struct i915_perf_stream
*stream
)
2088 u32 ctx_oactxctrl
= stream
->perf
->ctx_oactxctrl_offset
;
2089 u32 ctx_flexeu0
= stream
->perf
->ctx_flexeu0_offset
;
2090 /* The MMIO offsets for Flex EU registers aren't contiguous */
2091 i915_reg_t flex_regs
[] = {
2100 u32
*reg_state
= ce
->lrc_reg_state
;
2103 reg_state
[ctx_oactxctrl
+ 1] =
2104 (stream
->period_exponent
<< GEN8_OA_TIMER_PERIOD_SHIFT
) |
2105 (stream
->periodic
? GEN8_OA_TIMER_ENABLE
: 0) |
2106 GEN8_OA_COUNTER_RESUME
;
2108 for (i
= 0; i
< ARRAY_SIZE(flex_regs
); i
++)
2109 reg_state
[ctx_flexeu0
+ i
* 2 + 1] =
2110 oa_config_flex_reg(stream
->oa_config
, flex_regs
[i
]);
2120 gen8_store_flex(struct i915_request
*rq
,
2121 struct intel_context
*ce
,
2122 const struct flex
*flex
, unsigned int count
)
2127 cs
= intel_ring_begin(rq
, 4 * count
);
2131 offset
= i915_ggtt_offset(ce
->state
) + LRC_STATE_OFFSET
;
2133 *cs
++ = MI_STORE_DWORD_IMM_GEN4
| MI_USE_GGTT
;
2134 *cs
++ = offset
+ flex
->offset
* sizeof(u32
);
2136 *cs
++ = flex
->value
;
2137 } while (flex
++, --count
);
2139 intel_ring_advance(rq
, cs
);
2145 gen8_load_flex(struct i915_request
*rq
,
2146 struct intel_context
*ce
,
2147 const struct flex
*flex
, unsigned int count
)
2151 GEM_BUG_ON(!count
|| count
> 63);
2153 cs
= intel_ring_begin(rq
, 2 * count
+ 2);
2157 *cs
++ = MI_LOAD_REGISTER_IMM(count
);
2159 *cs
++ = i915_mmio_reg_offset(flex
->reg
);
2160 *cs
++ = flex
->value
;
2161 } while (flex
++, --count
);
2164 intel_ring_advance(rq
, cs
);
2169 static int gen8_modify_context(struct intel_context
*ce
,
2170 const struct flex
*flex
, unsigned int count
)
2172 struct i915_request
*rq
;
2175 rq
= intel_engine_create_kernel_request(ce
->engine
);
2179 /* Serialise with the remote context */
2180 err
= intel_context_prepare_remote_request(ce
, rq
);
2182 err
= gen8_store_flex(rq
, ce
, flex
, count
);
2184 i915_request_add(rq
);
2189 gen8_modify_self(struct intel_context
*ce
,
2190 const struct flex
*flex
, unsigned int count
,
2191 struct i915_active
*active
)
2193 struct i915_request
*rq
;
2196 intel_engine_pm_get(ce
->engine
);
2197 rq
= i915_request_create(ce
);
2198 intel_engine_pm_put(ce
->engine
);
2202 if (!IS_ERR_OR_NULL(active
)) {
2203 err
= i915_active_add_request(active
, rq
);
2205 goto err_add_request
;
2208 err
= gen8_load_flex(rq
, ce
, flex
, count
);
2210 goto err_add_request
;
2213 i915_request_add(rq
);
2217 static int gen8_configure_context(struct i915_gem_context
*ctx
,
2218 struct flex
*flex
, unsigned int count
)
2220 struct i915_gem_engines_iter it
;
2221 struct intel_context
*ce
;
2224 for_each_gem_engine(ce
, i915_gem_context_lock_engines(ctx
), it
) {
2225 GEM_BUG_ON(ce
== ce
->engine
->kernel_context
);
2227 if (ce
->engine
->class != RENDER_CLASS
)
2230 /* Otherwise OA settings will be set upon first use */
2231 if (!intel_context_pin_if_active(ce
))
2234 flex
->value
= intel_sseu_make_rpcs(ce
->engine
->gt
, &ce
->sseu
);
2235 err
= gen8_modify_context(ce
, flex
, count
);
2237 intel_context_unpin(ce
);
2241 i915_gem_context_unlock_engines(ctx
);
2246 static int gen12_configure_oar_context(struct i915_perf_stream
*stream
,
2247 struct i915_active
*active
)
2250 struct intel_context
*ce
= stream
->pinned_ctx
;
2251 u32 format
= stream
->oa_buffer
.format
;
2252 struct flex regs_context
[] = {
2255 stream
->perf
->ctx_oactxctrl_offset
+ 1,
2256 active
? GEN8_OA_COUNTER_RESUME
: 0,
2259 /* Offsets in regs_lri are not used since this configuration is only
2260 * applied using LRI. Initialize the correct offsets for posterity.
2262 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2263 struct flex regs_lri
[] = {
2265 GEN12_OAR_OACONTROL
,
2266 GEN12_OAR_OACONTROL_OFFSET
+ 1,
2267 (format
<< GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT
) |
2268 (active
? GEN12_OAR_OACONTROL_COUNTER_ENABLE
: 0)
2271 RING_CONTEXT_CONTROL(ce
->engine
->mmio_base
),
2272 CTX_CONTEXT_CONTROL
,
2273 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE
,
2275 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE
:
2280 /* Modify the context image of pinned context with regs_context*/
2281 err
= intel_context_lock_pinned(ce
);
2285 err
= gen8_modify_context(ce
, regs_context
, ARRAY_SIZE(regs_context
));
2286 intel_context_unlock_pinned(ce
);
2290 /* Apply regs_lri using LRI with pinned context */
2291 return gen8_modify_self(ce
, regs_lri
, ARRAY_SIZE(regs_lri
), active
);
2295 * Manages updating the per-context aspects of the OA stream
2296 * configuration across all contexts.
2298 * The awkward consideration here is that OACTXCONTROL controls the
2299 * exponent for periodic sampling which is primarily used for system
2300 * wide profiling where we'd like a consistent sampling period even in
2301 * the face of context switches.
2303 * Our approach of updating the register state context (as opposed to
2304 * say using a workaround batch buffer) ensures that the hardware
2305 * won't automatically reload an out-of-date timer exponent even
2306 * transiently before a WA BB could be parsed.
2308 * This function needs to:
2309 * - Ensure the currently running context's per-context OA state is
2311 * - Ensure that all existing contexts will have the correct per-context
2312 * OA state if they are scheduled for use.
2313 * - Ensure any new contexts will be initialized with the correct
2314 * per-context OA state.
2316 * Note: it's only the RCS/Render context that has any OA state.
2317 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2320 oa_configure_all_contexts(struct i915_perf_stream
*stream
,
2323 struct i915_active
*active
)
2325 struct drm_i915_private
*i915
= stream
->perf
->i915
;
2326 struct intel_engine_cs
*engine
;
2327 struct i915_gem_context
*ctx
, *cn
;
2330 lockdep_assert_held(&stream
->perf
->lock
);
2333 * The OA register config is setup through the context image. This image
2334 * might be written to by the GPU on context switch (in particular on
2335 * lite-restore). This means we can't safely update a context's image,
2336 * if this context is scheduled/submitted to run on the GPU.
2338 * We could emit the OA register config through the batch buffer but
2339 * this might leave small interval of time where the OA unit is
2340 * configured at an invalid sampling period.
2342 * Note that since we emit all requests from a single ring, there
2343 * is still an implicit global barrier here that may cause a high
2344 * priority context to wait for an otherwise independent low priority
2345 * context. Contexts idle at the time of reconfiguration are not
2346 * trapped behind the barrier.
2348 spin_lock(&i915
->gem
.contexts
.lock
);
2349 list_for_each_entry_safe(ctx
, cn
, &i915
->gem
.contexts
.list
, link
) {
2350 if (!kref_get_unless_zero(&ctx
->ref
))
2353 spin_unlock(&i915
->gem
.contexts
.lock
);
2355 err
= gen8_configure_context(ctx
, regs
, num_regs
);
2357 i915_gem_context_put(ctx
);
2361 spin_lock(&i915
->gem
.contexts
.lock
);
2362 list_safe_reset_next(ctx
, cn
, link
);
2363 i915_gem_context_put(ctx
);
2365 spin_unlock(&i915
->gem
.contexts
.lock
);
2368 * After updating all other contexts, we need to modify ourselves.
