1 // SPDX-License-Identifier: GPL-2.0+
3 * rcar_du_crtc.c -- R-Car Display Unit CRTCs
5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
10 #include <linux/clk.h>
11 #include <linux/mutex.h>
12 #include <linux/platform_device.h>
13 #include <linux/sys_soc.h>
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_atomic_helper.h>
17 #include <drm/drm_bridge.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_device.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_gem_cma_helper.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
26 #include "rcar_du_crtc.h"
27 #include "rcar_du_drv.h"
28 #include "rcar_du_encoder.h"
29 #include "rcar_du_kms.h"
30 #include "rcar_du_plane.h"
31 #include "rcar_du_regs.h"
32 #include "rcar_du_vsp.h"
33 #include "rcar_lvds.h"
35 static u32
rcar_du_crtc_read(struct rcar_du_crtc
*rcrtc
, u32 reg
)
37 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
39 return rcar_du_read(rcdu
, rcrtc
->mmio_offset
+ reg
);
42 static void rcar_du_crtc_write(struct rcar_du_crtc
*rcrtc
, u32 reg
, u32 data
)
44 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
46 rcar_du_write(rcdu
, rcrtc
->mmio_offset
+ reg
, data
);
49 static void rcar_du_crtc_clr(struct rcar_du_crtc
*rcrtc
, u32 reg
, u32 clr
)
51 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
53 rcar_du_write(rcdu
, rcrtc
->mmio_offset
+ reg
,
54 rcar_du_read(rcdu
, rcrtc
->mmio_offset
+ reg
) & ~clr
);
57 static void rcar_du_crtc_set(struct rcar_du_crtc
*rcrtc
, u32 reg
, u32 set
)
59 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
61 rcar_du_write(rcdu
, rcrtc
->mmio_offset
+ reg
,
62 rcar_du_read(rcdu
, rcrtc
->mmio_offset
+ reg
) | set
);
65 void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc
*rcrtc
, u32 clr
, u32 set
)
67 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
69 rcrtc
->dsysr
= (rcrtc
->dsysr
& ~clr
) | set
;
70 rcar_du_write(rcdu
, rcrtc
->mmio_offset
+ DSYSR
, rcrtc
->dsysr
);
73 /* -----------------------------------------------------------------------------
84 static void rcar_du_dpll_divider(struct rcar_du_crtc
*rcrtc
,
85 struct dpll_info
*dpll
,
89 unsigned long best_diff
= (unsigned long)-1;
96 * fin fvco fout fclkout
97 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
100 * +---------------- [1/N] <------------+
102 * fclkout = fvco / P / FDPLL -- (1)
106 * fvco = fin * P * N / M -- (2)
108 * (1) + (2) indicates
110 * fclkout = fin * N / M / FDPLL
115 * FDPLL : (fdpll + 1)
117 * 2kHz < fvco < 4096MHz
119 * To minimize the jitter,
120 * N : as large as possible
121 * M : as small as possible
123 for (m
= 0; m
< 4; m
++) {
124 for (n
= 119; n
> 38; n
--) {
126 * This code only runs on 64-bit architectures, the
127 * unsigned long type can thus be used for 64-bit
128 * computation. It will still compile without any
129 * warning on 32-bit architectures.
131 * To optimize calculations, use fout instead of fvco
132 * to verify the VCO frequency constraint.
134 unsigned long fout
= input
* (n
+ 1) / (m
+ 1);
136 if (fout
< 1000 || fout
> 2048 * 1000 * 1000U)
139 for (fdpll
= 1; fdpll
< 32; fdpll
++) {
140 unsigned long output
;
142 output
= fout
/ (fdpll
+ 1);
143 if (output
>= 400 * 1000 * 1000)
146 diff
= abs((long)output
- (long)target
);
147 if (best_diff
> diff
) {
152 dpll
->output
= output
;
162 dev_dbg(rcrtc
->dev
->dev
,
163 "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
164 dpll
->output
, dpll
->fdpll
, dpll
->n
, dpll
->m
, best_diff
);
167 struct du_clk_params
{
174 static void rcar_du_escr_divider(struct clk
*clk
, unsigned long target
,
175 u32 escr
, struct du_clk_params
*params
)
182 * If the target rate has already been achieved perfectly we can't do
185 if (params
->diff
== 0)
189 * Compute the input clock rate and internal divisor values to obtain
190 * the clock rate closest to the target frequency.
