2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
28 #include <linux/module.h>
29 #include <linux/pm_runtime.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_plane_helper.h>
35 #include "display/intel_atomic.h"
36 #include "display/intel_atomic_plane.h"
37 #include "display/intel_bw.h"
38 #include "display/intel_display_types.h"
39 #include "display/intel_fbc.h"
40 #include "display/intel_sprite.h"
42 #include "gt/intel_llc.h"
45 #include "i915_fixed.h"
47 #include "i915_trace.h"
49 #include "intel_sideband.h"
50 #include "../../../platform/x86/intel_ips.h"
52 /* Stores plane specific WM parameters */
53 struct skl_wm_params
{
54 bool x_tiled
, y_tiled
;
61 u32 plane_bytes_per_line
;
62 uint_fixed_16_16_t plane_blocks_per_line
;
63 uint_fixed_16_16_t y_tile_minimum
;
68 /* used in computing the new watermarks state */
69 struct intel_wm_config
{
70 unsigned int num_pipes_active
;
75 static void gen9_init_clock_gating(struct drm_i915_private
*dev_priv
)
77 if (HAS_LLC(dev_priv
)) {
79 * WaCompressedResourceDisplayNewHashMode:skl,kbl
80 * Display WA #0390: skl,kbl
82 * Must match Sampler, Pixel Back End, and Media. See
83 * WaCompressedResourceSamplerPbeMediaNewHashMode.
85 I915_WRITE(CHICKEN_PAR1_1
,
86 I915_READ(CHICKEN_PAR1_1
) |
87 SKL_DE_COMPRESSED_HASH_MODE
);
90 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
91 I915_WRITE(CHICKEN_PAR1_1
,
92 I915_READ(CHICKEN_PAR1_1
) | SKL_EDP_PSR_FIX_RDWRAP
);
94 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
95 I915_WRITE(GEN8_CHICKEN_DCPR_1
,
96 I915_READ(GEN8_CHICKEN_DCPR_1
) | MASK_WAKEMEM
);
99 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
100 * Display WA #0859: skl,bxt,kbl,glk,cfl
102 I915_WRITE(DISP_ARB_CTL
, I915_READ(DISP_ARB_CTL
) |
103 DISP_FBC_MEMORY_WAKE
);
106 static void bxt_init_clock_gating(struct drm_i915_private
*dev_priv
)
108 gen9_init_clock_gating(dev_priv
);
110 /* WaDisableSDEUnitClockGating:bxt */
111 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
112 GEN8_SDEUNIT_CLOCK_GATE_DISABLE
);
116 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
118 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
119 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ
);
122 * Wa: Backlight PWM may stop in the asserted state, causing backlight
125 I915_WRITE(GEN9_CLKGATE_DIS_0
, I915_READ(GEN9_CLKGATE_DIS_0
) |
126 PWM1_GATING_DIS
| PWM2_GATING_DIS
);
129 * Lower the display internal timeout.
130 * This is needed to avoid any hard hangs when DSI port PLL
131 * is off and a MMIO access is attempted by any privilege
132 * application, using batch buffers or any other means.
134 I915_WRITE(RM_TIMEOUT
, MMIO_TIMEOUT_US(950));
137 * WaFbcTurnOffFbcWatermark:bxt
138 * Display WA #0562: bxt
140 I915_WRITE(DISP_ARB_CTL
, I915_READ(DISP_ARB_CTL
) |
144 * WaFbcHighMemBwCorruptionAvoidance:bxt
145 * Display WA #0883: bxt
147 I915_WRITE(ILK_DPFC_CHICKEN
, I915_READ(ILK_DPFC_CHICKEN
) |
148 ILK_DPFC_DISABLE_DUMMY0
);
151 static void glk_init_clock_gating(struct drm_i915_private
*dev_priv
)
153 gen9_init_clock_gating(dev_priv
);
156 * WaDisablePWMClockGating:glk
157 * Backlight PWM may stop in the asserted state, causing backlight
160 I915_WRITE(GEN9_CLKGATE_DIS_0
, I915_READ(GEN9_CLKGATE_DIS_0
) |
161 PWM1_GATING_DIS
| PWM2_GATING_DIS
);
164 static void pnv_get_mem_freq(struct drm_i915_private
*dev_priv
)
168 tmp
= I915_READ(CLKCFG
);
170 switch (tmp
& CLKCFG_FSB_MASK
) {
172 dev_priv
->fsb_freq
= 533; /* 133*4 */
175 dev_priv
->fsb_freq
= 800; /* 200*4 */
178 dev_priv
->fsb_freq
= 667; /* 167*4 */
181 dev_priv
->fsb_freq
= 400; /* 100*4 */
185 switch (tmp
& CLKCFG_MEM_MASK
) {
187 dev_priv
->mem_freq
= 533;
190 dev_priv
->mem_freq
= 667;
193 dev_priv
->mem_freq
= 800;
197 /* detect pineview DDR3 setting */
198 tmp
= I915_READ(CSHRDDR3CTL
);
199 dev_priv
->is_ddr3
= (tmp
& CSHRDDR3CTL_DDR3
) ? 1 : 0;
202 static void ilk_get_mem_freq(struct drm_i915_private
*dev_priv
)
206 ddrpll
= intel_uncore_read16(&dev_priv
->uncore
, DDRMPLL1
);
207 csipll
= intel_uncore_read16(&dev_priv
->uncore
, CSIPLL0
);
209 switch (ddrpll
& 0xff) {
211 dev_priv
->mem_freq
= 800;
214 dev_priv
->mem_freq
= 1066;
217 dev_priv
->mem_freq
= 1333;
220 dev_priv
->mem_freq
= 1600;
223 drm_dbg(&dev_priv
->drm
, "unknown memory frequency 0x%02x\n",
225 dev_priv
->mem_freq
= 0;
229 switch (csipll
& 0x3ff) {
231 dev_priv
->fsb_freq
= 3200;
234 dev_priv
->fsb_freq
= 3733;
237 dev_priv
->fsb_freq
= 4266;
240 dev_priv
->fsb_freq
= 4800;
243 dev_priv
->fsb_freq
= 5333;
246 dev_priv
->fsb_freq
= 5866;
249 dev_priv
->fsb_freq
= 6400;
252 drm_dbg(&dev_priv
->drm
, "unknown fsb frequency 0x%04x\n",
254 dev_priv
->fsb_freq
= 0;
259 static const struct cxsr_latency cxsr_latency_table
[] = {
260 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
261 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
262 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
263 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
264 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
266 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
267 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
268 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
269 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
270 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
272 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
273 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
274 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
275 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
276 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
278 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
279 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
280 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
281 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
282 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
284 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
285 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
286 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
287 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
288 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
290 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
291 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
292 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
293 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
294 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
297 static const struct cxsr_latency
*intel_get_cxsr_latency(bool is_desktop
,
302 const struct cxsr_latency
*latency
;
305 if (fsb
== 0 || mem
== 0)
308 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
309 latency
= &cxsr_latency_table
[i
];
310 if (is_desktop
== latency
->is_desktop
&&
311 is_ddr3
== latency
->is_ddr3
&&
312 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
316 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
321 static void chv_set_memory_dvfs(struct drm_i915_private
*dev_priv
, bool enable
)
325 vlv_punit_get(dev_priv
);
327 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
);
329 val
&= ~FORCE_DDR_HIGH_FREQ
;
331 val
|= FORCE_DDR_HIGH_FREQ
;
332 val
&= ~FORCE_DDR_LOW_FREQ
;
333 val
|= FORCE_DDR_FREQ_REQ_ACK
;
334 vlv_punit_write(dev_priv
, PUNIT_REG_DDR_SETUP2
, val
);
336 if (wait_for((vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
) &
337 FORCE_DDR_FREQ_REQ_ACK
) == 0, 3))
338 drm_err(&dev_priv
->drm
,
339 "timed out waiting for Punit DDR DVFS request\n");
341 vlv_punit_put(dev_priv
);
344 static void chv_set_memory_pm5(struct drm_i915_private
*dev_priv
, bool enable
)
348 vlv_punit_get(dev_priv
);
350 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DSPSSPM
);
352 val
|= DSP_MAXFIFO_PM5_ENABLE
;
354 val
&= ~DSP_MAXFIFO_PM5_ENABLE
;
355 vlv_punit_write(dev_priv
, PUNIT_REG_DSPSSPM
, val
);
357 vlv_punit_put(dev_priv
);
360 #define FW_WM(value, plane) \
361 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
363 static bool _intel_set_memory_cxsr(struct drm_i915_private
*dev_priv
, bool enable
)
368 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
369 was_enabled
= I915_READ(FW_BLC_SELF_VLV
) & FW_CSPWRDWNEN
;
370 I915_WRITE(FW_BLC_SELF_VLV
, enable
? FW_CSPWRDWNEN
: 0);
371 POSTING_READ(FW_BLC_SELF_VLV
);
372 } else if (IS_G4X(dev_priv
) || IS_I965GM(dev_priv
)) {
373 was_enabled
= I915_READ(FW_BLC_SELF
) & FW_BLC_SELF_EN
;
374 I915_WRITE(FW_BLC_SELF
, enable
? FW_BLC_SELF_EN
: 0);
375 POSTING_READ(FW_BLC_SELF
);
376 } else if (IS_PINEVIEW(dev_priv
)) {
377 val
= I915_READ(DSPFW3
);
378 was_enabled
= val
& PINEVIEW_SELF_REFRESH_EN
;
380 val
|= PINEVIEW_SELF_REFRESH_EN
;
382 val
&= ~PINEVIEW_SELF_REFRESH_EN
;
383 I915_WRITE(DSPFW3
, val
);
384 POSTING_READ(DSPFW3
);
385 } else if (IS_I945G(dev_priv
) || IS_I945GM(dev_priv
)) {
386 was_enabled
= I915_READ(FW_BLC_SELF
) & FW_BLC_SELF_EN
;
387 val
= enable
? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN
) :
388 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN
);
389 I915_WRITE(FW_BLC_SELF
, val
);
390 POSTING_READ(FW_BLC_SELF
);
391 } else if (IS_I915GM(dev_priv
)) {
393 * FIXME can't find a bit like this for 915G, and
394 * and yet it does have the related watermark in
395 * FW_BLC_SELF. What's going on?
397 was_enabled
= I915_READ(INSTPM
) & INSTPM_SELF_EN
;
398 val
= enable
? _MASKED_BIT_ENABLE(INSTPM_SELF_EN
) :
399 _MASKED_BIT_DISABLE(INSTPM_SELF_EN
);
400 I915_WRITE(INSTPM
, val
);
401 POSTING_READ(INSTPM
);
406 trace_intel_memory_cxsr(dev_priv
, was_enabled
, enable
);
408 drm_dbg_kms(&dev_priv
->drm
, "memory self-refresh is %s (was %s)\n",
409 enableddisabled(enable
),
410 enableddisabled(was_enabled
));
416 * intel_set_memory_cxsr - Configure CxSR state
417 * @dev_priv: i915 device
418 * @enable: Allow vs. disallow CxSR
420 * Allow or disallow the system to enter a special CxSR
421 * (C-state self refresh) state. What typically happens in CxSR mode
422 * is that several display FIFOs may get combined into a single larger
423 * FIFO for a particular plane (so called max FIFO mode) to allow the
424 * system to defer memory fetches longer, and the memory will enter
427 * Note that enabling CxSR does not guarantee that the system enter
428 * this special mode, nor does it guarantee that the system stays
429 * in that mode once entered. So this just allows/disallows the system
430 * to autonomously utilize the CxSR mode. Other factors such as core
431 * C-states will affect when/if the system actually enters/exits the
434 * Note that on VLV/CHV this actually only controls the max FIFO mode,
435 * and the system is free to enter/exit memory self refresh at any time
436 * even when the use of CxSR has been disallowed.
438 * While the system is actually in the CxSR/max FIFO mode, some plane
439 * control registers will not get latched on vblank. Thus in order to
440 * guarantee the system will respond to changes in the plane registers
441 * we must always disallow CxSR prior to making changes to those registers.
442 * Unfortunately the system will re-evaluate the CxSR conditions at
443 * frame start which happens after vblank start (which is when the plane
444 * registers would get latched), so we can't proceed with the plane update
445 * during the same frame where we disallowed CxSR.
447 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
448 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
449 * the hardware w.r.t. HPLL SR when writing to plane registers.
450 * Disallowing just CxSR is sufficient.
452 bool intel_set_memory_cxsr(struct drm_i915_private
*dev_priv
, bool enable
)
456 mutex_lock(&dev_priv
->wm
.wm_mutex
);
457 ret
= _intel_set_memory_cxsr(dev_priv
, enable
);
458 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
459 dev_priv
->wm
.vlv
.cxsr
= enable
;
460 else if (IS_G4X(dev_priv
))
461 dev_priv
->wm
.g4x
.cxsr
= enable
;
462 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
468 * Latency for FIFO fetches is dependent on several factors:
469 * - memory configuration (speed, channels)
471 * - current MCH state
472 * It can be fairly high in some situations, so here we assume a fairly
473 * pessimal value. It's a tradeoff between extra memory fetches (if we
474 * set this value too high, the FIFO will fetch frequently to stay full)
475 * and power consumption (set it too low to save power and we might see
476 * FIFO underruns and display "flicker").
478 * A value of 5us seems to be a good balance; safe for very low end
479 * platforms but not overly aggressive on lower latency configs.
481 static const int pessimal_latency_ns
= 5000;
483 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
484 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
486 static void vlv_get_fifo_size(struct intel_crtc_state
*crtc_state
)
488 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
489 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
490 struct vlv_fifo_state
*fifo_state
= &crtc_state
->wm
.vlv
.fifo_state
;
491 enum pipe pipe
= crtc
->pipe
;
492 int sprite0_start
, sprite1_start
;
493 u32 dsparb
, dsparb2
, dsparb3
;
497 dsparb
= I915_READ(DSPARB
);
498 dsparb2
= I915_READ(DSPARB2
);
499 sprite0_start
= VLV_FIFO_START(dsparb
, dsparb2
, 0, 0);
500 sprite1_start
= VLV_FIFO_START(dsparb
, dsparb2
, 8, 4);
503 dsparb
= I915_READ(DSPARB
);
504 dsparb2
= I915_READ(DSPARB2
);
505 sprite0_start
= VLV_FIFO_START(dsparb
, dsparb2
, 16, 8);
506 sprite1_start
= VLV_FIFO_START(dsparb
, dsparb2
, 24, 12);
509 dsparb2
= I915_READ(DSPARB2
);
510 dsparb3
= I915_READ(DSPARB3
);
511 sprite0_start
= VLV_FIFO_START(dsparb3
, dsparb2
, 0, 16);
512 sprite1_start
= VLV_FIFO_START(dsparb3
, dsparb2
, 8, 20);
519 fifo_state
->plane
[PLANE_PRIMARY
] = sprite0_start
;
520 fifo_state
->plane
[PLANE_SPRITE0
] = sprite1_start
- sprite0_start
;
521 fifo_state
->plane
[PLANE_SPRITE1
] = 511 - sprite1_start
;
522 fifo_state
->plane
[PLANE_CURSOR
] = 63;
525 static int i9xx_get_fifo_size(struct drm_i915_private
*dev_priv
,
526 enum i9xx_plane_id i9xx_plane
)
528 u32 dsparb
= I915_READ(DSPARB
);
531 size
= dsparb
& 0x7f;
532 if (i9xx_plane
== PLANE_B
)
533 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) - size
;
535 drm_dbg_kms(&dev_priv
->drm
, "FIFO size - (0x%08x) %c: %d\n",
536 dsparb
, plane_name(i9xx_plane
), size
);
541 static int i830_get_fifo_size(struct drm_i915_private
*dev_priv
,
542 enum i9xx_plane_id i9xx_plane
)
544 u32 dsparb
= I915_READ(DSPARB
);
547 size
= dsparb
& 0x1ff;
548 if (i9xx_plane
== PLANE_B
)
549 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) - size
;
550 size
>>= 1; /* Convert to cachelines */
552 drm_dbg_kms(&dev_priv
->drm
, "FIFO size - (0x%08x) %c: %d\n",
553 dsparb
, plane_name(i9xx_plane
), size
);
558 static int i845_get_fifo_size(struct drm_i915_private
*dev_priv
,
559 enum i9xx_plane_id i9xx_plane
)
561 u32 dsparb
= I915_READ(DSPARB
);
564 size
= dsparb
& 0x7f;
565 size
>>= 2; /* Convert to cachelines */
567 drm_dbg_kms(&dev_priv
->drm
, "FIFO size - (0x%08x) %c: %d\n",
568 dsparb
, plane_name(i9xx_plane
), size
);
573 /* Pineview has different values for various configs */
574 static const struct intel_watermark_params pnv_display_wm
= {
575 .fifo_size
= PINEVIEW_DISPLAY_FIFO
,
576 .max_wm
= PINEVIEW_MAX_WM
,
577 .default_wm
= PINEVIEW_DFT_WM
,
578 .guard_size
= PINEVIEW_GUARD_WM
,
579 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
582 static const struct intel_watermark_params pnv_display_hplloff_wm
= {
583 .fifo_size
= PINEVIEW_DISPLAY_FIFO
,
584 .max_wm
= PINEVIEW_MAX_WM
,
585 .default_wm
= PINEVIEW_DFT_HPLLOFF_WM
,
586 .guard_size
= PINEVIEW_GUARD_WM
,
587 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
590 static const struct intel_watermark_params pnv_cursor_wm
= {
591 .fifo_size
= PINEVIEW_CURSOR_FIFO
,
592 .max_wm
= PINEVIEW_CURSOR_MAX_WM
,
593 .default_wm
= PINEVIEW_CURSOR_DFT_WM
,
594 .guard_size
= PINEVIEW_CURSOR_GUARD_WM
,
595 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
598 static const struct intel_watermark_params pnv_cursor_hplloff_wm
= {
599 .fifo_size
= PINEVIEW_CURSOR_FIFO
,
600 .max_wm
= PINEVIEW_CURSOR_MAX_WM
,
601 .default_wm
= PINEVIEW_CURSOR_DFT_WM
,
602 .guard_size
= PINEVIEW_CURSOR_GUARD_WM
,
603 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
606 static const struct intel_watermark_params i965_cursor_wm_info
= {
607 .fifo_size
= I965_CURSOR_FIFO
,
608 .max_wm
= I965_CURSOR_MAX_WM
,
609 .default_wm
= I965_CURSOR_DFT_WM
,
611 .cacheline_size
= I915_FIFO_LINE_SIZE
,
614 static const struct intel_watermark_params i945_wm_info
= {
615 .fifo_size
= I945_FIFO_SIZE
,
616 .max_wm
= I915_MAX_WM
,
619 .cacheline_size
= I915_FIFO_LINE_SIZE
,
622 static const struct intel_watermark_params i915_wm_info
= {
623 .fifo_size
= I915_FIFO_SIZE
,
624 .max_wm
= I915_MAX_WM
,
627 .cacheline_size
= I915_FIFO_LINE_SIZE
,
630 static const struct intel_watermark_params i830_a_wm_info
= {
631 .fifo_size
= I855GM_FIFO_SIZE
,
632 .max_wm
= I915_MAX_WM
,
635 .cacheline_size
= I830_FIFO_LINE_SIZE
,
638 static const struct intel_watermark_params i830_bc_wm_info
= {
639 .fifo_size
= I855GM_FIFO_SIZE
,
640 .max_wm
= I915_MAX_WM
/2,
643 .cacheline_size
= I830_FIFO_LINE_SIZE
,
646 static const struct intel_watermark_params i845_wm_info
= {
647 .fifo_size
= I830_FIFO_SIZE
,
648 .max_wm
= I915_MAX_WM
,
651 .cacheline_size
= I830_FIFO_LINE_SIZE
,
655 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
656 * @pixel_rate: Pipe pixel rate in kHz
657 * @cpp: Plane bytes per pixel
658 * @latency: Memory wakeup latency in 0.1us units
660 * Compute the watermark using the method 1 or "small buffer"
661 * formula. The caller may additonally add extra cachelines
662 * to account for TLB misses and clock crossings.
664 * This method is concerned with the short term drain rate
665 * of the FIFO, ie. it does not account for blanking periods
666 * which would effectively reduce the average drain rate across
667 * a longer period. The name "small" refers to the fact the
668 * FIFO is relatively small compared to the amount of data
671 * The FIFO level vs. time graph might look something like:
675 * __---__---__ (- plane active, _ blanking)
678 * or perhaps like this:
681 * __----__----__ (- plane active, _ blanking)
685 * The watermark in bytes
687 static unsigned int intel_wm_method1(unsigned int pixel_rate
,
689 unsigned int latency
)
693 ret
= mul_u32_u32(pixel_rate
, cpp
* latency
);
694 ret
= DIV_ROUND_UP_ULL(ret
, 10000);
700 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
701 * @pixel_rate: Pipe pixel rate in kHz
702 * @htotal: Pipe horizontal total
703 * @width: Plane width in pixels
704 * @cpp: Plane bytes per pixel
705 * @latency: Memory wakeup latency in 0.1us units
707 * Compute the watermark using the method 2 or "large buffer"
708 * formula. The caller may additonally add extra cachelines
709 * to account for TLB misses and clock crossings.
711 * This method is concerned with the long term drain rate
712 * of the FIFO, ie. it does account for blanking periods
713 * which effectively reduce the average drain rate across
714 * a longer period. The name "large" refers to the fact the
715 * FIFO is relatively large compared to the amount of data
718 * The FIFO level vs. time graph might look something like:
723 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
727 * The watermark in bytes
729 static unsigned int intel_wm_method2(unsigned int pixel_rate
,
733 unsigned int latency
)
738 * FIXME remove once all users are computing
739 * watermarks in the correct place.
741 if (WARN_ON_ONCE(htotal
== 0))
744 ret
= (latency
* pixel_rate
) / (htotal
* 10000);
745 ret
= (ret
+ 1) * width
* cpp
;
751 * intel_calculate_wm - calculate watermark level
752 * @pixel_rate: pixel clock
753 * @wm: chip FIFO params
754 * @fifo_size: size of the FIFO buffer
755 * @cpp: bytes per pixel
756 * @latency_ns: memory latency for the platform
758 * Calculate the watermark level (the level at which the display plane will
759 * start fetching from memory again). Each chip has a different display
760 * FIFO size and allocation, so the caller needs to figure that out and pass
761 * in the correct intel_watermark_params structure.
763 * As the pixel clock runs, the FIFO will be drained at a rate that depends
764 * on the pixel size. When it reaches the watermark level, it'll start
765 * fetching FIFO line sized based chunks from memory until the FIFO fills
766 * past the watermark point. If the FIFO drains completely, a FIFO underrun
767 * will occur, and a display engine hang could result.
769 static unsigned int intel_calculate_wm(int pixel_rate
,
770 const struct intel_watermark_params
*wm
,
771 int fifo_size
, int cpp
,
772 unsigned int latency_ns
)
774 int entries
, wm_size
;
777 * Note: we need to make sure we don't overflow for various clock &
779 * clocks go from a few thousand to several hundred thousand.
780 * latency is usually a few thousand
782 entries
= intel_wm_method1(pixel_rate
, cpp
,
784 entries
= DIV_ROUND_UP(entries
, wm
->cacheline_size
) +
786 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries
);
788 wm_size
= fifo_size
- entries
;
789 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size
);
791 /* Don't promote wm_size to unsigned... */
792 if (wm_size
> wm
->max_wm
)
793 wm_size
= wm
->max_wm
;
795 wm_size
= wm
->default_wm
;
798 * Bspec seems to indicate that the value shouldn't be lower than
799 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
800 * Lets go for 8 which is the burst size since certain platforms
801 * already use a hardcoded 8 (which is what the spec says should be
810 static bool is_disabling(int old
, int new, int threshold
)
812 return old
>= threshold
&& new < threshold
;
815 static bool is_enabling(int old
, int new, int threshold
)
817 return old
< threshold
&& new >= threshold
;
820 static int intel_wm_num_levels(struct drm_i915_private
*dev_priv
)
822 return dev_priv
->wm
.max_level
+ 1;
825 static bool intel_wm_plane_visible(const struct intel_crtc_state
*crtc_state
,
826 const struct intel_plane_state
*plane_state
)
828 struct intel_plane
*plane
= to_intel_plane(plane_state
->uapi
.plane
);
830 /* FIXME check the 'enable' instead */
831 if (!crtc_state
->hw
.active
)
835 * Treat cursor with fb as always visible since cursor updates
836 * can happen faster than the vrefresh rate, and the current
837 * watermark code doesn't handle that correctly. Cursor updates
838 * which set/clear the fb or change the cursor size are going
839 * to get throttled by intel_legacy_cursor_update() to work
840 * around this problem with the watermark code.
842 if (plane
->id
== PLANE_CURSOR
)
843 return plane_state
->hw
.fb
!= NULL
;
845 return plane_state
->uapi
.visible
;
848 static bool intel_crtc_active(struct intel_crtc
*crtc
)
850 /* Be paranoid as we can arrive here with only partial
851 * state retrieved from the hardware during setup.
853 * We can ditch the adjusted_mode.crtc_clock check as soon
854 * as Haswell has gained clock readout/fastboot support.
856 * We can ditch the crtc->primary->state->fb check as soon as we can
857 * properly reconstruct framebuffers.
859 * FIXME: The intel_crtc->active here should be switched to
860 * crtc->state->active once we have proper CRTC states wired up
863 return crtc
->active
&& crtc
->base
.primary
->state
->fb
&&
864 crtc
->config
->hw
.adjusted_mode
.crtc_clock
;
867 static struct intel_crtc
*single_enabled_crtc(struct drm_i915_private
*dev_priv
)
869 struct intel_crtc
*crtc
, *enabled
= NULL
;
871 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
872 if (intel_crtc_active(crtc
)) {
882 static void pnv_update_wm(struct intel_crtc
*unused_crtc
)
884 struct drm_i915_private
*dev_priv
= to_i915(unused_crtc
->base
.dev
);
885 struct intel_crtc
*crtc
;
886 const struct cxsr_latency
*latency
;
890 latency
= intel_get_cxsr_latency(!IS_MOBILE(dev_priv
),
895 drm_dbg_kms(&dev_priv
->drm
,
896 "Unknown FSB/MEM found, disable CxSR\n");
897 intel_set_memory_cxsr(dev_priv
, false);
901 crtc
= single_enabled_crtc(dev_priv
);
903 const struct drm_display_mode
*pipe_mode
=
904 &crtc
->config
->hw
.pipe_mode
;
905 const struct drm_framebuffer
*fb
=
906 crtc
->base
.primary
->state
->fb
;
907 int cpp
= fb
->format
->cpp
[0];
908 int clock
= pipe_mode
->crtc_clock
;
911 wm
= intel_calculate_wm(clock
, &pnv_display_wm
,
912 pnv_display_wm
.fifo_size
,
913 cpp
, latency
->display_sr
);
914 reg
= I915_READ(DSPFW1
);
915 reg
&= ~DSPFW_SR_MASK
;
916 reg
|= FW_WM(wm
, SR
);
917 I915_WRITE(DSPFW1
, reg
);
918 drm_dbg_kms(&dev_priv
->drm
, "DSPFW1 register is %x\n", reg
);
921 wm
= intel_calculate_wm(clock
, &pnv_cursor_wm
,
922 pnv_display_wm
.fifo_size
,
923 4, latency
->cursor_sr
);
924 reg
= I915_READ(DSPFW3
);
925 reg
&= ~DSPFW_CURSOR_SR_MASK
;
926 reg
|= FW_WM(wm
, CURSOR_SR
);
927 I915_WRITE(DSPFW3
, reg
);
929 /* Display HPLL off SR */
930 wm
= intel_calculate_wm(clock
, &pnv_display_hplloff_wm
,
931 pnv_display_hplloff_wm
.fifo_size
,
932 cpp
, latency
->display_hpll_disable
);
933 reg
= I915_READ(DSPFW3
);
934 reg
&= ~DSPFW_HPLL_SR_MASK
;
935 reg
|= FW_WM(wm
, HPLL_SR
);
936 I915_WRITE(DSPFW3
, reg
);
938 /* cursor HPLL off SR */
939 wm
= intel_calculate_wm(clock
, &pnv_cursor_hplloff_wm
,
940 pnv_display_hplloff_wm
.fifo_size
,
941 4, latency
->cursor_hpll_disable
);
942 reg
= I915_READ(DSPFW3
);
943 reg
&= ~DSPFW_HPLL_CURSOR_MASK
;
944 reg
|= FW_WM(wm
, HPLL_CURSOR
);
945 I915_WRITE(DSPFW3
, reg
);
946 drm_dbg_kms(&dev_priv
->drm
, "DSPFW3 register is %x\n", reg
);
948 intel_set_memory_cxsr(dev_priv
, true);
950 intel_set_memory_cxsr(dev_priv
, false);
955 * Documentation says:
956 * "If the line size is small, the TLB fetches can get in the way of the
957 * data fetches, causing some lag in the pixel data return which is not
958 * accounted for in the above formulas. The following adjustment only
959 * needs to be applied if eight whole lines fit in the buffer at once.
960 * The WM is adjusted upwards by the difference between the FIFO size
961 * and the size of 8 whole lines. This adjustment is always performed
962 * in the actual pixel depth regardless of whether FBC is enabled or not."
964 static unsigned int g4x_tlb_miss_wa(int fifo_size
, int width
, int cpp
)
966 int tlb_miss
= fifo_size
* 64 - width
* cpp
* 8;
968 return max(0, tlb_miss
);
971 static void g4x_write_wm_values(struct drm_i915_private
*dev_priv
,
972 const struct g4x_wm_values
*wm
)
976 for_each_pipe(dev_priv
, pipe
)
977 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv
, pipe
), wm
);
980 FW_WM(wm
->sr
.plane
, SR
) |
981 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_CURSOR
], CURSORB
) |
982 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
], PLANEB
) |
983 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
], PLANEA
));
985 (wm
->fbc_en
? DSPFW_FBC_SR_EN
: 0) |
986 FW_WM(wm
->sr
.fbc
, FBC_SR
) |
987 FW_WM(wm
->hpll
.fbc
, FBC_HPLL_SR
) |
988 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
], SPRITEB
) |
989 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_CURSOR
], CURSORA
) |
990 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
], SPRITEA
));
992 (wm
->hpll_en
? DSPFW_HPLL_SR_EN
: 0) |
993 FW_WM(wm
->sr
.cursor
, CURSOR_SR
) |
994 FW_WM(wm
->hpll
.cursor
, HPLL_CURSOR
) |
995 FW_WM(wm
->hpll
.plane
, HPLL_SR
));
997 POSTING_READ(DSPFW1
);
1000 #define FW_WM_VLV(value, plane) \
1001 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
1003 static void vlv_write_wm_values(struct drm_i915_private
*dev_priv
,
1004 const struct vlv_wm_values
*wm
)
1008 for_each_pipe(dev_priv
, pipe
) {
1009 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv
, pipe
), wm
);
1011 I915_WRITE(VLV_DDL(pipe
),
1012 (wm
->ddl
[pipe
].plane
[PLANE_CURSOR
] << DDL_CURSOR_SHIFT
) |
1013 (wm
->ddl
[pipe
].plane
[PLANE_SPRITE1
] << DDL_SPRITE_SHIFT(1)) |
1014 (wm
->ddl
[pipe
].plane
[PLANE_SPRITE0
] << DDL_SPRITE_SHIFT(0)) |
1015 (wm
->ddl
[pipe
].plane
[PLANE_PRIMARY
] << DDL_PLANE_SHIFT
));
1019 * Zero the (unused) WM1 watermarks, and also clear all the
1020 * high order bits so that there are no out of bounds values
1021 * present in the registers during the reprogramming.
1023 I915_WRITE(DSPHOWM
, 0);
1024 I915_WRITE(DSPHOWM1
, 0);
1025 I915_WRITE(DSPFW4
, 0);
1026 I915_WRITE(DSPFW5
, 0);
1027 I915_WRITE(DSPFW6
, 0);
1030 FW_WM(wm
->sr
.plane
, SR
) |
1031 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_CURSOR
], CURSORB
) |
1032 FW_WM_VLV(wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
], PLANEB
) |
1033 FW_WM_VLV(wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
], PLANEA
));
1035 FW_WM_VLV(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
], SPRITEB
) |
1036 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_CURSOR
], CURSORA
) |
1037 FW_WM_VLV(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
], SPRITEA
));
1039 FW_WM(wm
->sr
.cursor
, CURSOR_SR
));
1041 if (IS_CHERRYVIEW(dev_priv
)) {
1042 I915_WRITE(DSPFW7_CHV
,
1043 FW_WM_VLV(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
], SPRITED
) |
1044 FW_WM_VLV(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
], SPRITEC
));
1045 I915_WRITE(DSPFW8_CHV
,
1046 FW_WM_VLV(wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE1
], SPRITEF
) |
1047 FW_WM_VLV(wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE0
], SPRITEE
));
1048 I915_WRITE(DSPFW9_CHV
,
1049 FW_WM_VLV(wm
->pipe
[PIPE_C
].plane
[PLANE_PRIMARY
], PLANEC
) |
1050 FW_WM(wm
->pipe
[PIPE_C
].plane
[PLANE_CURSOR
], CURSORC
));
1052 FW_WM(wm
->sr
.plane
>> 9, SR_HI
) |
1053 FW_WM(wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE1
] >> 8, SPRITEF_HI
) |
1054 FW_WM(wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE0
] >> 8, SPRITEE_HI
) |
1055 FW_WM(wm
->pipe
[PIPE_C
].plane
[PLANE_PRIMARY
] >> 8, PLANEC_HI
) |
1056 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] >> 8, SPRITED_HI
) |
1057 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] >> 8, SPRITEC_HI
) |
1058 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
] >> 8, PLANEB_HI
) |
1059 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
] >> 8, SPRITEB_HI
) |
1060 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
] >> 8, SPRITEA_HI
) |
1061 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
] >> 8, PLANEA_HI
));
1064 FW_WM_VLV(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
], SPRITED
) |
1065 FW_WM_VLV(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
], SPRITEC
));
1067 FW_WM(wm
->sr
.plane
>> 9, SR_HI
) |
1068 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] >> 8, SPRITED_HI
) |
1069 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] >> 8, SPRITEC_HI
) |
1070 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
] >> 8, PLANEB_HI
) |
1071 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
] >> 8, SPRITEB_HI
) |
1072 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
] >> 8, SPRITEA_HI
) |
1073 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
] >> 8, PLANEA_HI
));
1076 POSTING_READ(DSPFW1
);
1081 static void g4x_setup_wm_latency(struct drm_i915_private
*dev_priv
)
1083 /* all latencies in usec */
1084 dev_priv
->wm
.pri_latency
[G4X_WM_LEVEL_NORMAL
] = 5;
1085 dev_priv
->wm
.pri_latency
[G4X_WM_LEVEL_SR
] = 12;
1086 dev_priv
->wm
.pri_latency
[G4X_WM_LEVEL_HPLL
] = 35;
1088 dev_priv
->wm
.max_level
= G4X_WM_LEVEL_HPLL
;
1091 static int g4x_plane_fifo_size(enum plane_id plane_id
, int level
)
1094 * DSPCNTR[13] supposedly controls whether the
1095 * primary plane can use the FIFO space otherwise
1096 * reserved for the sprite plane. It's not 100% clear
1097 * what the actual FIFO size is, but it looks like we
1098 * can happily set both primary and sprite watermarks
1099 * up to 127 cachelines. So that would seem to mean
1100 * that either DSPCNTR[13] doesn't do anything, or that
1101 * the total FIFO is >= 256 cachelines in size. Either
1102 * way, we don't seem to have to worry about this
1103 * repartitioning as the maximum watermark value the
1104 * register can hold for each plane is lower than the
1105 * minimum FIFO size.