2369 * If we don't modify the kernel_context, we do not get events while
2372 for_each_uabi_engine(engine
, i915
) {
2373 struct intel_context
*ce
= engine
->kernel_context
;
2375 if (engine
->class != RENDER_CLASS
)
2378 regs
[0].value
= intel_sseu_make_rpcs(engine
->gt
, &ce
->sseu
);
2380 err
= gen8_modify_self(ce
, regs
, num_regs
, active
);
2389 gen12_configure_all_contexts(struct i915_perf_stream
*stream
,
2390 const struct i915_oa_config
*oa_config
,
2391 struct i915_active
*active
)
2393 struct flex regs
[] = {
2395 GEN8_R_PWR_CLK_STATE
,
2396 CTX_R_PWR_CLK_STATE
,
2400 return oa_configure_all_contexts(stream
,
2401 regs
, ARRAY_SIZE(regs
),
2406 lrc_configure_all_contexts(struct i915_perf_stream
*stream
,
2407 const struct i915_oa_config
*oa_config
,
2408 struct i915_active
*active
)
2410 /* The MMIO offsets for Flex EU registers aren't contiguous */
2411 const u32 ctx_flexeu0
= stream
->perf
->ctx_flexeu0_offset
;
2412 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2413 struct flex regs
[] = {
2415 GEN8_R_PWR_CLK_STATE
,
2416 CTX_R_PWR_CLK_STATE
,
2420 stream
->perf
->ctx_oactxctrl_offset
+ 1,
2422 { EU_PERF_CNTL0
, ctx_flexeuN(0) },
2423 { EU_PERF_CNTL1
, ctx_flexeuN(1) },
2424 { EU_PERF_CNTL2
, ctx_flexeuN(2) },
2425 { EU_PERF_CNTL3
, ctx_flexeuN(3) },
2426 { EU_PERF_CNTL4
, ctx_flexeuN(4) },
2427 { EU_PERF_CNTL5
, ctx_flexeuN(5) },
2428 { EU_PERF_CNTL6
, ctx_flexeuN(6) },
2434 (stream
->period_exponent
<< GEN8_OA_TIMER_PERIOD_SHIFT
) |
2435 (stream
->periodic
? GEN8_OA_TIMER_ENABLE
: 0) |
2436 GEN8_OA_COUNTER_RESUME
;
2438 for (i
= 2; i
< ARRAY_SIZE(regs
); i
++)
2439 regs
[i
].value
= oa_config_flex_reg(oa_config
, regs
[i
].reg
);
2441 return oa_configure_all_contexts(stream
,
2442 regs
, ARRAY_SIZE(regs
),
2447 gen8_enable_metric_set(struct i915_perf_stream
*stream
,
2448 struct i915_active
*active
)
2450 struct intel_uncore
*uncore
= stream
->uncore
;
2451 struct i915_oa_config
*oa_config
= stream
->oa_config
;
2455 * We disable slice/unslice clock ratio change reports on SKL since
2456 * they are too noisy. The HW generates a lot of redundant reports
2457 * where the ratio hasn't really changed causing a lot of redundant
2458 * work to processes and increasing the chances we'll hit buffer
2461 * Although we don't currently use the 'disable overrun' OABUFFER
2462 * feature it's worth noting that clock ratio reports have to be
2463 * disabled before considering to use that feature since the HW doesn't
2464 * correctly block these reports.
2466 * Currently none of the high-level metrics we have depend on knowing
2467 * this ratio to normalize.
2469 * Note: This register is not power context saved and restored, but
2470 * that's OK considering that we disable RC6 while the OA unit is
2473 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2474 * be read back from automatically triggered reports, as part of the
2477 if (IS_GEN_RANGE(stream
->perf
->i915
, 9, 11)) {
2478 intel_uncore_write(uncore
, GEN8_OA_DEBUG
,
2479 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS
|
2480 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO
));
2484 * Update all contexts prior writing the mux configurations as we need
2485 * to make sure all slices/subslices are ON before writing to NOA
2488 ret
= lrc_configure_all_contexts(stream
, oa_config
, active
);
2492 return emit_oa_config(stream
,
2493 stream
->oa_config
, oa_context(stream
),
2497 static u32
oag_report_ctx_switches(const struct i915_perf_stream
*stream
)
2499 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS
,
2500 (stream
->sample_flags
& SAMPLE_OA_REPORT
) ?
2501 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS
);
2505 gen12_enable_metric_set(struct i915_perf_stream
*stream
,
2506 struct i915_active
*active
)
2508 struct intel_uncore
*uncore
= stream
->uncore
;
2509 struct i915_oa_config
*oa_config
= stream
->oa_config
;
2510 bool periodic
= stream
->periodic
;
2511 u32 period_exponent
= stream
->period_exponent
;
2514 intel_uncore_write(uncore
, GEN12_OAG_OA_DEBUG
,
2515 /* Disable clk ratio reports, like previous Gens. */
2516 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS
|
2517 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO
) |
2519 * If the user didn't require OA reports, instruct
2520 * the hardware not to emit ctx switch reports.
2522 oag_report_ctx_switches(stream
));
2524 intel_uncore_write(uncore
, GEN12_OAG_OAGLBCTXCTRL
, periodic
?
2525 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME
|
2526 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE
|
2527 (period_exponent
<< GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT
))
2531 * Update all contexts prior writing the mux configurations as we need
2532 * to make sure all slices/subslices are ON before writing to NOA
2535 ret
= gen12_configure_all_contexts(stream
, oa_config
, active
);
2540 * For Gen12, performance counters are context
2541 * saved/restored. Only enable it for the context that
2545 ret
= gen12_configure_oar_context(stream
, active
);
2550 return emit_oa_config(stream
,
2551 stream
->oa_config
, oa_context(stream
),
2555 static void gen8_disable_metric_set(struct i915_perf_stream
*stream
)
2557 struct intel_uncore
*uncore
= stream
->uncore
;
2559 /* Reset all contexts' slices/subslices configurations. */
2560 lrc_configure_all_contexts(stream
, NULL
, NULL
);
2562 intel_uncore_rmw(uncore
, GDT_CHICKEN_BITS
, GT_NOA_ENABLE
, 0);
2565 static void gen10_disable_metric_set(struct i915_perf_stream
*stream
)
2567 struct intel_uncore
*uncore
= stream
->uncore
;
2569 /* Reset all contexts' slices/subslices configurations. */
2570 lrc_configure_all_contexts(stream
, NULL
, NULL
);
2572 /* Make sure we disable noa to save power. */
2573 intel_uncore_rmw(uncore
, RPM_CONFIG1
, GEN10_GT_NOA_ENABLE
, 0);
2576 static void gen12_disable_metric_set(struct i915_perf_stream
*stream
)
2578 struct intel_uncore
*uncore
= stream
->uncore
;
2580 /* Reset all contexts' slices/subslices configurations. */
2581 gen12_configure_all_contexts(stream
, NULL
, NULL
);
2583 /* disable the context save/restore or OAR counters */
2585 gen12_configure_oar_context(stream
, NULL
);
2587 /* Make sure we disable noa to save power. */
2588 intel_uncore_rmw(uncore
, RPM_CONFIG1
, GEN10_GT_NOA_ENABLE
, 0);
2591 static void gen7_oa_enable(struct i915_perf_stream
*stream
)
2593 struct intel_uncore
*uncore
= stream
->uncore
;
2594 struct i915_gem_context
*ctx
= stream
->ctx
;
2595 u32 ctx_id
= stream
->specific_ctx_id
;
2596 bool periodic
= stream
->periodic
;
2597 u32 period_exponent
= stream
->period_exponent
;
2598 u32 report_format
= stream
->oa_buffer
.format
;
2601 * Reset buf pointers so we don't forward reports from before now.
2603 * Think carefully if considering trying to avoid this, since it
2604 * also ensures status flags and the buffer itself are cleared
2605 * in error paths, and we have checks for invalid reports based
2606 * on the assumption that certain fields are written to zeroed
2607 * memory which this helps maintains.
2609 gen7_init_oa_buffer(stream
);
2611 intel_uncore_write(uncore
, GEN7_OACONTROL
,
2612 (ctx_id
& GEN7_OACONTROL_CTX_MASK
) |
2614 GEN7_OACONTROL_TIMER_PERIOD_SHIFT
) |
2615 (periodic
? GEN7_OACONTROL_TIMER_ENABLE
: 0) |
2616 (report_format
<< GEN7_OACONTROL_FORMAT_SHIFT
) |
2617 (ctx
? GEN7_OACONTROL_PER_CTX_ENABLE
: 0) |
2618 GEN7_OACONTROL_ENABLE
);
2621 static void gen8_oa_enable(struct i915_perf_stream
*stream
)
2623 struct intel_uncore
*uncore
= stream
->uncore
;
2624 u32 report_format
= stream
->oa_buffer
.format
;
2627 * Reset buf pointers so we don't forward reports from before now.
2629 * Think carefully if considering trying to avoid this, since it
2630 * also ensures status flags and the buffer itself are cleared
2631 * in error paths, and we have checks for invalid reports based
2632 * on the assumption that certain fields are written to zeroed
2633 * memory which this helps maintains.
2635 gen8_init_oa_buffer(stream
);
2638 * Note: we don't rely on the hardware to perform single context
2639 * filtering and instead filter on the cpu based on the context-id
2642 intel_uncore_write(uncore
, GEN8_OACONTROL
,
2643 (report_format
<< GEN8_OA_REPORT_FORMAT_SHIFT
) |
2644 GEN8_OA_COUNTER_ENABLE
);
2647 static void gen12_oa_enable(struct i915_perf_stream
*stream
)
2649 struct intel_uncore
*uncore
= stream
->uncore
;
2650 u32 report_format
= stream
->oa_buffer
.format
;
2653 * If we don't want OA reports from the OA buffer, then we don't even
2654 * need to program the OAG unit.
2656 if (!(stream
->sample_flags
& SAMPLE_OA_REPORT
))
2659 gen12_init_oa_buffer(stream
);
2661 intel_uncore_write(uncore
, GEN12_OAG_OACONTROL
,
2662 (report_format
<< GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT
) |
2663 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE
);
2667 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2668 * @stream: An i915 perf stream opened for OA metrics
2670 * [Re]enables hardware periodic sampling according to the period configured
2671 * when opening the stream. This also starts a hrtimer that will periodically
2672 * check for data in the circular OA buffer for notifying userspace (e.g.
2673 * during a read() or poll()).