1111 return level
== G4X_WM_LEVEL_NORMAL
? 127 : 511;
1113 return level
== G4X_WM_LEVEL_NORMAL
? 127 : 0;
1115 MISSING_CASE(plane_id
);
1120 static int g4x_fbc_fifo_size(int level
)
1123 case G4X_WM_LEVEL_SR
:
1125 case G4X_WM_LEVEL_HPLL
:
1128 MISSING_CASE(level
);
1133 static u16
g4x_compute_wm(const struct intel_crtc_state
*crtc_state
,
1134 const struct intel_plane_state
*plane_state
,
1137 struct intel_plane
*plane
= to_intel_plane(plane_state
->uapi
.plane
);
1138 struct drm_i915_private
*dev_priv
= to_i915(plane
->base
.dev
);
1139 const struct drm_display_mode
*pipe_mode
=
1140 &crtc_state
->hw
.pipe_mode
;
1141 unsigned int latency
= dev_priv
->wm
.pri_latency
[level
] * 10;
1142 unsigned int clock
, htotal
, cpp
, width
, wm
;
1147 if (!intel_wm_plane_visible(crtc_state
, plane_state
))
1150 cpp
= plane_state
->hw
.fb
->format
->cpp
[0];
1153 * Not 100% sure which way ELK should go here as the
1154 * spec only says CL/CTG should assume 32bpp and BW
1155 * doesn't need to. But as these things followed the
1156 * mobile vs. desktop lines on gen3 as well, let's
1157 * assume ELK doesn't need this.
1159 * The spec also fails to list such a restriction for
1160 * the HPLL watermark, which seems a little strange.
1161 * Let's use 32bpp for the HPLL watermark as well.
1163 if (IS_GM45(dev_priv
) && plane
->id
== PLANE_PRIMARY
&&
1164 level
!= G4X_WM_LEVEL_NORMAL
)
1167 clock
= pipe_mode
->crtc_clock
;
1168 htotal
= pipe_mode
->crtc_htotal
;
1170 width
= drm_rect_width(&plane_state
->uapi
.dst
);
1172 if (plane
->id
== PLANE_CURSOR
) {
1173 wm
= intel_wm_method2(clock
, htotal
, width
, cpp
, latency
);
1174 } else if (plane
->id
== PLANE_PRIMARY
&&
1175 level
== G4X_WM_LEVEL_NORMAL
) {
1176 wm
= intel_wm_method1(clock
, cpp
, latency
);
1178 unsigned int small
, large
;
1180 small
= intel_wm_method1(clock
, cpp
, latency
);
1181 large
= intel_wm_method2(clock
, htotal
, width
, cpp
, latency
);
1183 wm
= min(small
, large
);
1186 wm
+= g4x_tlb_miss_wa(g4x_plane_fifo_size(plane
->id
, level
),
1189 wm
= DIV_ROUND_UP(wm
, 64) + 2;
1191 return min_t(unsigned int, wm
, USHRT_MAX
);
1194 static bool g4x_raw_plane_wm_set(struct intel_crtc_state
*crtc_state
,
1195 int level
, enum plane_id plane_id
, u16 value
)
1197 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
1200 for (; level
< intel_wm_num_levels(dev_priv
); level
++) {
1201 struct g4x_pipe_wm
*raw
= &crtc_state
->wm
.g4x
.raw
[level
];
1203 dirty
|= raw
->plane
[plane_id
] != value
;
1204 raw
->plane
[plane_id
] = value
;
1210 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state
*crtc_state
,
1211 int level
, u16 value
)
1213 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
1216 /* NORMAL level doesn't have an FBC watermark */
1217 level
= max(level
, G4X_WM_LEVEL_SR
);
1219 for (; level
< intel_wm_num_levels(dev_priv
); level
++) {
1220 struct g4x_pipe_wm
*raw
= &crtc_state
->wm
.g4x
.raw
[level
];
1222 dirty
|= raw
->fbc
!= value
;
1229 static u32
ilk_compute_fbc_wm(const struct intel_crtc_state
*crtc_state
,
1230 const struct intel_plane_state
*plane_state
,
1233 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state
*crtc_state
,
1234 const struct intel_plane_state
*plane_state
)
1236 struct intel_plane
*plane
= to_intel_plane(plane_state
->uapi
.plane
);
1237 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
1238 int num_levels
= intel_wm_num_levels(to_i915(plane
->base
.dev
));
1239 enum plane_id plane_id
= plane
->id
;
1243 if (!intel_wm_plane_visible(crtc_state
, plane_state
)) {
1244 dirty
|= g4x_raw_plane_wm_set(crtc_state
, 0, plane_id
, 0);
1245 if (plane_id
== PLANE_PRIMARY
)
1246 dirty
|= g4x_raw_fbc_wm_set(crtc_state
, 0, 0);
1250 for (level
= 0; level
< num_levels
; level
++) {
1251 struct g4x_pipe_wm
*raw
= &crtc_state
->wm
.g4x
.raw
[level
];
1254 wm
= g4x_compute_wm(crtc_state
, plane_state
, level
);
1255 max_wm
= g4x_plane_fifo_size(plane_id
, level
);
1260 dirty
|= raw
->plane
[plane_id
] != wm
;
1261 raw
->plane
[plane_id
] = wm
;
1263 if (plane_id
!= PLANE_PRIMARY
||
1264 level
== G4X_WM_LEVEL_NORMAL
)
1267 wm
= ilk_compute_fbc_wm(crtc_state
, plane_state
,
1268 raw
->plane
[plane_id
]);
1269 max_wm
= g4x_fbc_fifo_size(level
);
1272 * FBC wm is not mandatory as we
1273 * can always just disable its use.
1278 dirty
|= raw
->fbc
!= wm
;
1282 /* mark watermarks as invalid */
1283 dirty
|= g4x_raw_plane_wm_set(crtc_state
, level
, plane_id
, USHRT_MAX
);
1285 if (plane_id
== PLANE_PRIMARY
)
1286 dirty
|= g4x_raw_fbc_wm_set(crtc_state
, level
, USHRT_MAX
);
1290 drm_dbg_kms(&dev_priv
->drm
,
1291 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1293 crtc_state
->wm
.g4x
.raw
[G4X_WM_LEVEL_NORMAL
].plane
[plane_id
],
1294 crtc_state
->wm
.g4x
.raw
[G4X_WM_LEVEL_SR
].plane
[plane_id
],
1295 crtc_state
->wm
.g4x
.raw
[G4X_WM_LEVEL_HPLL
].plane
[plane_id
]);
1297 if (plane_id
== PLANE_PRIMARY
)
1298 drm_dbg_kms(&dev_priv
->drm
,
1299 "FBC watermarks: SR=%d, HPLL=%d\n",
1300 crtc_state
->wm
.g4x
.raw
[G4X_WM_LEVEL_SR
].fbc
,
1301 crtc_state
->wm
.g4x
.raw
[G4X_WM_LEVEL_HPLL
].fbc
);
1307 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state
*crtc_state
,
1308 enum plane_id plane_id
, int level
)
1310 const struct g4x_pipe_wm
*raw
= &crtc_state
->wm
.g4x
.raw
[level
];
1312 return raw
->plane
[plane_id
] <= g4x_plane_fifo_size(plane_id
, level
);
1315 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state
*crtc_state
,
1318 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
1320 if (level
> dev_priv
->wm
.max_level
)
1323 return g4x_raw_plane_wm_is_valid(crtc_state
, PLANE_PRIMARY
, level
) &&
1324 g4x_raw_plane_wm_is_valid(crtc_state
, PLANE_SPRITE0
, level
) &&
1325 g4x_raw_plane_wm_is_valid(crtc_state
, PLANE_CURSOR
, level
);
1328 /* mark all levels starting from 'level' as invalid */
1329 static void g4x_invalidate_wms(struct intel_crtc
*crtc
,
1330 struct g4x_wm_state
*wm_state
, int level
)
1332 if (level
<= G4X_WM_LEVEL_NORMAL
) {
1333 enum plane_id plane_id
;
1335 for_each_plane_id_on_crtc(crtc
, plane_id
)
1336 wm_state
->wm
.plane
[plane_id
] = USHRT_MAX
;
1339 if (level
<= G4X_WM_LEVEL_SR
) {
1340 wm_state
->cxsr
= false;
1341 wm_state
->sr
.cursor
= USHRT_MAX
;
1342 wm_state
->sr
.plane
= USHRT_MAX
;
1343 wm_state
->sr
.fbc
= USHRT_MAX
;
1346 if (level
<= G4X_WM_LEVEL_HPLL
) {
1347 wm_state
->hpll_en
= false;
1348 wm_state
->hpll
.cursor
= USHRT_MAX
;
1349 wm_state
->hpll
.plane
= USHRT_MAX
;
1350 wm_state
->hpll
.fbc
= USHRT_MAX
;
1354 static bool g4x_compute_fbc_en(const struct g4x_wm_state
*wm_state
,
1357 if (level
< G4X_WM_LEVEL_SR
)
1360 if (level
>= G4X_WM_LEVEL_SR
&&
1361 wm_state
->sr
.fbc
> g4x_fbc_fifo_size(G4X_WM_LEVEL_SR
))
1364 if (level
>= G4X_WM_LEVEL_HPLL
&&
1365 wm_state
->hpll
.fbc
> g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL
))
1371 static int g4x_compute_pipe_wm(struct intel_crtc_state
*crtc_state
)
1373 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
1374 struct intel_atomic_state
*state
=
1375 to_intel_atomic_state(crtc_state
->uapi
.state
);
1376 struct g4x_wm_state
*wm_state
= &crtc_state
->wm
.g4x
.optimal
;
1377 int num_active_planes
= hweight8(crtc_state
->active_planes
&
1378 ~BIT(PLANE_CURSOR
));
1379 const struct g4x_pipe_wm
*raw
;
1380 const struct intel_plane_state
*old_plane_state
;
1381 const struct intel_plane_state
*new_plane_state
;
1382 struct intel_plane
*plane
;
1383 enum plane_id plane_id
;
1385 unsigned int dirty
= 0;
1387 for_each_oldnew_intel_plane_in_state(state
, plane
,
1389 new_plane_state
, i
) {
1390 if (new_plane_state
->hw
.crtc
!= &crtc
->base
&&
1391 old_plane_state
->hw
.crtc
!= &crtc
->base
)
1394 if (g4x_raw_plane_wm_compute(crtc_state
, new_plane_state
))
1395 dirty
|= BIT(plane
->id
);
1401 level
= G4X_WM_LEVEL_NORMAL
;
1402 if (!g4x_raw_crtc_wm_is_valid(crtc_state
, level
))
1405 raw
= &crtc_state
->wm
.g4x
.raw
[level
];
1406 for_each_plane_id_on_crtc(crtc
, plane_id
)
1407 wm_state
->wm
.plane
[plane_id
] = raw
->plane
[plane_id
];
1409 level
= G4X_WM_LEVEL_SR
;
1410 if (!g4x_raw_crtc_wm_is_valid(crtc_state
, level
))
1413 raw
= &crtc_state
->wm
.g4x
.raw
[level
];
1414 wm_state
->sr
.plane
= raw
->plane
[PLANE_PRIMARY
];
1415 wm_state
->sr
.cursor
= raw
->plane
[PLANE_CURSOR
];
1416 wm_state
->sr
.fbc
= raw
->fbc
;
1418 wm_state
->cxsr
= num_active_planes
== BIT(PLANE_PRIMARY
);
1420 level
= G4X_WM_LEVEL_HPLL
;
1421 if (!g4x_raw_crtc_wm_is_valid(crtc_state
, level
))
1424 raw
= &crtc_state
->wm
.g4x
.raw
[level
];
1425 wm_state
->hpll
.plane
= raw
->plane
[PLANE_PRIMARY
];
1426 wm_state
->hpll
.cursor
= raw
->plane
[PLANE_CURSOR
];
1427 wm_state
->hpll
.fbc
= raw
->fbc
;
1429 wm_state
->hpll_en
= wm_state
->cxsr
;
1434 if (level
== G4X_WM_LEVEL_NORMAL
)
1437 /* invalidate the higher levels */
1438 g4x_invalidate_wms(crtc
, wm_state
, level
);
1441 * Determine if the FBC watermark(s) can be used. IF
1442 * this isn't the case we prefer to disable the FBC
1443 * watermark(s) rather than disable the SR/HPLL
1444 * level(s) entirely. 'level-1' is the highest valid
1447 wm_state
->fbc_en
= g4x_compute_fbc_en(wm_state
, level
- 1);
1452 static int g4x_compute_intermediate_wm(struct intel_crtc_state
*new_crtc_state
)
1454 struct intel_crtc
*crtc
= to_intel_crtc(new_crtc_state
->uapi
.crtc
);
1455 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1456 struct g4x_wm_state
*intermediate
= &new_crtc_state
->wm
.g4x
.intermediate
;
1457 const struct g4x_wm_state
*optimal
= &new_crtc_state
->wm
.g4x
.optimal
;
1458 struct intel_atomic_state
*intel_state
=
1459 to_intel_atomic_state(new_crtc_state
->uapi
.state
);
1460 const struct intel_crtc_state
*old_crtc_state
=
1461 intel_atomic_get_old_crtc_state(intel_state
, crtc
);
1462 const struct g4x_wm_state
*active
= &old_crtc_state
->wm
.g4x
.optimal
;
1463 enum plane_id plane_id
;
1465 if (!new_crtc_state
->hw
.active
|| drm_atomic_crtc_needs_modeset(&new_crtc_state
->uapi
)) {
1466 *intermediate
= *optimal
;
1468 intermediate
->cxsr
= false;
1469 intermediate
->hpll_en
= false;
1473 intermediate
->cxsr
= optimal
->cxsr
&& active
->cxsr
&&
1474 !new_crtc_state
->disable_cxsr
;
1475 intermediate
->hpll_en
= optimal
->hpll_en
&& active
->hpll_en
&&
1476 !new_crtc_state
->disable_cxsr
;
1477 intermediate
->fbc_en
= optimal
->fbc_en
&& active
->fbc_en
;
1479 for_each_plane_id_on_crtc(crtc
, plane_id
) {
1480 intermediate
->wm
.plane
[plane_id
] =
1481 max(optimal
->wm
.plane
[plane_id
],
1482 active
->wm
.plane
[plane_id
]);
1484 drm_WARN_ON(&dev_priv
->drm
, intermediate
->wm
.plane
[plane_id
] >
1485 g4x_plane_fifo_size(plane_id
, G4X_WM_LEVEL_NORMAL
));
1488 intermediate
->sr
.plane
= max(optimal
->sr
.plane
,
1490 intermediate
->sr
.cursor
= max(optimal
->sr
.cursor
,
1492 intermediate
->sr
.fbc
= max(optimal
->sr
.fbc
,
1495 intermediate
->hpll
.plane
= max(optimal
->hpll
.plane
,
1496 active
->hpll
.plane
);
1497 intermediate
->hpll
.cursor
= max(optimal
->hpll
.cursor
,
1498 active
->hpll
.cursor
);
1499 intermediate
->hpll
.fbc
= max(optimal
->hpll
.fbc
,
1502 drm_WARN_ON(&dev_priv
->drm
,
1503 (intermediate
->sr
.plane
>
1504 g4x_plane_fifo_size(PLANE_PRIMARY
, G4X_WM_LEVEL_SR
) ||
1505 intermediate
->sr
.cursor
>
1506 g4x_plane_fifo_size(PLANE_CURSOR
, G4X_WM_LEVEL_SR
)) &&
1507 intermediate
->cxsr
);
1508 drm_WARN_ON(&dev_priv
->drm
,
1509 (intermediate
->sr
.plane
>
1510 g4x_plane_fifo_size(PLANE_PRIMARY
, G4X_WM_LEVEL_HPLL
) ||
1511 intermediate
->sr
.cursor
>
1512 g4x_plane_fifo_size(PLANE_CURSOR
, G4X_WM_LEVEL_HPLL
)) &&
1513 intermediate
->hpll_en
);
1515 drm_WARN_ON(&dev_priv
->drm
,
1516 intermediate
->sr
.fbc
> g4x_fbc_fifo_size(1) &&
1517 intermediate
->fbc_en
&& intermediate
->cxsr
);
1518 drm_WARN_ON(&dev_priv
->drm
,
1519 intermediate
->hpll
.fbc
> g4x_fbc_fifo_size(2) &&
1520 intermediate
->fbc_en
&& intermediate
->hpll_en
);
1524 * If our intermediate WM are identical to the final WM, then we can
1525 * omit the post-vblank programming; only update if it's different.
1527 if (memcmp(intermediate
, optimal
, sizeof(*intermediate
)) != 0)
1528 new_crtc_state
->wm
.need_postvbl_update
= true;
1533 static void g4x_merge_wm(struct drm_i915_private
*dev_priv
,
1534 struct g4x_wm_values
*wm
)
1536 struct intel_crtc
*crtc
;
1537 int num_active_pipes
= 0;
1543 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
1544 const struct g4x_wm_state
*wm_state
= &crtc
->wm
.active
.g4x
;
1549 if (!wm_state
->cxsr
)
1551 if (!wm_state
->hpll_en
)
1552 wm
->hpll_en
= false;
1553 if (!wm_state
->fbc_en
)
1559 if (num_active_pipes
!= 1) {
1561 wm
->hpll_en
= false;
1565 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
1566 const struct g4x_wm_state
*wm_state
= &crtc
->wm
.active
.g4x
;
1567 enum pipe pipe
= crtc
->pipe
;
1569 wm
->pipe
[pipe
] = wm_state
->wm
;
1570 if (crtc
->active
&& wm
->cxsr
)
1571 wm
->sr
= wm_state
->sr
;
1572 if (crtc
->active
&& wm
->hpll_en
)
1573 wm
->hpll
= wm_state
->hpll
;
1577 static void g4x_program_watermarks(struct drm_i915_private
*dev_priv
)
1579 struct g4x_wm_values
*old_wm
= &dev_priv
->wm
.g4x
;
1580 struct g4x_wm_values new_wm
= {};
1582 g4x_merge_wm(dev_priv
, &new_wm
);
1584 if (memcmp(old_wm
, &new_wm
, sizeof(new_wm
)) == 0)
1587 if (is_disabling(old_wm
->cxsr
, new_wm
.cxsr
, true))
1588 _intel_set_memory_cxsr(dev_priv
, false);
1590 g4x_write_wm_values(dev_priv
, &new_wm
);
1592 if (is_enabling(old_wm
->cxsr
, new_wm
.cxsr
, true))
1593 _intel_set_memory_cxsr(dev_priv
, true);
1598 static void g4x_initial_watermarks(struct intel_atomic_state
*state
,
1599 struct intel_crtc
*crtc
)
1601 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1602 const struct intel_crtc_state
*crtc_state
=
1603 intel_atomic_get_new_crtc_state(state
, crtc
);
1605 mutex_lock(&dev_priv
->wm
.wm_mutex
);
1606 crtc
->wm
.active
.g4x
= crtc_state
->wm
.g4x
.intermediate
;
1607 g4x_program_watermarks(dev_priv
);
1608 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
1611 static void g4x_optimize_watermarks(struct intel_atomic_state
*state
,
1612 struct intel_crtc
*crtc
)
1614 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1615 const struct intel_crtc_state
*crtc_state
=
1616 intel_atomic_get_new_crtc_state(state
, crtc
);
1618 if (!crtc_state
->wm
.need_postvbl_update
)
1621 mutex_lock(&dev_priv
->wm
.wm_mutex
);
1622 crtc
->wm
.active
.g4x
= crtc_state
->wm
.g4x
.optimal
;
1623 g4x_program_watermarks(dev_priv
);
1624 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
1627 /* latency must be in 0.1us units. */
1628 static unsigned int vlv_wm_method2(unsigned int pixel_rate
,
1629 unsigned int htotal
,
1632 unsigned int latency
)
1636 ret
= intel_wm_method2(pixel_rate
, htotal
,
1637 width
, cpp
, latency
);
1638 ret
= DIV_ROUND_UP(ret
, 64);
1643 static void vlv_setup_wm_latency(struct drm_i915_private
*dev_priv
)
1645 /* all latencies in usec */
1646 dev_priv
->wm
.pri_latency
[VLV_WM_LEVEL_PM2
] = 3;
1648 dev_priv
->wm
.max_level
= VLV_WM_LEVEL_PM2
;
1650 if (IS_CHERRYVIEW(dev_priv
)) {
1651 dev_priv
->wm
.pri_latency
[VLV_WM_LEVEL_PM5
] = 12;
1652 dev_priv
->wm
.pri_latency
[VLV_WM_LEVEL_DDR_DVFS
] = 33;
1654 dev_priv
->wm
.max_level
= VLV_WM_LEVEL_DDR_DVFS
;
1658 static u16
vlv_compute_wm_level(const struct intel_crtc_state
*crtc_state
,
1659 const struct intel_plane_state
*plane_state
,
1662 struct intel_plane
*plane
= to_intel_plane(plane_state
->uapi
.plane
);
1663 struct drm_i915_private
*dev_priv
= to_i915(plane
->base
.dev
);
1664 const struct drm_display_mode
*pipe_mode
=
1665 &crtc_state
->hw
.pipe_mode
;
1666 unsigned int clock
, htotal
, cpp
, width
, wm
;
1668 if (dev_priv
->wm
.pri_latency
[level
] == 0)
1671 if (!intel_wm_plane_visible(crtc_state
, plane_state
))
1674 cpp
= plane_state
->hw
.fb
->format
->cpp
[0];
1675 clock
= pipe_mode
->crtc_clock
;
1676 htotal
= pipe_mode
->crtc_htotal
;
1677 width
= crtc_state
->pipe_src_w
;
1679 if (plane
->id
== PLANE_CURSOR
) {
1681 * FIXME the formula gives values that are
1682 * too big for the cursor FIFO, and hence we
1683 * would never be able to use cursors. For
1684 * now just hardcode the watermark.
1688 wm
= vlv_wm_method2(clock
, htotal
, width
, cpp
,
1689 dev_priv
->wm
.pri_latency
[level
] * 10);
1692 return min_t(unsigned int, wm
, USHRT_MAX
);
1695 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes
)
1697 return (active_planes
& (BIT(PLANE_SPRITE0
) |
1698 BIT(PLANE_SPRITE1
))) == BIT(PLANE_SPRITE1
);
1701 static int vlv_compute_fifo(struct intel_crtc_state
*crtc_state
)
1703 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
1704 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1705 const struct g4x_pipe_wm
*raw
=
1706 &crtc_state
->wm
.vlv
.raw
[VLV_WM_LEVEL_PM2
];
1707 struct vlv_fifo_state
*fifo_state
= &crtc_state
->wm
.vlv
.fifo_state
;
1708 unsigned int active_planes
= crtc_state
->active_planes
& ~BIT(PLANE_CURSOR
);
1709 int num_active_planes
= hweight8(active_planes
);
1710 const int fifo_size
= 511;
1711 int fifo_extra
, fifo_left
= fifo_size
;
1712 int sprite0_fifo_extra
= 0;
1713 unsigned int total_rate
;
1714 enum plane_id plane_id
;
1717 * When enabling sprite0 after sprite1 has already been enabled
1718 * we tend to get an underrun unless sprite0 already has some
1719 * FIFO space allcoated. Hence we always allocate at least one
1720 * cacheline for sprite0 whenever sprite1 is enabled.
1722 * All other plane enable sequences appear immune to this problem.
1724 if (vlv_need_sprite0_fifo_workaround(active_planes
))
1725 sprite0_fifo_extra
= 1;
1727 total_rate
= raw
->plane
[PLANE_PRIMARY
] +
1728 raw
->plane
[PLANE_SPRITE0
] +
1729 raw
->plane
[PLANE_SPRITE1
] +
1732 if (total_rate
> fifo_size
)
1735 if (total_rate
== 0)
1738 for_each_plane_id_on_crtc(crtc
, plane_id
) {
1741 if ((active_planes
& BIT(plane_id
)) == 0) {
1742 fifo_state
->plane
[plane_id
] = 0;
1746 rate
= raw
->plane
[plane_id
];
1747 fifo_state
->plane
[plane_id
] = fifo_size
* rate
/ total_rate
;
1748 fifo_left
-= fifo_state
->plane
[plane_id
];
1751 fifo_state
->plane
[PLANE_SPRITE0
] += sprite0_fifo_extra
;
1752 fifo_left
-= sprite0_fifo_extra
;
1754 fifo_state
->plane
[PLANE_CURSOR
] = 63;
1756 fifo_extra
= DIV_ROUND_UP(fifo_left
, num_active_planes
?: 1);
1758 /* spread the remainder evenly */
1759 for_each_plane_id_on_crtc(crtc
, plane_id
) {
1765 if ((active_planes
& BIT(plane_id
)) == 0)
1768 plane_extra
= min(fifo_extra
, fifo_left
);
1769 fifo_state
->plane
[plane_id
] += plane_extra
;
1770 fifo_left
-= plane_extra
;
1773 drm_WARN_ON(&dev_priv
->drm
, active_planes
!= 0 && fifo_left
!= 0);
1775 /* give it all to the first plane if none are active */
1776 if (active_planes
== 0) {
1777 drm_WARN_ON(&dev_priv
->drm
, fifo_left
!= fifo_size
);
1778 fifo_state
->plane
[PLANE_PRIMARY
] = fifo_left
;
1784 /* mark all levels starting from 'level' as invalid */
1785 static void vlv_invalidate_wms(struct intel_crtc
*crtc
,
1786 struct vlv_wm_state
*wm_state
, int level
)
1788 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1790 for (; level
< intel_wm_num_levels(dev_priv
); level
++) {
1791 enum plane_id plane_id
;
1793 for_each_plane_id_on_crtc(crtc
, plane_id
)
1794 wm_state
->wm
[level
].plane
[plane_id
] = USHRT_MAX
;
1796 wm_state
->sr
[level
].cursor
= USHRT_MAX
;
1797 wm_state
->sr
[level
].plane
= USHRT_MAX
;
1801 static u16
vlv_invert_wm_value(u16 wm
, u16 fifo_size
)
1806 return fifo_size
- wm
;
1810 * Starting from 'level' set all higher
1811 * levels to 'value' in the "raw" watermarks.
1813 static bool vlv_raw_plane_wm_set(struct intel_crtc_state
*crtc_state
,
1814 int level
, enum plane_id plane_id
, u16 value
)
1816 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
1817 int num_levels
= intel_wm_num_levels(dev_priv
);
1820 for (; level
< num_levels
; level
++) {
1821 struct g4x_pipe_wm
*raw
= &crtc_state
->wm
.vlv
.raw
[level
];
1823 dirty
|= raw
->plane
[plane_id
] != value
;
1824 raw
->plane
[plane_id
] = value
;
1830 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state
*crtc_state
,
1831 const struct intel_plane_state
*plane_state
)
1833 struct intel_plane
*plane
= to_intel_plane(plane_state
->uapi
.plane
);
1834 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
1835 enum plane_id plane_id
= plane
->id
;
1836 int num_levels
= intel_wm_num_levels(to_i915(plane
->base
.dev
));
1840 if (!intel_wm_plane_visible(crtc_state
, plane_state
)) {
1841 dirty
|= vlv_raw_plane_wm_set(crtc_state
, 0, plane_id
, 0);
1845 for (level
= 0; level
< num_levels
; level
++) {
1846 struct g4x_pipe_wm
*raw
= &crtc_state
->wm
.vlv
.raw
[level
];
1847 int wm
= vlv_compute_wm_level(crtc_state
, plane_state
, level
);
1848 int max_wm
= plane_id
== PLANE_CURSOR
? 63 : 511;
1853 dirty
|= raw
->plane
[plane_id
] != wm
;
1854 raw
->plane
[plane_id
] = wm
;
1857 /* mark all higher levels as invalid */
1858 dirty
|= vlv_raw_plane_wm_set(crtc_state
, level
, plane_id
, USHRT_MAX
);
1862 drm_dbg_kms(&dev_priv
->drm
,
1863 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1865 crtc_state
->wm
.vlv
.raw
[VLV_WM_LEVEL_PM2
].plane
[plane_id
],
1866 crtc_state
->wm
.vlv
.raw
[VLV_WM_LEVEL_PM5
].plane
[plane_id
],
1867 crtc_state
->wm
.vlv
.raw
[VLV_WM_LEVEL_DDR_DVFS
].plane
[plane_id
]);
1872 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state
*crtc_state
,
1873 enum plane_id plane_id
, int level
)
1875 const struct g4x_pipe_wm
*raw
=
1876 &crtc_state
->wm
.vlv
.raw
[level
];
1877 const struct vlv_fifo_state
*fifo_state
=
1878 &crtc_state
->wm
.vlv
.fifo_state
;
1880 return raw
->plane
[plane_id
] <= fifo_state
->plane
[plane_id
];
1883 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state
*crtc_state
, int level
)
1885 return vlv_raw_plane_wm_is_valid(crtc_state
, PLANE_PRIMARY
, level
) &&
1886 vlv_raw_plane_wm_is_valid(crtc_state
, PLANE_SPRITE0
, level
) &&
1887 vlv_raw_plane_wm_is_valid(crtc_state
, PLANE_SPRITE1
, level
) &&
1888 vlv_raw_plane_wm_is_valid(crtc_state
, PLANE_CURSOR
, level
);
1891 static int vlv_compute_pipe_wm(struct intel_crtc_state
*crtc_state
)
1893 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
1894 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1895 struct intel_atomic_state
*state
=
1896 to_intel_atomic_state(crtc_state
->uapi
.state
);
1897 struct vlv_wm_state
*wm_state
= &crtc_state
->wm
.vlv
.optimal
;
1898 const struct vlv_fifo_state
*fifo_state
=
1899 &crtc_state
->wm
.vlv
.fifo_state
;
1900 int num_active_planes
= hweight8(crtc_state
->active_planes
&
1901 ~BIT(PLANE_CURSOR
));
1902 bool needs_modeset
= drm_atomic_crtc_needs_modeset(&crtc_state
->uapi
);
1903 const struct intel_plane_state
*old_plane_state
;
1904 const struct intel_plane_state
*new_plane_state
;
1905 struct intel_plane
*plane
;
1906 enum plane_id plane_id
;
1908 unsigned int dirty
= 0;
1910 for_each_oldnew_intel_plane_in_state(state
, plane
,
1912 new_plane_state
, i
) {
1913 if (new_plane_state
->hw
.crtc
!= &crtc
->base
&&
1914 old_plane_state
->hw
.crtc
!= &crtc
->base
)
1917 if (vlv_raw_plane_wm_compute(crtc_state
, new_plane_state
))
1918 dirty
|= BIT(plane
->id
);
1922 * DSPARB registers may have been reset due to the
1923 * power well being turned off. Make sure we restore
1924 * them to a consistent state even if no primary/sprite
1925 * planes are initially active.
1928 crtc_state
->fifo_changed
= true;
1933 /* cursor changes don't warrant a FIFO recompute */
1934 if (dirty
& ~BIT(PLANE_CURSOR
)) {
1935 const struct intel_crtc_state
*old_crtc_state
=
1936 intel_atomic_get_old_crtc_state(state
, crtc
);
1937 const struct vlv_fifo_state
*old_fifo_state
=
1938 &old_crtc_state
->wm
.vlv
.fifo_state
;
1940 ret
= vlv_compute_fifo(crtc_state
);
1944 if (needs_modeset
||
1945 memcmp(old_fifo_state
, fifo_state
,
1946 sizeof(*fifo_state
)) != 0)
1947 crtc_state
->fifo_changed
= true;
1950 /* initially allow all levels */
1951 wm_state
->num_levels
= intel_wm_num_levels(dev_priv
);
1953 * Note that enabling cxsr with no primary/sprite planes
1954 * enabled can wedge the pipe. Hence we only allow cxsr
1955 * with exactly one enabled primary/sprite plane.
1957 wm_state
->cxsr
= crtc
->pipe
!= PIPE_C
&& num_active_planes
== 1;
1959 for (level
= 0; level
< wm_state
->num_levels
; level
++) {
1960 const struct g4x_pipe_wm
*raw
= &crtc_state
->wm
.vlv
.raw
[level
];
1961 const int sr_fifo_size
= INTEL_NUM_PIPES(dev_priv
) * 512 - 1;
1963 if (!vlv_raw_crtc_wm_is_valid(crtc_state
, level
))
1966 for_each_plane_id_on_crtc(crtc
, plane_id
) {
1967 wm_state
->wm
[level
].plane
[plane_id
] =
1968 vlv_invert_wm_value(raw
->plane
[plane_id
],
1969 fifo_state
->plane
[plane_id
]);
1972 wm_state
->sr
[level
].plane
=
1973 vlv_invert_wm_value(max3(raw
->plane
[PLANE_PRIMARY
],
1974 raw
->plane
[PLANE_SPRITE0
],
1975 raw
->plane
[PLANE_SPRITE1
]),
1978 wm_state
->sr
[level
].cursor
=
1979 vlv_invert_wm_value(raw
->plane
[PLANE_CURSOR
],
1986 /* limit to only levels we can actually handle */
1987 wm_state
->num_levels
= level
;
1989 /* invalidate the higher levels */
1990 vlv_invalidate_wms(crtc
, wm_state
, level
);
1995 #define VLV_FIFO(plane, value) \
1996 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1998 static void vlv_atomic_update_fifo(struct intel_atomic_state
*state
,
1999 struct intel_crtc
*crtc
)
2001 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
2002 struct intel_uncore
*uncore
= &dev_priv
->uncore
;
2003 const struct intel_crtc_state
*crtc_state
=
2004 intel_atomic_get_new_crtc_state(state
, crtc
);
2005 const struct vlv_fifo_state
*fifo_state
=
2006 &crtc_state
->wm
.vlv
.fifo_state
;
2007 int sprite0_start
, sprite1_start
, fifo_size
;
2008 u32 dsparb
, dsparb2
, dsparb3
;
2010 if (!crtc_state
->fifo_changed
)
2013 sprite0_start
= fifo_state
->plane
[PLANE_PRIMARY
];
2014 sprite1_start
= fifo_state
->plane
[PLANE_SPRITE0
] + sprite0_start
;
2015 fifo_size
= fifo_state
->plane
[PLANE_SPRITE1
] + sprite1_start
;
2017 drm_WARN_ON(&dev_priv
->drm
, fifo_state
->plane
[PLANE_CURSOR
] != 63);
2018 drm_WARN_ON(&dev_priv
->drm
, fifo_size
!= 511);
2020 trace_vlv_fifo_size(crtc
, sprite0_start
, sprite1_start
, fifo_size
);
2023 * uncore.lock serves a double purpose here. It allows us to
2024 * use the less expensive I915_{READ,WRITE}_FW() functions, and
2025 * it protects the DSPARB registers from getting clobbered by
2026 * parallel updates from multiple pipes.
2028 * intel_pipe_update_start() has already disabled interrupts
2029 * for us, so a plain spin_lock() is sufficient here.