2675 static void i915_oa_stream_enable(struct i915_perf_stream
*stream
)
2677 stream
->pollin
= false;
2679 stream
->perf
->ops
.oa_enable(stream
);
2681 if (stream
->periodic
)
2682 hrtimer_start(&stream
->poll_check_timer
,
2683 ns_to_ktime(stream
->poll_oa_period
),
2684 HRTIMER_MODE_REL_PINNED
);
2687 static void gen7_oa_disable(struct i915_perf_stream
*stream
)
2689 struct intel_uncore
*uncore
= stream
->uncore
;
2691 intel_uncore_write(uncore
, GEN7_OACONTROL
, 0);
2692 if (intel_wait_for_register(uncore
,
2693 GEN7_OACONTROL
, GEN7_OACONTROL_ENABLE
, 0,
2695 drm_err(&stream
->perf
->i915
->drm
,
2696 "wait for OA to be disabled timed out\n");
2699 static void gen8_oa_disable(struct i915_perf_stream
*stream
)
2701 struct intel_uncore
*uncore
= stream
->uncore
;
2703 intel_uncore_write(uncore
, GEN8_OACONTROL
, 0);
2704 if (intel_wait_for_register(uncore
,
2705 GEN8_OACONTROL
, GEN8_OA_COUNTER_ENABLE
, 0,
2707 drm_err(&stream
->perf
->i915
->drm
,
2708 "wait for OA to be disabled timed out\n");
2711 static void gen12_oa_disable(struct i915_perf_stream
*stream
)
2713 struct intel_uncore
*uncore
= stream
->uncore
;
2715 intel_uncore_write(uncore
, GEN12_OAG_OACONTROL
, 0);
2716 if (intel_wait_for_register(uncore
,
2717 GEN12_OAG_OACONTROL
,
2718 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE
, 0,
2720 drm_err(&stream
->perf
->i915
->drm
,
2721 "wait for OA to be disabled timed out\n");
2723 intel_uncore_write(uncore
, GEN12_OA_TLB_INV_CR
, 1);
2724 if (intel_wait_for_register(uncore
,
2725 GEN12_OA_TLB_INV_CR
,
2728 drm_err(&stream
->perf
->i915
->drm
,
2729 "wait for OA tlb invalidate timed out\n");
2733 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2734 * @stream: An i915 perf stream opened for OA metrics
2736 * Stops the OA unit from periodically writing counter reports into the
2737 * circular OA buffer. This also stops the hrtimer that periodically checks for
2738 * data in the circular OA buffer, for notifying userspace.
2740 static void i915_oa_stream_disable(struct i915_perf_stream
*stream
)
2742 stream
->perf
->ops
.oa_disable(stream
);
2744 if (stream
->periodic
)
2745 hrtimer_cancel(&stream
->poll_check_timer
);
2748 static const struct i915_perf_stream_ops i915_oa_stream_ops
= {
2749 .destroy
= i915_oa_stream_destroy
,
2750 .enable
= i915_oa_stream_enable
,
2751 .disable
= i915_oa_stream_disable
,
2752 .wait_unlocked
= i915_oa_wait_unlocked
,
2753 .poll_wait
= i915_oa_poll_wait
,
2754 .read
= i915_oa_read
,
2757 static int i915_perf_stream_enable_sync(struct i915_perf_stream
*stream
)
2759 struct i915_active
*active
;
2762 active
= i915_active_create();
2766 err
= stream
->perf
->ops
.enable_metric_set(stream
, active
);
2768 __i915_active_wait(active
, TASK_UNINTERRUPTIBLE
);
2770 i915_active_put(active
);
2775 get_default_sseu_config(struct intel_sseu
*out_sseu
,
2776 struct intel_engine_cs
*engine
)
2778 const struct sseu_dev_info
*devinfo_sseu
= &engine
->gt
->info
.sseu
;
2780 *out_sseu
= intel_sseu_from_device_info(devinfo_sseu
);
2782 if (IS_GEN(engine
->i915
, 11)) {
2784 * We only need subslice count so it doesn't matter which ones
2785 * we select - just turn off low bits in the amount of half of
2786 * all available subslices per slice.
2788 out_sseu
->subslice_mask
=
2789 ~(~0 << (hweight8(out_sseu
->subslice_mask
) / 2));
2790 out_sseu
->slice_mask
= 0x1;
2795 get_sseu_config(struct intel_sseu
*out_sseu
,
2796 struct intel_engine_cs
*engine
,
2797 const struct drm_i915_gem_context_param_sseu
*drm_sseu
)
2799 if (drm_sseu
->engine
.engine_class
!= engine
->uabi_class
||
2800 drm_sseu
->engine
.engine_instance
!= engine
->uabi_instance
)
2803 return i915_gem_user_to_context_sseu(engine
->gt
, drm_sseu
, out_sseu
);
2807 * i915_oa_stream_init - validate combined props for OA stream and init
2808 * @stream: An i915 perf stream
2809 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2810 * @props: The property state that configures stream (individually validated)
2812 * While read_properties_unlocked() validates properties in isolation it
2813 * doesn't ensure that the combination necessarily makes sense.
2815 * At this point it has been determined that userspace wants a stream of
2816 * OA metrics, but still we need to further validate the combined
2817 * properties are OK.
2819 * If the configuration makes sense then we can allocate memory for
2820 * a circular OA buffer and apply the requested metric set configuration.
2822 * Returns: zero on success or a negative error code.
2824 static int i915_oa_stream_init(struct i915_perf_stream
*stream
,
2825 struct drm_i915_perf_open_param
*param
,
2826 struct perf_open_properties
*props
)
2828 struct drm_i915_private
*i915
= stream
->perf
->i915
;
2829 struct i915_perf
*perf
= stream
->perf
;
2833 if (!props
->engine
) {
2834 DRM_DEBUG("OA engine not specified\n");
2839 * If the sysfs metrics/ directory wasn't registered for some
2840 * reason then don't let userspace try their luck with config
2843 if (!perf
->metrics_kobj
) {
2844 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2848 if (!(props
->sample_flags
& SAMPLE_OA_REPORT
) &&
2849 (INTEL_GEN(perf
->i915
) < 12 || !stream
->ctx
)) {
2850 DRM_DEBUG("Only OA report sampling supported\n");
2854 if (!perf
->ops
.enable_metric_set
) {
2855 DRM_DEBUG("OA unit not supported\n");
2860 * To avoid the complexity of having to accurately filter
2861 * counter reports and marshal to the appropriate client
2862 * we currently only allow exclusive access
2864 if (perf
->exclusive_stream
) {
2865 DRM_DEBUG("OA unit already in use\n");
2869 if (!props
->oa_format
) {
2870 DRM_DEBUG("OA report format not specified\n");
2874 stream
->engine
= props
->engine
;
2875 stream
->uncore
= stream
->engine
->gt
->uncore
;
2877 stream
->sample_size
= sizeof(struct drm_i915_perf_record_header
);
2879 format_size
= perf
->oa_formats
[props
->oa_format
].size
;
2881 stream
->sample_flags
= props
->sample_flags
;
2882 stream
->sample_size
+= format_size
;
2884 stream
->oa_buffer
.format_size
= format_size
;
2885 if (drm_WARN_ON(&i915
->drm
, stream
->oa_buffer
.format_size
== 0))
2888 stream
->hold_preemption
= props
->hold_preemption
;
2890 stream
->oa_buffer
.format
=
2891 perf
->oa_formats
[props
->oa_format
].format
;
2893 stream
->periodic
= props
->oa_periodic
;
2894 if (stream
->periodic
)
2895 stream
->period_exponent
= props
->oa_period_exponent
;
2898 ret
= oa_get_render_ctx_id(stream
);
2900 DRM_DEBUG("Invalid context id to filter with\n");
2905 ret
= alloc_noa_wait(stream
);
2907 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2908 goto err_noa_wait_alloc
;
2911 stream
->oa_config
= i915_perf_get_oa_config(perf
, props
->metrics_set
);
2912 if (!stream
->oa_config
) {
2913 DRM_DEBUG("Invalid OA config id=%i\n", props
->metrics_set
);
2918 /* PRM - observability performance counters:
2920 * OACONTROL, performance counter enable, note:
2922 * "When this bit is set, in order to have coherent counts,
2923 * RC6 power state and trunk clock gating must be disabled.
2924 * This can be achieved by programming MMIO registers as
2925 * 0xA094=0 and 0xA090[31]=1"
2927 * In our case we are expecting that taking pm + FORCEWAKE
2928 * references will effectively disable RC6.