2031 spin_lock(&uncore
->lock
);
2033 switch (crtc
->pipe
) {
2035 dsparb
= intel_uncore_read_fw(uncore
, DSPARB
);
2036 dsparb2
= intel_uncore_read_fw(uncore
, DSPARB2
);
2038 dsparb
&= ~(VLV_FIFO(SPRITEA
, 0xff) |
2039 VLV_FIFO(SPRITEB
, 0xff));
2040 dsparb
|= (VLV_FIFO(SPRITEA
, sprite0_start
) |
2041 VLV_FIFO(SPRITEB
, sprite1_start
));
2043 dsparb2
&= ~(VLV_FIFO(SPRITEA_HI
, 0x1) |
2044 VLV_FIFO(SPRITEB_HI
, 0x1));
2045 dsparb2
|= (VLV_FIFO(SPRITEA_HI
, sprite0_start
>> 8) |
2046 VLV_FIFO(SPRITEB_HI
, sprite1_start
>> 8));
2048 intel_uncore_write_fw(uncore
, DSPARB
, dsparb
);
2049 intel_uncore_write_fw(uncore
, DSPARB2
, dsparb2
);
2052 dsparb
= intel_uncore_read_fw(uncore
, DSPARB
);
2053 dsparb2
= intel_uncore_read_fw(uncore
, DSPARB2
);
2055 dsparb
&= ~(VLV_FIFO(SPRITEC
, 0xff) |
2056 VLV_FIFO(SPRITED
, 0xff));
2057 dsparb
|= (VLV_FIFO(SPRITEC
, sprite0_start
) |
2058 VLV_FIFO(SPRITED
, sprite1_start
));
2060 dsparb2
&= ~(VLV_FIFO(SPRITEC_HI
, 0xff) |
2061 VLV_FIFO(SPRITED_HI
, 0xff));
2062 dsparb2
|= (VLV_FIFO(SPRITEC_HI
, sprite0_start
>> 8) |
2063 VLV_FIFO(SPRITED_HI
, sprite1_start
>> 8));
2065 intel_uncore_write_fw(uncore
, DSPARB
, dsparb
);
2066 intel_uncore_write_fw(uncore
, DSPARB2
, dsparb2
);
2069 dsparb3
= intel_uncore_read_fw(uncore
, DSPARB3
);
2070 dsparb2
= intel_uncore_read_fw(uncore
, DSPARB2
);
2072 dsparb3
&= ~(VLV_FIFO(SPRITEE
, 0xff) |
2073 VLV_FIFO(SPRITEF
, 0xff));
2074 dsparb3
|= (VLV_FIFO(SPRITEE
, sprite0_start
) |
2075 VLV_FIFO(SPRITEF
, sprite1_start
));
2077 dsparb2
&= ~(VLV_FIFO(SPRITEE_HI
, 0xff) |
2078 VLV_FIFO(SPRITEF_HI
, 0xff));
2079 dsparb2
|= (VLV_FIFO(SPRITEE_HI
, sprite0_start
>> 8) |
2080 VLV_FIFO(SPRITEF_HI
, sprite1_start
>> 8));
2082 intel_uncore_write_fw(uncore
, DSPARB3
, dsparb3
);
2083 intel_uncore_write_fw(uncore
, DSPARB2
, dsparb2
);
2089 intel_uncore_posting_read_fw(uncore
, DSPARB
);
2091 spin_unlock(&uncore
->lock
);
2096 static int vlv_compute_intermediate_wm(struct intel_crtc_state
*new_crtc_state
)
2098 struct intel_crtc
*crtc
= to_intel_crtc(new_crtc_state
->uapi
.crtc
);
2099 struct vlv_wm_state
*intermediate
= &new_crtc_state
->wm
.vlv
.intermediate
;
2100 const struct vlv_wm_state
*optimal
= &new_crtc_state
->wm
.vlv
.optimal
;
2101 struct intel_atomic_state
*intel_state
=
2102 to_intel_atomic_state(new_crtc_state
->uapi
.state
);
2103 const struct intel_crtc_state
*old_crtc_state
=
2104 intel_atomic_get_old_crtc_state(intel_state
, crtc
);
2105 const struct vlv_wm_state
*active
= &old_crtc_state
->wm
.vlv
.optimal
;
2108 if (!new_crtc_state
->hw
.active
|| drm_atomic_crtc_needs_modeset(&new_crtc_state
->uapi
)) {
2109 *intermediate
= *optimal
;
2111 intermediate
->cxsr
= false;
2115 intermediate
->num_levels
= min(optimal
->num_levels
, active
->num_levels
);
2116 intermediate
->cxsr
= optimal
->cxsr
&& active
->cxsr
&&
2117 !new_crtc_state
->disable_cxsr
;
2119 for (level
= 0; level
< intermediate
->num_levels
; level
++) {
2120 enum plane_id plane_id
;
2122 for_each_plane_id_on_crtc(crtc
, plane_id
) {
2123 intermediate
->wm
[level
].plane
[plane_id
] =
2124 min(optimal
->wm
[level
].plane
[plane_id
],
2125 active
->wm
[level
].plane
[plane_id
]);
2128 intermediate
->sr
[level
].plane
= min(optimal
->sr
[level
].plane
,
2129 active
->sr
[level
].plane
);
2130 intermediate
->sr
[level
].cursor
= min(optimal
->sr
[level
].cursor
,
2131 active
->sr
[level
].cursor
);
2134 vlv_invalidate_wms(crtc
, intermediate
, level
);
2138 * If our intermediate WM are identical to the final WM, then we can
2139 * omit the post-vblank programming; only update if it's different.
2141 if (memcmp(intermediate
, optimal
, sizeof(*intermediate
)) != 0)
2142 new_crtc_state
->wm
.need_postvbl_update
= true;
2147 static void vlv_merge_wm(struct drm_i915_private
*dev_priv
,
2148 struct vlv_wm_values
*wm
)
2150 struct intel_crtc
*crtc
;
2151 int num_active_pipes
= 0;
2153 wm
->level
= dev_priv
->wm
.max_level
;
2156 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
2157 const struct vlv_wm_state
*wm_state
= &crtc
->wm
.active
.vlv
;
2162 if (!wm_state
->cxsr
)
2166 wm
->level
= min_t(int, wm
->level
, wm_state
->num_levels
- 1);
2169 if (num_active_pipes
!= 1)
2172 if (num_active_pipes
> 1)
2173 wm
->level
= VLV_WM_LEVEL_PM2
;
2175 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
2176 const struct vlv_wm_state
*wm_state
= &crtc
->wm
.active
.vlv
;
2177 enum pipe pipe
= crtc
->pipe
;
2179 wm
->pipe
[pipe
] = wm_state
->wm
[wm
->level
];
2180 if (crtc
->active
&& wm
->cxsr
)
2181 wm
->sr
= wm_state
->sr
[wm
->level
];
2183 wm
->ddl
[pipe
].plane
[PLANE_PRIMARY
] = DDL_PRECISION_HIGH
| 2;
2184 wm
->ddl
[pipe
].plane
[PLANE_SPRITE0
] = DDL_PRECISION_HIGH
| 2;
2185 wm
->ddl
[pipe
].plane
[PLANE_SPRITE1
] = DDL_PRECISION_HIGH
| 2;
2186 wm
->ddl
[pipe
].plane
[PLANE_CURSOR
] = DDL_PRECISION_HIGH
| 2;
2190 static void vlv_program_watermarks(struct drm_i915_private
*dev_priv
)
2192 struct vlv_wm_values
*old_wm
= &dev_priv
->wm
.vlv
;
2193 struct vlv_wm_values new_wm
= {};
2195 vlv_merge_wm(dev_priv
, &new_wm
);
2197 if (memcmp(old_wm
, &new_wm
, sizeof(new_wm
)) == 0)
2200 if (is_disabling(old_wm
->level
, new_wm
.level
, VLV_WM_LEVEL_DDR_DVFS
))
2201 chv_set_memory_dvfs(dev_priv
, false);
2203 if (is_disabling(old_wm
->level
, new_wm
.level
, VLV_WM_LEVEL_PM5
))
2204 chv_set_memory_pm5(dev_priv
, false);
2206 if (is_disabling(old_wm
->cxsr
, new_wm
.cxsr
, true))
2207 _intel_set_memory_cxsr(dev_priv
, false);
2209 vlv_write_wm_values(dev_priv
, &new_wm
);
2211 if (is_enabling(old_wm
->cxsr
, new_wm
.cxsr
, true))
2212 _intel_set_memory_cxsr(dev_priv
, true);
2214 if (is_enabling(old_wm
->level
, new_wm
.level
, VLV_WM_LEVEL_PM5
))
2215 chv_set_memory_pm5(dev_priv
, true);
2217 if (is_enabling(old_wm
->level
, new_wm
.level
, VLV_WM_LEVEL_DDR_DVFS
))
2218 chv_set_memory_dvfs(dev_priv
, true);
2223 static void vlv_initial_watermarks(struct intel_atomic_state
*state
,
2224 struct intel_crtc
*crtc
)
2226 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
2227 const struct intel_crtc_state
*crtc_state
=
2228 intel_atomic_get_new_crtc_state(state
, crtc
);
2230 mutex_lock(&dev_priv
->wm
.wm_mutex
);
2231 crtc
->wm
.active
.vlv
= crtc_state
->wm
.vlv
.intermediate
;
2232 vlv_program_watermarks(dev_priv
);
2233 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
2236 static void vlv_optimize_watermarks(struct intel_atomic_state
*state
,
2237 struct intel_crtc
*crtc
)
2239 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
2240 const struct intel_crtc_state
*crtc_state
=
2241 intel_atomic_get_new_crtc_state(state
, crtc
);
2243 if (!crtc_state
->wm
.need_postvbl_update
)
2246 mutex_lock(&dev_priv
->wm
.wm_mutex
);
2247 crtc
->wm
.active
.vlv
= crtc_state
->wm
.vlv
.optimal
;
2248 vlv_program_watermarks(dev_priv
);
2249 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
2252 static void i965_update_wm(struct intel_crtc
*unused_crtc
)
2254 struct drm_i915_private
*dev_priv
= to_i915(unused_crtc
->base
.dev
);
2255 struct intel_crtc
*crtc
;
2260 /* Calc sr entries for one plane configs */
2261 crtc
= single_enabled_crtc(dev_priv
);
2263 /* self-refresh has much higher latency */
2264 static const int sr_latency_ns
= 12000;
2265 const struct drm_display_mode
*pipe_mode
=
2266 &crtc
->config
->hw
.pipe_mode
;
2267 const struct drm_framebuffer
*fb
=
2268 crtc
->base
.primary
->state
->fb
;
2269 int clock
= pipe_mode
->crtc_clock
;
2270 int htotal
= pipe_mode
->crtc_htotal
;
2271 int hdisplay
= crtc
->config
->pipe_src_w
;
2272 int cpp
= fb
->format
->cpp
[0];
2275 entries
= intel_wm_method2(clock
, htotal
,
2276 hdisplay
, cpp
, sr_latency_ns
/ 100);
2277 entries
= DIV_ROUND_UP(entries
, I915_FIFO_LINE_SIZE
);
2278 srwm
= I965_FIFO_SIZE
- entries
;
2282 drm_dbg_kms(&dev_priv
->drm
,
2283 "self-refresh entries: %d, wm: %d\n",
2286 entries
= intel_wm_method2(clock
, htotal
,
2287 crtc
->base
.cursor
->state
->crtc_w
, 4,
2288 sr_latency_ns
/ 100);
2289 entries
= DIV_ROUND_UP(entries
,
2290 i965_cursor_wm_info
.cacheline_size
) +
2291 i965_cursor_wm_info
.guard_size
;
2293 cursor_sr
= i965_cursor_wm_info
.fifo_size
- entries
;
2294 if (cursor_sr
> i965_cursor_wm_info
.max_wm
)
2295 cursor_sr
= i965_cursor_wm_info
.max_wm
;
2297 drm_dbg_kms(&dev_priv
->drm
,
2298 "self-refresh watermark: display plane %d "
2299 "cursor %d\n", srwm
, cursor_sr
);
2301 cxsr_enabled
= true;
2303 cxsr_enabled
= false;
2304 /* Turn off self refresh if both pipes are enabled */
2305 intel_set_memory_cxsr(dev_priv
, false);
2308 drm_dbg_kms(&dev_priv
->drm
,
2309 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2312 /* 965 has limitations... */
2313 I915_WRITE(DSPFW1
, FW_WM(srwm
, SR
) |
2317 I915_WRITE(DSPFW2
, FW_WM(8, CURSORA
) |
2318 FW_WM(8, PLANEC_OLD
));
2319 /* update cursor SR watermark */
2320 I915_WRITE(DSPFW3
, FW_WM(cursor_sr
, CURSOR_SR
));
2323 intel_set_memory_cxsr(dev_priv
, true);
2328 static void i9xx_update_wm(struct intel_crtc
*unused_crtc
)
2330 struct drm_i915_private
*dev_priv
= to_i915(unused_crtc
->base
.dev
);
2331 const struct intel_watermark_params
*wm_info
;
2336 int planea_wm
, planeb_wm
;
2337 struct intel_crtc
*crtc
, *enabled
= NULL
;
2339 if (IS_I945GM(dev_priv
))
2340 wm_info
= &i945_wm_info
;
2341 else if (!IS_GEN(dev_priv
, 2))
2342 wm_info
= &i915_wm_info
;
2344 wm_info
= &i830_a_wm_info
;
2346 fifo_size
= dev_priv
->display
.get_fifo_size(dev_priv
, PLANE_A
);
2347 crtc
= intel_get_crtc_for_plane(dev_priv
, PLANE_A
);
2348 if (intel_crtc_active(crtc
)) {
2349 const struct drm_display_mode
*pipe_mode
=
2350 &crtc
->config
->hw
.pipe_mode
;
2351 const struct drm_framebuffer
*fb
=
2352 crtc
->base
.primary
->state
->fb
;
2355 if (IS_GEN(dev_priv
, 2))
2358 cpp
= fb
->format
->cpp
[0];
2360 planea_wm
= intel_calculate_wm(pipe_mode
->crtc_clock
,
2361 wm_info
, fifo_size
, cpp
,
2362 pessimal_latency_ns
);
2365 planea_wm
= fifo_size
- wm_info
->guard_size
;
2366 if (planea_wm
> (long)wm_info
->max_wm
)
2367 planea_wm
= wm_info
->max_wm
;
2370 if (IS_GEN(dev_priv
, 2))
2371 wm_info
= &i830_bc_wm_info
;
2373 fifo_size
= dev_priv
->display
.get_fifo_size(dev_priv
, PLANE_B
);
2374 crtc
= intel_get_crtc_for_plane(dev_priv
, PLANE_B
);
2375 if (intel_crtc_active(crtc
)) {
2376 const struct drm_display_mode
*pipe_mode
=
2377 &crtc
->config
->hw
.pipe_mode
;
2378 const struct drm_framebuffer
*fb
=
2379 crtc
->base
.primary
->state
->fb
;
2382 if (IS_GEN(dev_priv
, 2))
2385 cpp
= fb
->format
->cpp
[0];
2387 planeb_wm
= intel_calculate_wm(pipe_mode
->crtc_clock
,
2388 wm_info
, fifo_size
, cpp
,
2389 pessimal_latency_ns
);
2390 if (enabled
== NULL
)
2395 planeb_wm
= fifo_size
- wm_info
->guard_size
;
2396 if (planeb_wm
> (long)wm_info
->max_wm
)
2397 planeb_wm
= wm_info
->max_wm
;
2400 drm_dbg_kms(&dev_priv
->drm
,
2401 "FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
2403 if (IS_I915GM(dev_priv
) && enabled
) {
2404 struct drm_i915_gem_object
*obj
;
2406 obj
= intel_fb_obj(enabled
->base
.primary
->state
->fb
);
2408 /* self-refresh seems busted with untiled */
2409 if (!i915_gem_object_is_tiled(obj
))
2414 * Overlay gets an aggressive default since video jitter is bad.
2418 /* Play safe and disable self-refresh before adjusting watermarks. */
2419 intel_set_memory_cxsr(dev_priv
, false);
2421 /* Calc sr entries for one plane configs */
2422 if (HAS_FW_BLC(dev_priv
) && enabled
) {
2423 /* self-refresh has much higher latency */
2424 static const int sr_latency_ns
= 6000;
2425 const struct drm_display_mode
*pipe_mode
=
2426 &enabled
->config
->hw
.pipe_mode
;
2427 const struct drm_framebuffer
*fb
=
2428 enabled
->base
.primary
->state
->fb
;
2429 int clock
= pipe_mode
->crtc_clock
;
2430 int htotal
= pipe_mode
->crtc_htotal
;
2431 int hdisplay
= enabled
->config
->pipe_src_w
;
2435 if (IS_I915GM(dev_priv
) || IS_I945GM(dev_priv
))
2438 cpp
= fb
->format
->cpp
[0];
2440 entries
= intel_wm_method2(clock
, htotal
, hdisplay
, cpp
,
2441 sr_latency_ns
/ 100);
2442 entries
= DIV_ROUND_UP(entries
, wm_info
->cacheline_size
);
2443 drm_dbg_kms(&dev_priv
->drm
,
2444 "self-refresh entries: %d\n", entries
);
2445 srwm
= wm_info
->fifo_size
- entries
;
2449 if (IS_I945G(dev_priv
) || IS_I945GM(dev_priv
))
2450 I915_WRITE(FW_BLC_SELF
,
2451 FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
2453 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
2456 drm_dbg_kms(&dev_priv
->drm
,
2457 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2458 planea_wm
, planeb_wm
, cwm
, srwm
);
2460 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
2461 fwater_hi
= (cwm
& 0x1f);
2463 /* Set request length to 8 cachelines per fetch */
2464 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
2465 fwater_hi
= fwater_hi
| (1 << 8);
2467 I915_WRITE(FW_BLC
, fwater_lo
);
2468 I915_WRITE(FW_BLC2
, fwater_hi
);
2471 intel_set_memory_cxsr(dev_priv
, true);
2474 static void i845_update_wm(struct intel_crtc
*unused_crtc
)
2476 struct drm_i915_private
*dev_priv
= to_i915(unused_crtc
->base
.dev
);
2477 struct intel_crtc
*crtc
;
2478 const struct drm_display_mode
*pipe_mode
;
2482 crtc
= single_enabled_crtc(dev_priv
);
2486 pipe_mode
= &crtc
->config
->hw
.pipe_mode
;
2487 planea_wm
= intel_calculate_wm(pipe_mode
->crtc_clock
,
2489 dev_priv
->display
.get_fifo_size(dev_priv
, PLANE_A
),
2490 4, pessimal_latency_ns
);
2491 fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
2492 fwater_lo
|= (3<<8) | planea_wm
;
2494 drm_dbg_kms(&dev_priv
->drm
,
2495 "Setting FIFO watermarks - A: %d\n", planea_wm
);
2497 I915_WRITE(FW_BLC
, fwater_lo
);
2500 /* latency must be in 0.1us units. */
2501 static unsigned int ilk_wm_method1(unsigned int pixel_rate
,
2503 unsigned int latency
)
2507 ret
= intel_wm_method1(pixel_rate
, cpp
, latency
);
2508 ret
= DIV_ROUND_UP(ret
, 64) + 2;
2513 /* latency must be in 0.1us units. */
2514 static unsigned int ilk_wm_method2(unsigned int pixel_rate
,
2515 unsigned int htotal
,
2518 unsigned int latency
)
2522 ret
= intel_wm_method2(pixel_rate
, htotal
,
2523 width
, cpp
, latency
);
2524 ret
= DIV_ROUND_UP(ret
, 64) + 2;
2529 static u32
ilk_wm_fbc(u32 pri_val
, u32 horiz_pixels
, u8 cpp
)
2532 * Neither of these should be possible since this function shouldn't be
2533 * called if the CRTC is off or the plane is invisible. But let's be
2534 * extra paranoid to avoid a potential divide-by-zero if we screw up
2535 * elsewhere in the driver.
2539 if (WARN_ON(!horiz_pixels
))
2542 return DIV_ROUND_UP(pri_val
* 64, horiz_pixels
* cpp
) + 2;
2545 struct ilk_wm_maximums
{
2553 * For both WM_PIPE and WM_LP.
2554 * mem_value must be in 0.1us units.
2556 static u32
ilk_compute_pri_wm(const struct intel_crtc_state
*crtc_state
,
2557 const struct intel_plane_state
*plane_state
,
2558 u32 mem_value
, bool is_lp
)
2560 u32 method1
, method2
;
2566 if (!intel_wm_plane_visible(crtc_state
, plane_state
))
2569 cpp
= plane_state
->hw
.fb
->format
->cpp
[0];
2571 method1
= ilk_wm_method1(crtc_state
->pixel_rate
, cpp
, mem_value
);
2576 method2
= ilk_wm_method2(crtc_state
->pixel_rate
,
2577 crtc_state
->hw
.pipe_mode
.crtc_htotal
,
2578 drm_rect_width(&plane_state
->uapi
.dst
),
2581 return min(method1
, method2
);
2585 * For both WM_PIPE and WM_LP.
2586 * mem_value must be in 0.1us units.
2588 static u32
ilk_compute_spr_wm(const struct intel_crtc_state
*crtc_state
,
2589 const struct intel_plane_state
*plane_state
,
2592 u32 method1
, method2
;
2598 if (!intel_wm_plane_visible(crtc_state
, plane_state
))
2601 cpp
= plane_state
->hw
.fb
->format
->cpp
[0];
2603 method1
= ilk_wm_method1(crtc_state
->pixel_rate
, cpp
, mem_value
);
2604 method2
= ilk_wm_method2(crtc_state
->pixel_rate
,
2605 crtc_state
->hw
.pipe_mode
.crtc_htotal
,
2606 drm_rect_width(&plane_state
->uapi
.dst
),
2608 return min(method1
, method2
);
2612 * For both WM_PIPE and WM_LP.
2613 * mem_value must be in 0.1us units.
2615 static u32
ilk_compute_cur_wm(const struct intel_crtc_state
*crtc_state
,
2616 const struct intel_plane_state
*plane_state
,
2624 if (!intel_wm_plane_visible(crtc_state
, plane_state
))
2627 cpp
= plane_state
->hw
.fb
->format
->cpp
[0];
2629 return ilk_wm_method2(crtc_state
->pixel_rate
,
2630 crtc_state
->hw
.pipe_mode
.crtc_htotal
,
2631 drm_rect_width(&plane_state
->uapi
.dst
),
2635 /* Only for WM_LP. */
2636 static u32
ilk_compute_fbc_wm(const struct intel_crtc_state
*crtc_state
,
2637 const struct intel_plane_state
*plane_state
,
2642 if (!intel_wm_plane_visible(crtc_state
, plane_state
))
2645 cpp
= plane_state
->hw
.fb
->format
->cpp
[0];
2647 return ilk_wm_fbc(pri_val
, drm_rect_width(&plane_state
->uapi
.dst
),
2652 ilk_display_fifo_size(const struct drm_i915_private
*dev_priv
)
2654 if (INTEL_GEN(dev_priv
) >= 8)
2656 else if (INTEL_GEN(dev_priv
) >= 7)
2663 ilk_plane_wm_reg_max(const struct drm_i915_private
*dev_priv
,
2664 int level
, bool is_sprite
)
2666 if (INTEL_GEN(dev_priv
) >= 8)
2667 /* BDW primary/sprite plane watermarks */
2668 return level
== 0 ? 255 : 2047;
2669 else if (INTEL_GEN(dev_priv
) >= 7)
2670 /* IVB/HSW primary/sprite plane watermarks */
2671 return level
== 0 ? 127 : 1023;
2672 else if (!is_sprite
)
2673 /* ILK/SNB primary plane watermarks */
2674 return level
== 0 ? 127 : 511;
2676 /* ILK/SNB sprite plane watermarks */
2677 return level
== 0 ? 63 : 255;
2681 ilk_cursor_wm_reg_max(const struct drm_i915_private
*dev_priv
, int level
)
2683 if (INTEL_GEN(dev_priv
) >= 7)
2684 return level
== 0 ? 63 : 255;
2686 return level
== 0 ? 31 : 63;
2689 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private
*dev_priv
)
2691 if (INTEL_GEN(dev_priv
) >= 8)
2697 /* Calculate the maximum primary/sprite plane watermark */
2698 static unsigned int ilk_plane_wm_max(const struct drm_i915_private
*dev_priv
,
2700 const struct intel_wm_config
*config
,
2701 enum intel_ddb_partitioning ddb_partitioning
,
2704 unsigned int fifo_size
= ilk_display_fifo_size(dev_priv
);
2706 /* if sprites aren't enabled, sprites get nothing */
2707 if (is_sprite
&& !config
->sprites_enabled
)
2710 /* HSW allows LP1+ watermarks even with multiple pipes */
2711 if (level
== 0 || config
->num_pipes_active
> 1) {
2712 fifo_size
/= INTEL_NUM_PIPES(dev_priv
);
2715 * For some reason the non self refresh
2716 * FIFO size is only half of the self
2717 * refresh FIFO size on ILK/SNB.
2719 if (INTEL_GEN(dev_priv
) <= 6)
2723 if (config
->sprites_enabled
) {
2724 /* level 0 is always calculated with 1:1 split */
2725 if (level
> 0 && ddb_partitioning
== INTEL_DDB_PART_5_6
) {
2734 /* clamp to max that the registers can hold */
2735 return min(fifo_size
, ilk_plane_wm_reg_max(dev_priv
, level
, is_sprite
));
2738 /* Calculate the maximum cursor plane watermark */
2739 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private
*dev_priv
,
2741 const struct intel_wm_config
*config
)
2743 /* HSW LP1+ watermarks w/ multiple pipes */
2744 if (level
> 0 && config
->num_pipes_active
> 1)
2747 /* otherwise just report max that registers can hold */
2748 return ilk_cursor_wm_reg_max(dev_priv
, level
);
2751 static void ilk_compute_wm_maximums(const struct drm_i915_private
*dev_priv
,
2753 const struct intel_wm_config
*config
,
2754 enum intel_ddb_partitioning ddb_partitioning
,
2755 struct ilk_wm_maximums
*max
)
2757 max
->pri
= ilk_plane_wm_max(dev_priv
, level
, config
, ddb_partitioning
, false);
2758 max
->spr
= ilk_plane_wm_max(dev_priv
, level
, config
, ddb_partitioning
, true);
2759 max
->cur
= ilk_cursor_wm_max(dev_priv
, level
, config
);
2760 max
->fbc
= ilk_fbc_wm_reg_max(dev_priv
);
2763 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private
*dev_priv
,
2765 struct ilk_wm_maximums
*max
)
2767 max
->pri
= ilk_plane_wm_reg_max(dev_priv
, level
, false);
2768 max
->spr
= ilk_plane_wm_reg_max(dev_priv
, level
, true);
2769 max
->cur
= ilk_cursor_wm_reg_max(dev_priv
, level
);
2770 max
->fbc
= ilk_fbc_wm_reg_max(dev_priv
);
2773 static bool ilk_validate_wm_level(int level
,
2774 const struct ilk_wm_maximums
*max
,
2775 struct intel_wm_level
*result
)
2779 /* already determined to be invalid? */
2780 if (!result
->enable
)
2783 result
->enable
= result
->pri_val
<= max
->pri
&&
2784 result
->spr_val
<= max
->spr
&&
2785 result
->cur_val
<= max
->cur
;
2787 ret
= result
->enable
;
2790 * HACK until we can pre-compute everything,
2791 * and thus fail gracefully if LP0 watermarks
2794 if (level
== 0 && !result
->enable
) {
2795 if (result
->pri_val
> max
->pri
)
2796 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2797 level
, result
->pri_val
, max
->pri
);
2798 if (result
->spr_val
> max
->spr
)
2799 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2800 level
, result
->spr_val
, max
->spr
);
2801 if (result
->cur_val
> max
->cur
)
2802 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2803 level
, result
->cur_val
, max
->cur
);
2805 result
->pri_val
= min_t(u32
, result
->pri_val
, max
->pri
);
2806 result
->spr_val
= min_t(u32
, result
->spr_val
, max
->spr
);
2807 result
->cur_val
= min_t(u32
, result
->cur_val
, max
->cur
);
2808 result
->enable
= true;
2814 static void ilk_compute_wm_level(const struct drm_i915_private
*dev_priv
,
2815 const struct intel_crtc
*crtc
,
2817 struct intel_crtc_state
*crtc_state
,
2818 const struct intel_plane_state
*pristate
,
2819 const struct intel_plane_state
*sprstate
,
2820 const struct intel_plane_state
*curstate
,
2821 struct intel_wm_level
*result
)
2823 u16 pri_latency
= dev_priv
->wm
.pri_latency
[level
];
2824 u16 spr_latency
= dev_priv
->wm
.spr_latency
[level
];
2825 u16 cur_latency
= dev_priv
->wm
.cur_latency
[level
];
2827 /* WM1+ latency values stored in 0.5us units */
2835 result
->pri_val
= ilk_compute_pri_wm(crtc_state
, pristate
,
2836 pri_latency
, level
);
2837 result
->fbc_val
= ilk_compute_fbc_wm(crtc_state
, pristate
, result
->pri_val
);
2841 result
->spr_val
= ilk_compute_spr_wm(crtc_state
, sprstate
, spr_latency
);
2844 result
->cur_val
= ilk_compute_cur_wm(crtc_state
, curstate
, cur_latency
);
2846 result
->enable
= true;
2849 static void intel_read_wm_latency(struct drm_i915_private
*dev_priv
,
2852 struct intel_uncore
*uncore
= &dev_priv
->uncore
;
2854 if (INTEL_GEN(dev_priv
) >= 9) {
2857 int level
, max_level
= ilk_wm_max_level(dev_priv
);
2859 /* read the first set of memory latencies[0:3] */
2860 val
= 0; /* data0 to be programmed to 0 for first set */
2861 ret
= sandybridge_pcode_read(dev_priv
,
2862 GEN9_PCODE_READ_MEM_LATENCY
,
2866 drm_err(&dev_priv
->drm
,
2867 "SKL Mailbox read error = %d\n", ret
);
2871 wm
[0] = val
& GEN9_MEM_LATENCY_LEVEL_MASK
;
2872 wm
[1] = (val
>> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT
) &
2873 GEN9_MEM_LATENCY_LEVEL_MASK
;
2874 wm
[2] = (val
>> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT
) &
2875 GEN9_MEM_LATENCY_LEVEL_MASK
;
2876 wm
[3] = (val
>> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT
) &
2877 GEN9_MEM_LATENCY_LEVEL_MASK
;
2879 /* read the second set of memory latencies[4:7] */
2880 val
= 1; /* data0 to be programmed to 1 for second set */
2881 ret
= sandybridge_pcode_read(dev_priv
,
2882 GEN9_PCODE_READ_MEM_LATENCY
,
2885 drm_err(&dev_priv
->drm
,
2886 "SKL Mailbox read error = %d\n", ret
);
2890 wm
[4] = val
& GEN9_MEM_LATENCY_LEVEL_MASK
;
2891 wm
[5] = (val
>> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT
) &
2892 GEN9_MEM_LATENCY_LEVEL_MASK
;
2893 wm
[6] = (val
>> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT
) &
2894 GEN9_MEM_LATENCY_LEVEL_MASK
;
2895 wm
[7] = (val
>> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT
) &
2896 GEN9_MEM_LATENCY_LEVEL_MASK
;
2899 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2900 * need to be disabled. We make sure to sanitize the values out
2901 * of the punit to satisfy this requirement.
2903 for (level
= 1; level
<= max_level
; level
++) {
2904 if (wm
[level
] == 0) {
2905 for (i
= level
+ 1; i
<= max_level
; i
++)
2912 * WaWmMemoryReadLatency:skl+,glk
2914 * punit doesn't take into account the read latency so we need
2915 * to add 2us to the various latency levels we retrieve from the
2916 * punit when level 0 response data us 0us.
2920 for (level
= 1; level
<= max_level
; level
++) {
2928 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2929 * If we could not get dimm info enable this WA to prevent from
2930 * any underrun. If not able to get Dimm info assume 16GB dimm
2931 * to avoid any underrun.
2933 if (dev_priv
->dram_info
.is_16gb_dimm
)
2936 } else if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
)) {
2937 u64 sskpd
= intel_uncore_read64(uncore
, MCH_SSKPD
);
2939 wm
[0] = (sskpd
>> 56) & 0xFF;
2941 wm
[0] = sskpd
& 0xF;
2942 wm
[1] = (sskpd
>> 4) & 0xFF;
2943 wm
[2] = (sskpd
>> 12) & 0xFF;
2944 wm
[3] = (sskpd
>> 20) & 0x1FF;
2945 wm
[4] = (sskpd
>> 32) & 0x1FF;
2946 } else if (INTEL_GEN(dev_priv
) >= 6) {
2947 u32 sskpd
= intel_uncore_read(uncore
, MCH_SSKPD
);
2949 wm
[0] = (sskpd
>> SSKPD_WM0_SHIFT
) & SSKPD_WM_MASK
;
2950 wm
[1] = (sskpd
>> SSKPD_WM1_SHIFT
) & SSKPD_WM_MASK
;
2951 wm
[2] = (sskpd
>> SSKPD_WM2_SHIFT
) & SSKPD_WM_MASK
;
2952 wm
[3] = (sskpd
>> SSKPD_WM3_SHIFT
) & SSKPD_WM_MASK
;
2953 } else if (INTEL_GEN(dev_priv
) >= 5) {
2954 u32 mltr
= intel_uncore_read(uncore
, MLTR_ILK
);
2956 /* ILK primary LP0 latency is 700 ns */
2958 wm
[1] = (mltr
>> MLTR_WM1_SHIFT
) & ILK_SRLT_MASK
;
2959 wm
[2] = (mltr
>> MLTR_WM2_SHIFT
) & ILK_SRLT_MASK
;
2961 MISSING_CASE(INTEL_DEVID(dev_priv
));
2965 static void intel_fixup_spr_wm_latency(struct drm_i915_private
*dev_priv
,
2968 /* ILK sprite LP0 latency is 1300 ns */
2969 if (IS_GEN(dev_priv
, 5))
2973 static void intel_fixup_cur_wm_latency(struct drm_i915_private
*dev_priv
,
2976 /* ILK cursor LP0 latency is 1300 ns */
2977 if (IS_GEN(dev_priv
, 5))
2981 int ilk_wm_max_level(const struct drm_i915_private
*dev_priv
)
2983 /* how many WM levels are we expecting */
2984 if (INTEL_GEN(dev_priv
) >= 9)
2986 else if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
2988 else if (INTEL_GEN(dev_priv
) >= 6)
2994 static void intel_print_wm_latency(struct drm_i915_private
*dev_priv
,
2998 int level
, max_level
= ilk_wm_max_level(dev_priv
);
3000 for (level
= 0; level
<= max_level
; level
++) {
3001 unsigned int latency
= wm
[level
];
3004 drm_dbg_kms(&dev_priv
->drm
,
3005 "%s WM%d latency not provided\n",
3011 * - latencies are in us on gen9.
3012 * - before then, WM1+ latency values are in 0.5us units
3014 if (INTEL_GEN(dev_priv
) >= 9)
3019 drm_dbg_kms(&dev_priv
->drm
,
3020 "%s WM%d latency %u (%u.%u usec)\n", name
, level
,
3021 wm
[level
], latency
/ 10, latency
% 10);
3025 static bool ilk_increase_wm_latency(struct drm_i915_private
*dev_priv
,
3028 int level
, max_level
= ilk_wm_max_level(dev_priv
);
3033 wm
[0] = max(wm
[0], min
);
3034 for (level
= 1; level
<= max_level
; level
++)
3035 wm
[level
] = max_t(u16
, wm
[level
], DIV_ROUND_UP(min
, 5));
3040 static void snb_wm_latency_quirk(struct drm_i915_private
*dev_priv
)
3045 * The BIOS provided WM memory latency values are often
3046 * inadequate for high resolution displays. Adjust them.
3048 changed
= ilk_increase_wm_latency(dev_priv
, dev_priv
->wm
.pri_latency
, 12) |
3049 ilk_increase_wm_latency(dev_priv
, dev_priv
->wm
.spr_latency
, 12) |
3050 ilk_increase_wm_latency(dev_priv
, dev_priv
->wm
.cur_latency
, 12);
3055 drm_dbg_kms(&dev_priv
->drm
,
3056 "WM latency values increased to avoid potential underruns\n");
3057 intel_print_wm_latency(dev_priv
, "Primary", dev_priv
->wm
.pri_latency
);
3058 intel_print_wm_latency(dev_priv
, "Sprite", dev_priv
->wm
.spr_latency
);
3059 intel_print_wm_latency(dev_priv
, "Cursor", dev_priv
->wm
.cur_latency
);
3062 static void snb_wm_lp3_irq_quirk(struct drm_i915_private
*dev_priv
)
3065 * On some SNB machines (Thinkpad X220 Tablet at least)
3066 * LP3 usage can cause vblank interrupts to be lost.
3067 * The DEIIR bit will go high but it looks like the CPU
3068 * never gets interrupted.
3070 * It's not clear whether other interrupt source could
3071 * be affected or if this is somehow limited to vblank
3072 * interrupts only. To play it safe we disable LP3
3073 * watermarks entirely.