2930 intel_engine_pm_get(stream
->engine
);
2931 intel_uncore_forcewake_get(stream
->uncore
, FORCEWAKE_ALL
);
2933 ret
= alloc_oa_buffer(stream
);
2935 goto err_oa_buf_alloc
;
2937 stream
->ops
= &i915_oa_stream_ops
;
2939 perf
->sseu
= props
->sseu
;
2940 WRITE_ONCE(perf
->exclusive_stream
, stream
);
2942 ret
= i915_perf_stream_enable_sync(stream
);
2944 DRM_DEBUG("Unable to enable metric set\n");
2948 DRM_DEBUG("opening stream oa config uuid=%s\n",
2949 stream
->oa_config
->uuid
);
2951 hrtimer_init(&stream
->poll_check_timer
,
2952 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
2953 stream
->poll_check_timer
.function
= oa_poll_check_timer_cb
;
2954 init_waitqueue_head(&stream
->poll_wq
);
2955 spin_lock_init(&stream
->oa_buffer
.ptr_lock
);
2960 WRITE_ONCE(perf
->exclusive_stream
, NULL
);
2961 perf
->ops
.disable_metric_set(stream
);
2963 free_oa_buffer(stream
);
2966 free_oa_configs(stream
);
2968 intel_uncore_forcewake_put(stream
->uncore
, FORCEWAKE_ALL
);
2969 intel_engine_pm_put(stream
->engine
);
2972 free_noa_wait(stream
);
2976 oa_put_render_ctx_id(stream
);
2981 void i915_oa_init_reg_state(const struct intel_context
*ce
,
2982 const struct intel_engine_cs
*engine
)
2984 struct i915_perf_stream
*stream
;
2986 if (engine
->class != RENDER_CLASS
)
2989 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2990 stream
= READ_ONCE(engine
->i915
->perf
.exclusive_stream
);
2991 if (stream
&& INTEL_GEN(stream
->perf
->i915
) < 12)
2992 gen8_update_reg_state_unlocked(ce
, stream
);
2996 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2997 * @file: An i915 perf stream file
2998 * @buf: destination buffer given by userspace
2999 * @count: the number of bytes userspace wants to read
3000 * @ppos: (inout) file seek position (unused)
3002 * The entry point for handling a read() on a stream file descriptor from
3003 * userspace. Most of the work is left to the i915_perf_read_locked() and
3004 * &i915_perf_stream_ops->read but to save having stream implementations (of
3005 * which we might have multiple later) we handle blocking read here.
3007 * We can also consistently treat trying to read from a disabled stream
3008 * as an IO error so implementations can assume the stream is enabled
3011 * Returns: The number of bytes copied or a negative error code on failure.
3013 static ssize_t
i915_perf_read(struct file
*file
,
3018 struct i915_perf_stream
*stream
= file
->private_data
;
3019 struct i915_perf
*perf
= stream
->perf
;
3023 /* To ensure it's handled consistently we simply treat all reads of a
3024 * disabled stream as an error. In particular it might otherwise lead
3025 * to a deadlock for blocking file descriptors...
3027 if (!stream
->enabled
)
3030 if (!(file
->f_flags
& O_NONBLOCK
)) {
3031 /* There's the small chance of false positives from
3032 * stream->ops->wait_unlocked.
3034 * E.g. with single context filtering since we only wait until
3035 * oabuffer has >= 1 report we don't immediately know whether
3036 * any reports really belong to the current context
3039 ret
= stream
->ops
->wait_unlocked(stream
);
3043 mutex_lock(&perf
->lock
);
3044 ret
= stream
->ops
->read(stream
, buf
, count
, &offset
);
3045 mutex_unlock(&perf
->lock
);
3046 } while (!offset
&& !ret
);
3048 mutex_lock(&perf
->lock
);
3049 ret
= stream
->ops
->read(stream
, buf
, count
, &offset
);
3050 mutex_unlock(&perf
->lock
);
3053 /* We allow the poll checking to sometimes report false positive EPOLLIN
3054 * events where we might actually report EAGAIN on read() if there's
3055 * not really any data available. In this situation though we don't
3056 * want to enter a busy loop between poll() reporting a EPOLLIN event
3057 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3058 * effectively ensures we back off until the next hrtimer callback
3059 * before reporting another EPOLLIN event.
3060 * The exception to this is if ops->read() returned -ENOSPC which means
3061 * that more OA data is available than could fit in the user provided
3062 * buffer. In this case we want the next poll() call to not block.
3065 stream
->pollin
= false;
3067 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3068 return offset
?: (ret
?: -EAGAIN
);
3071 static enum hrtimer_restart
oa_poll_check_timer_cb(struct hrtimer
*hrtimer
)
3073 struct i915_perf_stream
*stream
=
3074 container_of(hrtimer
, typeof(*stream
), poll_check_timer
);
3076 if (oa_buffer_check_unlocked(stream
)) {
3077 stream
->pollin
= true;
3078 wake_up(&stream
->poll_wq
);
3081 hrtimer_forward_now(hrtimer
,
3082 ns_to_ktime(stream
->poll_oa_period
));
3084 return HRTIMER_RESTART
;
3088 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3089 * @stream: An i915 perf stream
3090 * @file: An i915 perf stream file
3091 * @wait: poll() state table
3093 * For handling userspace polling on an i915 perf stream, this calls through to
3094 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3095 * will be woken for new stream data.
3097 * Note: The &perf->lock mutex has been taken to serialize
3098 * with any non-file-operation driver hooks.
3100 * Returns: any poll events that are ready without sleeping
3102 static __poll_t
i915_perf_poll_locked(struct i915_perf_stream
*stream
,
3106 __poll_t events
= 0;
3108 stream
->ops
->poll_wait(stream
, file
, wait
);
3110 /* Note: we don't explicitly check whether there's something to read
3111 * here since this path may be very hot depending on what else
3112 * userspace is polling, or on the timeout in use. We rely solely on
3113 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3123 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3124 * @file: An i915 perf stream file
3125 * @wait: poll() state table
3127 * For handling userspace polling on an i915 perf stream, this ensures
3128 * poll_wait() gets called with a wait queue that will be woken for new stream
3131 * Note: Implementation deferred to i915_perf_poll_locked()
3133 * Returns: any poll events that are ready without sleeping
3135 static __poll_t
i915_perf_poll(struct file
*file
, poll_table
*wait
)
3137 struct i915_perf_stream
*stream
= file
->private_data
;
3138 struct i915_perf
*perf
= stream
->perf
;
3141 mutex_lock(&perf
->lock
);
3142 ret
= i915_perf_poll_locked(stream
, file
, wait
);
3143 mutex_unlock(&perf
->lock
);
3149 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3150 * @stream: A disabled i915 perf stream
3152 * [Re]enables the associated capture of data for this stream.
3154 * If a stream was previously enabled then there's currently no intention
3155 * to provide userspace any guarantee about the preservation of previously
3158 static void i915_perf_enable_locked(struct i915_perf_stream
*stream
)
3160 if (stream
->enabled
)
3163 /* Allow stream->ops->enable() to refer to this */
3164 stream
->enabled
= true;
3166 if (stream
->ops
->enable
)
3167 stream
->ops
->enable(stream
);
3169 if (stream
->hold_preemption
)
3170 intel_context_set_nopreempt(stream
->pinned_ctx
);
3174 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3175 * @stream: An enabled i915 perf stream
3177 * Disables the associated capture of data for this stream.
3179 * The intention is that disabling an re-enabling a stream will ideally be
3180 * cheaper than destroying and re-opening a stream with the same configuration,
3181 * though there are no formal guarantees about what state or buffered data
3182 * must be retained between disabling and re-enabling a stream.
3184 * Note: while a stream is disabled it's considered an error for userspace
3185 * to attempt to read from the stream (-EIO).
3187 static void i915_perf_disable_locked(struct i915_perf_stream
*stream
)
3189 if (!stream
->enabled
)
3192 /* Allow stream->ops->disable() to refer to this */
3193 stream
->enabled
= false;
3195 if (stream
->hold_preemption
)
3196 intel_context_clear_nopreempt(stream
->pinned_ctx
);
3198 if (stream
->ops
->disable
)
3199 stream
->ops
->disable(stream
);
3202 static long i915_perf_config_locked(struct i915_perf_stream
*stream
,
3203 unsigned long metrics_set
)
3205 struct i915_oa_config
*config
;
3206 long ret
= stream
->oa_config
->id
;
3208 config
= i915_perf_get_oa_config(stream
->perf
, metrics_set
);
3212 if (config
!= stream
->oa_config
) {
3216 * If OA is bound to a specific context, emit the
3217 * reconfiguration inline from that context. The update
3218 * will then be ordered with respect to submission on that
3221 * When set globally, we use a low priority kernel context,
3222 * so it will effectively take effect when idle.
3224 err
= emit_oa_config(stream
, config
, oa_context(stream
), NULL
);
3226 config
= xchg(&stream
->oa_config
, config
);
3231 i915_oa_config_put(config
);
3237 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3238 * @stream: An i915 perf stream
3239 * @cmd: the ioctl request
3240 * @arg: the ioctl data
3242 * Note: The &perf->lock mutex has been taken to serialize
3243 * with any non-file-operation driver hooks.
3245 * Returns: zero on success or a negative error code. Returns -EINVAL for
3246 * an unknown ioctl request.
3248 static long i915_perf_ioctl_locked(struct i915_perf_stream
*stream
,
3253 case I915_PERF_IOCTL_ENABLE
:
3254 i915_perf_enable_locked(stream
);
3256 case I915_PERF_IOCTL_DISABLE
:
3257 i915_perf_disable_locked(stream
);
3259 case I915_PERF_IOCTL_CONFIG
:
3260 return i915_perf_config_locked(stream
, arg
);
3267 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3268 * @file: An i915 perf stream file
3269 * @cmd: the ioctl request
3270 * @arg: the ioctl data
3272 * Implementation deferred to i915_perf_ioctl_locked().
3274 * Returns: zero on success or a negative error code. Returns -EINVAL for
3275 * an unknown ioctl request.
3277 static long i915_perf_ioctl(struct file
*file
,
3281 struct i915_perf_stream
*stream
= file
->private_data
;
3282 struct i915_perf
*perf
= stream
->perf
;
3285 mutex_lock(&perf
->lock
);
3286 ret
= i915_perf_ioctl_locked(stream
, cmd
, arg
);
3287 mutex_unlock(&perf
->lock
);
3293 * i915_perf_destroy_locked - destroy an i915 perf stream
3294 * @stream: An i915 perf stream
3296 * Frees all resources associated with the given i915 perf @stream, disabling
3297 * any associated data capture in the process.