3075 if (dev_priv
->wm
.pri_latency
[3] == 0 &&
3076 dev_priv
->wm
.spr_latency
[3] == 0 &&
3077 dev_priv
->wm
.cur_latency
[3] == 0)
3080 dev_priv
->wm
.pri_latency
[3] = 0;
3081 dev_priv
->wm
.spr_latency
[3] = 0;
3082 dev_priv
->wm
.cur_latency
[3] = 0;
3084 drm_dbg_kms(&dev_priv
->drm
,
3085 "LP3 watermarks disabled due to potential for lost interrupts\n");
3086 intel_print_wm_latency(dev_priv
, "Primary", dev_priv
->wm
.pri_latency
);
3087 intel_print_wm_latency(dev_priv
, "Sprite", dev_priv
->wm
.spr_latency
);
3088 intel_print_wm_latency(dev_priv
, "Cursor", dev_priv
->wm
.cur_latency
);
3091 static void ilk_setup_wm_latency(struct drm_i915_private
*dev_priv
)
3093 intel_read_wm_latency(dev_priv
, dev_priv
->wm
.pri_latency
);
3095 memcpy(dev_priv
->wm
.spr_latency
, dev_priv
->wm
.pri_latency
,
3096 sizeof(dev_priv
->wm
.pri_latency
));
3097 memcpy(dev_priv
->wm
.cur_latency
, dev_priv
->wm
.pri_latency
,
3098 sizeof(dev_priv
->wm
.pri_latency
));
3100 intel_fixup_spr_wm_latency(dev_priv
, dev_priv
->wm
.spr_latency
);
3101 intel_fixup_cur_wm_latency(dev_priv
, dev_priv
->wm
.cur_latency
);
3103 intel_print_wm_latency(dev_priv
, "Primary", dev_priv
->wm
.pri_latency
);
3104 intel_print_wm_latency(dev_priv
, "Sprite", dev_priv
->wm
.spr_latency
);
3105 intel_print_wm_latency(dev_priv
, "Cursor", dev_priv
->wm
.cur_latency
);
3107 if (IS_GEN(dev_priv
, 6)) {
3108 snb_wm_latency_quirk(dev_priv
);
3109 snb_wm_lp3_irq_quirk(dev_priv
);
3113 static void skl_setup_wm_latency(struct drm_i915_private
*dev_priv
)
3115 intel_read_wm_latency(dev_priv
, dev_priv
->wm
.skl_latency
);
3116 intel_print_wm_latency(dev_priv
, "Gen9 Plane", dev_priv
->wm
.skl_latency
);
3119 static bool ilk_validate_pipe_wm(const struct drm_i915_private
*dev_priv
,
3120 struct intel_pipe_wm
*pipe_wm
)
3122 /* LP0 watermark maximums depend on this pipe alone */
3123 const struct intel_wm_config config
= {
3124 .num_pipes_active
= 1,
3125 .sprites_enabled
= pipe_wm
->sprites_enabled
,
3126 .sprites_scaled
= pipe_wm
->sprites_scaled
,
3128 struct ilk_wm_maximums max
;
3130 /* LP0 watermarks always use 1/2 DDB partitioning */
3131 ilk_compute_wm_maximums(dev_priv
, 0, &config
, INTEL_DDB_PART_1_2
, &max
);
3133 /* At least LP0 must be valid */
3134 if (!ilk_validate_wm_level(0, &max
, &pipe_wm
->wm
[0])) {
3135 drm_dbg_kms(&dev_priv
->drm
, "LP0 watermark invalid\n");
3142 /* Compute new watermarks for the pipe */
3143 static int ilk_compute_pipe_wm(struct intel_crtc_state
*crtc_state
)
3145 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
3146 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
3147 struct intel_pipe_wm
*pipe_wm
;
3148 struct intel_plane
*plane
;
3149 const struct intel_plane_state
*plane_state
;
3150 const struct intel_plane_state
*pristate
= NULL
;
3151 const struct intel_plane_state
*sprstate
= NULL
;
3152 const struct intel_plane_state
*curstate
= NULL
;
3153 int level
, max_level
= ilk_wm_max_level(dev_priv
), usable_level
;
3154 struct ilk_wm_maximums max
;
3156 pipe_wm
= &crtc_state
->wm
.ilk
.optimal
;
3158 intel_atomic_crtc_state_for_each_plane_state(plane
, plane_state
, crtc_state
) {
3159 if (plane
->base
.type
== DRM_PLANE_TYPE_PRIMARY
)
3160 pristate
= plane_state
;
3161 else if (plane
->base
.type
== DRM_PLANE_TYPE_OVERLAY
)
3162 sprstate
= plane_state
;
3163 else if (plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
)
3164 curstate
= plane_state
;
3167 pipe_wm
->pipe_enabled
= crtc_state
->hw
.active
;
3169 pipe_wm
->sprites_enabled
= sprstate
->uapi
.visible
;
3170 pipe_wm
->sprites_scaled
= sprstate
->uapi
.visible
&&
3171 (drm_rect_width(&sprstate
->uapi
.dst
) != drm_rect_width(&sprstate
->uapi
.src
) >> 16 ||
3172 drm_rect_height(&sprstate
->uapi
.dst
) != drm_rect_height(&sprstate
->uapi
.src
) >> 16);
3175 usable_level
= max_level
;
3177 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3178 if (INTEL_GEN(dev_priv
) <= 6 && pipe_wm
->sprites_enabled
)
3181 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3182 if (pipe_wm
->sprites_scaled
)
3185 memset(&pipe_wm
->wm
, 0, sizeof(pipe_wm
->wm
));
3186 ilk_compute_wm_level(dev_priv
, crtc
, 0, crtc_state
,
3187 pristate
, sprstate
, curstate
, &pipe_wm
->wm
[0]);
3189 if (!ilk_validate_pipe_wm(dev_priv
, pipe_wm
))
3192 ilk_compute_wm_reg_maximums(dev_priv
, 1, &max
);
3194 for (level
= 1; level
<= usable_level
; level
++) {
3195 struct intel_wm_level
*wm
= &pipe_wm
->wm
[level
];
3197 ilk_compute_wm_level(dev_priv
, crtc
, level
, crtc_state
,
3198 pristate
, sprstate
, curstate
, wm
);
3201 * Disable any watermark level that exceeds the
3202 * register maximums since such watermarks are
3205 if (!ilk_validate_wm_level(level
, &max
, wm
)) {
3206 memset(wm
, 0, sizeof(*wm
));
3215 * Build a set of 'intermediate' watermark values that satisfy both the old
3216 * state and the new state. These can be programmed to the hardware
3219 static int ilk_compute_intermediate_wm(struct intel_crtc_state
*newstate
)
3221 struct intel_crtc
*intel_crtc
= to_intel_crtc(newstate
->uapi
.crtc
);
3222 struct drm_i915_private
*dev_priv
= to_i915(intel_crtc
->base
.dev
);
3223 struct intel_pipe_wm
*a
= &newstate
->wm
.ilk
.intermediate
;
3224 struct intel_atomic_state
*intel_state
=
3225 to_intel_atomic_state(newstate
->uapi
.state
);
3226 const struct intel_crtc_state
*oldstate
=
3227 intel_atomic_get_old_crtc_state(intel_state
, intel_crtc
);
3228 const struct intel_pipe_wm
*b
= &oldstate
->wm
.ilk
.optimal
;
3229 int level
, max_level
= ilk_wm_max_level(dev_priv
);
3232 * Start with the final, target watermarks, then combine with the
3233 * currently active watermarks to get values that are safe both before
3234 * and after the vblank.
3236 *a
= newstate
->wm
.ilk
.optimal
;
3237 if (!newstate
->hw
.active
|| drm_atomic_crtc_needs_modeset(&newstate
->uapi
) ||
3238 intel_state
->skip_intermediate_wm
)
3241 a
->pipe_enabled
|= b
->pipe_enabled
;
3242 a
->sprites_enabled
|= b
->sprites_enabled
;
3243 a
->sprites_scaled
|= b
->sprites_scaled
;
3245 for (level
= 0; level
<= max_level
; level
++) {
3246 struct intel_wm_level
*a_wm
= &a
->wm
[level
];
3247 const struct intel_wm_level
*b_wm
= &b
->wm
[level
];
3249 a_wm
->enable
&= b_wm
->enable
;
3250 a_wm
->pri_val
= max(a_wm
->pri_val
, b_wm
->pri_val
);
3251 a_wm
->spr_val
= max(a_wm
->spr_val
, b_wm
->spr_val
);
3252 a_wm
->cur_val
= max(a_wm
->cur_val
, b_wm
->cur_val
);
3253 a_wm
->fbc_val
= max(a_wm
->fbc_val
, b_wm
->fbc_val
);
3257 * We need to make sure that these merged watermark values are
3258 * actually a valid configuration themselves. If they're not,
3259 * there's no safe way to transition from the old state to
3260 * the new state, so we need to fail the atomic transaction.
3262 if (!ilk_validate_pipe_wm(dev_priv
, a
))
3266 * If our intermediate WM are identical to the final WM, then we can
3267 * omit the post-vblank programming; only update if it's different.
3269 if (memcmp(a
, &newstate
->wm
.ilk
.optimal
, sizeof(*a
)) != 0)
3270 newstate
->wm
.need_postvbl_update
= true;
3276 * Merge the watermarks from all active pipes for a specific level.
3278 static void ilk_merge_wm_level(struct drm_i915_private
*dev_priv
,
3280 struct intel_wm_level
*ret_wm
)
3282 const struct intel_crtc
*intel_crtc
;
3284 ret_wm
->enable
= true;
3286 for_each_intel_crtc(&dev_priv
->drm
, intel_crtc
) {
3287 const struct intel_pipe_wm
*active
= &intel_crtc
->wm
.active
.ilk
;
3288 const struct intel_wm_level
*wm
= &active
->wm
[level
];
3290 if (!active
->pipe_enabled
)
3294 * The watermark values may have been used in the past,
3295 * so we must maintain them in the registers for some
3296 * time even if the level is now disabled.
3299 ret_wm
->enable
= false;
3301 ret_wm
->pri_val
= max(ret_wm
->pri_val
, wm
->pri_val
);
3302 ret_wm
->spr_val
= max(ret_wm
->spr_val
, wm
->spr_val
);
3303 ret_wm
->cur_val
= max(ret_wm
->cur_val
, wm
->cur_val
);
3304 ret_wm
->fbc_val
= max(ret_wm
->fbc_val
, wm
->fbc_val
);
3309 * Merge all low power watermarks for all active pipes.
3311 static void ilk_wm_merge(struct drm_i915_private
*dev_priv
,
3312 const struct intel_wm_config
*config
,
3313 const struct ilk_wm_maximums
*max
,
3314 struct intel_pipe_wm
*merged
)
3316 int level
, max_level
= ilk_wm_max_level(dev_priv
);
3317 int last_enabled_level
= max_level
;
3319 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3320 if ((INTEL_GEN(dev_priv
) <= 6 || IS_IVYBRIDGE(dev_priv
)) &&
3321 config
->num_pipes_active
> 1)
3322 last_enabled_level
= 0;
3324 /* ILK: FBC WM must be disabled always */
3325 merged
->fbc_wm_enabled
= INTEL_GEN(dev_priv
) >= 6;
3327 /* merge each WM1+ level */
3328 for (level
= 1; level
<= max_level
; level
++) {
3329 struct intel_wm_level
*wm
= &merged
->wm
[level
];
3331 ilk_merge_wm_level(dev_priv
, level
, wm
);
3333 if (level
> last_enabled_level
)
3335 else if (!ilk_validate_wm_level(level
, max
, wm
))
3336 /* make sure all following levels get disabled */
3337 last_enabled_level
= level
- 1;
3340 * The spec says it is preferred to disable
3341 * FBC WMs instead of disabling a WM level.
3343 if (wm
->fbc_val
> max
->fbc
) {
3345 merged
->fbc_wm_enabled
= false;
3350 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3352 * FIXME this is racy. FBC might get enabled later.
3353 * What we should check here is whether FBC can be
3354 * enabled sometime later.
3356 if (IS_GEN(dev_priv
, 5) && !merged
->fbc_wm_enabled
&&
3357 intel_fbc_is_active(dev_priv
)) {
3358 for (level
= 2; level
<= max_level
; level
++) {
3359 struct intel_wm_level
*wm
= &merged
->wm
[level
];
3366 static int ilk_wm_lp_to_level(int wm_lp
, const struct intel_pipe_wm
*pipe_wm
)
3368 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3369 return wm_lp
+ (wm_lp
>= 2 && pipe_wm
->wm
[4].enable
);
3372 /* The value we need to program into the WM_LPx latency field */
3373 static unsigned int ilk_wm_lp_latency(struct drm_i915_private
*dev_priv
,
3376 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
3379 return dev_priv
->wm
.pri_latency
[level
];
3382 static void ilk_compute_wm_results(struct drm_i915_private
*dev_priv
,
3383 const struct intel_pipe_wm
*merged
,
3384 enum intel_ddb_partitioning partitioning
,
3385 struct ilk_wm_values
*results
)
3387 struct intel_crtc
*intel_crtc
;
3390 results
->enable_fbc_wm
= merged
->fbc_wm_enabled
;
3391 results
->partitioning
= partitioning
;
3393 /* LP1+ register values */
3394 for (wm_lp
= 1; wm_lp
<= 3; wm_lp
++) {
3395 const struct intel_wm_level
*r
;
3397 level
= ilk_wm_lp_to_level(wm_lp
, merged
);
3399 r
= &merged
->wm
[level
];
3402 * Maintain the watermark values even if the level is
3403 * disabled. Doing otherwise could cause underruns.
3405 results
->wm_lp
[wm_lp
- 1] =
3406 (ilk_wm_lp_latency(dev_priv
, level
) << WM1_LP_LATENCY_SHIFT
) |
3407 (r
->pri_val
<< WM1_LP_SR_SHIFT
) |
3411 results
->wm_lp
[wm_lp
- 1] |= WM1_LP_SR_EN
;
3413 if (INTEL_GEN(dev_priv
) >= 8)
3414 results
->wm_lp
[wm_lp
- 1] |=
3415 r
->fbc_val
<< WM1_LP_FBC_SHIFT_BDW
;
3417 results
->wm_lp
[wm_lp
- 1] |=
3418 r
->fbc_val
<< WM1_LP_FBC_SHIFT
;
3421 * Always set WM1S_LP_EN when spr_val != 0, even if the
3422 * level is disabled. Doing otherwise could cause underruns.
3424 if (INTEL_GEN(dev_priv
) <= 6 && r
->spr_val
) {
3425 drm_WARN_ON(&dev_priv
->drm
, wm_lp
!= 1);
3426 results
->wm_lp_spr
[wm_lp
- 1] = WM1S_LP_EN
| r
->spr_val
;
3428 results
->wm_lp_spr
[wm_lp
- 1] = r
->spr_val
;
3431 /* LP0 register values */
3432 for_each_intel_crtc(&dev_priv
->drm
, intel_crtc
) {
3433 enum pipe pipe
= intel_crtc
->pipe
;
3434 const struct intel_pipe_wm
*pipe_wm
= &intel_crtc
->wm
.active
.ilk
;
3435 const struct intel_wm_level
*r
= &pipe_wm
->wm
[0];
3437 if (drm_WARN_ON(&dev_priv
->drm
, !r
->enable
))
3440 results
->wm_pipe
[pipe
] =
3441 (r
->pri_val
<< WM0_PIPE_PLANE_SHIFT
) |
3442 (r
->spr_val
<< WM0_PIPE_SPRITE_SHIFT
) |
3447 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3448 * case both are at the same level. Prefer r1 in case they're the same. */
3449 static struct intel_pipe_wm
*
3450 ilk_find_best_result(struct drm_i915_private
*dev_priv
,
3451 struct intel_pipe_wm
*r1
,
3452 struct intel_pipe_wm
*r2
)
3454 int level
, max_level
= ilk_wm_max_level(dev_priv
);
3455 int level1
= 0, level2
= 0;
3457 for (level
= 1; level
<= max_level
; level
++) {
3458 if (r1
->wm
[level
].enable
)
3460 if (r2
->wm
[level
].enable
)
3464 if (level1
== level2
) {
3465 if (r2
->fbc_wm_enabled
&& !r1
->fbc_wm_enabled
)
3469 } else if (level1
> level2
) {
3476 /* dirty bits used to track which watermarks need changes */
3477 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3478 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3479 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3480 #define WM_DIRTY_FBC (1 << 24)
3481 #define WM_DIRTY_DDB (1 << 25)
3483 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private
*dev_priv
,
3484 const struct ilk_wm_values
*old
,
3485 const struct ilk_wm_values
*new)
3487 unsigned int dirty
= 0;
3491 for_each_pipe(dev_priv
, pipe
) {
3492 if (old
->wm_pipe
[pipe
] != new->wm_pipe
[pipe
]) {
3493 dirty
|= WM_DIRTY_PIPE(pipe
);
3494 /* Must disable LP1+ watermarks too */
3495 dirty
|= WM_DIRTY_LP_ALL
;
3499 if (old
->enable_fbc_wm
!= new->enable_fbc_wm
) {
3500 dirty
|= WM_DIRTY_FBC
;
3501 /* Must disable LP1+ watermarks too */
3502 dirty
|= WM_DIRTY_LP_ALL
;
3505 if (old
->partitioning
!= new->partitioning
) {
3506 dirty
|= WM_DIRTY_DDB
;
3507 /* Must disable LP1+ watermarks too */
3508 dirty
|= WM_DIRTY_LP_ALL
;
3511 /* LP1+ watermarks already deemed dirty, no need to continue */
3512 if (dirty
& WM_DIRTY_LP_ALL
)
3515 /* Find the lowest numbered LP1+ watermark in need of an update... */
3516 for (wm_lp
= 1; wm_lp
<= 3; wm_lp
++) {
3517 if (old
->wm_lp
[wm_lp
- 1] != new->wm_lp
[wm_lp
- 1] ||
3518 old
->wm_lp_spr
[wm_lp
- 1] != new->wm_lp_spr
[wm_lp
- 1])
3522 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3523 for (; wm_lp
<= 3; wm_lp
++)
3524 dirty
|= WM_DIRTY_LP(wm_lp
);
3529 static bool _ilk_disable_lp_wm(struct drm_i915_private
*dev_priv
,
3532 struct ilk_wm_values
*previous
= &dev_priv
->wm
.hw
;
3533 bool changed
= false;
3535 if (dirty
& WM_DIRTY_LP(3) && previous
->wm_lp
[2] & WM1_LP_SR_EN
) {
3536 previous
->wm_lp
[2] &= ~WM1_LP_SR_EN
;
3537 I915_WRITE(WM3_LP_ILK
, previous
->wm_lp
[2]);
3540 if (dirty
& WM_DIRTY_LP(2) && previous
->wm_lp
[1] & WM1_LP_SR_EN
) {
3541 previous
->wm_lp
[1] &= ~WM1_LP_SR_EN
;
3542 I915_WRITE(WM2_LP_ILK
, previous
->wm_lp
[1]);
3545 if (dirty
& WM_DIRTY_LP(1) && previous
->wm_lp
[0] & WM1_LP_SR_EN
) {
3546 previous
->wm_lp
[0] &= ~WM1_LP_SR_EN
;
3547 I915_WRITE(WM1_LP_ILK
, previous
->wm_lp
[0]);
3552 * Don't touch WM1S_LP_EN here.
3553 * Doing so could cause underruns.
3560 * The spec says we shouldn't write when we don't need, because every write
3561 * causes WMs to be re-evaluated, expending some power.
3563 static void ilk_write_wm_values(struct drm_i915_private
*dev_priv
,
3564 struct ilk_wm_values
*results
)
3566 struct ilk_wm_values
*previous
= &dev_priv
->wm
.hw
;
3570 dirty
= ilk_compute_wm_dirty(dev_priv
, previous
, results
);
3574 _ilk_disable_lp_wm(dev_priv
, dirty
);
3576 if (dirty
& WM_DIRTY_PIPE(PIPE_A
))
3577 I915_WRITE(WM0_PIPE_ILK(PIPE_A
), results
->wm_pipe
[0]);
3578 if (dirty
& WM_DIRTY_PIPE(PIPE_B
))
3579 I915_WRITE(WM0_PIPE_ILK(PIPE_B
), results
->wm_pipe
[1]);
3580 if (dirty
& WM_DIRTY_PIPE(PIPE_C
))
3581 I915_WRITE(WM0_PIPE_ILK(PIPE_C
), results
->wm_pipe
[2]);
3583 if (dirty
& WM_DIRTY_DDB
) {
3584 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
)) {
3585 val
= I915_READ(WM_MISC
);
3586 if (results
->partitioning
== INTEL_DDB_PART_1_2
)
3587 val
&= ~WM_MISC_DATA_PARTITION_5_6
;
3589 val
|= WM_MISC_DATA_PARTITION_5_6
;
3590 I915_WRITE(WM_MISC
, val
);
3592 val
= I915_READ(DISP_ARB_CTL2
);
3593 if (results
->partitioning
== INTEL_DDB_PART_1_2
)
3594 val
&= ~DISP_DATA_PARTITION_5_6
;
3596 val
|= DISP_DATA_PARTITION_5_6
;
3597 I915_WRITE(DISP_ARB_CTL2
, val
);
3601 if (dirty
& WM_DIRTY_FBC
) {
3602 val
= I915_READ(DISP_ARB_CTL
);
3603 if (results
->enable_fbc_wm
)
3604 val
&= ~DISP_FBC_WM_DIS
;
3606 val
|= DISP_FBC_WM_DIS
;
3607 I915_WRITE(DISP_ARB_CTL
, val
);
3610 if (dirty
& WM_DIRTY_LP(1) &&
3611 previous
->wm_lp_spr
[0] != results
->wm_lp_spr
[0])
3612 I915_WRITE(WM1S_LP_ILK
, results
->wm_lp_spr
[0]);
3614 if (INTEL_GEN(dev_priv
) >= 7) {
3615 if (dirty
& WM_DIRTY_LP(2) && previous
->wm_lp_spr
[1] != results
->wm_lp_spr
[1])
3616 I915_WRITE(WM2S_LP_IVB
, results
->wm_lp_spr
[1]);
3617 if (dirty
& WM_DIRTY_LP(3) && previous
->wm_lp_spr
[2] != results
->wm_lp_spr
[2])
3618 I915_WRITE(WM3S_LP_IVB
, results
->wm_lp_spr
[2]);
3621 if (dirty
& WM_DIRTY_LP(1) && previous
->wm_lp
[0] != results
->wm_lp
[0])
3622 I915_WRITE(WM1_LP_ILK
, results
->wm_lp
[0]);
3623 if (dirty
& WM_DIRTY_LP(2) && previous
->wm_lp
[1] != results
->wm_lp
[1])
3624 I915_WRITE(WM2_LP_ILK
, results
->wm_lp
[1]);
3625 if (dirty
& WM_DIRTY_LP(3) && previous
->wm_lp
[2] != results
->wm_lp
[2])
3626 I915_WRITE(WM3_LP_ILK
, results
->wm_lp
[2]);
3628 dev_priv
->wm
.hw
= *results
;
3631 bool ilk_disable_lp_wm(struct drm_i915_private
*dev_priv
)
3633 return _ilk_disable_lp_wm(dev_priv
, WM_DIRTY_LP_ALL
);
3636 u8
intel_enabled_dbuf_slices_mask(struct drm_i915_private
*dev_priv
)
3639 int max_slices
= INTEL_INFO(dev_priv
)->num_supported_dbuf_slices
;
3640 u8 enabled_slices_mask
= 0;
3642 for (i
= 0; i
< max_slices
; i
++) {
3643 if (I915_READ(DBUF_CTL_S(i
)) & DBUF_POWER_STATE
)
3644 enabled_slices_mask
|= BIT(i
);
3647 return enabled_slices_mask
;
3651 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3652 * so assume we'll always need it in order to avoid underruns.
3654 static bool skl_needs_memory_bw_wa(struct drm_i915_private
*dev_priv
)
3656 return IS_GEN9_BC(dev_priv
) || IS_BROXTON(dev_priv
);
3660 intel_has_sagv(struct drm_i915_private
*dev_priv
)
3662 return (IS_GEN9_BC(dev_priv
) || INTEL_GEN(dev_priv
) >= 10) &&
3663 dev_priv
->sagv_status
!= I915_SAGV_NOT_CONTROLLED
;
3667 skl_setup_sagv_block_time(struct drm_i915_private
*dev_priv
)
3669 if (INTEL_GEN(dev_priv
) >= 12) {
3673 ret
= sandybridge_pcode_read(dev_priv
,
3674 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US
,
3677 dev_priv
->sagv_block_time_us
= val
;
3681 drm_dbg(&dev_priv
->drm
, "Couldn't read SAGV block time!\n");
3682 } else if (IS_GEN(dev_priv
, 11)) {
3683 dev_priv
->sagv_block_time_us
= 10;
3685 } else if (IS_GEN(dev_priv
, 10)) {
3686 dev_priv
->sagv_block_time_us
= 20;
3688 } else if (IS_GEN(dev_priv
, 9)) {
3689 dev_priv
->sagv_block_time_us
= 30;
3692 MISSING_CASE(INTEL_GEN(dev_priv
));
3695 /* Default to an unusable block time */
3696 dev_priv
->sagv_block_time_us
= -1;
3700 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3701 * depending on power and performance requirements. The display engine access
3702 * to system memory is blocked during the adjustment time. Because of the
3703 * blocking time, having this enabled can cause full system hangs and/or pipe
3704 * underruns if we don't meet all of the following requirements:
3706 * - <= 1 pipe enabled
3707 * - All planes can enable watermarks for latencies >= SAGV engine block time
3708 * - We're not using an interlaced display configuration
3711 intel_enable_sagv(struct drm_i915_private
*dev_priv
)
3715 if (!intel_has_sagv(dev_priv
))
3718 if (dev_priv
->sagv_status
== I915_SAGV_ENABLED
)
3721 drm_dbg_kms(&dev_priv
->drm
, "Enabling SAGV\n");
3722 ret
= sandybridge_pcode_write(dev_priv
, GEN9_PCODE_SAGV_CONTROL
,
3725 /* We don't need to wait for SAGV when enabling */
3728 * Some skl systems, pre-release machines in particular,
3729 * don't actually have SAGV.
3731 if (IS_SKYLAKE(dev_priv
) && ret
== -ENXIO
) {
3732 drm_dbg(&dev_priv
->drm
, "No SAGV found on system, ignoring\n");
3733 dev_priv
->sagv_status
= I915_SAGV_NOT_CONTROLLED
;
3735 } else if (ret
< 0) {
3736 drm_err(&dev_priv
->drm
, "Failed to enable SAGV\n");
3740 dev_priv
->sagv_status
= I915_SAGV_ENABLED
;
3745 intel_disable_sagv(struct drm_i915_private
*dev_priv
)
3749 if (!intel_has_sagv(dev_priv
))
3752 if (dev_priv
->sagv_status
== I915_SAGV_DISABLED
)
3755 drm_dbg_kms(&dev_priv
->drm
, "Disabling SAGV\n");
3756 /* bspec says to keep retrying for at least 1 ms */
3757 ret
= skl_pcode_request(dev_priv
, GEN9_PCODE_SAGV_CONTROL
,
3759 GEN9_SAGV_IS_DISABLED
, GEN9_SAGV_IS_DISABLED
,
3762 * Some skl systems, pre-release machines in particular,
3763 * don't actually have SAGV.
3765 if (IS_SKYLAKE(dev_priv
) && ret
== -ENXIO
) {
3766 drm_dbg(&dev_priv
->drm
, "No SAGV found on system, ignoring\n");
3767 dev_priv
->sagv_status
= I915_SAGV_NOT_CONTROLLED
;
3769 } else if (ret
< 0) {
3770 drm_err(&dev_priv
->drm
, "Failed to disable SAGV (%d)\n", ret
);
3774 dev_priv
->sagv_status
= I915_SAGV_DISABLED
;
3778 void intel_sagv_pre_plane_update(struct intel_atomic_state
*state
)
3780 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
3781 const struct intel_bw_state
*new_bw_state
;
3782 const struct intel_bw_state
*old_bw_state
;
3786 * Just return if we can't control SAGV or don't have it.
3787 * This is different from situation when we have SAGV but just can't
3788 * afford it due to DBuf limitation - in case if SAGV is completely
3789 * disabled in a BIOS, we are not even allowed to send a PCode request,
3790 * as it will throw an error. So have to check it here.
3792 if (!intel_has_sagv(dev_priv
))
3795 new_bw_state
= intel_atomic_get_new_bw_state(state
);
3799 if (INTEL_GEN(dev_priv
) < 11 && !intel_can_enable_sagv(dev_priv
, new_bw_state
)) {
3800 intel_disable_sagv(dev_priv
);
3804 old_bw_state
= intel_atomic_get_old_bw_state(state
);
3808 if (new_bw_state
->qgv_points_mask
== old_bw_state
->qgv_points_mask
)
3811 new_mask
= old_bw_state
->qgv_points_mask
| new_bw_state
->qgv_points_mask
;
3814 * If new mask is zero - means there is nothing to mask,
3815 * we can only unmask, which should be done in unmask.
3821 * Restrict required qgv points before updating the configuration.
3822 * According to BSpec we can't mask and unmask qgv points at the same
3823 * time. Also masking should be done before updating the configuration
3824 * and unmasking afterwards.
3826 icl_pcode_restrict_qgv_points(dev_priv
, new_mask
);
3829 void intel_sagv_post_plane_update(struct intel_atomic_state
*state
)
3831 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
3832 const struct intel_bw_state
*new_bw_state
;
3833 const struct intel_bw_state
*old_bw_state
;
3837 * Just return if we can't control SAGV or don't have it.
3838 * This is different from situation when we have SAGV but just can't
3839 * afford it due to DBuf limitation - in case if SAGV is completely
3840 * disabled in a BIOS, we are not even allowed to send a PCode request,
3841 * as it will throw an error. So have to check it here.
3843 if (!intel_has_sagv(dev_priv
))
3846 new_bw_state
= intel_atomic_get_new_bw_state(state
);
3850 if (INTEL_GEN(dev_priv
) < 11 && intel_can_enable_sagv(dev_priv
, new_bw_state
)) {
3851 intel_enable_sagv(dev_priv
);
3855 old_bw_state
= intel_atomic_get_old_bw_state(state
);
3859 if (new_bw_state
->qgv_points_mask
== old_bw_state
->qgv_points_mask
)
3862 new_mask
= new_bw_state
->qgv_points_mask
;
3865 * Allow required qgv points after updating the configuration.
3866 * According to BSpec we can't mask and unmask qgv points at the same
3867 * time. Also masking should be done before updating the configuration
3868 * and unmasking afterwards.
3870 icl_pcode_restrict_qgv_points(dev_priv
, new_mask
);
3873 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state
*crtc_state
)
3875 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
3876 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
3877 enum plane_id plane_id
;
3879 if (!intel_has_sagv(dev_priv
))
3882 if (!crtc_state
->hw
.active
)
3885 if (crtc_state
->hw
.pipe_mode
.flags
& DRM_MODE_FLAG_INTERLACE
)
3888 for_each_plane_id_on_crtc(crtc
, plane_id
) {
3889 const struct skl_plane_wm
*wm
=
3890 &crtc_state
->wm
.skl
.optimal
.planes
[plane_id
];
3893 /* Skip this plane if it's not enabled */
3894 if (!wm
->wm
[0].plane_en
)
3897 /* Find the highest enabled wm level for this plane */
3898 for (level
= ilk_wm_max_level(dev_priv
);
3899 !wm
->wm
[level
].plane_en
; --level
)
3903 * If any of the planes on this pipe don't enable wm levels that
3904 * incur memory latencies higher than sagv_block_time_us we
3905 * can't enable SAGV.
3907 if (!wm
->wm
[level
].can_sagv
)
3914 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state
*crtc_state
)
3916 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
3917 enum plane_id plane_id
;
3919 if (!crtc_state
->hw
.active
)
3922 for_each_plane_id_on_crtc(crtc
, plane_id
) {
3923 const struct skl_ddb_entry
*plane_alloc
=
3924 &crtc_state
->wm
.skl
.plane_ddb_y
[plane_id
];
3925 const struct skl_plane_wm
*wm
=
3926 &crtc_state
->wm
.skl
.optimal
.planes
[plane_id
];
3928 if (skl_ddb_entry_size(plane_alloc
) < wm
->sagv_wm0
.min_ddb_alloc
)
3935 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state
*crtc_state
)
3937 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
3938 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
3940 if (INTEL_GEN(dev_priv
) >= 12)
3941 return tgl_crtc_can_enable_sagv(crtc_state
);
3943 return skl_crtc_can_enable_sagv(crtc_state
);
3946 bool intel_can_enable_sagv(struct drm_i915_private
*dev_priv
,
3947 const struct intel_bw_state
*bw_state
)
3949 if (INTEL_GEN(dev_priv
) < 11 &&
3950 bw_state
->active_pipes
&& !is_power_of_2(bw_state
->active_pipes
))
3953 return bw_state
->pipe_sagv_reject
== 0;
3956 static int intel_compute_sagv_mask(struct intel_atomic_state
*state
)
3958 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
3960 struct intel_crtc
*crtc
;
3961 struct intel_crtc_state
*new_crtc_state
;
3962 struct intel_bw_state
*new_bw_state
= NULL
;
3963 const struct intel_bw_state
*old_bw_state
= NULL
;
3966 for_each_new_intel_crtc_in_state(state
, crtc
,
3967 new_crtc_state
, i
) {
3968 new_bw_state
= intel_atomic_get_bw_state(state
);
3969 if (IS_ERR(new_bw_state
))
3970 return PTR_ERR(new_bw_state
);
3972 old_bw_state
= intel_atomic_get_old_bw_state(state
);
3974 if (intel_crtc_can_enable_sagv(new_crtc_state
))
3975 new_bw_state
->pipe_sagv_reject
&= ~BIT(crtc
->pipe
);
3977 new_bw_state
->pipe_sagv_reject
|= BIT(crtc
->pipe
);
3983 new_bw_state
->active_pipes
=
3984 intel_calc_active_pipes(state
, old_bw_state
->active_pipes
);
3986 if (new_bw_state
->active_pipes
!= old_bw_state
->active_pipes
) {
3987 ret
= intel_atomic_lock_global_state(&new_bw_state
->base
);
3992 for_each_new_intel_crtc_in_state(state
, crtc
,
3993 new_crtc_state
, i
) {
3994 struct skl_pipe_wm
*pipe_wm
= &new_crtc_state
->wm
.skl
.optimal
;
3997 * We store use_sagv_wm in the crtc state rather than relying on
3998 * that bw state since we have no convenient way to get at the
3999 * latter from the plane commit hooks (especially in the legacy
4002 pipe_wm
->use_sagv_wm
= INTEL_GEN(dev_priv
) >= 12 &&
4003 intel_can_enable_sagv(dev_priv
, new_bw_state
);
4006 if (intel_can_enable_sagv(dev_priv
, new_bw_state
) !=
4007 intel_can_enable_sagv(dev_priv
, old_bw_state
)) {
4008 ret
= intel_atomic_serialize_global_state(&new_bw_state
->base
);
4011 } else if (new_bw_state
->pipe_sagv_reject
!= old_bw_state
->pipe_sagv_reject
) {
4012 ret
= intel_atomic_lock_global_state(&new_bw_state
->base
);
4021 * Calculate initial DBuf slice offset, based on slice size
4022 * and mask(i.e if slice size is 1024 and second slice is enabled
4023 * offset would be 1024)
4026 icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask
,
4030 unsigned int offset
= 0;
4032 if (!dbuf_slice_mask
)
4035 offset
= (ffs(dbuf_slice_mask
) - 1) * slice_size
;
4037 WARN_ON(offset
>= ddb_size
);
4041 u16
intel_get_ddb_size(struct drm_i915_private
*dev_priv
)
4043 u16 ddb_size
= INTEL_INFO(dev_priv
)->ddb_size
;
4044 drm_WARN_ON(&dev_priv
->drm
, ddb_size
== 0);
4046 if (INTEL_GEN(dev_priv
) < 11)
4047 return ddb_size
- 4; /* 4 blocks for bypass path allocation */
4052 u32
skl_ddb_dbuf_slice_mask(struct drm_i915_private
*dev_priv
,
4053 const struct skl_ddb_entry
*entry
)
4056 u16 ddb_size
= intel_get_ddb_size(dev_priv
);
4057 u16 num_supported_slices
= INTEL_INFO(dev_priv
)->num_supported_dbuf_slices
;
4058 u16 slice_size
= ddb_size
/ num_supported_slices
;
4062 if (!skl_ddb_entry_size(entry
))
4065 start_slice
= entry
->start
/ slice_size
;
4066 end_slice
= (entry
->end
- 1) / slice_size
;
4069 * Per plane DDB entry can in a really worst case be on multiple slices
4070 * but single entry is anyway contigious.