3299 * Note: The &perf->lock mutex has been taken to serialize
3300 * with any non-file-operation driver hooks.
3302 static void i915_perf_destroy_locked(struct i915_perf_stream
*stream
)
3304 if (stream
->enabled
)
3305 i915_perf_disable_locked(stream
);
3307 if (stream
->ops
->destroy
)
3308 stream
->ops
->destroy(stream
);
3311 i915_gem_context_put(stream
->ctx
);
3317 * i915_perf_release - handles userspace close() of a stream file
3318 * @inode: anonymous inode associated with file
3319 * @file: An i915 perf stream file
3321 * Cleans up any resources associated with an open i915 perf stream file.
3323 * NB: close() can't really fail from the userspace point of view.
3325 * Returns: zero on success or a negative error code.
3327 static int i915_perf_release(struct inode
*inode
, struct file
*file
)
3329 struct i915_perf_stream
*stream
= file
->private_data
;
3330 struct i915_perf
*perf
= stream
->perf
;
3332 mutex_lock(&perf
->lock
);
3333 i915_perf_destroy_locked(stream
);
3334 mutex_unlock(&perf
->lock
);
3336 /* Release the reference the perf stream kept on the driver. */
3337 drm_dev_put(&perf
->i915
->drm
);
3343 static const struct file_operations fops
= {
3344 .owner
= THIS_MODULE
,
3345 .llseek
= no_llseek
,
3346 .release
= i915_perf_release
,
3347 .poll
= i915_perf_poll
,
3348 .read
= i915_perf_read
,
3349 .unlocked_ioctl
= i915_perf_ioctl
,
3350 /* Our ioctl have no arguments, so it's safe to use the same function
3351 * to handle 32bits compatibility.
3353 .compat_ioctl
= i915_perf_ioctl
,
3358 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3359 * @perf: i915 perf instance
3360 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3361 * @props: individually validated u64 property value pairs
3364 * See i915_perf_ioctl_open() for interface details.
3366 * Implements further stream config validation and stream initialization on
3367 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3368 * taken to serialize with any non-file-operation driver hooks.
3370 * Note: at this point the @props have only been validated in isolation and
3371 * it's still necessary to validate that the combination of properties makes
3374 * In the case where userspace is interested in OA unit metrics then further
3375 * config validation and stream initialization details will be handled by
3376 * i915_oa_stream_init(). The code here should only validate config state that
3377 * will be relevant to all stream types / backends.
3379 * Returns: zero on success or a negative error code.
3382 i915_perf_open_ioctl_locked(struct i915_perf
*perf
,
3383 struct drm_i915_perf_open_param
*param
,
3384 struct perf_open_properties
*props
,
3385 struct drm_file
*file
)
3387 struct i915_gem_context
*specific_ctx
= NULL
;
3388 struct i915_perf_stream
*stream
= NULL
;
3389 unsigned long f_flags
= 0;
3390 bool privileged_op
= true;
3394 if (props
->single_context
) {
3395 u32 ctx_handle
= props
->ctx_handle
;
3396 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
3398 specific_ctx
= i915_gem_context_lookup(file_priv
, ctx_handle
);
3399 if (!specific_ctx
) {
3400 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3408 * On Haswell the OA unit supports clock gating off for a specific
3409 * context and in this mode there's no visibility of metrics for the
3410 * rest of the system, which we consider acceptable for a
3411 * non-privileged client.
3413 * For Gen8->11 the OA unit no longer supports clock gating off for a
3414 * specific context and the kernel can't securely stop the counters
3415 * from updating as system-wide / global values. Even though we can
3416 * filter reports based on the included context ID we can't block
3417 * clients from seeing the raw / global counter values via
3418 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3419 * enable the OA unit by default.
3421 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3422 * per context basis. So we can relax requirements there if the user
3423 * doesn't request global stream access (i.e. query based sampling
3424 * using MI_RECORD_PERF_COUNT.
3426 if (IS_HASWELL(perf
->i915
) && specific_ctx
)
3427 privileged_op
= false;
3428 else if (IS_GEN(perf
->i915
, 12) && specific_ctx
&&
3429 (props
->sample_flags
& SAMPLE_OA_REPORT
) == 0)
3430 privileged_op
= false;
3432 if (props
->hold_preemption
) {
3433 if (!props
->single_context
) {
3434 DRM_DEBUG("preemption disable with no context\n");
3438 privileged_op
= true;
3442 * Asking for SSEU configuration is a priviliged operation.
3444 if (props
->has_sseu
)
3445 privileged_op
= true;
3447 get_default_sseu_config(&props
->sseu
, props
->engine
);
3449 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3450 * we check a dev.i915.perf_stream_paranoid sysctl option
3451 * to determine if it's ok to access system wide OA counters
3452 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3454 if (privileged_op
&&
3455 i915_perf_stream_paranoid
&& !perfmon_capable()) {
3456 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3461 stream
= kzalloc(sizeof(*stream
), GFP_KERNEL
);
3467 stream
->perf
= perf
;
3468 stream
->ctx
= specific_ctx
;
3469 stream
->poll_oa_period
= props
->poll_oa_period
;
3471 ret
= i915_oa_stream_init(stream
, param
, props
);
3475 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3476 * to have _stream_init check the combination of sample flags more
3477 * thoroughly, but still this is the expected result at this point.
3479 if (WARN_ON(stream
->sample_flags
!= props
->sample_flags
)) {
3484 if (param
->flags
& I915_PERF_FLAG_FD_CLOEXEC
)
3485 f_flags
|= O_CLOEXEC
;
3486 if (param
->flags
& I915_PERF_FLAG_FD_NONBLOCK
)
3487 f_flags
|= O_NONBLOCK
;
3489 stream_fd
= anon_inode_getfd("[i915_perf]", &fops
, stream
, f_flags
);
3490 if (stream_fd
< 0) {
3495 if (!(param
->flags
& I915_PERF_FLAG_DISABLED
))
3496 i915_perf_enable_locked(stream
);
3498 /* Take a reference on the driver that will be kept with stream_fd
3499 * until its release.
3501 drm_dev_get(&perf
->i915
->drm
);
3506 if (stream
->ops
->destroy
)
3507 stream
->ops
->destroy(stream
);
3512 i915_gem_context_put(specific_ctx
);
3517 static u64
oa_exponent_to_ns(struct i915_perf
*perf
, int exponent
)
3519 return i915_cs_timestamp_ticks_to_ns(perf
->i915
, 2ULL << exponent
);
3523 * read_properties_unlocked - validate + copy userspace stream open properties
3524 * @perf: i915 perf instance
3525 * @uprops: The array of u64 key value pairs given by userspace
3526 * @n_props: The number of key value pairs expected in @uprops
3527 * @props: The stream configuration built up while validating properties
3529 * Note this function only validates properties in isolation it doesn't
3530 * validate that the combination of properties makes sense or that all
3531 * properties necessary for a particular kind of stream have been set.
3533 * Note that there currently aren't any ordering requirements for properties so
3534 * we shouldn't validate or assume anything about ordering here. This doesn't
3535 * rule out defining new properties with ordering requirements in the future.
3537 static int read_properties_unlocked(struct i915_perf
*perf
,
3540 struct perf_open_properties
*props
)
3542 u64 __user
*uprop
= uprops
;
3546 memset(props
, 0, sizeof(struct perf_open_properties
));
3547 props
->poll_oa_period
= DEFAULT_POLL_PERIOD_NS
;
3550 DRM_DEBUG("No i915 perf properties given\n");
3554 /* At the moment we only support using i915-perf on the RCS. */
3555 props
->engine
= intel_engine_lookup_user(perf
->i915
,
3556 I915_ENGINE_CLASS_RENDER
,
3558 if (!props
->engine
) {
3559 DRM_DEBUG("No RENDER-capable engines\n");
3563 /* Considering that ID = 0 is reserved and assuming that we don't
3564 * (currently) expect any configurations to ever specify duplicate
3565 * values for a particular property ID then the last _PROP_MAX value is
3566 * one greater than the maximum number of properties we expect to get
3569 if (n_props
>= DRM_I915_PERF_PROP_MAX
) {
3570 DRM_DEBUG("More i915 perf properties specified than exist\n");
3574 for (i
= 0; i
< n_props
; i
++) {
3575 u64 oa_period
, oa_freq_hz
;
3578 ret
= get_user(id
, uprop
);
3582 ret
= get_user(value
, uprop
+ 1);
3586 if (id
== 0 || id
>= DRM_I915_PERF_PROP_MAX
) {
3587 DRM_DEBUG("Unknown i915 perf property ID\n");
3591 switch ((enum drm_i915_perf_property_id
)id
) {
3592 case DRM_I915_PERF_PROP_CTX_HANDLE
:
3593 props
->single_context
= 1;
3594 props
->ctx_handle
= value
;
3596 case DRM_I915_PERF_PROP_SAMPLE_OA
:
3598 props
->sample_flags
|= SAMPLE_OA_REPORT
;
3600 case DRM_I915_PERF_PROP_OA_METRICS_SET
:
3602 DRM_DEBUG("Unknown OA metric set ID\n");
3605 props
->metrics_set
= value
;
3607 case DRM_I915_PERF_PROP_OA_FORMAT
:
3608 if (value
== 0 || value
>= I915_OA_FORMAT_MAX
) {
3609 DRM_DEBUG("Out-of-range OA report format %llu\n",
3613 if (!perf
->oa_formats
[value
].size
) {
3614 DRM_DEBUG("Unsupported OA report format %llu\n",
3618 props
->oa_format
= value
;
3620 case DRM_I915_PERF_PROP_OA_EXPONENT
:
3621 if (value
> OA_EXPONENT_MAX
) {
3622 DRM_DEBUG("OA timer exponent too high (> %u)\n",
3627 /* Theoretically we can program the OA unit to sample
3628 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3629 * for BXT. We don't allow such high sampling
3630 * frequencies by default unless root.
3633 BUILD_BUG_ON(sizeof(oa_period
) != 8);
3634 oa_period
= oa_exponent_to_ns(perf
, value
);
3636 /* This check is primarily to ensure that oa_period <=
3637 * UINT32_MAX (before passing to do_div which only
3638 * accepts a u32 denominator), but we can also skip
3639 * checking anything < 1Hz which implicitly can't be
3640 * limited via an integer oa_max_sample_rate.
3642 if (oa_period
<= NSEC_PER_SEC
) {
3643 u64 tmp
= NSEC_PER_SEC
;
3644 do_div(tmp
, oa_period
);
3649 if (oa_freq_hz
> i915_oa_max_sample_rate
&& !perfmon_capable()) {
3650 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3651 i915_oa_max_sample_rate
);
3655 props
->oa_periodic
= true;
3656 props
->oa_period_exponent
= value
;
3658 case DRM_I915_PERF_PROP_HOLD_PREEMPTION
:
3659 props
->hold_preemption
= !!value
;
3661 case DRM_I915_PERF_PROP_GLOBAL_SSEU
: {
3662 struct drm_i915_gem_context_param_sseu user_sseu
;
3664 if (copy_from_user(&user_sseu
,
3665 u64_to_user_ptr(value
),
3666 sizeof(user_sseu
))) {
3667 DRM_DEBUG("Unable to copy global sseu parameter\n");
3671 ret
= get_sseu_config(&props
->sseu
, props
->engine
, &user_sseu
);
3673 DRM_DEBUG("Invalid SSEU configuration\n");
3676 props
->has_sseu
= true;
3679 case DRM_I915_PERF_PROP_POLL_OA_PERIOD
:
3680 if (value
< 100000 /* 100us */) {
3681 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3685 props
->poll_oa_period
= value
;
3687 case DRM_I915_PERF_PROP_MAX
:
3699 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3701 * @data: ioctl data copied from userspace (unvalidated)
3704 * Validates the stream open parameters given by userspace including flags
3705 * and an array of u64 key, value pair properties.
3707 * Very little is assumed up front about the nature of the stream being
3708 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3709 * i915-perf stream is expected to be a suitable interface for other forms of
3710 * buffered data written by the GPU besides periodic OA metrics.
3712 * Note we copy the properties from userspace outside of the i915 perf
3713 * mutex to avoid an awkward lockdep with mmap_lock.
3715 * Most of the implementation details are handled by
3716 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3717 * mutex for serializing with any non-file-operation driver hooks.
3719 * Return: A newly opened i915 Perf stream file descriptor or negative
3720 * error code on failure.
3722 int i915_perf_open_ioctl(struct drm_device
*dev
, void *data
,
3723 struct drm_file
*file
)
3725 struct i915_perf
*perf
= &to_i915(dev
)->perf
;
3726 struct drm_i915_perf_open_param
*param
= data
;
3727 struct perf_open_properties props
;
3728 u32 known_open_flags
;
3732 DRM_DEBUG("i915 perf interface not available for this system\n");
3736 known_open_flags
= I915_PERF_FLAG_FD_CLOEXEC
|
3737 I915_PERF_FLAG_FD_NONBLOCK
|
3738 I915_PERF_FLAG_DISABLED
;
3739 if (param
->flags
& ~known_open_flags
) {
3740 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3744 ret
= read_properties_unlocked(perf
,
3745 u64_to_user_ptr(param
->properties_ptr
),
3746 param
->num_properties
,
3751 mutex_lock(&perf
->lock
);
3752 ret
= i915_perf_open_ioctl_locked(perf
, param
, &props
, file
);
3753 mutex_unlock(&perf
->lock
);
3759 * i915_perf_register - exposes i915-perf to userspace
3760 * @i915: i915 device instance
3762 * In particular OA metric sets are advertised under a sysfs metrics/
3763 * directory allowing userspace to enumerate valid IDs that can be
3764 * used to open an i915-perf stream.
3766 void i915_perf_register(struct drm_i915_private
*i915
)
3768 struct i915_perf
*perf
= &i915
->perf
;
3773 /* To be sure we're synchronized with an attempted
3774 * i915_perf_open_ioctl(); considering that we register after
3775 * being exposed to userspace.
3777 mutex_lock(&perf
->lock
);
3779 perf
->metrics_kobj
=
3780 kobject_create_and_add("metrics",
3781 &i915
->drm
.primary
->kdev
->kobj
);
3783 mutex_unlock(&perf
->lock
);
3787 * i915_perf_unregister - hide i915-perf from userspace
3788 * @i915: i915 device instance
3790 * i915-perf state cleanup is split up into an 'unregister' and
3791 * 'deinit' phase where the interface is first hidden from
3792 * userspace by i915_perf_unregister() before cleaning up
3793 * remaining state in i915_perf_fini().
3795 void i915_perf_unregister(struct drm_i915_private
*i915
)
3797 struct i915_perf
*perf
= &i915
->perf
;
3799 if (!perf
->metrics_kobj
)
3802 kobject_put(perf
->metrics_kobj
);
3803 perf
->metrics_kobj
= NULL
;
3806 static bool gen8_is_valid_flex_addr(struct i915_perf
*perf
, u32 addr
)
3808 static const i915_reg_t flex_eu_regs
[] = {
3819 for (i
= 0; i
< ARRAY_SIZE(flex_eu_regs
); i
++) {
3820 if (i915_mmio_reg_offset(flex_eu_regs
[i
]) == addr
)
3826 #define ADDR_IN_RANGE(addr, start, end) \
3827 ((addr) >= (start) && \
3830 #define REG_IN_RANGE(addr, start, end) \
3831 ((addr) >= i915_mmio_reg_offset(start) && \
3832 (addr) <= i915_mmio_reg_offset(end))
3834 #define REG_EQUAL(addr, mmio) \
3835 ((addr) == i915_mmio_reg_offset(mmio))
3837 static bool gen7_is_valid_b_counter_addr(struct i915_perf
*perf
, u32 addr
)
3839 return REG_IN_RANGE(addr
, OASTARTTRIG1
, OASTARTTRIG8
) ||
3840 REG_IN_RANGE(addr
, OAREPORTTRIG1
, OAREPORTTRIG8
) ||
3841 REG_IN_RANGE(addr
, OACEC0_0
, OACEC7_1
);
3844 static bool gen7_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3846 return REG_EQUAL(addr
, HALF_SLICE_CHICKEN2
) ||
3847 REG_IN_RANGE(addr
, MICRO_BP0_0
, NOA_WRITE
) ||
3848 REG_IN_RANGE(addr
, OA_PERFCNT1_LO
, OA_PERFCNT2_HI
) ||
3849 REG_IN_RANGE(addr
, OA_PERFMATRIX_LO
, OA_PERFMATRIX_HI
);
3852 static bool gen8_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3854 return gen7_is_valid_mux_addr(perf
, addr
) ||
3855 REG_EQUAL(addr
, WAIT_FOR_RC6_EXIT
) ||
3856 REG_IN_RANGE(addr
, RPM_CONFIG0
, NOA_CONFIG(8));
3859 static bool gen10_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3861 return gen8_is_valid_mux_addr(perf
, addr
) ||
3862 REG_EQUAL(addr
, GEN10_NOA_WRITE_HIGH
) ||
3863 REG_IN_RANGE(addr
, OA_PERFCNT3_LO
, OA_PERFCNT4_HI
);
3866 static bool hsw_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3868 return gen7_is_valid_mux_addr(perf
, addr
) ||
3869 ADDR_IN_RANGE(addr
, 0x25100, 0x2FF90) ||
3870 REG_IN_RANGE(addr
, HSW_MBVID2_NOA0
, HSW_MBVID2_NOA9
) ||
3871 REG_EQUAL(addr
, HSW_MBVID2_MISR0
);
3874 static bool chv_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3876 return gen7_is_valid_mux_addr(perf
, addr
) ||
3877 ADDR_IN_RANGE(addr
, 0x182300, 0x1823A4);
3880 static bool gen12_is_valid_b_counter_addr(struct i915_perf
*perf
, u32 addr
)
3882 return REG_IN_RANGE(addr
, GEN12_OAG_OASTARTTRIG1
, GEN12_OAG_OASTARTTRIG8
) ||
3883 REG_IN_RANGE(addr
, GEN12_OAG_OAREPORTTRIG1
, GEN12_OAG_OAREPORTTRIG8
) ||
3884 REG_IN_RANGE(addr
, GEN12_OAG_CEC0_0
, GEN12_OAG_CEC7_1
) ||
3885 REG_IN_RANGE(addr
, GEN12_OAG_SCEC0_0
, GEN12_OAG_SCEC7_1
) ||
3886 REG_EQUAL(addr
, GEN12_OAA_DBG_REG
) ||
3887 REG_EQUAL(addr
, GEN12_OAG_OA_PESS
) ||
3888 REG_EQUAL(addr
, GEN12_OAG_SPCTR_CNF
);
3891 static bool gen12_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3893 return REG_EQUAL(addr
, NOA_WRITE
) ||
3894 REG_EQUAL(addr
, GEN10_NOA_WRITE_HIGH
) ||
3895 REG_EQUAL(addr
, GDT_CHICKEN_BITS
) ||
3896 REG_EQUAL(addr
, WAIT_FOR_RC6_EXIT
) ||
3897 REG_EQUAL(addr
, RPM_CONFIG0
) ||
3898 REG_EQUAL(addr
, RPM_CONFIG1
) ||
3899 REG_IN_RANGE(addr
, NOA_CONFIG(0), NOA_CONFIG(8));
3902 static u32
mask_reg_value(u32 reg
, u32 val
)
3904 /* HALF_SLICE_CHICKEN2 is programmed with a the
3905 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3906 * programmed by userspace doesn't change this.