4072 while (start_slice
<= end_slice
) {
4073 slice_mask
|= BIT(start_slice
);
4080 static u8
skl_compute_dbuf_slices(const struct intel_crtc_state
*crtc_state
,
4084 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private
*dev_priv
,
4085 const struct intel_crtc_state
*crtc_state
,
4086 const u64 total_data_rate
,
4087 struct skl_ddb_entry
*alloc
, /* out */
4088 int *num_active
/* out */)
4090 struct drm_atomic_state
*state
= crtc_state
->uapi
.state
;
4091 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
4092 struct drm_crtc
*for_crtc
= crtc_state
->uapi
.crtc
;
4093 const struct intel_crtc
*crtc
;
4094 u32 pipe_width
= 0, total_width_in_range
= 0, width_before_pipe_in_range
= 0;
4095 enum pipe for_pipe
= to_intel_crtc(for_crtc
)->pipe
;
4096 struct intel_dbuf_state
*new_dbuf_state
=
4097 intel_atomic_get_new_dbuf_state(intel_state
);
4098 const struct intel_dbuf_state
*old_dbuf_state
=
4099 intel_atomic_get_old_dbuf_state(intel_state
);
4100 u8 active_pipes
= new_dbuf_state
->active_pipes
;
4104 u32 dbuf_slice_mask
;
4107 u32 total_slice_mask
;
4111 *num_active
= hweight8(active_pipes
);
4113 if (!crtc_state
->hw
.active
) {
4119 ddb_size
= intel_get_ddb_size(dev_priv
);
4121 slice_size
= ddb_size
/ INTEL_INFO(dev_priv
)->num_supported_dbuf_slices
;
4124 * If the state doesn't change the active CRTC's or there is no
4125 * modeset request, then there's no need to recalculate;
4126 * the existing pipe allocation limits should remain unchanged.
4127 * Note that we're safe from racing commits since any racing commit
4128 * that changes the active CRTC list or do modeset would need to
4129 * grab _all_ crtc locks, including the one we currently hold.
4131 if (old_dbuf_state
->active_pipes
== new_dbuf_state
->active_pipes
&&
4132 !dev_priv
->wm
.distrust_bios_wm
) {
4134 * alloc may be cleared by clear_intel_crtc_state,
4135 * copy from old state to be sure
4137 * FIXME get rid of this mess
4139 *alloc
= to_intel_crtc_state(for_crtc
->state
)->wm
.skl
.ddb
;
4144 * Get allowed DBuf slices for correspondent pipe and platform.
4146 dbuf_slice_mask
= skl_compute_dbuf_slices(crtc_state
, active_pipes
);
4149 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
4150 * and slice size is 1024, the offset would be 1024
4152 offset
= icl_get_first_dbuf_slice_offset(dbuf_slice_mask
,
4153 slice_size
, ddb_size
);
4156 * Figure out total size of allowed DBuf slices, which is basically
4157 * a number of allowed slices for that pipe multiplied by slice size.
4159 * range ddb entries are still allocated in proportion to display width.
4161 ddb_range_size
= hweight8(dbuf_slice_mask
) * slice_size
;
4164 * Watermark/ddb requirement highly depends upon width of the
4165 * framebuffer, So instead of allocating DDB equally among pipes
4166 * distribute DDB based on resolution/width of the display.
4168 total_slice_mask
= dbuf_slice_mask
;
4169 for_each_new_intel_crtc_in_state(intel_state
, crtc
, crtc_state
, i
) {
4170 const struct drm_display_mode
*pipe_mode
=
4171 &crtc_state
->hw
.pipe_mode
;
4172 enum pipe pipe
= crtc
->pipe
;
4173 int hdisplay
, vdisplay
;
4174 u32 pipe_dbuf_slice_mask
;
4176 if (!crtc_state
->hw
.active
)
4179 pipe_dbuf_slice_mask
= skl_compute_dbuf_slices(crtc_state
,
4183 * According to BSpec pipe can share one dbuf slice with another
4184 * pipes or pipe can use multiple dbufs, in both cases we
4185 * account for other pipes only if they have exactly same mask.
4186 * However we need to account how many slices we should enable
4189 total_slice_mask
|= pipe_dbuf_slice_mask
;
4192 * Do not account pipes using other slice sets
4193 * luckily as of current BSpec slice sets do not partially
4194 * intersect(pipes share either same one slice or same slice set
4195 * i.e no partial intersection), so it is enough to check for
4198 if (dbuf_slice_mask
!= pipe_dbuf_slice_mask
)
4201 drm_mode_get_hv_timing(pipe_mode
, &hdisplay
, &vdisplay
);
4203 total_width_in_range
+= hdisplay
;
4205 if (pipe
< for_pipe
)
4206 width_before_pipe_in_range
+= hdisplay
;
4207 else if (pipe
== for_pipe
)
4208 pipe_width
= hdisplay
;
4212 * FIXME: For now we always enable slice S1 as per
4213 * the Bspec display initialization sequence.
4215 new_dbuf_state
->enabled_slices
= total_slice_mask
| BIT(DBUF_S1
);
4217 if (old_dbuf_state
->enabled_slices
!= new_dbuf_state
->enabled_slices
) {
4218 ret
= intel_atomic_serialize_global_state(&new_dbuf_state
->base
);
4223 start
= ddb_range_size
* width_before_pipe_in_range
/ total_width_in_range
;
4224 end
= ddb_range_size
*
4225 (width_before_pipe_in_range
+ pipe_width
) / total_width_in_range
;
4227 alloc
->start
= offset
+ start
;
4228 alloc
->end
= offset
+ end
;
4230 drm_dbg_kms(&dev_priv
->drm
,
4231 "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x\n",
4232 for_crtc
->base
.id
, for_crtc
->name
,
4233 dbuf_slice_mask
, alloc
->start
, alloc
->end
, active_pipes
);
4238 static int skl_compute_wm_params(const struct intel_crtc_state
*crtc_state
,
4239 int width
, const struct drm_format_info
*format
,
4240 u64 modifier
, unsigned int rotation
,
4241 u32 plane_pixel_rate
, struct skl_wm_params
*wp
,
4243 static void skl_compute_plane_wm(const struct intel_crtc_state
*crtc_state
,
4245 unsigned int latency
,
4246 const struct skl_wm_params
*wp
,
4247 const struct skl_wm_level
*result_prev
,
4248 struct skl_wm_level
*result
/* out */);
4251 skl_cursor_allocation(const struct intel_crtc_state
*crtc_state
,
4254 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
4255 int level
, max_level
= ilk_wm_max_level(dev_priv
);
4256 struct skl_wm_level wm
= {};
4257 int ret
, min_ddb_alloc
= 0;
4258 struct skl_wm_params wp
;
4260 ret
= skl_compute_wm_params(crtc_state
, 256,
4261 drm_format_info(DRM_FORMAT_ARGB8888
),
4262 DRM_FORMAT_MOD_LINEAR
,
4264 crtc_state
->pixel_rate
, &wp
, 0);
4265 drm_WARN_ON(&dev_priv
->drm
, ret
);
4267 for (level
= 0; level
<= max_level
; level
++) {
4268 unsigned int latency
= dev_priv
->wm
.skl_latency
[level
];
4270 skl_compute_plane_wm(crtc_state
, level
, latency
, &wp
, &wm
, &wm
);
4271 if (wm
.min_ddb_alloc
== U16_MAX
)
4274 min_ddb_alloc
= wm
.min_ddb_alloc
;
4277 return max(num_active
== 1 ? 32 : 8, min_ddb_alloc
);
4280 static void skl_ddb_entry_init_from_hw(struct drm_i915_private
*dev_priv
,
4281 struct skl_ddb_entry
*entry
, u32 reg
)
4284 entry
->start
= reg
& DDB_ENTRY_MASK
;
4285 entry
->end
= (reg
>> DDB_ENTRY_END_SHIFT
) & DDB_ENTRY_MASK
;
4292 skl_ddb_get_hw_plane_state(struct drm_i915_private
*dev_priv
,
4293 const enum pipe pipe
,
4294 const enum plane_id plane_id
,
4295 struct skl_ddb_entry
*ddb_y
,
4296 struct skl_ddb_entry
*ddb_uv
)
4301 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
4302 if (plane_id
== PLANE_CURSOR
) {
4303 val
= I915_READ(CUR_BUF_CFG(pipe
));
4304 skl_ddb_entry_init_from_hw(dev_priv
, ddb_y
, val
);
4308 val
= I915_READ(PLANE_CTL(pipe
, plane_id
));
4310 /* No DDB allocated for disabled planes */
4311 if (val
& PLANE_CTL_ENABLE
)
4312 fourcc
= skl_format_to_fourcc(val
& PLANE_CTL_FORMAT_MASK
,
4313 val
& PLANE_CTL_ORDER_RGBX
,
4314 val
& PLANE_CTL_ALPHA_MASK
);
4316 if (INTEL_GEN(dev_priv
) >= 11) {
4317 val
= I915_READ(PLANE_BUF_CFG(pipe
, plane_id
));
4318 skl_ddb_entry_init_from_hw(dev_priv
, ddb_y
, val
);
4320 val
= I915_READ(PLANE_BUF_CFG(pipe
, plane_id
));
4321 val2
= I915_READ(PLANE_NV12_BUF_CFG(pipe
, plane_id
));
4324 drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc
)))
4327 skl_ddb_entry_init_from_hw(dev_priv
, ddb_y
, val
);
4328 skl_ddb_entry_init_from_hw(dev_priv
, ddb_uv
, val2
);
4332 void skl_pipe_ddb_get_hw_state(struct intel_crtc
*crtc
,
4333 struct skl_ddb_entry
*ddb_y
,
4334 struct skl_ddb_entry
*ddb_uv
)
4336 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
4337 enum intel_display_power_domain power_domain
;
4338 enum pipe pipe
= crtc
->pipe
;
4339 intel_wakeref_t wakeref
;
4340 enum plane_id plane_id
;
4342 power_domain
= POWER_DOMAIN_PIPE(pipe
);
4343 wakeref
= intel_display_power_get_if_enabled(dev_priv
, power_domain
);
4347 for_each_plane_id_on_crtc(crtc
, plane_id
)
4348 skl_ddb_get_hw_plane_state(dev_priv
, pipe
,
4353 intel_display_power_put(dev_priv
, power_domain
, wakeref
);
4357 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4358 * The bspec defines downscale amount as:
4361 * Horizontal down scale amount = maximum[1, Horizontal source size /
4362 * Horizontal destination size]
4363 * Vertical down scale amount = maximum[1, Vertical source size /
4364 * Vertical destination size]
4365 * Total down scale amount = Horizontal down scale amount *
4366 * Vertical down scale amount
4369 * Return value is provided in 16.16 fixed point form to retain fractional part.
4370 * Caller should take care of dividing & rounding off the value.
4372 static uint_fixed_16_16_t
4373 skl_plane_downscale_amount(const struct intel_crtc_state
*crtc_state
,
4374 const struct intel_plane_state
*plane_state
)
4376 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
4377 u32 src_w
, src_h
, dst_w
, dst_h
;
4378 uint_fixed_16_16_t fp_w_ratio
, fp_h_ratio
;
4379 uint_fixed_16_16_t downscale_h
, downscale_w
;
4381 if (drm_WARN_ON(&dev_priv
->drm
,
4382 !intel_wm_plane_visible(crtc_state
, plane_state
)))
4383 return u32_to_fixed16(0);
4386 * Src coordinates are already rotated by 270 degrees for
4387 * the 90/270 degree plane rotation cases (to match the
4388 * GTT mapping), hence no need to account for rotation here.
4390 * n.b., src is 16.16 fixed point, dst is whole integer.
4392 src_w
= drm_rect_width(&plane_state
->uapi
.src
) >> 16;
4393 src_h
= drm_rect_height(&plane_state
->uapi
.src
) >> 16;
4394 dst_w
= drm_rect_width(&plane_state
->uapi
.dst
);
4395 dst_h
= drm_rect_height(&plane_state
->uapi
.dst
);
4397 fp_w_ratio
= div_fixed16(src_w
, dst_w
);
4398 fp_h_ratio
= div_fixed16(src_h
, dst_h
);
4399 downscale_w
= max_fixed16(fp_w_ratio
, u32_to_fixed16(1));
4400 downscale_h
= max_fixed16(fp_h_ratio
, u32_to_fixed16(1));
4402 return mul_fixed16(downscale_w
, downscale_h
);
4405 struct dbuf_slice_conf_entry
{
4407 u8 dbuf_mask
[I915_MAX_PIPES
];
4411 * Table taken from Bspec 12716
4412 * Pipes do have some preferred DBuf slice affinity,
4413 * plus there are some hardcoded requirements on how
4414 * those should be distributed for multipipe scenarios.
4415 * For more DBuf slices algorithm can get even more messy
4416 * and less readable, so decided to use a table almost
4417 * as is from BSpec itself - that way it is at least easier
4418 * to compare, change and check.
4420 static const struct dbuf_slice_conf_entry icl_allowed_dbufs
[] =
4421 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4424 .active_pipes
= BIT(PIPE_A
),
4426 [PIPE_A
] = BIT(DBUF_S1
),
4430 .active_pipes
= BIT(PIPE_B
),
4432 [PIPE_B
] = BIT(DBUF_S1
),
4436 .active_pipes
= BIT(PIPE_A
) | BIT(PIPE_B
),
4438 [PIPE_A
] = BIT(DBUF_S1
),
4439 [PIPE_B
] = BIT(DBUF_S2
),
4443 .active_pipes
= BIT(PIPE_C
),
4445 [PIPE_C
] = BIT(DBUF_S2
),
4449 .active_pipes
= BIT(PIPE_A
) | BIT(PIPE_C
),
4451 [PIPE_A
] = BIT(DBUF_S1
),
4452 [PIPE_C
] = BIT(DBUF_S2
),
4456 .active_pipes
= BIT(PIPE_B
) | BIT(PIPE_C
),
4458 [PIPE_B
] = BIT(DBUF_S1
),
4459 [PIPE_C
] = BIT(DBUF_S2
),
4463 .active_pipes
= BIT(PIPE_A
) | BIT(PIPE_B
) | BIT(PIPE_C
),
4465 [PIPE_A
] = BIT(DBUF_S1
),
4466 [PIPE_B
] = BIT(DBUF_S1
),
4467 [PIPE_C
] = BIT(DBUF_S2
),
4474 * Table taken from Bspec 49255
4475 * Pipes do have some preferred DBuf slice affinity,
4476 * plus there are some hardcoded requirements on how
4477 * those should be distributed for multipipe scenarios.
4478 * For more DBuf slices algorithm can get even more messy
4479 * and less readable, so decided to use a table almost
4480 * as is from BSpec itself - that way it is at least easier
4481 * to compare, change and check.
4483 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs
[] =
4484 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4487 .active_pipes
= BIT(PIPE_A
),
4489 [PIPE_A
] = BIT(DBUF_S1
) | BIT(DBUF_S2
),
4493 .active_pipes
= BIT(PIPE_B
),
4495 [PIPE_B
] = BIT(DBUF_S1
) | BIT(DBUF_S2
),
4499 .active_pipes
= BIT(PIPE_A
) | BIT(PIPE_B
),
4501 [PIPE_A
] = BIT(DBUF_S2
),
4502 [PIPE_B
] = BIT(DBUF_S1
),
4506 .active_pipes
= BIT(PIPE_C
),
4508 [PIPE_C
] = BIT(DBUF_S2
) | BIT(DBUF_S1
),
4512 .active_pipes
= BIT(PIPE_A
) | BIT(PIPE_C
),
4514 [PIPE_A
] = BIT(DBUF_S1
),
4515 [PIPE_C
] = BIT(DBUF_S2
),
4519 .active_pipes
= BIT(PIPE_B
) | BIT(PIPE_C
),
4521 [PIPE_B
] = BIT(DBUF_S1
),
4522 [PIPE_C
] = BIT(DBUF_S2
),
4526 .active_pipes
= BIT(PIPE_A
) | BIT(PIPE_B
) | BIT(PIPE_C
),
4528 [PIPE_A
] = BIT(DBUF_S1
),
4529 [PIPE_B
] = BIT(DBUF_S1
),
4530 [PIPE_C
] = BIT(DBUF_S2
),
4534 .active_pipes
= BIT(PIPE_D
),
4536 [PIPE_D
] = BIT(DBUF_S2
) | BIT(DBUF_S1
),
4540 .active_pipes
= BIT(PIPE_A
) | BIT(PIPE_D
),
4542 [PIPE_A
] = BIT(DBUF_S1
),
4543 [PIPE_D
] = BIT(DBUF_S2
),
4547 .active_pipes
= BIT(PIPE_B
) | BIT(PIPE_D
),
4549 [PIPE_B
] = BIT(DBUF_S1
),
4550 [PIPE_D
] = BIT(DBUF_S2
),
4554 .active_pipes
= BIT(PIPE_A
) | BIT(PIPE_B
) | BIT(PIPE_D
),
4556 [PIPE_A
] = BIT(DBUF_S1
),
4557 [PIPE_B
] = BIT(DBUF_S1
),
4558 [PIPE_D
] = BIT(DBUF_S2
),
4562 .active_pipes
= BIT(PIPE_C
) | BIT(PIPE_D
),
4564 [PIPE_C
] = BIT(DBUF_S1
),
4565 [PIPE_D
] = BIT(DBUF_S2
),
4569 .active_pipes
= BIT(PIPE_A
) | BIT(PIPE_C
) | BIT(PIPE_D
),
4571 [PIPE_A
] = BIT(DBUF_S1
),
4572 [PIPE_C
] = BIT(DBUF_S2
),
4573 [PIPE_D
] = BIT(DBUF_S2
),
4577 .active_pipes
= BIT(PIPE_B
) | BIT(PIPE_C
) | BIT(PIPE_D
),
4579 [PIPE_B
] = BIT(DBUF_S1
),
4580 [PIPE_C
] = BIT(DBUF_S2
),
4581 [PIPE_D
] = BIT(DBUF_S2
),
4585 .active_pipes
= BIT(PIPE_A
) | BIT(PIPE_B
) | BIT(PIPE_C
) | BIT(PIPE_D
),
4587 [PIPE_A
] = BIT(DBUF_S1
),
4588 [PIPE_B
] = BIT(DBUF_S1
),
4589 [PIPE_C
] = BIT(DBUF_S2
),
4590 [PIPE_D
] = BIT(DBUF_S2
),
4596 static u8
compute_dbuf_slices(enum pipe pipe
, u8 active_pipes
,
4597 const struct dbuf_slice_conf_entry
*dbuf_slices
)
4601 for (i
= 0; i
< dbuf_slices
[i
].active_pipes
; i
++) {
4602 if (dbuf_slices
[i
].active_pipes
== active_pipes
)
4603 return dbuf_slices
[i
].dbuf_mask
[pipe
];
4609 * This function finds an entry with same enabled pipe configuration and
4610 * returns correspondent DBuf slice mask as stated in BSpec for particular
4613 static u8
icl_compute_dbuf_slices(enum pipe pipe
, u8 active_pipes
)
4616 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4617 * required calculating "pipe ratio" in order to determine
4618 * if one or two slices can be used for single pipe configurations
4619 * as additional constraint to the existing table.
4620 * However based on recent info, it should be not "pipe ratio"
4621 * but rather ratio between pixel_rate and cdclk with additional
4622 * constants, so for now we are using only table until this is
4623 * clarified. Also this is the reason why crtc_state param is
4624 * still here - we will need it once those additional constraints
4627 return compute_dbuf_slices(pipe
, active_pipes
, icl_allowed_dbufs
);
4630 static u8
tgl_compute_dbuf_slices(enum pipe pipe
, u8 active_pipes
)
4632 return compute_dbuf_slices(pipe
, active_pipes
, tgl_allowed_dbufs
);
4635 static u8
skl_compute_dbuf_slices(const struct intel_crtc_state
*crtc_state
,
4638 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
4639 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
4640 enum pipe pipe
= crtc
->pipe
;
4642 if (IS_GEN(dev_priv
, 12))
4643 return tgl_compute_dbuf_slices(pipe
, active_pipes
);
4644 else if (IS_GEN(dev_priv
, 11))
4645 return icl_compute_dbuf_slices(pipe
, active_pipes
);
4647 * For anything else just return one slice yet.
4648 * Should be extended for other platforms.
4650 return active_pipes
& BIT(pipe
) ? BIT(DBUF_S1
) : 0;
4654 skl_plane_relative_data_rate(const struct intel_crtc_state
*crtc_state
,
4655 const struct intel_plane_state
*plane_state
,
4658 struct intel_plane
*plane
= to_intel_plane(plane_state
->uapi
.plane
);
4659 const struct drm_framebuffer
*fb
= plane_state
->hw
.fb
;
4661 u32 width
= 0, height
= 0;
4662 uint_fixed_16_16_t down_scale_amount
;
4665 if (!plane_state
->uapi
.visible
)
4668 if (plane
->id
== PLANE_CURSOR
)
4671 if (color_plane
== 1 &&
4672 !intel_format_info_is_yuv_semiplanar(fb
->format
, fb
->modifier
))
4676 * Src coordinates are already rotated by 270 degrees for
4677 * the 90/270 degree plane rotation cases (to match the
4678 * GTT mapping), hence no need to account for rotation here.
4680 width
= drm_rect_width(&plane_state
->uapi
.src
) >> 16;
4681 height
= drm_rect_height(&plane_state
->uapi
.src
) >> 16;
4683 /* UV plane does 1/2 pixel sub-sampling */
4684 if (color_plane
== 1) {
4689 data_rate
= width
* height
;
4691 down_scale_amount
= skl_plane_downscale_amount(crtc_state
, plane_state
);
4693 rate
= mul_round_up_u32_fixed16(data_rate
, down_scale_amount
);
4695 rate
*= fb
->format
->cpp
[color_plane
];
4700 skl_get_total_relative_data_rate(struct intel_atomic_state
*state
,
4701 struct intel_crtc
*crtc
)
4703 struct intel_crtc_state
*crtc_state
=
4704 intel_atomic_get_new_crtc_state(state
, crtc
);
4705 const struct intel_plane_state
*plane_state
;
4706 struct intel_plane
*plane
;
4707 u64 total_data_rate
= 0;
4708 enum plane_id plane_id
;
4711 /* Calculate and cache data rate for each plane */
4712 for_each_new_intel_plane_in_state(state
, plane
, plane_state
, i
) {
4713 if (plane
->pipe
!= crtc
->pipe
)
4716 plane_id
= plane
->id
;
4719 crtc_state
->plane_data_rate
[plane_id
] =
4720 skl_plane_relative_data_rate(crtc_state
, plane_state
, 0);
4723 crtc_state
->uv_plane_data_rate
[plane_id
] =
4724 skl_plane_relative_data_rate(crtc_state
, plane_state
, 1);
4727 for_each_plane_id_on_crtc(crtc
, plane_id
) {
4728 total_data_rate
+= crtc_state
->plane_data_rate
[plane_id
];
4729 total_data_rate
+= crtc_state
->uv_plane_data_rate
[plane_id
];
4732 return total_data_rate
;
4736 icl_get_total_relative_data_rate(struct intel_atomic_state
*state
,
4737 struct intel_crtc
*crtc
)
4739 struct intel_crtc_state
*crtc_state
=
4740 intel_atomic_get_new_crtc_state(state
, crtc
);
4741 const struct intel_plane_state
*plane_state
;
4742 struct intel_plane
*plane
;
4743 u64 total_data_rate
= 0;
4744 enum plane_id plane_id
;
4747 /* Calculate and cache data rate for each plane */
4748 for_each_new_intel_plane_in_state(state
, plane
, plane_state
, i
) {
4749 if (plane
->pipe
!= crtc
->pipe
)
4752 plane_id
= plane
->id
;
4754 if (!plane_state
->planar_linked_plane
) {
4755 crtc_state
->plane_data_rate
[plane_id
] =
4756 skl_plane_relative_data_rate(crtc_state
, plane_state
, 0);
4758 enum plane_id y_plane_id
;
4761 * The slave plane might not iterate in
4762 * intel_atomic_crtc_state_for_each_plane_state(),
4763 * and needs the master plane state which may be
4764 * NULL if we try get_new_plane_state(), so we
4765 * always calculate from the master.
4767 if (plane_state
->planar_slave
)
4770 /* Y plane rate is calculated on the slave */
4771 y_plane_id
= plane_state
->planar_linked_plane
->id
;
4772 crtc_state
->plane_data_rate
[y_plane_id
] =
4773 skl_plane_relative_data_rate(crtc_state
, plane_state
, 0);
4775 crtc_state
->plane_data_rate
[plane_id
] =
4776 skl_plane_relative_data_rate(crtc_state
, plane_state
, 1);
4780 for_each_plane_id_on_crtc(crtc
, plane_id
)
4781 total_data_rate
+= crtc_state
->plane_data_rate
[plane_id
];
4783 return total_data_rate
;
4786 static const struct skl_wm_level
*
4787 skl_plane_wm_level(const struct intel_crtc_state
*crtc_state
,
4788 enum plane_id plane_id
,
4791 const struct skl_pipe_wm
*pipe_wm
= &crtc_state
->wm
.skl
.optimal
;
4792 const struct skl_plane_wm
*wm
= &pipe_wm
->planes
[plane_id
];
4794 if (level
== 0 && pipe_wm
->use_sagv_wm
)
4795 return &wm
->sagv_wm0
;
4797 return &wm
->wm
[level
];
4801 skl_allocate_pipe_ddb(struct intel_atomic_state
*state
,
4802 struct intel_crtc
*crtc
)
4804 struct intel_crtc_state
*crtc_state
=
4805 intel_atomic_get_new_crtc_state(state
, crtc
);
4806 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
4807 struct skl_ddb_entry
*alloc
= &crtc_state
->wm
.skl
.ddb
;
4808 u16 alloc_size
, start
= 0;
4809 u16 total
[I915_MAX_PLANES
] = {};
4810 u16 uv_total
[I915_MAX_PLANES
] = {};
4811 u64 total_data_rate
;
4812 enum plane_id plane_id
;
4818 /* Clear the partitioning for disabled planes. */
4819 memset(crtc_state
->wm
.skl
.plane_ddb_y
, 0, sizeof(crtc_state
->wm
.skl
.plane_ddb_y
));
4820 memset(crtc_state
->wm
.skl
.plane_ddb_uv
, 0, sizeof(crtc_state
->wm
.skl
.plane_ddb_uv
));
4822 if (!crtc_state
->hw
.active
) {
4823 struct intel_atomic_state
*state
=
4824 to_intel_atomic_state(crtc_state
->uapi
.state
);
4825 struct intel_dbuf_state
*new_dbuf_state
=
4826 intel_atomic_get_new_dbuf_state(state
);
4827 const struct intel_dbuf_state
*old_dbuf_state
=
4828 intel_atomic_get_old_dbuf_state(state
);
4831 * FIXME hack to make sure we compute this sensibly when
4832 * turning off all the pipes. Otherwise we leave it at
4833 * whatever we had previously, and then runtime PM will
4834 * mess it up by turning off all but S1. Remove this
4835 * once the dbuf state computation flow becomes sane.
4837 if (new_dbuf_state
->active_pipes
== 0) {
4838 new_dbuf_state
->enabled_slices
= BIT(DBUF_S1
);
4840 if (old_dbuf_state
->enabled_slices
!= new_dbuf_state
->enabled_slices
) {
4841 ret
= intel_atomic_serialize_global_state(&new_dbuf_state
->base
);
4847 alloc
->start
= alloc
->end
= 0;
4851 if (INTEL_GEN(dev_priv
) >= 11)
4853 icl_get_total_relative_data_rate(state
, crtc
);
4856 skl_get_total_relative_data_rate(state
, crtc
);
4858 ret
= skl_ddb_get_pipe_allocation_limits(dev_priv
, crtc_state
,
4860 alloc
, &num_active
);
4864 alloc_size
= skl_ddb_entry_size(alloc
);
4865 if (alloc_size
== 0)
4868 /* Allocate fixed number of blocks for cursor. */
4869 total
[PLANE_CURSOR
] = skl_cursor_allocation(crtc_state
, num_active
);
4870 alloc_size
-= total
[PLANE_CURSOR
];
4871 crtc_state
->wm
.skl
.plane_ddb_y
[PLANE_CURSOR
].start
=
4872 alloc
->end
- total
[PLANE_CURSOR
];
4873 crtc_state
->wm
.skl
.plane_ddb_y
[PLANE_CURSOR
].end
= alloc
->end
;
4875 if (total_data_rate
== 0)
4879 * Find the highest watermark level for which we can satisfy the block
4880 * requirement of active planes.
4882 for (level
= ilk_wm_max_level(dev_priv
); level
>= 0; level
--) {
4884 for_each_plane_id_on_crtc(crtc
, plane_id
) {
4885 const struct skl_plane_wm
*wm
=
4886 &crtc_state
->wm
.skl
.optimal
.planes
[plane_id
];
4888 if (plane_id
== PLANE_CURSOR
) {
4889 if (wm
->wm
[level
].min_ddb_alloc
> total
[PLANE_CURSOR
]) {
4890 drm_WARN_ON(&dev_priv
->drm
,
4891 wm
->wm
[level
].min_ddb_alloc
!= U16_MAX
);
4898 blocks
+= wm
->wm
[level
].min_ddb_alloc
;
4899 blocks
+= wm
->uv_wm
[level
].min_ddb_alloc
;
4902 if (blocks
<= alloc_size
) {
4903 alloc_size
-= blocks
;
4909 drm_dbg_kms(&dev_priv
->drm
,
4910 "Requested display configuration exceeds system DDB limitations");
4911 drm_dbg_kms(&dev_priv
->drm
, "minimum required %d/%d\n",
4912 blocks
, alloc_size
);
4917 * Grant each plane the blocks it requires at the highest achievable
4918 * watermark level, plus an extra share of the leftover blocks
4919 * proportional to its relative data rate.
4921 for_each_plane_id_on_crtc(crtc
, plane_id
) {
4922 const struct skl_plane_wm
*wm
=
4923 &crtc_state
->wm
.skl
.optimal
.planes
[plane_id
];
4927 if (plane_id
== PLANE_CURSOR
)
4931 * We've accounted for all active planes; remaining planes are
4934 if (total_data_rate
== 0)
4937 rate
= crtc_state
->plane_data_rate
[plane_id
];
4938 extra
= min_t(u16
, alloc_size
,
4939 DIV64_U64_ROUND_UP(alloc_size
* rate
,
4941 total
[plane_id
] = wm
->wm
[level
].min_ddb_alloc
+ extra
;
4942 alloc_size
-= extra
;
4943 total_data_rate
-= rate
;
4945 if (total_data_rate
== 0)
4948 rate
= crtc_state
->uv_plane_data_rate
[plane_id
];
4949 extra
= min_t(u16
, alloc_size
,
4950 DIV64_U64_ROUND_UP(alloc_size
* rate
,
4952 uv_total
[plane_id
] = wm
->uv_wm
[level
].min_ddb_alloc
+ extra
;
4953 alloc_size
-= extra
;
4954 total_data_rate
-= rate
;
4956 drm_WARN_ON(&dev_priv
->drm
, alloc_size
!= 0 || total_data_rate
!= 0);
4958 /* Set the actual DDB start/end points for each plane */
4959 start
= alloc
->start
;
4960 for_each_plane_id_on_crtc(crtc
, plane_id
) {
4961 struct skl_ddb_entry
*plane_alloc
=
4962 &crtc_state
->wm
.skl
.plane_ddb_y
[plane_id
];
4963 struct skl_ddb_entry
*uv_plane_alloc
=
4964 &crtc_state
->wm
.skl
.plane_ddb_uv
[plane_id
];
4966 if (plane_id
== PLANE_CURSOR
)
4969 /* Gen11+ uses a separate plane for UV watermarks */
4970 drm_WARN_ON(&dev_priv
->drm
,
4971 INTEL_GEN(dev_priv
) >= 11 && uv_total
[plane_id
]);
4973 /* Leave disabled planes at (0,0) */
4974 if (total
[plane_id
]) {
4975 plane_alloc
->start
= start
;
4976 start
+= total
[plane_id
];
4977 plane_alloc
->end
= start
;
4980 if (uv_total
[plane_id
]) {
4981 uv_plane_alloc
->start
= start
;
4982 start
+= uv_total
[plane_id
];
4983 uv_plane_alloc
->end
= start
;
4988 * When we calculated watermark values we didn't know how high
4989 * of a level we'd actually be able to hit, so we just marked
4990 * all levels as "enabled." Go back now and disable the ones
4991 * that aren't actually possible.
4993 for (level
++; level
<= ilk_wm_max_level(dev_priv
); level
++) {
4994 for_each_plane_id_on_crtc(crtc
, plane_id
) {
4995 struct skl_plane_wm
*wm
=
4996 &crtc_state
->wm
.skl
.optimal
.planes
[plane_id
];
4999 * We only disable the watermarks for each plane if
5000 * they exceed the ddb allocation of said plane. This
5001 * is done so that we don't end up touching cursor
5002 * watermarks needlessly when some other plane reduces
5003 * our max possible watermark level.
5005 * Bspec has this to say about the PLANE_WM enable bit:
5006 * "All the watermarks at this level for all enabled
5007 * planes must be enabled before the level will be used."
5008 * So this is actually safe to do.
5010 if (wm
->wm
[level
].min_ddb_alloc
> total
[plane_id
] ||
5011 wm
->uv_wm
[level
].min_ddb_alloc
> uv_total
[plane_id
])
5012 memset(&wm
->wm
[level
], 0, sizeof(wm
->wm
[level
]));
5015 * Wa_1408961008:icl, ehl
5016 * Underruns with WM1+ disabled
5018 if (IS_GEN(dev_priv
, 11) &&
5019 level
== 1 && wm
->wm
[0].plane_en
) {
5020 wm
->wm
[level
].plane_res_b
= wm
->wm
[0].plane_res_b
;
5021 wm
->wm
[level
].plane_res_l
= wm
->wm
[0].plane_res_l
;
5022 wm
->wm
[level
].ignore_lines
= wm
->wm
[0].ignore_lines
;
5028 * Go back and disable the transition watermark if it turns out we
5029 * don't have enough DDB blocks for it.