3908 if (REG_EQUAL(reg
, HALF_SLICE_CHICKEN2
))
3909 val
= val
& ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE
);
3911 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3912 * indicated by its name and a bunch of selection fields used by OA
3915 if (REG_EQUAL(reg
, WAIT_FOR_RC6_EXIT
))
3916 val
= val
& ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE
);
3921 static struct i915_oa_reg
*alloc_oa_regs(struct i915_perf
*perf
,
3922 bool (*is_valid
)(struct i915_perf
*perf
, u32 addr
),
3926 struct i915_oa_reg
*oa_regs
;
3933 /* No is_valid function means we're not allowing any register to be programmed. */
3934 GEM_BUG_ON(!is_valid
);
3936 return ERR_PTR(-EINVAL
);
3938 oa_regs
= kmalloc_array(n_regs
, sizeof(*oa_regs
), GFP_KERNEL
);
3940 return ERR_PTR(-ENOMEM
);
3942 for (i
= 0; i
< n_regs
; i
++) {
3945 err
= get_user(addr
, regs
);
3949 if (!is_valid(perf
, addr
)) {
3950 DRM_DEBUG("Invalid oa_reg address: %X\n", addr
);
3955 err
= get_user(value
, regs
+ 1);
3959 oa_regs
[i
].addr
= _MMIO(addr
);
3960 oa_regs
[i
].value
= mask_reg_value(addr
, value
);
3969 return ERR_PTR(err
);
3972 static ssize_t
show_dynamic_id(struct device
*dev
,
3973 struct device_attribute
*attr
,
3976 struct i915_oa_config
*oa_config
=
3977 container_of(attr
, typeof(*oa_config
), sysfs_metric_id
);
3979 return sprintf(buf
, "%d\n", oa_config
->id
);
3982 static int create_dynamic_oa_sysfs_entry(struct i915_perf
*perf
,
3983 struct i915_oa_config
*oa_config
)
3985 sysfs_attr_init(&oa_config
->sysfs_metric_id
.attr
);
3986 oa_config
->sysfs_metric_id
.attr
.name
= "id";
3987 oa_config
->sysfs_metric_id
.attr
.mode
= S_IRUGO
;
3988 oa_config
->sysfs_metric_id
.show
= show_dynamic_id
;
3989 oa_config
->sysfs_metric_id
.store
= NULL
;
3991 oa_config
->attrs
[0] = &oa_config
->sysfs_metric_id
.attr
;
3992 oa_config
->attrs
[1] = NULL
;
3994 oa_config
->sysfs_metric
.name
= oa_config
->uuid
;
3995 oa_config
->sysfs_metric
.attrs
= oa_config
->attrs
;
3997 return sysfs_create_group(perf
->metrics_kobj
,
3998 &oa_config
->sysfs_metric
);
4002 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4004 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4005 * userspace (unvalidated)
4008 * Validates the submitted OA register to be saved into a new OA config that
4009 * can then be used for programming the OA unit and its NOA network.
4011 * Returns: A new allocated config number to be used with the perf open ioctl
4012 * or a negative error code on failure.
4014 int i915_perf_add_config_ioctl(struct drm_device
*dev
, void *data
,
4015 struct drm_file
*file
)
4017 struct i915_perf
*perf
= &to_i915(dev
)->perf
;
4018 struct drm_i915_perf_oa_config
*args
= data
;
4019 struct i915_oa_config
*oa_config
, *tmp
;
4020 struct i915_oa_reg
*regs
;
4024 DRM_DEBUG("i915 perf interface not available for this system\n");
4028 if (!perf
->metrics_kobj
) {
4029 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4033 if (i915_perf_stream_paranoid
&& !perfmon_capable()) {
4034 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4038 if ((!args
->mux_regs_ptr
|| !args
->n_mux_regs
) &&
4039 (!args
->boolean_regs_ptr
|| !args
->n_boolean_regs
) &&
4040 (!args
->flex_regs_ptr
|| !args
->n_flex_regs
)) {
4041 DRM_DEBUG("No OA registers given\n");
4045 oa_config
= kzalloc(sizeof(*oa_config
), GFP_KERNEL
);
4047 DRM_DEBUG("Failed to allocate memory for the OA config\n");
4051 oa_config
->perf
= perf
;
4052 kref_init(&oa_config
->ref
);
4054 if (!uuid_is_valid(args
->uuid
)) {
4055 DRM_DEBUG("Invalid uuid format for OA config\n");
4060 /* Last character in oa_config->uuid will be 0 because oa_config is
4063 memcpy(oa_config
->uuid
, args
->uuid
, sizeof(args
->uuid
));
4065 oa_config
->mux_regs_len
= args
->n_mux_regs
;
4066 regs
= alloc_oa_regs(perf
,
4067 perf
->ops
.is_valid_mux_reg
,
4068 u64_to_user_ptr(args
->mux_regs_ptr
),
4072 DRM_DEBUG("Failed to create OA config for mux_regs\n");
4073 err
= PTR_ERR(regs
);
4076 oa_config
->mux_regs
= regs
;
4078 oa_config
->b_counter_regs_len
= args
->n_boolean_regs
;
4079 regs
= alloc_oa_regs(perf
,
4080 perf
->ops
.is_valid_b_counter_reg
,
4081 u64_to_user_ptr(args
->boolean_regs_ptr
),
4082 args
->n_boolean_regs
);
4085 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4086 err
= PTR_ERR(regs
);
4089 oa_config
->b_counter_regs
= regs
;
4091 if (INTEL_GEN(perf
->i915
) < 8) {
4092 if (args
->n_flex_regs
!= 0) {
4097 oa_config
->flex_regs_len
= args
->n_flex_regs
;
4098 regs
= alloc_oa_regs(perf
,
4099 perf
->ops
.is_valid_flex_reg
,
4100 u64_to_user_ptr(args
->flex_regs_ptr
),
4104 DRM_DEBUG("Failed to create OA config for flex_regs\n");
4105 err
= PTR_ERR(regs
);
4108 oa_config
->flex_regs
= regs
;
4111 err
= mutex_lock_interruptible(&perf
->metrics_lock
);
4115 /* We shouldn't have too many configs, so this iteration shouldn't be
4118 idr_for_each_entry(&perf
->metrics_idr
, tmp
, id
) {
4119 if (!strcmp(tmp
->uuid
, oa_config
->uuid
)) {
4120 DRM_DEBUG("OA config already exists with this uuid\n");
4126 err
= create_dynamic_oa_sysfs_entry(perf
, oa_config
);
4128 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4132 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4133 oa_config
->id
= idr_alloc(&perf
->metrics_idr
,
4136 if (oa_config
->id
< 0) {
4137 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4138 err
= oa_config
->id
;
4142 mutex_unlock(&perf
->metrics_lock
);
4144 DRM_DEBUG("Added config %s id=%i\n", oa_config
->uuid
, oa_config
->id
);
4146 return oa_config
->id
;
4149 mutex_unlock(&perf
->metrics_lock
);
4151 i915_oa_config_put(oa_config
);
4152 DRM_DEBUG("Failed to add new OA config\n");
4157 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4159 * @data: ioctl data (pointer to u64 integer) copied from userspace
4162 * Configs can be removed while being used, the will stop appearing in sysfs
4163 * and their content will be freed when the stream using the config is closed.
4165 * Returns: 0 on success or a negative error code on failure.
4167 int i915_perf_remove_config_ioctl(struct drm_device
*dev
, void *data
,
4168 struct drm_file
*file
)
4170 struct i915_perf
*perf
= &to_i915(dev
)->perf
;
4172 struct i915_oa_config
*oa_config
;
4176 DRM_DEBUG("i915 perf interface not available for this system\n");
4180 if (i915_perf_stream_paranoid
&& !perfmon_capable()) {
4181 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4185 ret
= mutex_lock_interruptible(&perf
->metrics_lock
);
4189 oa_config
= idr_find(&perf
->metrics_idr
, *arg
);
4191 DRM_DEBUG("Failed to remove unknown OA config\n");
4196 GEM_BUG_ON(*arg
!= oa_config
->id
);
4198 sysfs_remove_group(perf
->metrics_kobj
, &oa_config
->sysfs_metric
);
4200 idr_remove(&perf
->metrics_idr
, *arg
);
4202 mutex_unlock(&perf
->metrics_lock
);
4204 DRM_DEBUG("Removed config %s id=%i\n", oa_config
->uuid
, oa_config
->id
);
4206 i915_oa_config_put(oa_config
);
4211 mutex_unlock(&perf
->metrics_lock
);
4215 static struct ctl_table oa_table
[] = {
4217 .procname
= "perf_stream_paranoid",
4218 .data
= &i915_perf_stream_paranoid
,
4219 .maxlen
= sizeof(i915_perf_stream_paranoid
),
4221 .proc_handler
= proc_dointvec_minmax
,
4222 .extra1
= SYSCTL_ZERO
,
4223 .extra2
= SYSCTL_ONE
,
4226 .procname
= "oa_max_sample_rate",
4227 .data
= &i915_oa_max_sample_rate
,
4228 .maxlen
= sizeof(i915_oa_max_sample_rate
),
4230 .proc_handler
= proc_dointvec_minmax
,
4231 .extra1
= SYSCTL_ZERO
,
4232 .extra2
= &oa_sample_rate_hard_limit
,
4237 static struct ctl_table i915_root
[] = {
4247 static struct ctl_table dev_root
[] = {
4258 * i915_perf_init - initialize i915-perf state on module bind
4259 * @i915: i915 device instance
4261 * Initializes i915-perf state without exposing anything to userspace.
4263 * Note: i915-perf initialization is split into an 'init' and 'register'
4264 * phase with the i915_perf_register() exposing state to userspace.
4266 void i915_perf_init(struct drm_i915_private
*i915
)
4268 struct i915_perf
*perf
= &i915
->perf
;
4270 /* XXX const struct i915_perf_ops! */
4272 if (IS_HASWELL(i915
)) {
4273 perf
->ops
.is_valid_b_counter_reg
= gen7_is_valid_b_counter_addr
;
4274 perf
->ops
.is_valid_mux_reg
= hsw_is_valid_mux_addr
;
4275 perf
->ops
.is_valid_flex_reg
= NULL
;
4276 perf
->ops
.enable_metric_set
= hsw_enable_metric_set
;
4277 perf
->ops
.disable_metric_set
= hsw_disable_metric_set
;
4278 perf
->ops
.oa_enable
= gen7_oa_enable
;
4279 perf
->ops
.oa_disable
= gen7_oa_disable
;
4280 perf
->ops
.read
= gen7_oa_read
;
4281 perf
->ops
.oa_hw_tail_read
= gen7_oa_hw_tail_read
;
4283 perf
->oa_formats
= hsw_oa_formats
;
4284 } else if (HAS_LOGICAL_RING_CONTEXTS(i915
)) {
4285 /* Note: that although we could theoretically also support the
4286 * legacy ringbuffer mode on BDW (and earlier iterations of
4287 * this driver, before upstreaming did this) it didn't seem
4288 * worth the complexity to maintain now that BDW+ enable
4289 * execlist mode by default.
4291 perf
->ops
.read
= gen8_oa_read
;
4293 if (IS_GEN_RANGE(i915
, 8, 9)) {
4294 perf
->oa_formats
= gen8_plus_oa_formats
;
4296 perf
->ops
.is_valid_b_counter_reg
=
4297 gen7_is_valid_b_counter_addr
;
4298 perf
->ops
.is_valid_mux_reg
=
4299 gen8_is_valid_mux_addr
;
4300 perf
->ops
.is_valid_flex_reg
=
4301 gen8_is_valid_flex_addr
;
4303 if (IS_CHERRYVIEW(i915
)) {
4304 perf
->ops
.is_valid_mux_reg
=
4305 chv_is_valid_mux_addr
;
4308 perf
->ops
.oa_enable
= gen8_oa_enable
;
4309 perf
->ops
.oa_disable
= gen8_oa_disable
;
4310 perf
->ops
.enable_metric_set
= gen8_enable_metric_set
;
4311 perf
->ops
.disable_metric_set
= gen8_disable_metric_set
;
4312 perf
->ops
.oa_hw_tail_read
= gen8_oa_hw_tail_read
;
4314 if (IS_GEN(i915
, 8)) {
4315 perf
->ctx_oactxctrl_offset
= 0x120;
4316 perf
->ctx_flexeu0_offset
= 0x2ce;
4318 perf
->gen8_valid_ctx_bit
= BIT(25);
4320 perf
->ctx_oactxctrl_offset
= 0x128;
4321 perf
->ctx_flexeu0_offset
= 0x3de;
4323 perf
->gen8_valid_ctx_bit
= BIT(16);
4325 } else if (IS_GEN_RANGE(i915
, 10, 11)) {
4326 perf
->oa_formats
= gen8_plus_oa_formats
;
4328 perf
->ops
.is_valid_b_counter_reg
=
4329 gen7_is_valid_b_counter_addr
;
4330 perf
->ops
.is_valid_mux_reg
=
4331 gen10_is_valid_mux_addr
;
4332 perf
->ops
.is_valid_flex_reg
=
4333 gen8_is_valid_flex_addr
;
4335 perf
->ops
.oa_enable
= gen8_oa_enable
;
4336 perf
->ops
.oa_disable
= gen8_oa_disable
;
4337 perf
->ops
.enable_metric_set
= gen8_enable_metric_set
;
4338 perf
->ops
.disable_metric_set
= gen10_disable_metric_set
;
4339 perf
->ops
.oa_hw_tail_read
= gen8_oa_hw_tail_read
;
4341 if (IS_GEN(i915
, 10)) {
4342 perf
->ctx_oactxctrl_offset
= 0x128;
4343 perf
->ctx_flexeu0_offset
= 0x3de;
4345 perf
->ctx_oactxctrl_offset
= 0x124;
4346 perf
->ctx_flexeu0_offset
= 0x78e;
4348 perf
->gen8_valid_ctx_bit
= BIT(16);
4349 } else if (IS_GEN(i915
, 12)) {
4350 perf
->oa_formats
= gen12_oa_formats
;
4352 perf
->ops
.is_valid_b_counter_reg
=
4353 gen12_is_valid_b_counter_addr
;
4354 perf
->ops
.is_valid_mux_reg
=
4355 gen12_is_valid_mux_addr
;
4356 perf
->ops
.is_valid_flex_reg
=
4357 gen8_is_valid_flex_addr
;
4359 perf
->ops
.oa_enable
= gen12_oa_enable
;
4360 perf
->ops
.oa_disable
= gen12_oa_disable
;
4361 perf
->ops
.enable_metric_set
= gen12_enable_metric_set
;
4362 perf
->ops
.disable_metric_set
= gen12_disable_metric_set
;
4363 perf
->ops
.oa_hw_tail_read
= gen12_oa_hw_tail_read
;
4365 perf
->ctx_flexeu0_offset
= 0;
4366 perf
->ctx_oactxctrl_offset
= 0x144;
4370 if (perf
->ops
.enable_metric_set
) {
4371 mutex_init(&perf
->lock
);
4373 oa_sample_rate_hard_limit
=
4374 RUNTIME_INFO(i915
)->cs_timestamp_frequency_hz
/ 2;
4376 mutex_init(&perf
->metrics_lock
);
4377 idr_init(&perf
->metrics_idr
);
4379 /* We set up some ratelimit state to potentially throttle any
4380 * _NOTES about spurious, invalid OA reports which we don't
4381 * forward to userspace.
4383 * We print a _NOTE about any throttling when closing the
4384 * stream instead of waiting until driver _fini which no one
4387 * Using the same limiting factors as printk_ratelimit()
4389 ratelimit_state_init(&perf
->spurious_report_rs
, 5 * HZ
, 10);
4390 /* Since we use a DRM_NOTE for spurious reports it would be
4391 * inconsistent to let __ratelimit() automatically print a
4392 * warning for throttling.
4394 ratelimit_set_flags(&perf
->spurious_report_rs
,
4395 RATELIMIT_MSG_ON_RELEASE
);
4397 ratelimit_state_init(&perf
->tail_pointer_race
,
4399 ratelimit_set_flags(&perf
->tail_pointer_race
,
4400 RATELIMIT_MSG_ON_RELEASE
);
4402 atomic64_set(&perf
->noa_programming_delay
,
4403 500 * 1000 /* 500us */);
4409 static int destroy_config(int id
, void *p
, void *data
)
4411 i915_oa_config_put(p
);
4415 void i915_perf_sysctl_register(void)
4417 sysctl_header
= register_sysctl_table(dev_root
);
4420 void i915_perf_sysctl_unregister(void)
4422 unregister_sysctl_table(sysctl_header
);
4426 * i915_perf_fini - Counter part to i915_perf_init()
4427 * @i915: i915 device instance
4429 void i915_perf_fini(struct drm_i915_private
*i915
)
4431 struct i915_perf
*perf
= &i915
->perf
;
4436 idr_for_each(&perf
->metrics_idr
, destroy_config
, perf
);
4437 idr_destroy(&perf
->metrics_idr
);
4439 memset(&perf
->ops
, 0, sizeof(perf
->ops
));
4444 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4446 * This version number is used by userspace to detect available features.
4448 int i915_perf_ioctl_version(void)
4451 * 1: Initial version
4452 * I915_PERF_IOCTL_ENABLE
4453 * I915_PERF_IOCTL_DISABLE
4455 * 2: Added runtime modification of OA config.
4456 * I915_PERF_IOCTL_CONFIG
4458 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4459 * preemption on a particular context so that performance data is
4460 * accessible from a delta of MI_RPC reports without looking at the
4463 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4464 * be run for the duration of the performance recording based on
4465 * their SSEU configuration.
4467 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4468 * interval for the hrtimer used to check for OA data.
4473 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4474 #include "selftests/i915_perf.c"