5031 for_each_plane_id_on_crtc(crtc
, plane_id
) {
5032 struct skl_plane_wm
*wm
=
5033 &crtc_state
->wm
.skl
.optimal
.planes
[plane_id
];
5035 if (wm
->trans_wm
.plane_res_b
>= total
[plane_id
])
5036 memset(&wm
->trans_wm
, 0, sizeof(wm
->trans_wm
));
5043 * The max latency should be 257 (max the punit can code is 255 and we add 2us
5044 * for the read latency) and cpp should always be <= 8, so that
5045 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
5046 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
5048 static uint_fixed_16_16_t
5049 skl_wm_method1(const struct drm_i915_private
*dev_priv
, u32 pixel_rate
,
5050 u8 cpp
, u32 latency
, u32 dbuf_block_size
)
5052 u32 wm_intermediate_val
;
5053 uint_fixed_16_16_t ret
;
5056 return FP_16_16_MAX
;
5058 wm_intermediate_val
= latency
* pixel_rate
* cpp
;
5059 ret
= div_fixed16(wm_intermediate_val
, 1000 * dbuf_block_size
);
5061 if (INTEL_GEN(dev_priv
) >= 10 || IS_GEMINILAKE(dev_priv
))
5062 ret
= add_fixed16_u32(ret
, 1);
5067 static uint_fixed_16_16_t
5068 skl_wm_method2(u32 pixel_rate
, u32 pipe_htotal
, u32 latency
,
5069 uint_fixed_16_16_t plane_blocks_per_line
)
5071 u32 wm_intermediate_val
;
5072 uint_fixed_16_16_t ret
;
5075 return FP_16_16_MAX
;
5077 wm_intermediate_val
= latency
* pixel_rate
;
5078 wm_intermediate_val
= DIV_ROUND_UP(wm_intermediate_val
,
5079 pipe_htotal
* 1000);
5080 ret
= mul_u32_fixed16(wm_intermediate_val
, plane_blocks_per_line
);
5084 static uint_fixed_16_16_t
5085 intel_get_linetime_us(const struct intel_crtc_state
*crtc_state
)
5087 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
5090 uint_fixed_16_16_t linetime_us
;
5092 if (!crtc_state
->hw
.active
)
5093 return u32_to_fixed16(0);
5095 pixel_rate
= crtc_state
->pixel_rate
;
5097 if (drm_WARN_ON(&dev_priv
->drm
, pixel_rate
== 0))
5098 return u32_to_fixed16(0);
5100 crtc_htotal
= crtc_state
->hw
.pipe_mode
.crtc_htotal
;
5101 linetime_us
= div_fixed16(crtc_htotal
* 1000, pixel_rate
);
5107 skl_compute_wm_params(const struct intel_crtc_state
*crtc_state
,
5108 int width
, const struct drm_format_info
*format
,
5109 u64 modifier
, unsigned int rotation
,
5110 u32 plane_pixel_rate
, struct skl_wm_params
*wp
,
5113 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
5114 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
5117 /* only planar format has two planes */
5118 if (color_plane
== 1 &&
5119 !intel_format_info_is_yuv_semiplanar(format
, modifier
)) {
5120 drm_dbg_kms(&dev_priv
->drm
,
5121 "Non planar format have single plane\n");
5125 wp
->y_tiled
= modifier
== I915_FORMAT_MOD_Y_TILED
||
5126 modifier
== I915_FORMAT_MOD_Yf_TILED
||
5127 modifier
== I915_FORMAT_MOD_Y_TILED_CCS
||
5128 modifier
== I915_FORMAT_MOD_Yf_TILED_CCS
;
5129 wp
->x_tiled
= modifier
== I915_FORMAT_MOD_X_TILED
;
5130 wp
->rc_surface
= modifier
== I915_FORMAT_MOD_Y_TILED_CCS
||
5131 modifier
== I915_FORMAT_MOD_Yf_TILED_CCS
;
5132 wp
->is_planar
= intel_format_info_is_yuv_semiplanar(format
, modifier
);
5135 if (color_plane
== 1 && wp
->is_planar
)
5138 wp
->cpp
= format
->cpp
[color_plane
];
5139 wp
->plane_pixel_rate
= plane_pixel_rate
;
5141 if (INTEL_GEN(dev_priv
) >= 11 &&
5142 modifier
== I915_FORMAT_MOD_Yf_TILED
&& wp
->cpp
== 1)
5143 wp
->dbuf_block_size
= 256;
5145 wp
->dbuf_block_size
= 512;
5147 if (drm_rotation_90_or_270(rotation
)) {
5150 wp
->y_min_scanlines
= 16;
5153 wp
->y_min_scanlines
= 8;
5156 wp
->y_min_scanlines
= 4;
5159 MISSING_CASE(wp
->cpp
);
5163 wp
->y_min_scanlines
= 4;
5166 if (skl_needs_memory_bw_wa(dev_priv
))
5167 wp
->y_min_scanlines
*= 2;
5169 wp
->plane_bytes_per_line
= wp
->width
* wp
->cpp
;
5171 interm_pbpl
= DIV_ROUND_UP(wp
->plane_bytes_per_line
*
5172 wp
->y_min_scanlines
,
5173 wp
->dbuf_block_size
);
5175 if (INTEL_GEN(dev_priv
) >= 10 || IS_GEMINILAKE(dev_priv
))
5178 wp
->plane_blocks_per_line
= div_fixed16(interm_pbpl
,
5179 wp
->y_min_scanlines
);
5181 interm_pbpl
= DIV_ROUND_UP(wp
->plane_bytes_per_line
,
5182 wp
->dbuf_block_size
);
5185 INTEL_GEN(dev_priv
) >= 10 || IS_GEMINILAKE(dev_priv
))
5188 wp
->plane_blocks_per_line
= u32_to_fixed16(interm_pbpl
);
5191 wp
->y_tile_minimum
= mul_u32_fixed16(wp
->y_min_scanlines
,
5192 wp
->plane_blocks_per_line
);
5194 wp
->linetime_us
= fixed16_to_u32_round_up(
5195 intel_get_linetime_us(crtc_state
));
5201 skl_compute_plane_wm_params(const struct intel_crtc_state
*crtc_state
,
5202 const struct intel_plane_state
*plane_state
,
5203 struct skl_wm_params
*wp
, int color_plane
)
5205 const struct drm_framebuffer
*fb
= plane_state
->hw
.fb
;
5209 * Src coordinates are already rotated by 270 degrees for
5210 * the 90/270 degree plane rotation cases (to match the
5211 * GTT mapping), hence no need to account for rotation here.
5213 width
= drm_rect_width(&plane_state
->uapi
.src
) >> 16;
5215 return skl_compute_wm_params(crtc_state
, width
,
5216 fb
->format
, fb
->modifier
,
5217 plane_state
->hw
.rotation
,
5218 intel_plane_pixel_rate(crtc_state
, plane_state
),
5222 static bool skl_wm_has_lines(struct drm_i915_private
*dev_priv
, int level
)
5224 if (INTEL_GEN(dev_priv
) >= 10 || IS_GEMINILAKE(dev_priv
))
5227 /* The number of lines are ignored for the level 0 watermark. */
5231 static void skl_compute_plane_wm(const struct intel_crtc_state
*crtc_state
,
5233 unsigned int latency
,
5234 const struct skl_wm_params
*wp
,
5235 const struct skl_wm_level
*result_prev
,
5236 struct skl_wm_level
*result
/* out */)
5238 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
5239 uint_fixed_16_16_t method1
, method2
;
5240 uint_fixed_16_16_t selected_result
;
5241 u32 res_blocks
, res_lines
, min_ddb_alloc
= 0;
5245 result
->min_ddb_alloc
= U16_MAX
;
5250 * WaIncreaseLatencyIPCEnabled: kbl,cfl
5251 * Display WA #1141: kbl,cfl
5253 if ((IS_KABYLAKE(dev_priv
) ||
5254 IS_COFFEELAKE(dev_priv
) ||
5255 IS_COMETLAKE(dev_priv
)) &&
5256 dev_priv
->ipc_enabled
)
5259 if (skl_needs_memory_bw_wa(dev_priv
) && wp
->x_tiled
)
5262 method1
= skl_wm_method1(dev_priv
, wp
->plane_pixel_rate
,
5263 wp
->cpp
, latency
, wp
->dbuf_block_size
);
5264 method2
= skl_wm_method2(wp
->plane_pixel_rate
,
5265 crtc_state
->hw
.pipe_mode
.crtc_htotal
,
5267 wp
->plane_blocks_per_line
);
5270 selected_result
= max_fixed16(method2
, wp
->y_tile_minimum
);
5272 if ((wp
->cpp
* crtc_state
->hw
.pipe_mode
.crtc_htotal
/
5273 wp
->dbuf_block_size
< 1) &&
5274 (wp
->plane_bytes_per_line
/ wp
->dbuf_block_size
< 1)) {
5275 selected_result
= method2
;
5276 } else if (latency
>= wp
->linetime_us
) {
5277 if (IS_GEN(dev_priv
, 9) &&
5278 !IS_GEMINILAKE(dev_priv
))
5279 selected_result
= min_fixed16(method1
, method2
);
5281 selected_result
= method2
;
5283 selected_result
= method1
;
5287 res_blocks
= fixed16_to_u32_round_up(selected_result
) + 1;
5288 res_lines
= div_round_up_fixed16(selected_result
,
5289 wp
->plane_blocks_per_line
);
5291 if (IS_GEN9_BC(dev_priv
) || IS_BROXTON(dev_priv
)) {
5292 /* Display WA #1125: skl,bxt,kbl */
5293 if (level
== 0 && wp
->rc_surface
)
5295 fixed16_to_u32_round_up(wp
->y_tile_minimum
);
5297 /* Display WA #1126: skl,bxt,kbl */
5298 if (level
>= 1 && level
<= 7) {
5301 fixed16_to_u32_round_up(wp
->y_tile_minimum
);
5302 res_lines
+= wp
->y_min_scanlines
;
5308 * Make sure result blocks for higher latency levels are
5309 * atleast as high as level below the current level.
5310 * Assumption in DDB algorithm optimization for special
5311 * cases. Also covers Display WA #1125 for RC.
5313 if (result_prev
->plane_res_b
> res_blocks
)
5314 res_blocks
= result_prev
->plane_res_b
;
5318 if (INTEL_GEN(dev_priv
) >= 11) {
5322 if (res_lines
% wp
->y_min_scanlines
== 0)
5323 extra_lines
= wp
->y_min_scanlines
;
5325 extra_lines
= wp
->y_min_scanlines
* 2 -
5326 res_lines
% wp
->y_min_scanlines
;
5328 min_ddb_alloc
= mul_round_up_u32_fixed16(res_lines
+ extra_lines
,
5329 wp
->plane_blocks_per_line
);
5331 min_ddb_alloc
= res_blocks
+
5332 DIV_ROUND_UP(res_blocks
, 10);
5336 if (!skl_wm_has_lines(dev_priv
, level
))
5339 if (res_lines
> 31) {
5341 result
->min_ddb_alloc
= U16_MAX
;
5346 * If res_lines is valid, assume we can use this watermark level
5347 * for now. We'll come back and disable it after we calculate the
5348 * DDB allocation if it turns out we don't actually have enough
5349 * blocks to satisfy it.
5351 result
->plane_res_b
= res_blocks
;
5352 result
->plane_res_l
= res_lines
;
5353 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5354 result
->min_ddb_alloc
= max(min_ddb_alloc
, res_blocks
) + 1;
5355 result
->plane_en
= true;
5357 if (INTEL_GEN(dev_priv
) < 12)
5358 result
->can_sagv
= latency
>= dev_priv
->sagv_block_time_us
;
5362 skl_compute_wm_levels(const struct intel_crtc_state
*crtc_state
,
5363 const struct skl_wm_params
*wm_params
,
5364 struct skl_wm_level
*levels
)
5366 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
5367 int level
, max_level
= ilk_wm_max_level(dev_priv
);
5368 struct skl_wm_level
*result_prev
= &levels
[0];
5370 for (level
= 0; level
<= max_level
; level
++) {
5371 struct skl_wm_level
*result
= &levels
[level
];
5372 unsigned int latency
= dev_priv
->wm
.skl_latency
[level
];
5374 skl_compute_plane_wm(crtc_state
, level
, latency
,
5375 wm_params
, result_prev
, result
);
5377 result_prev
= result
;
5381 static void tgl_compute_sagv_wm(const struct intel_crtc_state
*crtc_state
,
5382 const struct skl_wm_params
*wm_params
,
5383 struct skl_plane_wm
*plane_wm
)
5385 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->uapi
.crtc
->dev
);
5386 struct skl_wm_level
*sagv_wm
= &plane_wm
->sagv_wm0
;
5387 struct skl_wm_level
*levels
= plane_wm
->wm
;
5388 unsigned int latency
= dev_priv
->wm
.skl_latency
[0] + dev_priv
->sagv_block_time_us
;
5390 skl_compute_plane_wm(crtc_state
, 0, latency
,
5391 wm_params
, &levels
[0],
5395 static void skl_compute_transition_wm(const struct intel_crtc_state
*crtc_state
,
5396 const struct skl_wm_params
*wp
,
5397 struct skl_plane_wm
*wm
)
5399 struct drm_device
*dev
= crtc_state
->uapi
.crtc
->dev
;
5400 const struct drm_i915_private
*dev_priv
= to_i915(dev
);
5401 u16 trans_min
, trans_amount
, trans_y_tile_min
;
5402 u16 wm0_sel_res_b
, trans_offset_b
, res_blocks
;
5404 /* Transition WM don't make any sense if ipc is disabled */
5405 if (!dev_priv
->ipc_enabled
)
5409 * WaDisableTWM:skl,kbl,cfl,bxt
5410 * Transition WM are not recommended by HW team for GEN9
5412 if (IS_GEN9_BC(dev_priv
) || IS_BROXTON(dev_priv
))
5415 if (INTEL_GEN(dev_priv
) >= 11)
5420 /* Display WA #1140: glk,cnl */
5421 if (IS_CANNONLAKE(dev_priv
) || IS_GEMINILAKE(dev_priv
))
5424 trans_amount
= 10; /* This is configurable amount */
5426 trans_offset_b
= trans_min
+ trans_amount
;
5429 * The spec asks for Selected Result Blocks for wm0 (the real value),
5430 * not Result Blocks (the integer value). Pay attention to the capital
5431 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
5432 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5433 * and since we later will have to get the ceiling of the sum in the
5434 * transition watermarks calculation, we can just pretend Selected
5435 * Result Blocks is Result Blocks minus 1 and it should work for the
5436 * current platforms.
5438 wm0_sel_res_b
= wm
->wm
[0].plane_res_b
- 1;
5442 (u16
)mul_round_up_u32_fixed16(2, wp
->y_tile_minimum
);
5443 res_blocks
= max(wm0_sel_res_b
, trans_y_tile_min
) +
5446 res_blocks
= wm0_sel_res_b
+ trans_offset_b
;
5450 * Just assume we can enable the transition watermark. After
5451 * computing the DDB we'll come back and disable it if that
5452 * assumption turns out to be false.
5454 wm
->trans_wm
.plane_res_b
= res_blocks
+ 1;
5455 wm
->trans_wm
.plane_en
= true;
5458 static int skl_build_plane_wm_single(struct intel_crtc_state
*crtc_state
,
5459 const struct intel_plane_state
*plane_state
,
5460 enum plane_id plane_id
, int color_plane
)
5462 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
5463 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
5464 struct skl_plane_wm
*wm
= &crtc_state
->wm
.skl
.raw
.planes
[plane_id
];
5465 struct skl_wm_params wm_params
;
5468 ret
= skl_compute_plane_wm_params(crtc_state
, plane_state
,
5469 &wm_params
, color_plane
);
5473 skl_compute_wm_levels(crtc_state
, &wm_params
, wm
->wm
);
5475 if (INTEL_GEN(dev_priv
) >= 12)
5476 tgl_compute_sagv_wm(crtc_state
, &wm_params
, wm
);
5478 skl_compute_transition_wm(crtc_state
, &wm_params
, wm
);
5483 static int skl_build_plane_wm_uv(struct intel_crtc_state
*crtc_state
,
5484 const struct intel_plane_state
*plane_state
,
5485 enum plane_id plane_id
)
5487 struct skl_plane_wm
*wm
= &crtc_state
->wm
.skl
.raw
.planes
[plane_id
];
5488 struct skl_wm_params wm_params
;
5491 wm
->is_planar
= true;
5493 /* uv plane watermarks must also be validated for NV12/Planar */
5494 ret
= skl_compute_plane_wm_params(crtc_state
, plane_state
,
5499 skl_compute_wm_levels(crtc_state
, &wm_params
, wm
->uv_wm
);
5504 static int skl_build_plane_wm(struct intel_crtc_state
*crtc_state
,
5505 const struct intel_plane_state
*plane_state
)
5507 struct intel_plane
*plane
= to_intel_plane(plane_state
->uapi
.plane
);
5508 enum plane_id plane_id
= plane
->id
;
5509 struct skl_plane_wm
*wm
= &crtc_state
->wm
.skl
.raw
.planes
[plane_id
];
5510 const struct drm_framebuffer
*fb
= plane_state
->hw
.fb
;
5513 memset(wm
, 0, sizeof(*wm
));
5515 if (!intel_wm_plane_visible(crtc_state
, plane_state
))
5518 ret
= skl_build_plane_wm_single(crtc_state
, plane_state
,
5523 if (fb
->format
->is_yuv
&& fb
->format
->num_planes
> 1) {
5524 ret
= skl_build_plane_wm_uv(crtc_state
, plane_state
,
5533 static int icl_build_plane_wm(struct intel_crtc_state
*crtc_state
,
5534 const struct intel_plane_state
*plane_state
)
5536 struct intel_plane
*plane
= to_intel_plane(plane_state
->uapi
.plane
);
5537 struct drm_i915_private
*dev_priv
= to_i915(plane
->base
.dev
);
5538 enum plane_id plane_id
= plane
->id
;
5539 struct skl_plane_wm
*wm
= &crtc_state
->wm
.skl
.raw
.planes
[plane_id
];
5542 memset(wm
, 0, sizeof(*wm
));
5544 /* Watermarks calculated in master */
5545 if (plane_state
->planar_slave
)
5548 if (plane_state
->planar_linked_plane
) {
5549 const struct drm_framebuffer
*fb
= plane_state
->hw
.fb
;
5550 enum plane_id y_plane_id
= plane_state
->planar_linked_plane
->id
;
5552 drm_WARN_ON(&dev_priv
->drm
,
5553 !intel_wm_plane_visible(crtc_state
, plane_state
));
5554 drm_WARN_ON(&dev_priv
->drm
, !fb
->format
->is_yuv
||
5555 fb
->format
->num_planes
== 1);
5557 ret
= skl_build_plane_wm_single(crtc_state
, plane_state
,
5562 ret
= skl_build_plane_wm_single(crtc_state
, plane_state
,
5566 } else if (intel_wm_plane_visible(crtc_state
, plane_state
)) {
5567 ret
= skl_build_plane_wm_single(crtc_state
, plane_state
,
5576 static int skl_build_pipe_wm(struct intel_atomic_state
*state
,
5577 struct intel_crtc
*crtc
)
5579 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
5580 struct intel_crtc_state
*crtc_state
=
5581 intel_atomic_get_new_crtc_state(state
, crtc
);
5582 const struct intel_plane_state
*plane_state
;
5583 struct intel_plane
*plane
;
5586 for_each_new_intel_plane_in_state(state
, plane
, plane_state
, i
) {
5588 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
5589 * instead but we don't populate that correctly for NV12 Y
5590 * planes so for now hack this.
5592 if (plane
->pipe
!= crtc
->pipe
)
5595 if (INTEL_GEN(dev_priv
) >= 11)
5596 ret
= icl_build_plane_wm(crtc_state
, plane_state
);
5598 ret
= skl_build_plane_wm(crtc_state
, plane_state
);
5603 crtc_state
->wm
.skl
.optimal
= crtc_state
->wm
.skl
.raw
;
5608 static void skl_ddb_entry_write(struct drm_i915_private
*dev_priv
,
5610 const struct skl_ddb_entry
*entry
)
5613 intel_de_write_fw(dev_priv
, reg
,
5614 (entry
->end
- 1) << 16 | entry
->start
);
5616 intel_de_write_fw(dev_priv
, reg
, 0);
5619 static void skl_write_wm_level(struct drm_i915_private
*dev_priv
,
5621 const struct skl_wm_level
*level
)
5625 if (level
->plane_en
)
5627 if (level
->ignore_lines
)
5628 val
|= PLANE_WM_IGNORE_LINES
;
5629 val
|= level
->plane_res_b
;
5630 val
|= level
->plane_res_l
<< PLANE_WM_LINES_SHIFT
;
5632 intel_de_write_fw(dev_priv
, reg
, val
);
5635 void skl_write_plane_wm(struct intel_plane
*plane
,
5636 const struct intel_crtc_state
*crtc_state
)
5638 struct drm_i915_private
*dev_priv
= to_i915(plane
->base
.dev
);
5639 int level
, max_level
= ilk_wm_max_level(dev_priv
);
5640 enum plane_id plane_id
= plane
->id
;
5641 enum pipe pipe
= plane
->pipe
;
5642 const struct skl_plane_wm
*wm
=
5643 &crtc_state
->wm
.skl
.optimal
.planes
[plane_id
];
5644 const struct skl_ddb_entry
*ddb_y
=
5645 &crtc_state
->wm
.skl
.plane_ddb_y
[plane_id
];
5646 const struct skl_ddb_entry
*ddb_uv
=
5647 &crtc_state
->wm
.skl
.plane_ddb_uv
[plane_id
];
5649 for (level
= 0; level
<= max_level
; level
++) {
5650 const struct skl_wm_level
*wm_level
;
5652 wm_level
= skl_plane_wm_level(crtc_state
, plane_id
, level
);
5654 skl_write_wm_level(dev_priv
, PLANE_WM(pipe
, plane_id
, level
),
5657 skl_write_wm_level(dev_priv
, PLANE_WM_TRANS(pipe
, plane_id
),
5660 if (INTEL_GEN(dev_priv
) >= 11) {
5661 skl_ddb_entry_write(dev_priv
,
5662 PLANE_BUF_CFG(pipe
, plane_id
), ddb_y
);
5667 swap(ddb_y
, ddb_uv
);
5669 skl_ddb_entry_write(dev_priv
,
5670 PLANE_BUF_CFG(pipe
, plane_id
), ddb_y
);
5671 skl_ddb_entry_write(dev_priv
,
5672 PLANE_NV12_BUF_CFG(pipe
, plane_id
), ddb_uv
);
5675 void skl_write_cursor_wm(struct intel_plane
*plane
,
5676 const struct intel_crtc_state
*crtc_state
)
5678 struct drm_i915_private
*dev_priv
= to_i915(plane
->base
.dev
);
5679 int level
, max_level
= ilk_wm_max_level(dev_priv
);
5680 enum plane_id plane_id
= plane
->id
;
5681 enum pipe pipe
= plane
->pipe
;
5682 const struct skl_plane_wm
*wm
=
5683 &crtc_state
->wm
.skl
.optimal
.planes
[plane_id
];
5684 const struct skl_ddb_entry
*ddb
=
5685 &crtc_state
->wm
.skl
.plane_ddb_y
[plane_id
];
5687 for (level
= 0; level
<= max_level
; level
++) {
5688 const struct skl_wm_level
*wm_level
;
5690 wm_level
= skl_plane_wm_level(crtc_state
, plane_id
, level
);
5692 skl_write_wm_level(dev_priv
, CUR_WM(pipe
, level
),
5695 skl_write_wm_level(dev_priv
, CUR_WM_TRANS(pipe
), &wm
->trans_wm
);
5697 skl_ddb_entry_write(dev_priv
, CUR_BUF_CFG(pipe
), ddb
);
5700 bool skl_wm_level_equals(const struct skl_wm_level
*l1
,
5701 const struct skl_wm_level
*l2
)
5703 return l1
->plane_en
== l2
->plane_en
&&
5704 l1
->ignore_lines
== l2
->ignore_lines
&&
5705 l1
->plane_res_l
== l2
->plane_res_l
&&
5706 l1
->plane_res_b
== l2
->plane_res_b
;
5709 static bool skl_plane_wm_equals(struct drm_i915_private
*dev_priv
,
5710 const struct skl_plane_wm
*wm1
,
5711 const struct skl_plane_wm
*wm2
)
5713 int level
, max_level
= ilk_wm_max_level(dev_priv
);
5715 for (level
= 0; level
<= max_level
; level
++) {
5717 * We don't check uv_wm as the hardware doesn't actually
5718 * use it. It only gets used for calculating the required
5721 if (!skl_wm_level_equals(&wm1
->wm
[level
], &wm2
->wm
[level
]))
5725 return skl_wm_level_equals(&wm1
->trans_wm
, &wm2
->trans_wm
);
5728 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry
*a
,
5729 const struct skl_ddb_entry
*b
)
5731 return a
->start
< b
->end
&& b
->start
< a
->end
;
5734 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry
*ddb
,
5735 const struct skl_ddb_entry
*entries
,
5736 int num_entries
, int ignore_idx
)
5740 for (i
= 0; i
< num_entries
; i
++) {
5741 if (i
!= ignore_idx
&&
5742 skl_ddb_entries_overlap(ddb
, &entries
[i
]))
5750 skl_ddb_add_affected_planes(const struct intel_crtc_state
*old_crtc_state
,
5751 struct intel_crtc_state
*new_crtc_state
)
5753 struct intel_atomic_state
*state
= to_intel_atomic_state(new_crtc_state
->uapi
.state
);
5754 struct intel_crtc
*crtc
= to_intel_crtc(new_crtc_state
->uapi
.crtc
);
5755 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
5756 struct intel_plane
*plane
;
5758 for_each_intel_plane_on_crtc(&dev_priv
->drm
, crtc
, plane
) {
5759 struct intel_plane_state
*plane_state
;
5760 enum plane_id plane_id
= plane
->id
;
5762 if (skl_ddb_entry_equal(&old_crtc_state
->wm
.skl
.plane_ddb_y
[plane_id
],
5763 &new_crtc_state
->wm
.skl
.plane_ddb_y
[plane_id
]) &&
5764 skl_ddb_entry_equal(&old_crtc_state
->wm
.skl
.plane_ddb_uv
[plane_id
],
5765 &new_crtc_state
->wm
.skl
.plane_ddb_uv
[plane_id
]))
5768 plane_state
= intel_atomic_get_plane_state(state
, plane
);
5769 if (IS_ERR(plane_state
))
5770 return PTR_ERR(plane_state
);
5772 new_crtc_state
->update_planes
|= BIT(plane_id
);
5779 skl_compute_ddb(struct intel_atomic_state
*state
)
5781 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
5782 const struct intel_dbuf_state
*old_dbuf_state
;
5783 const struct intel_dbuf_state
*new_dbuf_state
;
5784 const struct intel_crtc_state
*old_crtc_state
;
5785 struct intel_crtc_state
*new_crtc_state
;
5786 struct intel_crtc
*crtc
;
5789 for_each_oldnew_intel_crtc_in_state(state
, crtc
, old_crtc_state
,
5790 new_crtc_state
, i
) {
5791 ret
= skl_allocate_pipe_ddb(state
, crtc
);
5795 ret
= skl_ddb_add_affected_planes(old_crtc_state
,
5801 old_dbuf_state
= intel_atomic_get_old_dbuf_state(state
);
5802 new_dbuf_state
= intel_atomic_get_new_dbuf_state(state
);
5804 if (new_dbuf_state
&&
5805 new_dbuf_state
->enabled_slices
!= old_dbuf_state
->enabled_slices
)
5806 drm_dbg_kms(&dev_priv
->drm
,
5807 "Enabled dbuf slices 0x%x -> 0x%x (out of %d dbuf slices)\n",
5808 old_dbuf_state
->enabled_slices
,
5809 new_dbuf_state
->enabled_slices
,
5810 INTEL_INFO(dev_priv
)->num_supported_dbuf_slices
);
5815 static char enast(bool enable
)
5817 return enable
? '*' : ' ';
5821 skl_print_wm_changes(struct intel_atomic_state
*state
)
5823 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
5824 const struct intel_crtc_state
*old_crtc_state
;
5825 const struct intel_crtc_state
*new_crtc_state
;
5826 struct intel_plane
*plane
;
5827 struct intel_crtc
*crtc
;
5830 if (!drm_debug_enabled(DRM_UT_KMS
))
5833 for_each_oldnew_intel_crtc_in_state(state
, crtc
, old_crtc_state
,
5834 new_crtc_state
, i
) {
5835 const struct skl_pipe_wm
*old_pipe_wm
, *new_pipe_wm
;
5837 old_pipe_wm
= &old_crtc_state
->wm
.skl
.optimal
;
5838 new_pipe_wm
= &new_crtc_state
->wm
.skl
.optimal
;
5840 for_each_intel_plane_on_crtc(&dev_priv
->drm
, crtc
, plane
) {
5841 enum plane_id plane_id
= plane
->id
;
5842 const struct skl_ddb_entry
*old
, *new;
5844 old
= &old_crtc_state
->wm
.skl
.plane_ddb_y
[plane_id
];
5845 new = &new_crtc_state
->wm
.skl
.plane_ddb_y
[plane_id
];
5847 if (skl_ddb_entry_equal(old
, new))
5850 drm_dbg_kms(&dev_priv
->drm
,
5851 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5852 plane
->base
.base
.id
, plane
->base
.name
,
5853 old
->start
, old
->end
, new->start
, new->end
,
5854 skl_ddb_entry_size(old
), skl_ddb_entry_size(new));
5857 for_each_intel_plane_on_crtc(&dev_priv
->drm
, crtc
, plane
) {
5858 enum plane_id plane_id
= plane
->id
;
5859 const struct skl_plane_wm
*old_wm
, *new_wm
;
5861 old_wm
= &old_pipe_wm
->planes
[plane_id
];
5862 new_wm
= &new_pipe_wm
->planes
[plane_id
];
5864 if (skl_plane_wm_equals(dev_priv
, old_wm
, new_wm
))
5867 drm_dbg_kms(&dev_priv
->drm
,
5868 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm"
5869 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm\n",
5870 plane
->base
.base
.id
, plane
->base
.name
,
5871 enast(old_wm
->wm
[0].plane_en
), enast(old_wm
->wm
[1].plane_en
),
5872 enast(old_wm
->wm
[2].plane_en
), enast(old_wm
->wm
[3].plane_en
),
5873 enast(old_wm
->wm
[4].plane_en
), enast(old_wm
->wm
[5].plane_en
),
5874 enast(old_wm
->wm
[6].plane_en
), enast(old_wm
->wm
[7].plane_en
),
5875 enast(old_wm
->trans_wm
.plane_en
),
5876 enast(old_wm
->sagv_wm0
.plane_en
),
5877 enast(new_wm
->wm
[0].plane_en
), enast(new_wm
->wm
[1].plane_en
),
5878 enast(new_wm
->wm
[2].plane_en
), enast(new_wm
->wm
[3].plane_en
),
5879 enast(new_wm
->wm
[4].plane_en
), enast(new_wm
->wm
[5].plane_en
),
5880 enast(new_wm
->wm
[6].plane_en
), enast(new_wm
->wm
[7].plane_en
),
5881 enast(new_wm
->trans_wm
.plane_en
),
5882 enast(new_wm
->sagv_wm0
.plane_en
));
5884 drm_dbg_kms(&dev_priv
->drm
,
5885 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5886 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5887 plane
->base
.base
.id
, plane
->base
.name
,
5888 enast(old_wm
->wm
[0].ignore_lines
), old_wm
->wm
[0].plane_res_l
,
5889 enast(old_wm
->wm
[1].ignore_lines
), old_wm
->wm
[1].plane_res_l
,
5890 enast(old_wm
->wm
[2].ignore_lines
), old_wm
->wm
[2].plane_res_l
,
5891 enast(old_wm
->wm
[3].ignore_lines
), old_wm
->wm
[3].plane_res_l
,
5892 enast(old_wm
->wm
[4].ignore_lines
), old_wm
->wm
[4].plane_res_l
,
5893 enast(old_wm
->wm
[5].ignore_lines
), old_wm
->wm
[5].plane_res_l
,
5894 enast(old_wm
->wm
[6].ignore_lines
), old_wm
->wm
[6].plane_res_l
,
5895 enast(old_wm
->wm
[7].ignore_lines
), old_wm
->wm
[7].plane_res_l
,
5896 enast(old_wm
->trans_wm
.ignore_lines
), old_wm
->trans_wm
.plane_res_l
,
5897 enast(old_wm
->sagv_wm0
.ignore_lines
), old_wm
->sagv_wm0
.plane_res_l
,
5899 enast(new_wm
->wm
[0].ignore_lines
), new_wm
->wm
[0].plane_res_l
,
5900 enast(new_wm
->wm
[1].ignore_lines
), new_wm
->wm
[1].plane_res_l
,
5901 enast(new_wm
->wm
[2].ignore_lines
), new_wm
->wm
[2].plane_res_l
,
5902 enast(new_wm
->wm
[3].ignore_lines
), new_wm
->wm
[3].plane_res_l
,
5903 enast(new_wm
->wm
[4].ignore_lines
), new_wm
->wm
[4].plane_res_l
,
5904 enast(new_wm
->wm
[5].ignore_lines
), new_wm
->wm
[5].plane_res_l
,
5905 enast(new_wm
->wm
[6].ignore_lines
), new_wm
->wm
[6].plane_res_l
,
5906 enast(new_wm
->wm
[7].ignore_lines
), new_wm
->wm
[7].plane_res_l
,
5907 enast(new_wm
->trans_wm
.ignore_lines
), new_wm
->trans_wm
.plane_res_l
,
5908 enast(new_wm
->sagv_wm0
.ignore_lines
), new_wm
->sagv_wm0
.plane_res_l
);
5910 drm_dbg_kms(&dev_priv
->drm
,
5911 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5912 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5913 plane
->base
.base
.id
, plane
->base
.name
,
5914 old_wm
->wm
[0].plane_res_b
, old_wm
->wm
[1].plane_res_b
,
5915 old_wm
->wm
[2].plane_res_b
, old_wm
->wm
[3].plane_res_b
,
5916 old_wm
->wm
[4].plane_res_b
, old_wm
->wm
[5].plane_res_b
,
5917 old_wm
->wm
[6].plane_res_b
, old_wm
->wm
[7].plane_res_b
,
5918 old_wm
->trans_wm
.plane_res_b
,
5919 old_wm
->sagv_wm0
.plane_res_b
,
5920 new_wm
->wm
[0].plane_res_b
, new_wm
->wm
[1].plane_res_b
,
5921 new_wm
->wm
[2].plane_res_b
, new_wm
->wm
[3].plane_res_b
,
5922 new_wm
->wm
[4].plane_res_b
, new_wm
->wm
[5].plane_res_b
,
5923 new_wm
->wm
[6].plane_res_b
, new_wm
->wm
[7].plane_res_b
,
5924 new_wm
->trans_wm
.plane_res_b
,
5925 new_wm
->sagv_wm0
.plane_res_b
);
5927 drm_dbg_kms(&dev_priv
->drm
,
5928 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5929 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5930 plane
->base
.base
.id
, plane
->base
.name
,
5931 old_wm
->wm
[0].min_ddb_alloc
, old_wm
->wm
[1].min_ddb_alloc
,
5932 old_wm
->wm
[2].min_ddb_alloc
, old_wm
->wm
[3].min_ddb_alloc
,
5933 old_wm
->wm
[4].min_ddb_alloc
, old_wm
->wm
[5].min_ddb_alloc
,
5934 old_wm
->wm
[6].min_ddb_alloc
, old_wm
->wm
[7].min_ddb_alloc
,
5935 old_wm
->trans_wm
.min_ddb_alloc
,
5936 old_wm
->sagv_wm0
.min_ddb_alloc
,
5937 new_wm
->wm
[0].min_ddb_alloc
, new_wm
->wm
[1].min_ddb_alloc
,
5938 new_wm
->wm
[2].min_ddb_alloc
, new_wm
->wm
[3].min_ddb_alloc
,
5939 new_wm
->wm
[4].min_ddb_alloc
, new_wm
->wm
[5].min_ddb_alloc
,
5940 new_wm
->wm
[6].min_ddb_alloc
, new_wm
->wm
[7].min_ddb_alloc
,
5941 new_wm
->trans_wm
.min_ddb_alloc
,
5942 new_wm
->sagv_wm0
.min_ddb_alloc
);
5947 static int intel_add_affected_pipes(struct intel_atomic_state
*state
,
5950 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
5951 struct intel_crtc
*crtc
;
5953 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
5954 struct intel_crtc_state
*crtc_state
;
5956 if ((pipe_mask
& BIT(crtc
->pipe
)) == 0)
5959 crtc_state
= intel_atomic_get_crtc_state(&state
->base
, crtc
);
5960 if (IS_ERR(crtc_state
))
5961 return PTR_ERR(crtc_state
);
5968 skl_ddb_add_affected_pipes(struct intel_atomic_state
*state
)
5970 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
5971 struct intel_crtc_state
*crtc_state
;
5972 struct intel_crtc
*crtc
;
5975 if (dev_priv
->wm
.distrust_bios_wm
) {
5977 * skl_ddb_get_pipe_allocation_limits() currently requires
5978 * all active pipes to be included in the state so that
5979 * it can redistribute the dbuf among them, and it really
5980 * wants to recompute things when distrust_bios_wm is set
5981 * so we add all the pipes to the state.
5983 ret
= intel_add_affected_pipes(state
, ~0);
5988 for_each_new_intel_crtc_in_state(state
, crtc
, crtc_state
, i
) {
5989 struct intel_dbuf_state
*new_dbuf_state
;
5990 const struct intel_dbuf_state
*old_dbuf_state
;
5992 new_dbuf_state
= intel_atomic_get_dbuf_state(state
);
5993 if (IS_ERR(new_dbuf_state
))
5994 return PTR_ERR(new_dbuf_state
);
5996 old_dbuf_state
= intel_atomic_get_old_dbuf_state(state
);
5998 new_dbuf_state
->active_pipes
=
5999 intel_calc_active_pipes(state
, old_dbuf_state
->active_pipes
);
6001 if (old_dbuf_state
->active_pipes
== new_dbuf_state
->active_pipes
)
6004 ret
= intel_atomic_lock_global_state(&new_dbuf_state
->base
);
6009 * skl_ddb_get_pipe_allocation_limits() currently requires
6010 * all active pipes to be included in the state so that
6011 * it can redistribute the dbuf among them.
6013 ret
= intel_add_affected_pipes(state
,
6014 new_dbuf_state
->active_pipes
);
6025 * To make sure the cursor watermark registers are always consistent
6026 * with our computed state the following scenario needs special
6030 * 2. move cursor entirely offscreen
6033 * Step 2. does call .disable_plane() but does not zero the watermarks
6034 * (since we consider an offscreen cursor still active for the purposes
6035 * of watermarks). Step 3. would not normally call .disable_plane()
6036 * because the actual plane visibility isn't changing, and we don't
6037 * deallocate the cursor ddb until the pipe gets disabled. So we must
6038 * force step 3. to call .disable_plane() to update the watermark
6039 * registers properly.
6041 * Other planes do not suffer from this issues as their watermarks are
6042 * calculated based on the actual plane visibility. The only time this
6043 * can trigger for the other planes is during the initial readout as the
6044 * default value of the watermarks registers is not zero.
6046 static int skl_wm_add_affected_planes(struct intel_atomic_state
*state
,
6047 struct intel_crtc
*crtc
)
6049 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
6050 const struct intel_crtc_state
*old_crtc_state
=
6051 intel_atomic_get_old_crtc_state(state
, crtc
);
6052 struct intel_crtc_state
*new_crtc_state
=
6053 intel_atomic_get_new_crtc_state(state
, crtc
);
6054 struct intel_plane
*plane
;
6056 for_each_intel_plane_on_crtc(&dev_priv
->drm
, crtc
, plane
) {
6057 struct intel_plane_state
*plane_state
;
6058 enum plane_id plane_id
= plane
->id
;
6061 * Force a full wm update for every plane on modeset.
6062 * Required because the reset value of the wm registers
6063 * is non-zero, whereas we want all disabled planes to
6064 * have zero watermarks. So if we turn off the relevant
6065 * power well the hardware state will go out of sync
6066 * with the software state.
6068 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state
->uapi
) &&
6069 skl_plane_wm_equals(dev_priv
,
6070 &old_crtc_state
->wm
.skl
.optimal
.planes
[plane_id
],
6071 &new_crtc_state
->wm
.skl
.optimal
.planes
[plane_id
]))
6074 plane_state
= intel_atomic_get_plane_state(state
, plane
);
6075 if (IS_ERR(plane_state
))
6076 return PTR_ERR(plane_state
);
6078 new_crtc_state
->update_planes
|= BIT(plane_id
);
6085 skl_compute_wm(struct intel_atomic_state
*state
)
6087 struct intel_crtc
*crtc
;
6088 struct intel_crtc_state
*new_crtc_state
;
6091 ret
= skl_ddb_add_affected_pipes(state
);
6096 * Calculate WM's for all pipes that are part of this transaction.
6097 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
6098 * weren't otherwise being modified if pipe allocations had to change.
6100 for_each_new_intel_crtc_in_state(state
, crtc
, new_crtc_state
, i
) {
6101 ret
= skl_build_pipe_wm(state
, crtc
);
6106 ret
= skl_compute_ddb(state
);
6110 ret
= intel_compute_sagv_mask(state
);
6115 * skl_compute_ddb() will have adjusted the final watermarks
6116 * based on how much ddb is available. Now we can actually
6117 * check if the final watermarks changed.
6119 for_each_new_intel_crtc_in_state(state
, crtc
, new_crtc_state
, i
) {
6120 ret
= skl_wm_add_affected_planes(state
, crtc
);
6125 skl_print_wm_changes(state
);
6130 static void ilk_compute_wm_config(struct drm_i915_private
*dev_priv
,
6131 struct intel_wm_config
*config
)
6133 struct intel_crtc
*crtc
;
6135 /* Compute the currently _active_ config */
6136 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
6137 const struct intel_pipe_wm
*wm
= &crtc
->wm
.active
.ilk
;
6139 if (!wm
->pipe_enabled
)
6142 config
->sprites_enabled
|= wm
->sprites_enabled
;
6143 config
->sprites_scaled
|= wm
->sprites_scaled
;
6144 config
->num_pipes_active
++;
6148 static void ilk_program_watermarks(struct drm_i915_private
*dev_priv
)
6150 struct intel_pipe_wm lp_wm_1_2
= {}, lp_wm_5_6
= {}, *best_lp_wm
;
6151 struct ilk_wm_maximums max
;
6152 struct intel_wm_config config
= {};
6153 struct ilk_wm_values results
= {};
6154 enum intel_ddb_partitioning partitioning
;
6156 ilk_compute_wm_config(dev_priv
, &config
);
6158 ilk_compute_wm_maximums(dev_priv
, 1, &config
, INTEL_DDB_PART_1_2
, &max
);
6159 ilk_wm_merge(dev_priv
, &config
, &max
, &lp_wm_1_2
);
6161 /* 5/6 split only in single pipe config on IVB+ */
6162 if (INTEL_GEN(dev_priv
) >= 7 &&
6163 config
.num_pipes_active
== 1 && config
.sprites_enabled
) {
6164 ilk_compute_wm_maximums(dev_priv
, 1, &config
, INTEL_DDB_PART_5_6
, &max
);
6165 ilk_wm_merge(dev_priv
, &config
, &max
, &lp_wm_5_6
);
6167 best_lp_wm
= ilk_find_best_result(dev_priv
, &lp_wm_1_2
, &lp_wm_5_6
);
6169 best_lp_wm
= &lp_wm_1_2
;
6172 partitioning
= (best_lp_wm
== &lp_wm_1_2
) ?
6173 INTEL_DDB_PART_1_2
: INTEL_DDB_PART_5_6
;
6175 ilk_compute_wm_results(dev_priv
, best_lp_wm
, partitioning
, &results
);
6177 ilk_write_wm_values(dev_priv
, &results
);
6180 static void ilk_initial_watermarks(struct intel_atomic_state
*state
,
6181 struct intel_crtc
*crtc
)
6183 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
6184 const struct intel_crtc_state
*crtc_state
=
6185 intel_atomic_get_new_crtc_state(state
, crtc
);
6187 mutex_lock(&dev_priv
->wm
.wm_mutex
);
6188 crtc
->wm
.active
.ilk
= crtc_state
->wm
.ilk
.intermediate
;
6189 ilk_program_watermarks(dev_priv
);
6190 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
6193 static void ilk_optimize_watermarks(struct intel_atomic_state
*state
,
6194 struct intel_crtc
*crtc
)
6196 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
6197 const struct intel_crtc_state
*crtc_state
=
6198 intel_atomic_get_new_crtc_state(state
, crtc
);
6200 if (!crtc_state
->wm
.need_postvbl_update
)
6203 mutex_lock(&dev_priv
->wm
.wm_mutex
);
6204 crtc
->wm
.active
.ilk
= crtc_state
->wm
.ilk
.optimal
;
6205 ilk_program_watermarks(dev_priv
);
6206 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
6209 static void skl_wm_level_from_reg_val(u32 val
, struct skl_wm_level
*level
)
6211 level
->plane_en
= val
& PLANE_WM_EN
;
6212 level
->ignore_lines
= val
& PLANE_WM_IGNORE_LINES
;
6213 level
->plane_res_b
= val
& PLANE_WM_BLOCKS_MASK
;
6214 level
->plane_res_l
= (val
>> PLANE_WM_LINES_SHIFT
) &
6215 PLANE_WM_LINES_MASK
;
6218 void skl_pipe_wm_get_hw_state(struct intel_crtc
*crtc
,
6219 struct skl_pipe_wm
*out
)
6221 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
6222 enum pipe pipe
= crtc
->pipe
;
6223 int level
, max_level
;
6224 enum plane_id plane_id
;
6227 max_level
= ilk_wm_max_level(dev_priv
);
6229 for_each_plane_id_on_crtc(crtc
, plane_id
) {
6230 struct skl_plane_wm
*wm
= &out
->planes
[plane_id
];
6232 for (level
= 0; level
<= max_level
; level
++) {
6233 if (plane_id
!= PLANE_CURSOR
)
6234 val
= I915_READ(PLANE_WM(pipe
, plane_id
, level
));
6236 val
= I915_READ(CUR_WM(pipe
, level
));
6238 skl_wm_level_from_reg_val(val
, &wm
->wm
[level
]);
6241 if (INTEL_GEN(dev_priv
) >= 12)
6242 wm
->sagv_wm0
= wm
->wm
[0];
6244 if (plane_id
!= PLANE_CURSOR
)
6245 val
= I915_READ(PLANE_WM_TRANS(pipe
, plane_id
));
6247 val
= I915_READ(CUR_WM_TRANS(pipe
));
6249 skl_wm_level_from_reg_val(val
, &wm
->trans_wm
);
6256 void skl_wm_get_hw_state(struct drm_i915_private
*dev_priv
)
6258 struct intel_crtc
*crtc
;
6259 struct intel_crtc_state
*crtc_state
;
6261 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
6262 crtc_state
= to_intel_crtc_state(crtc
->base
.state
);
6264 skl_pipe_wm_get_hw_state(crtc
, &crtc_state
->wm
.skl
.optimal
);
6265 crtc_state
->wm
.skl
.raw
= crtc_state
->wm
.skl
.optimal
;
6268 if (dev_priv
->active_pipes
) {
6269 /* Fully recompute DDB on first atomic commit */
6270 dev_priv
->wm
.distrust_bios_wm
= true;
6274 static void ilk_pipe_wm_get_hw_state(struct intel_crtc
*crtc
)
6276 struct drm_device
*dev
= crtc
->base
.dev
;
6277 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6278 struct ilk_wm_values
*hw
= &dev_priv
->wm
.hw
;
6279 struct intel_crtc_state
*crtc_state
= to_intel_crtc_state(crtc
->base
.state
);
6280 struct intel_pipe_wm
*active
= &crtc_state
->wm
.ilk
.optimal
;
6281 enum pipe pipe
= crtc
->pipe
;
6283 hw
->wm_pipe
[pipe
] = I915_READ(WM0_PIPE_ILK(pipe
));
6285 memset(active
, 0, sizeof(*active
));
6287 active
->pipe_enabled
= crtc
->active
;
6289 if (active
->pipe_enabled
) {
6290 u32 tmp
= hw
->wm_pipe
[pipe
];
6293 * For active pipes LP0 watermark is marked as
6294 * enabled, and LP1+ watermaks as disabled since
6295 * we can't really reverse compute them in case
6296 * multiple pipes are active.
6298 active
->wm
[0].enable
= true;
6299 active
->wm
[0].pri_val
= (tmp
& WM0_PIPE_PLANE_MASK
) >> WM0_PIPE_PLANE_SHIFT
;
6300 active
->wm
[0].spr_val
= (tmp
& WM0_PIPE_SPRITE_MASK
) >> WM0_PIPE_SPRITE_SHIFT
;
6301 active
->wm
[0].cur_val
= tmp
& WM0_PIPE_CURSOR_MASK
;
6303 int level
, max_level
= ilk_wm_max_level(dev_priv
);
6306 * For inactive pipes, all watermark levels
6307 * should be marked as enabled but zeroed,
6308 * which is what we'd compute them to.
6310 for (level
= 0; level
<= max_level
; level
++)
6311 active
->wm
[level
].enable
= true;
6314 crtc
->wm
.active
.ilk
= *active
;
6317 #define _FW_WM(value, plane) \
6318 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6319 #define _FW_WM_VLV(value, plane) \
6320 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6322 static void g4x_read_wm_values(struct drm_i915_private
*dev_priv
,
6323 struct g4x_wm_values
*wm
)
6327 tmp
= I915_READ(DSPFW1
);
6328 wm
->sr
.plane
= _FW_WM(tmp
, SR
);
6329 wm
->pipe
[PIPE_B
].plane
[PLANE_CURSOR
] = _FW_WM(tmp
, CURSORB
);
6330 wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
] = _FW_WM(tmp
, PLANEB
);
6331 wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
] = _FW_WM(tmp
, PLANEA
);
6333 tmp
= I915_READ(DSPFW2
);
6334 wm
->fbc_en
= tmp
& DSPFW_FBC_SR_EN
;
6335 wm
->sr
.fbc
= _FW_WM(tmp
, FBC_SR
);
6336 wm
->hpll
.fbc
= _FW_WM(tmp
, FBC_HPLL_SR
);
6337 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] = _FW_WM(tmp
, SPRITEB
);
6338 wm
->pipe
[PIPE_A
].plane
[PLANE_CURSOR
] = _FW_WM(tmp
, CURSORA
);
6339 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
] = _FW_WM(tmp
, SPRITEA
);
6341 tmp
= I915_READ(DSPFW3
);
6342 wm
->hpll_en
= tmp
& DSPFW_HPLL_SR_EN
;
6343 wm
->sr
.cursor
= _FW_WM(tmp
, CURSOR_SR
);
6344 wm
->hpll
.cursor
= _FW_WM(tmp
, HPLL_CURSOR
);
6345 wm
->hpll
.plane
= _FW_WM(tmp
, HPLL_SR
);
6348 static void vlv_read_wm_values(struct drm_i915_private
*dev_priv
,
6349 struct vlv_wm_values
*wm
)
6354 for_each_pipe(dev_priv
, pipe
) {
6355 tmp
= I915_READ(VLV_DDL(pipe
));
6357 wm
->ddl
[pipe
].plane
[PLANE_PRIMARY
] =
6358 (tmp
>> DDL_PLANE_SHIFT
) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
6359 wm
->ddl
[pipe
].plane
[PLANE_CURSOR
] =
6360 (tmp
>> DDL_CURSOR_SHIFT
) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
6361 wm
->ddl
[pipe
].plane
[PLANE_SPRITE0
] =
6362 (tmp
>> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
6363 wm
->ddl
[pipe
].plane
[PLANE_SPRITE1
] =
6364 (tmp
>> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
6367 tmp
= I915_READ(DSPFW1
);
6368 wm
->sr
.plane
= _FW_WM(tmp
, SR
);
6369 wm
->pipe
[PIPE_B
].plane
[PLANE_CURSOR
] = _FW_WM(tmp
, CURSORB
);
6370 wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
] = _FW_WM_VLV(tmp
, PLANEB
);
6371 wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
] = _FW_WM_VLV(tmp
, PLANEA
);
6373 tmp
= I915_READ(DSPFW2
);
6374 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
] = _FW_WM_VLV(tmp
, SPRITEB
);
6375 wm
->pipe
[PIPE_A
].plane
[PLANE_CURSOR
] = _FW_WM(tmp
, CURSORA
);
6376 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
] = _FW_WM_VLV(tmp
, SPRITEA
);
6378 tmp
= I915_READ(DSPFW3
);
6379 wm
->sr
.cursor
= _FW_WM(tmp
, CURSOR_SR
);
6381 if (IS_CHERRYVIEW(dev_priv
)) {
6382 tmp
= I915_READ(DSPFW7_CHV
);
6383 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] = _FW_WM_VLV(tmp
, SPRITED
);
6384 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] = _FW_WM_VLV(tmp
, SPRITEC
);
6386 tmp
= I915_READ(DSPFW8_CHV
);
6387 wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE1
] = _FW_WM_VLV(tmp
, SPRITEF
);
6388 wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE0
] = _FW_WM_VLV(tmp
, SPRITEE
);
6390 tmp
= I915_READ(DSPFW9_CHV
);
6391 wm
->pipe
[PIPE_C
].plane
[PLANE_PRIMARY
] = _FW_WM_VLV(tmp
, PLANEC
);
6392 wm
->pipe
[PIPE_C
].plane
[PLANE_CURSOR
] = _FW_WM(tmp
, CURSORC
);
6394 tmp
= I915_READ(DSPHOWM
);
6395 wm
->sr
.plane
|= _FW_WM(tmp
, SR_HI
) << 9;
6396 wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE1
] |= _FW_WM(tmp
, SPRITEF_HI
) << 8;
6397 wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE0
] |= _FW_WM(tmp
, SPRITEE_HI
) << 8;
6398 wm
->pipe
[PIPE_C
].plane
[PLANE_PRIMARY
] |= _FW_WM(tmp
, PLANEC_HI
) << 8;
6399 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] |= _FW_WM(tmp
, SPRITED_HI
) << 8;
6400 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] |= _FW_WM(tmp
, SPRITEC_HI
) << 8;
6401 wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
] |= _FW_WM(tmp
, PLANEB_HI
) << 8;
6402 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
] |= _FW_WM(tmp
, SPRITEB_HI
) << 8;
6403 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
] |= _FW_WM(tmp
, SPRITEA_HI
) << 8;
6404 wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
] |= _FW_WM(tmp
, PLANEA_HI
) << 8;
6406 tmp
= I915_READ(DSPFW7
);
6407 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] = _FW_WM_VLV(tmp
, SPRITED
);
6408 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] = _FW_WM_VLV(tmp
, SPRITEC
);
6410 tmp
= I915_READ(DSPHOWM
);
6411 wm
->sr
.plane
|= _FW_WM(tmp
, SR_HI
) << 9;
6412 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] |= _FW_WM(tmp
, SPRITED_HI
) << 8;
6413 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] |= _FW_WM(tmp
, SPRITEC_HI
) << 8;
6414 wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
] |= _FW_WM(tmp
, PLANEB_HI
) << 8;
6415 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
] |= _FW_WM(tmp
, SPRITEB_HI
) << 8;
6416 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
] |= _FW_WM(tmp
, SPRITEA_HI
) << 8;
6417 wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
] |= _FW_WM(tmp
, PLANEA_HI
) << 8;
6424 void g4x_wm_get_hw_state(struct drm_i915_private
*dev_priv
)
6426 struct g4x_wm_values
*wm
= &dev_priv
->wm
.g4x
;
6427 struct intel_crtc
*crtc
;
6429 g4x_read_wm_values(dev_priv
, wm
);
6431 wm
->cxsr
= I915_READ(FW_BLC_SELF
) & FW_BLC_SELF_EN
;
6433 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
6434 struct intel_crtc_state
*crtc_state
=
6435 to_intel_crtc_state(crtc
->base
.state
);
6436 struct g4x_wm_state
*active
= &crtc
->wm
.active
.g4x
;
6437 struct g4x_pipe_wm
*raw
;
6438 enum pipe pipe
= crtc
->pipe
;
6439 enum plane_id plane_id
;
6440 int level
, max_level
;
6442 active
->cxsr
= wm
->cxsr
;
6443 active
->hpll_en
= wm
->hpll_en
;
6444 active
->fbc_en
= wm
->fbc_en
;
6446 active
->sr
= wm
->sr
;
6447 active
->hpll
= wm
->hpll
;
6449 for_each_plane_id_on_crtc(crtc
, plane_id
) {
6450 active
->wm
.plane
[plane_id
] =
6451 wm
->pipe
[pipe
].plane
[plane_id
];
6454 if (wm
->cxsr
&& wm
->hpll_en
)
6455 max_level
= G4X_WM_LEVEL_HPLL
;
6457 max_level
= G4X_WM_LEVEL_SR
;
6459 max_level
= G4X_WM_LEVEL_NORMAL
;
6461 level
= G4X_WM_LEVEL_NORMAL
;
6462 raw
= &crtc_state
->wm
.g4x
.raw
[level
];
6463 for_each_plane_id_on_crtc(crtc
, plane_id
)
6464 raw
->plane
[plane_id
] = active
->wm
.plane
[plane_id
];
6466 if (++level
> max_level
)
6469 raw
= &crtc_state
->wm
.g4x
.raw
[level
];
6470 raw
->plane
[PLANE_PRIMARY
] = active
->sr
.plane
;
6471 raw
->plane
[PLANE_CURSOR
] = active
->sr
.cursor
;
6472 raw
->plane
[PLANE_SPRITE0
] = 0;
6473 raw
->fbc
= active
->sr
.fbc
;
6475 if (++level
> max_level
)
6478 raw
= &crtc_state
->wm
.g4x
.raw
[level
];
6479 raw
->plane
[PLANE_PRIMARY
] = active
->hpll
.plane
;
6480 raw
->plane
[PLANE_CURSOR
] = active
->hpll
.cursor
;
6481 raw
->plane
[PLANE_SPRITE0
] = 0;
6482 raw
->fbc
= active
->hpll
.fbc
;
6485 for_each_plane_id_on_crtc(crtc
, plane_id
)
6486 g4x_raw_plane_wm_set(crtc_state
, level
,
6487 plane_id
, USHRT_MAX
);
6488 g4x_raw_fbc_wm_set(crtc_state
, level
, USHRT_MAX
);
6490 crtc_state
->wm
.g4x
.optimal
= *active
;
6491 crtc_state
->wm
.g4x
.intermediate
= *active
;
6493 drm_dbg_kms(&dev_priv
->drm
,
6494 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6496 wm
->pipe
[pipe
].plane
[PLANE_PRIMARY
],
6497 wm
->pipe
[pipe
].plane
[PLANE_CURSOR
],
6498 wm
->pipe
[pipe
].plane
[PLANE_SPRITE0
]);
6501 drm_dbg_kms(&dev_priv
->drm
,
6502 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6503 wm
->sr
.plane
, wm
->sr
.cursor
, wm
->sr
.fbc
);
6504 drm_dbg_kms(&dev_priv
->drm
,
6505 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6506 wm
->hpll
.plane
, wm
->hpll
.cursor
, wm
->hpll
.fbc
);
6507 drm_dbg_kms(&dev_priv
->drm
, "Initial SR=%s HPLL=%s FBC=%s\n",
6508 yesno(wm
->cxsr
), yesno(wm
->hpll_en
), yesno(wm
->fbc_en
));
6511 void g4x_wm_sanitize(struct drm_i915_private
*dev_priv
)
6513 struct intel_plane
*plane
;
6514 struct intel_crtc
*crtc
;
6516 mutex_lock(&dev_priv
->wm
.wm_mutex
);
6518 for_each_intel_plane(&dev_priv
->drm
, plane
) {
6519 struct intel_crtc
*crtc
=
6520 intel_get_crtc_for_pipe(dev_priv
, plane
->pipe
);
6521 struct intel_crtc_state
*crtc_state
=
6522 to_intel_crtc_state(crtc
->base
.state
);
6523 struct intel_plane_state
*plane_state
=
6524 to_intel_plane_state(plane
->base
.state
);
6525 struct g4x_wm_state
*wm_state
= &crtc_state
->wm
.g4x
.optimal
;
6526 enum plane_id plane_id
= plane
->id
;
6529 if (plane_state
->uapi
.visible
)
6532 for (level
= 0; level
< 3; level
++) {
6533 struct g4x_pipe_wm
*raw
=
6534 &crtc_state
->wm
.g4x
.raw
[level
];
6536 raw
->plane
[plane_id
] = 0;
6537 wm_state
->wm
.plane
[plane_id
] = 0;
6540 if (plane_id
== PLANE_PRIMARY
) {
6541 for (level
= 0; level
< 3; level
++) {
6542 struct g4x_pipe_wm
*raw
=
6543 &crtc_state
->wm
.g4x
.raw
[level
];
6547 wm_state
->sr
.fbc
= 0;
6548 wm_state
->hpll
.fbc
= 0;
6549 wm_state
->fbc_en
= false;
6553 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
6554 struct intel_crtc_state
*crtc_state
=
6555 to_intel_crtc_state(crtc
->base
.state
);
6557 crtc_state
->wm
.g4x
.intermediate
=
6558 crtc_state
->wm
.g4x
.optimal
;
6559 crtc
->wm
.active
.g4x
= crtc_state
->wm
.g4x
.optimal
;
6562 g4x_program_watermarks(dev_priv
);
6564 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
6567 void vlv_wm_get_hw_state(struct drm_i915_private
*dev_priv
)
6569 struct vlv_wm_values
*wm
= &dev_priv
->wm
.vlv
;
6570 struct intel_crtc
*crtc
;
6573 vlv_read_wm_values(dev_priv
, wm
);
6575 wm
->cxsr
= I915_READ(FW_BLC_SELF_VLV
) & FW_CSPWRDWNEN
;
6576 wm
->level
= VLV_WM_LEVEL_PM2
;
6578 if (IS_CHERRYVIEW(dev_priv
)) {
6579 vlv_punit_get(dev_priv
);
6581 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DSPSSPM
);
6582 if (val
& DSP_MAXFIFO_PM5_ENABLE
)
6583 wm
->level
= VLV_WM_LEVEL_PM5
;
6586 * If DDR DVFS is disabled in the BIOS, Punit
6587 * will never ack the request. So if that happens
6588 * assume we don't have to enable/disable DDR DVFS
6589 * dynamically. To test that just set the REQ_ACK
6590 * bit to poke the Punit, but don't change the
6591 * HIGH/LOW bits so that we don't actually change
6592 * the current state.
6594 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
);
6595 val
|= FORCE_DDR_FREQ_REQ_ACK
;
6596 vlv_punit_write(dev_priv
, PUNIT_REG_DDR_SETUP2
, val
);
6598 if (wait_for((vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
) &
6599 FORCE_DDR_FREQ_REQ_ACK
) == 0, 3)) {
6600 drm_dbg_kms(&dev_priv
->drm
,
6601 "Punit not acking DDR DVFS request, "
6602 "assuming DDR DVFS is disabled\n");
6603 dev_priv
->wm
.max_level
= VLV_WM_LEVEL_PM5
;
6605 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
);
6606 if ((val
& FORCE_DDR_HIGH_FREQ
) == 0)
6607 wm
->level
= VLV_WM_LEVEL_DDR_DVFS
;
6610 vlv_punit_put(dev_priv
);
6613 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
6614 struct intel_crtc_state
*crtc_state
=
6615 to_intel_crtc_state(crtc
->base
.state
);
6616 struct vlv_wm_state
*active
= &crtc
->wm
.active
.vlv
;
6617 const struct vlv_fifo_state
*fifo_state
=
6618 &crtc_state
->wm
.vlv
.fifo_state
;
6619 enum pipe pipe
= crtc
->pipe
;
6620 enum plane_id plane_id
;
6623 vlv_get_fifo_size(crtc_state
);
6625 active
->num_levels
= wm
->level
+ 1;
6626 active
->cxsr
= wm
->cxsr
;
6628 for (level
= 0; level
< active
->num_levels
; level
++) {
6629 struct g4x_pipe_wm
*raw
=
6630 &crtc_state
->wm
.vlv
.raw
[level
];
6632 active
->sr
[level
].plane
= wm
->sr
.plane
;
6633 active
->sr
[level
].cursor
= wm
->sr
.cursor
;
6635 for_each_plane_id_on_crtc(crtc
, plane_id
) {
6636 active
->wm
[level
].plane
[plane_id
] =
6637 wm
->pipe
[pipe
].plane
[plane_id
];
6639 raw
->plane
[plane_id
] =
6640 vlv_invert_wm_value(active
->wm
[level
].plane
[plane_id
],
6641 fifo_state
->plane
[plane_id
]);
6645 for_each_plane_id_on_crtc(crtc
, plane_id
)
6646 vlv_raw_plane_wm_set(crtc_state
, level
,
6647 plane_id
, USHRT_MAX
);
6648 vlv_invalidate_wms(crtc
, active
, level
);
6650 crtc_state
->wm
.vlv
.optimal
= *active
;
6651 crtc_state
->wm
.vlv
.intermediate
= *active
;
6653 drm_dbg_kms(&dev_priv
->drm
,
6654 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6656 wm
->pipe
[pipe
].plane
[PLANE_PRIMARY
],
6657 wm
->pipe
[pipe
].plane
[PLANE_CURSOR
],
6658 wm
->pipe
[pipe
].plane
[PLANE_SPRITE0
],
6659 wm
->pipe
[pipe
].plane
[PLANE_SPRITE1
]);
6662 drm_dbg_kms(&dev_priv
->drm
,
6663 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6664 wm
->sr
.plane
, wm
->sr
.cursor
, wm
->level
, wm
->cxsr
);
6667 void vlv_wm_sanitize(struct drm_i915_private
*dev_priv
)
6669 struct intel_plane
*plane
;
6670 struct intel_crtc
*crtc
;
6672 mutex_lock(&dev_priv
->wm
.wm_mutex
);
6674 for_each_intel_plane(&dev_priv
->drm
, plane
) {
6675 struct intel_crtc
*crtc
=
6676 intel_get_crtc_for_pipe(dev_priv
, plane
->pipe
);
6677 struct intel_crtc_state
*crtc_state
=
6678 to_intel_crtc_state(crtc
->base
.state
);
6679 struct intel_plane_state
*plane_state
=
6680 to_intel_plane_state(plane
->base
.state
);
6681 struct vlv_wm_state
*wm_state
= &crtc_state
->wm
.vlv
.optimal
;
6682 const struct vlv_fifo_state
*fifo_state
=
6683 &crtc_state
->wm
.vlv
.fifo_state
;
6684 enum plane_id plane_id
= plane
->id
;
6687 if (plane_state
->uapi
.visible
)
6690 for (level
= 0; level
< wm_state
->num_levels
; level
++) {
6691 struct g4x_pipe_wm
*raw
=
6692 &crtc_state
->wm
.vlv
.raw
[level
];
6694 raw
->plane
[plane_id
] = 0;
6696 wm_state
->wm
[level
].plane
[plane_id
] =
6697 vlv_invert_wm_value(raw
->plane
[plane_id
],
6698 fifo_state
->plane
[plane_id
]);
6702 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
6703 struct intel_crtc_state
*crtc_state
=
6704 to_intel_crtc_state(crtc
->base
.state
);
6706 crtc_state
->wm
.vlv
.intermediate
=
6707 crtc_state
->wm
.vlv
.optimal
;
6708 crtc
->wm
.active
.vlv
= crtc_state
->wm
.vlv
.optimal
;
6711 vlv_program_watermarks(dev_priv
);
6713 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
6717 * FIXME should probably kill this and improve
6718 * the real watermark readout/sanitation instead
6720 static void ilk_init_lp_watermarks(struct drm_i915_private
*dev_priv
)
6722 I915_WRITE(WM3_LP_ILK
, I915_READ(WM3_LP_ILK
) & ~WM1_LP_SR_EN
);
6723 I915_WRITE(WM2_LP_ILK
, I915_READ(WM2_LP_ILK
) & ~WM1_LP_SR_EN
);
6724 I915_WRITE(WM1_LP_ILK
, I915_READ(WM1_LP_ILK
) & ~WM1_LP_SR_EN
);
6727 * Don't touch WM1S_LP_EN here.
6728 * Doing so could cause underruns.
6732 void ilk_wm_get_hw_state(struct drm_i915_private
*dev_priv
)
6734 struct ilk_wm_values
*hw
= &dev_priv
->wm
.hw
;
6735 struct intel_crtc
*crtc
;
6737 ilk_init_lp_watermarks(dev_priv
);
6739 for_each_intel_crtc(&dev_priv
->drm
, crtc
)
6740 ilk_pipe_wm_get_hw_state(crtc
);
6742 hw
->wm_lp
[0] = I915_READ(WM1_LP_ILK
);
6743 hw
->wm_lp
[1] = I915_READ(WM2_LP_ILK
);
6744 hw
->wm_lp
[2] = I915_READ(WM3_LP_ILK
);
6746 hw
->wm_lp_spr
[0] = I915_READ(WM1S_LP_ILK
);
6747 if (INTEL_GEN(dev_priv
) >= 7) {
6748 hw
->wm_lp_spr
[1] = I915_READ(WM2S_LP_IVB
);
6749 hw
->wm_lp_spr
[2] = I915_READ(WM3S_LP_IVB
);
6752 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
6753 hw
->partitioning
= (I915_READ(WM_MISC
) & WM_MISC_DATA_PARTITION_5_6
) ?
6754 INTEL_DDB_PART_5_6
: INTEL_DDB_PART_1_2
;
6755 else if (IS_IVYBRIDGE(dev_priv
))
6756 hw
->partitioning
= (I915_READ(DISP_ARB_CTL2
) & DISP_DATA_PARTITION_5_6
) ?
6757 INTEL_DDB_PART_5_6
: INTEL_DDB_PART_1_2
;
6760 !(I915_READ(DISP_ARB_CTL
) & DISP_FBC_WM_DIS
);
6764 * intel_update_watermarks - update FIFO watermark values based on current modes
6765 * @crtc: the #intel_crtc on which to compute the WM
6767 * Calculate watermark values for the various WM regs based on current mode
6768 * and plane configuration.
6770 * There are several cases to deal with here:
6771 * - normal (i.e. non-self-refresh)
6772 * - self-refresh (SR) mode
6773 * - lines are large relative to FIFO size (buffer can hold up to 2)
6774 * - lines are small relative to FIFO size (buffer can hold more than 2
6775 * lines), so need to account for TLB latency
6777 * The normal calculation is:
6778 * watermark = dotclock * bytes per pixel * latency
6779 * where latency is platform & configuration dependent (we assume pessimal
6782 * The SR calculation is:
6783 * watermark = (trunc(latency/line time)+1) * surface width *
6786 * line time = htotal / dotclock
6787 * surface width = hdisplay for normal plane and 64 for cursor
6788 * and latency is assumed to be high, as above.
6790 * The final value programmed to the register should always be rounded up,
6791 * and include an extra 2 entries to account for clock crossings.
6793 * We don't use the sprite, so we can ignore that. And on Crestline we have
6794 * to set the non-SR watermarks to 8.
6796 void intel_update_watermarks(struct intel_crtc
*crtc
)
6798 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
6800 if (dev_priv
->display
.update_wm
)
6801 dev_priv
->display
.update_wm(crtc
);
6804 void intel_enable_ipc(struct drm_i915_private
*dev_priv
)
6808 if (!HAS_IPC(dev_priv
))
6811 val
= I915_READ(DISP_ARB_CTL2
);
6813 if (dev_priv
->ipc_enabled
)
6814 val
|= DISP_IPC_ENABLE
;
6816 val
&= ~DISP_IPC_ENABLE
;
6818 I915_WRITE(DISP_ARB_CTL2
, val
);
6821 static bool intel_can_enable_ipc(struct drm_i915_private
*dev_priv
)
6823 /* Display WA #0477 WaDisableIPC: skl */
6824 if (IS_SKYLAKE(dev_priv
))
6827 /* Display WA #1141: SKL:all KBL:all CFL */
6828 if (IS_KABYLAKE(dev_priv
) ||
6829 IS_COFFEELAKE(dev_priv
) ||
6830 IS_COMETLAKE(dev_priv
))
6831 return dev_priv
->dram_info
.symmetric_memory
;
6836 void intel_init_ipc(struct drm_i915_private
*dev_priv
)
6838 if (!HAS_IPC(dev_priv
))
6841 dev_priv
->ipc_enabled
= intel_can_enable_ipc(dev_priv
);
6843 intel_enable_ipc(dev_priv
);
6846 static void ibx_init_clock_gating(struct drm_i915_private
*dev_priv
)
6849 * On Ibex Peak and Cougar Point, we need to disable clock
6850 * gating for the panel power sequencer or it will fail to
6851 * start up when no ports are active.
6853 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
6856 static void g4x_disable_trickle_feed(struct drm_i915_private
*dev_priv
)
6860 for_each_pipe(dev_priv
, pipe
) {
6861 I915_WRITE(DSPCNTR(pipe
),
6862 I915_READ(DSPCNTR(pipe
)) |
6863 DISPPLANE_TRICKLE_FEED_DISABLE
);
6865 I915_WRITE(DSPSURF(pipe
), I915_READ(DSPSURF(pipe
)));
6866 POSTING_READ(DSPSURF(pipe
));
6870 static void ilk_init_clock_gating(struct drm_i915_private
*dev_priv
)
6872 u32 dspclk_gate
= ILK_VRHUNIT_CLOCK_GATE_DISABLE
;
6876 * WaFbcDisableDpfcClockGating:ilk
6878 dspclk_gate
|= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE
|
6879 ILK_DPFCUNIT_CLOCK_GATE_DISABLE
|
6880 ILK_DPFDUNIT_CLOCK_GATE_ENABLE
;
6882 I915_WRITE(PCH_3DCGDIS0
,
6883 MARIUNIT_CLOCK_GATE_DISABLE
|
6884 SVSMUNIT_CLOCK_GATE_DISABLE
);
6885 I915_WRITE(PCH_3DCGDIS1
,
6886 VFMUNIT_CLOCK_GATE_DISABLE
);
6889 * According to the spec the following bits should be set in
6890 * order to enable memory self-refresh
6891 * The bit 22/21 of 0x42004
6892 * The bit 5 of 0x42020
6893 * The bit 15 of 0x45000
6895 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6896 (I915_READ(ILK_DISPLAY_CHICKEN2
) |
6897 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
));
6898 dspclk_gate
|= ILK_DPARBUNIT_CLOCK_GATE_ENABLE
;
6899 I915_WRITE(DISP_ARB_CTL
,
6900 (I915_READ(DISP_ARB_CTL
) |
6904 * Based on the document from hardware guys the following bits
6905 * should be set unconditionally in order to enable FBC.
6906 * The bit 22 of 0x42000
6907 * The bit 22 of 0x42004
6908 * The bit 7,8,9 of 0x42020.
6910 if (IS_IRONLAKE_M(dev_priv
)) {
6911 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6912 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
6913 I915_READ(ILK_DISPLAY_CHICKEN1
) |
6915 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6916 I915_READ(ILK_DISPLAY_CHICKEN2
) |
6920 I915_WRITE(ILK_DSPCLK_GATE_D
, dspclk_gate
);
6922 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6923 I915_READ(ILK_DISPLAY_CHICKEN2
) |
6924 ILK_ELPIN_409_SELECT
);
6926 g4x_disable_trickle_feed(dev_priv
);
6928 ibx_init_clock_gating(dev_priv
);
6931 static void cpt_init_clock_gating(struct drm_i915_private
*dev_priv
)
6937 * On Ibex Peak and Cougar Point, we need to disable clock
6938 * gating for the panel power sequencer or it will fail to
6939 * start up when no ports are active.
6941 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
|
6942 PCH_DPLUNIT_CLOCK_GATE_DISABLE
|
6943 PCH_CPUNIT_CLOCK_GATE_DISABLE
);
6944 I915_WRITE(SOUTH_CHICKEN2
, I915_READ(SOUTH_CHICKEN2
) |
6945 DPLS_EDP_PPS_FIX_DIS
);
6946 /* The below fixes the weird display corruption, a few pixels shifted
6947 * downward, on (only) LVDS of some HP laptops with IVY.
6949 for_each_pipe(dev_priv
, pipe
) {
6950 val
= I915_READ(TRANS_CHICKEN2(pipe
));
6951 val
|= TRANS_CHICKEN2_TIMING_OVERRIDE
;
6952 val
&= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED
;
6953 if (dev_priv
->vbt
.fdi_rx_polarity_inverted
)
6954 val
|= TRANS_CHICKEN2_FDI_POLARITY_REVERSED
;
6955 val
&= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER
;
6956 val
&= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH
;
6957 I915_WRITE(TRANS_CHICKEN2(pipe
), val
);
6959 /* WADP0ClockGatingDisable */
6960 for_each_pipe(dev_priv
, pipe
) {
6961 I915_WRITE(TRANS_CHICKEN1(pipe
),
6962 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE
);
6966 static void gen6_check_mch_setup(struct drm_i915_private
*dev_priv
)
6970 tmp
= I915_READ(MCH_SSKPD
);
6971 if ((tmp
& MCH_SSKPD_WM0_MASK
) != MCH_SSKPD_WM0_VAL
)
6972 drm_dbg_kms(&dev_priv
->drm
,
6973 "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6977 static void gen6_init_clock_gating(struct drm_i915_private
*dev_priv
)
6979 u32 dspclk_gate
= ILK_VRHUNIT_CLOCK_GATE_DISABLE
;
6981 I915_WRITE(ILK_DSPCLK_GATE_D
, dspclk_gate
);
6983 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6984 I915_READ(ILK_DISPLAY_CHICKEN2
) |
6985 ILK_ELPIN_409_SELECT
);
6987 I915_WRITE(GEN6_UCGCTL1
,
6988 I915_READ(GEN6_UCGCTL1
) |
6989 GEN6_BLBUNIT_CLOCK_GATE_DISABLE
|
6990 GEN6_CSUNIT_CLOCK_GATE_DISABLE
);
6992 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6993 * gating disable must be set. Failure to set it results in
6994 * flickering pixels due to Z write ordering failures after
6995 * some amount of runtime in the Mesa "fire" demo, and Unigine
6996 * Sanctuary and Tropics, and apparently anything else with
6997 * alpha test or pixel discard.
6999 * According to the spec, bit 11 (RCCUNIT) must also be set,
7000 * but we didn't debug actual testcases to find it out.
7002 * WaDisableRCCUnitClockGating:snb
7003 * WaDisableRCPBUnitClockGating:snb
7005 I915_WRITE(GEN6_UCGCTL2
,
7006 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE
|
7007 GEN6_RCCUNIT_CLOCK_GATE_DISABLE
);
7010 * According to the spec the following bits should be
7011 * set in order to enable memory self-refresh and fbc:
7012 * The bit21 and bit22 of 0x42000
7013 * The bit21 and bit22 of 0x42004
7014 * The bit5 and bit7 of 0x42020
7015 * The bit14 of 0x70180
7016 * The bit14 of 0x71180
7018 * WaFbcAsynchFlipDisableFbcQueue:snb
7020 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
7021 I915_READ(ILK_DISPLAY_CHICKEN1
) |
7022 ILK_FBCQ_DIS
| ILK_PABSTRETCH_DIS
);
7023 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7024 I915_READ(ILK_DISPLAY_CHICKEN2
) |
7025 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
);
7026 I915_WRITE(ILK_DSPCLK_GATE_D
,
7027 I915_READ(ILK_DSPCLK_GATE_D
) |
7028 ILK_DPARBUNIT_CLOCK_GATE_ENABLE
|
7029 ILK_DPFDUNIT_CLOCK_GATE_ENABLE
);
7031 g4x_disable_trickle_feed(dev_priv
);
7033 cpt_init_clock_gating(dev_priv
);
7035 gen6_check_mch_setup(dev_priv
);
7038 static void lpt_init_clock_gating(struct drm_i915_private
*dev_priv
)
7041 * TODO: this bit should only be enabled when really needed, then
7042 * disabled when not needed anymore in order to save power.
7044 if (HAS_PCH_LPT_LP(dev_priv
))
7045 I915_WRITE(SOUTH_DSPCLK_GATE_D
,
7046 I915_READ(SOUTH_DSPCLK_GATE_D
) |
7047 PCH_LP_PARTITION_LEVEL_DISABLE
);
7049 /* WADPOClockGatingDisable:hsw */
7050 I915_WRITE(TRANS_CHICKEN1(PIPE_A
),
7051 I915_READ(TRANS_CHICKEN1(PIPE_A
)) |
7052 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE
);
7055 static void lpt_suspend_hw(struct drm_i915_private
*dev_priv
)
7057 if (HAS_PCH_LPT_LP(dev_priv
)) {
7058 u32 val
= I915_READ(SOUTH_DSPCLK_GATE_D
);
7060 val
&= ~PCH_LP_PARTITION_LEVEL_DISABLE
;
7061 I915_WRITE(SOUTH_DSPCLK_GATE_D
, val
);
7065 static void gen8_set_l3sqc_credits(struct drm_i915_private
*dev_priv
,
7066 int general_prio_credits
,
7067 int high_prio_credits
)
7072 /* WaTempDisableDOPClkGating:bdw */
7073 misccpctl
= I915_READ(GEN7_MISCCPCTL
);
7074 I915_WRITE(GEN7_MISCCPCTL
, misccpctl
& ~GEN7_DOP_CLOCK_GATE_ENABLE
);
7076 val
= I915_READ(GEN8_L3SQCREG1
);
7077 val
&= ~L3_PRIO_CREDITS_MASK
;
7078 val
|= L3_GENERAL_PRIO_CREDITS(general_prio_credits
);
7079 val
|= L3_HIGH_PRIO_CREDITS(high_prio_credits
);
7080 I915_WRITE(GEN8_L3SQCREG1
, val
);
7083 * Wait at least 100 clocks before re-enabling clock gating.
7084 * See the definition of L3SQCREG1 in BSpec.
7086 POSTING_READ(GEN8_L3SQCREG1
);
7088 I915_WRITE(GEN7_MISCCPCTL
, misccpctl
);
7091 static void icl_init_clock_gating(struct drm_i915_private
*dev_priv
)
7093 /* Wa_1409120013:icl,ehl */
7094 I915_WRITE(ILK_DPFC_CHICKEN
,
7095 ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL
);
7097 /* This is not an Wa. Enable to reduce Sampler power */
7098 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN
,
7099 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN
) & ~DFR_DISABLE
);
7101 /*Wa_14010594013:icl, ehl */
7102 intel_uncore_rmw(&dev_priv
->uncore
, GEN8_CHICKEN_DCPR_1
,
7103 0, CNL_DELAY_PMRSP
);
7106 static void tgl_init_clock_gating(struct drm_i915_private
*dev_priv
)
7108 /* Wa_1409120013:tgl */
7109 I915_WRITE(ILK_DPFC_CHICKEN
,
7110 ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL
);
7112 /* Wa_1409825376:tgl (pre-prod)*/
7113 if (IS_TGL_DISP_REVID(dev_priv
, TGL_REVID_A0
, TGL_REVID_B1
))
7114 I915_WRITE(GEN9_CLKGATE_DIS_3
, I915_READ(GEN9_CLKGATE_DIS_3
) |
7115 TGL_VRH_GATING_DIS
);
7117 /* Wa_14011059788:tgl */
7118 intel_uncore_rmw(&dev_priv
->uncore
, GEN10_DFR_RATIO_EN_AND_CHICKEN
,
7122 static void dg1_init_clock_gating(struct drm_i915_private
*dev_priv
)
7124 /* Wa_1409836686:dg1[a0] */
7125 if (IS_DG1_REVID(dev_priv
, DG1_REVID_A0
, DG1_REVID_A0
))
7126 I915_WRITE(GEN9_CLKGATE_DIS_3
, I915_READ(GEN9_CLKGATE_DIS_3
) |
7130 static void cnp_init_clock_gating(struct drm_i915_private
*dev_priv
)
7132 if (!HAS_PCH_CNP(dev_priv
))
7135 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7136 I915_WRITE(SOUTH_DSPCLK_GATE_D
, I915_READ(SOUTH_DSPCLK_GATE_D
) |
7137 CNP_PWM_CGE_GATING_DISABLE
);
7140 static void cnl_init_clock_gating(struct drm_i915_private
*dev_priv
)
7143 cnp_init_clock_gating(dev_priv
);
7145 /* This is not an Wa. Enable for better image quality */
7146 I915_WRITE(_3D_CHICKEN3
,
7147 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE
));
7149 /* WaEnableChickenDCPR:cnl */
7150 I915_WRITE(GEN8_CHICKEN_DCPR_1
,
7151 I915_READ(GEN8_CHICKEN_DCPR_1
) | MASK_WAKEMEM
);
7154 * WaFbcWakeMemOn:cnl
7155 * Display WA #0859: cnl
7157 I915_WRITE(DISP_ARB_CTL
, I915_READ(DISP_ARB_CTL
) |
7158 DISP_FBC_MEMORY_WAKE
);
7160 val
= I915_READ(SLICE_UNIT_LEVEL_CLKGATE
);
7161 /* ReadHitWriteOnlyDisable:cnl */
7162 val
|= RCCUNIT_CLKGATE_DIS
;
7163 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE
, val
);
7165 /* Wa_2201832410:cnl */
7166 val
= I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE
);
7167 val
|= GWUNIT_CLKGATE_DIS
;
7168 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE
, val
);
7170 /* WaDisableVFclkgate:cnl */
7171 /* WaVFUnitClockGatingDisable:cnl */
7172 val
= I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE
);
7173 val
|= VFUNIT_CLKGATE_DIS
;
7174 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE
, val
);
7177 static void cfl_init_clock_gating(struct drm_i915_private
*dev_priv
)
7179 cnp_init_clock_gating(dev_priv
);
7180 gen9_init_clock_gating(dev_priv
);
7182 /* WAC6entrylatency:cfl */
7183 I915_WRITE(FBC_LLC_READ_CTRL
, I915_READ(FBC_LLC_READ_CTRL
) |
7184 FBC_LLC_FULLY_OPEN
);
7187 * WaFbcTurnOffFbcWatermark:cfl
7188 * Display WA #0562: cfl
7190 I915_WRITE(DISP_ARB_CTL
, I915_READ(DISP_ARB_CTL
) |
7194 * WaFbcNukeOnHostModify:cfl
7195 * Display WA #0873: cfl
7197 I915_WRITE(ILK_DPFC_CHICKEN
, I915_READ(ILK_DPFC_CHICKEN
) |
7198 ILK_DPFC_NUKE_ON_ANY_MODIFICATION
);
7201 static void kbl_init_clock_gating(struct drm_i915_private
*dev_priv
)
7203 gen9_init_clock_gating(dev_priv
);
7205 /* WAC6entrylatency:kbl */
7206 I915_WRITE(FBC_LLC_READ_CTRL
, I915_READ(FBC_LLC_READ_CTRL
) |
7207 FBC_LLC_FULLY_OPEN
);
7209 /* WaDisableSDEUnitClockGating:kbl */
7210 if (IS_KBL_GT_REVID(dev_priv
, 0, KBL_REVID_B0
))
7211 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
7212 GEN8_SDEUNIT_CLOCK_GATE_DISABLE
);
7214 /* WaDisableGamClockGating:kbl */
7215 if (IS_KBL_GT_REVID(dev_priv
, 0, KBL_REVID_B0
))
7216 I915_WRITE(GEN6_UCGCTL1
, I915_READ(GEN6_UCGCTL1
) |
7217 GEN6_GAMUNIT_CLOCK_GATE_DISABLE
);
7220 * WaFbcTurnOffFbcWatermark:kbl
7221 * Display WA #0562: kbl
7223 I915_WRITE(DISP_ARB_CTL
, I915_READ(DISP_ARB_CTL
) |
7227 * WaFbcNukeOnHostModify:kbl
7228 * Display WA #0873: kbl
7230 I915_WRITE(ILK_DPFC_CHICKEN
, I915_READ(ILK_DPFC_CHICKEN
) |
7231 ILK_DPFC_NUKE_ON_ANY_MODIFICATION
);
7234 static void skl_init_clock_gating(struct drm_i915_private
*dev_priv
)
7236 gen9_init_clock_gating(dev_priv
);
7238 /* WaDisableDopClockGating:skl */
7239 I915_WRITE(GEN7_MISCCPCTL
, I915_READ(GEN7_MISCCPCTL
) &
7240 ~GEN7_DOP_CLOCK_GATE_ENABLE
);
7242 /* WAC6entrylatency:skl */
7243 I915_WRITE(FBC_LLC_READ_CTRL
, I915_READ(FBC_LLC_READ_CTRL
) |
7244 FBC_LLC_FULLY_OPEN
);
7247 * WaFbcTurnOffFbcWatermark:skl
7248 * Display WA #0562: skl
7250 I915_WRITE(DISP_ARB_CTL
, I915_READ(DISP_ARB_CTL
) |
7254 * WaFbcNukeOnHostModify:skl
7255 * Display WA #0873: skl
7257 I915_WRITE(ILK_DPFC_CHICKEN
, I915_READ(ILK_DPFC_CHICKEN
) |
7258 ILK_DPFC_NUKE_ON_ANY_MODIFICATION
);
7261 * WaFbcHighMemBwCorruptionAvoidance:skl
7262 * Display WA #0883: skl
7264 I915_WRITE(ILK_DPFC_CHICKEN
, I915_READ(ILK_DPFC_CHICKEN
) |
7265 ILK_DPFC_DISABLE_DUMMY0
);
7268 static void bdw_init_clock_gating(struct drm_i915_private
*dev_priv
)
7272 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7273 I915_WRITE(CHICKEN_PIPESL_1(PIPE_A
),
7274 I915_READ(CHICKEN_PIPESL_1(PIPE_A
)) |
7277 /* WaSwitchSolVfFArbitrationPriority:bdw */
7278 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) | HSW_ECOCHK_ARB_PRIO_SOL
);
7280 /* WaPsrDPAMaskVBlankInSRD:bdw */
7281 I915_WRITE(CHICKEN_PAR1_1
,
7282 I915_READ(CHICKEN_PAR1_1
) | DPA_MASK_VBLANK_SRD
);
7284 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7285 for_each_pipe(dev_priv
, pipe
) {
7286 I915_WRITE(CHICKEN_PIPESL_1(pipe
),
7287 I915_READ(CHICKEN_PIPESL_1(pipe
)) |
7288 BDW_DPRS_MASK_VBLANK_SRD
);
7291 /* WaVSRefCountFullforceMissDisable:bdw */
7292 /* WaDSRefCountFullforceMissDisable:bdw */
7293 I915_WRITE(GEN7_FF_THREAD_MODE
,
7294 I915_READ(GEN7_FF_THREAD_MODE
) &
7295 ~(GEN8_FF_DS_REF_CNT_FFME
| GEN7_FF_VS_REF_CNT_FFME
));
7297 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL
,
7298 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE
));
7300 /* WaDisableSDEUnitClockGating:bdw */
7301 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
7302 GEN8_SDEUNIT_CLOCK_GATE_DISABLE
);
7304 /* WaProgramL3SqcReg1Default:bdw */
7305 gen8_set_l3sqc_credits(dev_priv
, 30, 2);
7307 /* WaKVMNotificationOnConfigChange:bdw */
7308 I915_WRITE(CHICKEN_PAR2_1
, I915_READ(CHICKEN_PAR2_1
)
7309 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT
);
7311 lpt_init_clock_gating(dev_priv
);
7313 /* WaDisableDopClockGating:bdw
7315 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7318 I915_WRITE(GEN6_UCGCTL1
,
7319 I915_READ(GEN6_UCGCTL1
) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE
);
7322 static void hsw_init_clock_gating(struct drm_i915_private
*dev_priv
)
7324 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7325 I915_WRITE(CHICKEN_PIPESL_1(PIPE_A
),
7326 I915_READ(CHICKEN_PIPESL_1(PIPE_A
)) |
7329 /* This is required by WaCatErrorRejectionIssue:hsw */
7330 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
7331 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
7332 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
7334 /* WaSwitchSolVfFArbitrationPriority:hsw */
7335 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) | HSW_ECOCHK_ARB_PRIO_SOL
);
7337 lpt_init_clock_gating(dev_priv
);
7340 static void ivb_init_clock_gating(struct drm_i915_private
*dev_priv
)
7344 I915_WRITE(ILK_DSPCLK_GATE_D
, ILK_VRHUNIT_CLOCK_GATE_DISABLE
);
7346 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
7347 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
7348 I915_READ(ILK_DISPLAY_CHICKEN1
) |
7351 /* WaDisableBackToBackFlipFix:ivb */
7352 I915_WRITE(IVB_CHICKEN3
,
7353 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE
|
7354 CHICKEN3_DGMG_DONE_FIX_DISABLE
);
7356 if (IS_IVB_GT1(dev_priv
))
7357 I915_WRITE(GEN7_ROW_CHICKEN2
,
7358 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
7360 /* must write both registers */
7361 I915_WRITE(GEN7_ROW_CHICKEN2
,
7362 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
7363 I915_WRITE(GEN7_ROW_CHICKEN2_GT2
,
7364 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
7368 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7369 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7371 I915_WRITE(GEN6_UCGCTL2
,
7372 GEN6_RCZUNIT_CLOCK_GATE_DISABLE
);
7374 /* This is required by WaCatErrorRejectionIssue:ivb */
7375 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
7376 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
7377 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
7379 g4x_disable_trickle_feed(dev_priv
);
7381 snpcr
= I915_READ(GEN6_MBCUNIT_SNPCR
);
7382 snpcr
&= ~GEN6_MBC_SNPCR_MASK
;
7383 snpcr
|= GEN6_MBC_SNPCR_MED
;
7384 I915_WRITE(GEN6_MBCUNIT_SNPCR
, snpcr
);
7386 if (!HAS_PCH_NOP(dev_priv
))
7387 cpt_init_clock_gating(dev_priv
);
7389 gen6_check_mch_setup(dev_priv
);
7392 static void vlv_init_clock_gating(struct drm_i915_private
*dev_priv
)
7394 /* WaDisableBackToBackFlipFix:vlv */
7395 I915_WRITE(IVB_CHICKEN3
,
7396 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE
|
7397 CHICKEN3_DGMG_DONE_FIX_DISABLE
);
7399 /* WaDisableDopClockGating:vlv */
7400 I915_WRITE(GEN7_ROW_CHICKEN2
,
7401 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
7403 /* This is required by WaCatErrorRejectionIssue:vlv */
7404 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
7405 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
7406 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
7409 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7410 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7412 I915_WRITE(GEN6_UCGCTL2
,
7413 GEN6_RCZUNIT_CLOCK_GATE_DISABLE
);
7415 /* WaDisableL3Bank2xClockGate:vlv
7416 * Disabling L3 clock gating- MMIO 940c[25] = 1
7417 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7418 I915_WRITE(GEN7_UCGCTL4
,
7419 I915_READ(GEN7_UCGCTL4
) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE
);
7422 * WaDisableVLVClockGating_VBIIssue:vlv
7423 * Disable clock gating on th GCFG unit to prevent a delay
7424 * in the reporting of vblank events.
7426 I915_WRITE(VLV_GUNIT_CLOCK_GATE
, GCFG_DIS
);
7429 static void chv_init_clock_gating(struct drm_i915_private
*dev_priv
)
7431 /* WaVSRefCountFullforceMissDisable:chv */
7432 /* WaDSRefCountFullforceMissDisable:chv */
7433 I915_WRITE(GEN7_FF_THREAD_MODE
,
7434 I915_READ(GEN7_FF_THREAD_MODE
) &
7435 ~(GEN8_FF_DS_REF_CNT_FFME
| GEN7_FF_VS_REF_CNT_FFME
));
7437 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7438 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL
,
7439 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE
));
7441 /* WaDisableCSUnitClockGating:chv */
7442 I915_WRITE(GEN6_UCGCTL1
, I915_READ(GEN6_UCGCTL1
) |
7443 GEN6_CSUNIT_CLOCK_GATE_DISABLE
);
7445 /* WaDisableSDEUnitClockGating:chv */
7446 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
7447 GEN8_SDEUNIT_CLOCK_GATE_DISABLE
);
7450 * WaProgramL3SqcReg1Default:chv
7451 * See gfxspecs/Related Documents/Performance Guide/
7452 * LSQC Setting Recommendations.
7454 gen8_set_l3sqc_credits(dev_priv
, 38, 2);
7457 static void g4x_init_clock_gating(struct drm_i915_private
*dev_priv
)
7461 I915_WRITE(RENCLK_GATE_D1
, 0);
7462 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
7463 GS_UNIT_CLOCK_GATE_DISABLE
|
7464 CL_UNIT_CLOCK_GATE_DISABLE
);
7465 I915_WRITE(RAMCLK_GATE_D
, 0);
7466 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
7467 OVRUNIT_CLOCK_GATE_DISABLE
|
7468 OVCUNIT_CLOCK_GATE_DISABLE
;
7469 if (IS_GM45(dev_priv
))
7470 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
7471 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
7473 g4x_disable_trickle_feed(dev_priv
);
7476 static void i965gm_init_clock_gating(struct drm_i915_private
*dev_priv
)
7478 struct intel_uncore
*uncore
= &dev_priv
->uncore
;
7480 intel_uncore_write(uncore
, RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
7481 intel_uncore_write(uncore
, RENCLK_GATE_D2
, 0);
7482 intel_uncore_write(uncore
, DSPCLK_GATE_D
, 0);
7483 intel_uncore_write(uncore
, RAMCLK_GATE_D
, 0);
7484 intel_uncore_write16(uncore
, DEUC
, 0);
7485 intel_uncore_write(uncore
,
7487 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
));
7490 static void i965g_init_clock_gating(struct drm_i915_private
*dev_priv
)
7492 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
7493 I965_RCC_CLOCK_GATE_DISABLE
|
7494 I965_RCPB_CLOCK_GATE_DISABLE
|
7495 I965_ISC_CLOCK_GATE_DISABLE
|
7496 I965_FBC_CLOCK_GATE_DISABLE
);
7497 I915_WRITE(RENCLK_GATE_D2
, 0);
7498 I915_WRITE(MI_ARB_STATE
,
7499 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
));
7502 static void gen3_init_clock_gating(struct drm_i915_private
*dev_priv
)
7504 u32 dstate
= I915_READ(D_STATE
);
7506 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
7507 DSTATE_DOT_CLOCK_GATING
;
7508 I915_WRITE(D_STATE
, dstate
);
7510 if (IS_PINEVIEW(dev_priv
))
7511 I915_WRITE(ECOSKPD
, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY
));
7513 /* IIR "flip pending" means done if this bit is set */
7514 I915_WRITE(ECOSKPD
, _MASKED_BIT_DISABLE(ECO_FLIP_DONE
));
7516 /* interrupts should cause a wake up from C3 */
7517 I915_WRITE(INSTPM
, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN
));
7519 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7520 I915_WRITE(MI_ARB_STATE
, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE
));
7522 I915_WRITE(MI_ARB_STATE
,
7523 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
));
7526 static void i85x_init_clock_gating(struct drm_i915_private
*dev_priv
)
7528 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
7530 /* interrupts should cause a wake up from C3 */
7531 I915_WRITE(MI_STATE
, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN
) |
7532 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE
));
7534 I915_WRITE(MEM_MODE
,
7535 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE
));
7538 * Have FBC ignore 3D activity since we use software
7539 * render tracking, and otherwise a pure 3D workload
7540 * (even if it just renders a single frame and then does
7541 * abosultely nothing) would not allow FBC to recompress
7542 * until a 2D blit occurs.
7545 _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D
));
7548 static void i830_init_clock_gating(struct drm_i915_private
*dev_priv
)
7550 I915_WRITE(MEM_MODE
,
7551 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE
) |
7552 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE
));
7555 void intel_init_clock_gating(struct drm_i915_private
*dev_priv
)
7557 dev_priv
->display
.init_clock_gating(dev_priv
);
7560 void intel_suspend_hw(struct drm_i915_private
*dev_priv
)
7562 if (HAS_PCH_LPT(dev_priv
))
7563 lpt_suspend_hw(dev_priv
);
7566 static void nop_init_clock_gating(struct drm_i915_private
*dev_priv
)
7568 drm_dbg_kms(&dev_priv
->drm
,
7569 "No clock gating settings or workarounds applied.\n");
7573 * intel_init_clock_gating_hooks - setup the clock gating hooks
7574 * @dev_priv: device private
7576 * Setup the hooks that configure which clocks of a given platform can be
7577 * gated and also apply various GT and display specific workarounds for these
7578 * platforms. Note that some GT specific workarounds are applied separately
7579 * when GPU contexts or batchbuffers start their execution.
7581 void intel_init_clock_gating_hooks(struct drm_i915_private
*dev_priv
)
7583 if (IS_DG1(dev_priv
))
7584 dev_priv
->display
.init_clock_gating
= dg1_init_clock_gating
;
7585 else if (IS_GEN(dev_priv
, 12))
7586 dev_priv
->display
.init_clock_gating
= tgl_init_clock_gating
;
7587 else if (IS_GEN(dev_priv
, 11))
7588 dev_priv
->display
.init_clock_gating
= icl_init_clock_gating
;
7589 else if (IS_CANNONLAKE(dev_priv
))
7590 dev_priv
->display
.init_clock_gating
= cnl_init_clock_gating
;
7591 else if (IS_COFFEELAKE(dev_priv
) || IS_COMETLAKE(dev_priv
))
7592 dev_priv
->display
.init_clock_gating
= cfl_init_clock_gating
;
7593 else if (IS_SKYLAKE(dev_priv
))
7594 dev_priv
->display
.init_clock_gating
= skl_init_clock_gating
;
7595 else if (IS_KABYLAKE(dev_priv
))
7596 dev_priv
->display
.init_clock_gating
= kbl_init_clock_gating
;
7597 else if (IS_BROXTON(dev_priv
))
7598 dev_priv
->display
.init_clock_gating
= bxt_init_clock_gating
;
7599 else if (IS_GEMINILAKE(dev_priv
))
7600 dev_priv
->display
.init_clock_gating
= glk_init_clock_gating
;
7601 else if (IS_BROADWELL(dev_priv
))
7602 dev_priv
->display
.init_clock_gating
= bdw_init_clock_gating
;
7603 else if (IS_CHERRYVIEW(dev_priv
))
7604 dev_priv
->display
.init_clock_gating
= chv_init_clock_gating
;
7605 else if (IS_HASWELL(dev_priv
))
7606 dev_priv
->display
.init_clock_gating
= hsw_init_clock_gating
;
7607 else if (IS_IVYBRIDGE(dev_priv
))
7608 dev_priv
->display
.init_clock_gating
= ivb_init_clock_gating
;
7609 else if (IS_VALLEYVIEW(dev_priv
))
7610 dev_priv
->display
.init_clock_gating
= vlv_init_clock_gating
;
7611 else if (IS_GEN(dev_priv
, 6))
7612 dev_priv
->display
.init_clock_gating
= gen6_init_clock_gating
;
7613 else if (IS_GEN(dev_priv
, 5))
7614 dev_priv
->display
.init_clock_gating
= ilk_init_clock_gating
;
7615 else if (IS_G4X(dev_priv
))
7616 dev_priv
->display
.init_clock_gating
= g4x_init_clock_gating
;
7617 else if (IS_I965GM(dev_priv
))
7618 dev_priv
->display
.init_clock_gating
= i965gm_init_clock_gating
;
7619 else if (IS_I965G(dev_priv
))
7620 dev_priv
->display
.init_clock_gating
= i965g_init_clock_gating
;
7621 else if (IS_GEN(dev_priv
, 3))
7622 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
7623 else if (IS_I85X(dev_priv
) || IS_I865G(dev_priv
))
7624 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
7625 else if (IS_GEN(dev_priv
, 2))
7626 dev_priv
->display
.init_clock_gating
= i830_init_clock_gating
;
7628 MISSING_CASE(INTEL_DEVID(dev_priv
));
7629 dev_priv
->display
.init_clock_gating
= nop_init_clock_gating
;
7633 /* Set up chip specific power management-related functions */
7634 void intel_init_pm(struct drm_i915_private
*dev_priv
)
7637 if (IS_PINEVIEW(dev_priv
))
7638 pnv_get_mem_freq(dev_priv
);
7639 else if (IS_GEN(dev_priv
, 5))
7640 ilk_get_mem_freq(dev_priv
);
7642 if (intel_has_sagv(dev_priv
))
7643 skl_setup_sagv_block_time(dev_priv
);
7645 /* For FIFO watermark updates */
7646 if (INTEL_GEN(dev_priv
) >= 9) {
7647 skl_setup_wm_latency(dev_priv
);
7648 dev_priv
->display
.compute_global_watermarks
= skl_compute_wm
;
7649 } else if (HAS_PCH_SPLIT(dev_priv
)) {
7650 ilk_setup_wm_latency(dev_priv
);
7652 if ((IS_GEN(dev_priv
, 5) && dev_priv
->wm
.pri_latency
[1] &&
7653 dev_priv
->wm
.spr_latency
[1] && dev_priv
->wm
.cur_latency
[1]) ||
7654 (!IS_GEN(dev_priv
, 5) && dev_priv
->wm
.pri_latency
[0] &&
7655 dev_priv
->wm
.spr_latency
[0] && dev_priv
->wm
.cur_latency
[0])) {
7656 dev_priv
->display
.compute_pipe_wm
= ilk_compute_pipe_wm
;
7657 dev_priv
->display
.compute_intermediate_wm
=
7658 ilk_compute_intermediate_wm
;
7659 dev_priv
->display
.initial_watermarks
=
7660 ilk_initial_watermarks
;
7661 dev_priv
->display
.optimize_watermarks
=
7662 ilk_optimize_watermarks
;
7664 drm_dbg_kms(&dev_priv
->drm
,
7665 "Failed to read display plane latency. "
7668 } else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
7669 vlv_setup_wm_latency(dev_priv
);
7670 dev_priv
->display
.compute_pipe_wm
= vlv_compute_pipe_wm
;
7671 dev_priv
->display
.compute_intermediate_wm
= vlv_compute_intermediate_wm
;
7672 dev_priv
->display
.initial_watermarks
= vlv_initial_watermarks
;
7673 dev_priv
->display
.optimize_watermarks
= vlv_optimize_watermarks
;
7674 dev_priv
->display
.atomic_update_watermarks
= vlv_atomic_update_fifo
;
7675 } else if (IS_G4X(dev_priv
)) {
7676 g4x_setup_wm_latency(dev_priv
);
7677 dev_priv
->display
.compute_pipe_wm
= g4x_compute_pipe_wm
;
7678 dev_priv
->display
.compute_intermediate_wm
= g4x_compute_intermediate_wm
;
7679 dev_priv
->display
.initial_watermarks
= g4x_initial_watermarks
;
7680 dev_priv
->display
.optimize_watermarks
= g4x_optimize_watermarks
;
7681 } else if (IS_PINEVIEW(dev_priv
)) {
7682 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv
),
7685 dev_priv
->mem_freq
)) {
7686 drm_info(&dev_priv
->drm
,
7687 "failed to find known CxSR latency "
7688 "(found ddr%s fsb freq %d, mem freq %d), "
7690 (dev_priv
->is_ddr3
== 1) ? "3" : "2",
7691 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
7692 /* Disable CxSR and never update its watermark again */
7693 intel_set_memory_cxsr(dev_priv
, false);
7694 dev_priv
->display
.update_wm
= NULL
;
7696 dev_priv
->display
.update_wm
= pnv_update_wm
;
7697 } else if (IS_GEN(dev_priv
, 4)) {
7698 dev_priv
->display
.update_wm
= i965_update_wm
;
7699 } else if (IS_GEN(dev_priv
, 3)) {
7700 dev_priv
->display
.update_wm
= i9xx_update_wm
;
7701 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
7702 } else if (IS_GEN(dev_priv
, 2)) {
7703 if (INTEL_NUM_PIPES(dev_priv
) == 1) {
7704 dev_priv
->display
.update_wm
= i845_update_wm
;
7705 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
7707 dev_priv
->display
.update_wm
= i9xx_update_wm
;
7708 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
7711 drm_err(&dev_priv
->drm
,
7712 "unexpected fall-through in %s\n", __func__
);
7716 void intel_pm_setup(struct drm_i915_private
*dev_priv
)
7718 dev_priv
->runtime_pm
.suspended
= false;
7719 atomic_set(&dev_priv
->runtime_pm
.wakeref_count
, 0);
7722 static struct intel_global_state
*intel_dbuf_duplicate_state(struct intel_global_obj
*obj
)
7724 struct intel_dbuf_state
*dbuf_state
;
7726 dbuf_state
= kmemdup(obj
->state
, sizeof(*dbuf_state
), GFP_KERNEL
);
7730 return &dbuf_state
->base
;
7733 static void intel_dbuf_destroy_state(struct intel_global_obj
*obj
,
7734 struct intel_global_state
*state
)
7739 static const struct intel_global_state_funcs intel_dbuf_funcs
= {
7740 .atomic_duplicate_state
= intel_dbuf_duplicate_state
,
7741 .atomic_destroy_state
= intel_dbuf_destroy_state
,
7744 struct intel_dbuf_state
*
7745 intel_atomic_get_dbuf_state(struct intel_atomic_state
*state
)
7747 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
7748 struct intel_global_state
*dbuf_state
;
7750 dbuf_state
= intel_atomic_get_global_obj_state(state
, &dev_priv
->dbuf
.obj
);
7751 if (IS_ERR(dbuf_state
))
7752 return ERR_CAST(dbuf_state
);
7754 return to_intel_dbuf_state(dbuf_state
);
7757 int intel_dbuf_init(struct drm_i915_private
*dev_priv
)
7759 struct intel_dbuf_state
*dbuf_state
;
7761 dbuf_state
= kzalloc(sizeof(*dbuf_state
), GFP_KERNEL
);
7765 intel_atomic_global_obj_init(dev_priv
, &dev_priv
->dbuf
.obj
,
7766 &dbuf_state
->base
, &intel_dbuf_funcs
);
7771 void intel_dbuf_pre_plane_update(struct intel_atomic_state
*state
)
7773 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
7774 const struct intel_dbuf_state
*new_dbuf_state
=
7775 intel_atomic_get_new_dbuf_state(state
);
7776 const struct intel_dbuf_state
*old_dbuf_state
=
7777 intel_atomic_get_old_dbuf_state(state
);
7779 if (!new_dbuf_state
||
7780 new_dbuf_state
->enabled_slices
== old_dbuf_state
->enabled_slices
)
7783 WARN_ON(!new_dbuf_state
->base
.changed
);
7785 gen9_dbuf_slices_update(dev_priv
,
7786 old_dbuf_state
->enabled_slices
|
7787 new_dbuf_state
->enabled_slices
);
7790 void intel_dbuf_post_plane_update(struct intel_atomic_state
*state
)
7792 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
7793 const struct intel_dbuf_state
*new_dbuf_state
=
7794 intel_atomic_get_new_dbuf_state(state
);
7795 const struct intel_dbuf_state
*old_dbuf_state
=
7796 intel_atomic_get_old_dbuf_state(state
);
7798 if (!new_dbuf_state
||
7799 new_dbuf_state
->enabled_slices
== old_dbuf_state
->enabled_slices
)
7802 WARN_ON(!new_dbuf_state
->base
.changed
);
7804 gen9_dbuf_slices_update(dev_priv
,
7805 new_dbuf_state
->enabled_slices
);