192 rate
= clk_round_rate(clk
, target
);
193 div
= clamp(DIV_ROUND_CLOSEST(rate
, target
), 1UL, 64UL) - 1;
194 diff
= abs(rate
/ (div
+ 1) - target
);
197 * Store the parameters if the resulting frequency is better than any
198 * previously calculated value.
200 if (diff
< params
->diff
) {
204 params
->escr
= escr
| div
;
208 static const struct soc_device_attribute rcar_du_r8a7795_es1
[] = {
209 { .soc_id
= "r8a7795", .revision
= "ES1.*" },
213 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc
*rcrtc
)
215 const struct drm_display_mode
*mode
= &rcrtc
->crtc
.state
->adjusted_mode
;
216 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
217 unsigned long mode_clock
= mode
->clock
* 1000;
221 if (rcdu
->info
->dpll_mask
& (1 << rcrtc
->index
)) {
222 unsigned long target
= mode_clock
;
223 struct dpll_info dpll
= { 0 };
224 unsigned long extclk
;
229 * DU channels that have a display PLL can't use the internal
230 * system clock, and have no internal clock divider.
234 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
235 * We can work around them by configuring the DPLL to twice the
236 * desired frequency, coupled with a /2 post-divider. Restrict
237 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
238 * no post-divider when a display PLL is present (as shown by
239 * the workaround breaking HDMI output on M3-W during testing).
241 if (soc_device_match(rcar_du_r8a7795_es1
)) {
246 extclk
= clk_get_rate(rcrtc
->extclock
);
247 rcar_du_dpll_divider(rcrtc
, &dpll
, extclk
, target
);
249 dpllcr
= DPLLCR_CODE
| DPLLCR_CLKE
250 | DPLLCR_FDPLL(dpll
.fdpll
)
251 | DPLLCR_N(dpll
.n
) | DPLLCR_M(dpll
.m
)
254 if (rcrtc
->index
== 1)
255 dpllcr
|= DPLLCR_PLCS1
256 | DPLLCR_INCS_DOTCLKIN1
;
258 dpllcr
|= DPLLCR_PLCS0
259 | DPLLCR_INCS_DOTCLKIN0
;
261 rcar_du_group_write(rcrtc
->group
, DPLLCR
, dpllcr
);
263 escr
= ESCR_DCLKSEL_DCLKIN
| div
;
264 } else if (rcdu
->info
->lvds_clk_mask
& BIT(rcrtc
->index
)) {
266 * Use the LVDS PLL output as the dot clock when outputting to
267 * the LVDS encoder on an SoC that supports this clock routing
268 * option. We use the clock directly in that case, without any
269 * additional divider.
271 escr
= ESCR_DCLKSEL_DCLKIN
;
273 struct du_clk_params params
= { .diff
= (unsigned long)-1 };
275 rcar_du_escr_divider(rcrtc
->clock
, mode_clock
,
276 ESCR_DCLKSEL_CLKS
, ¶ms
);
278 rcar_du_escr_divider(rcrtc
->extclock
, mode_clock
,
279 ESCR_DCLKSEL_DCLKIN
, ¶ms
);
281 dev_dbg(rcrtc
->dev
->dev
, "mode clock %lu %s rate %lu\n",
282 mode_clock
, params
.clk
== rcrtc
->clock
? "cpg" : "ext",
285 clk_set_rate(params
.clk
, params
.rate
);
289 dev_dbg(rcrtc
->dev
->dev
, "%s: ESCR 0x%08x\n", __func__
, escr
);
291 rcar_du_crtc_write(rcrtc
, rcrtc
->index
% 2 ? ESCR13
: ESCR02
, escr
);
292 rcar_du_crtc_write(rcrtc
, rcrtc
->index
% 2 ? OTAR13
: OTAR02
, 0);
294 /* Signal polarities */
295 dsmr
= ((mode
->flags
& DRM_MODE_FLAG_PVSYNC
) ? DSMR_VSL
: 0)
296 | ((mode
->flags
& DRM_MODE_FLAG_PHSYNC
) ? DSMR_HSL
: 0)
297 | ((mode
->flags
& DRM_MODE_FLAG_INTERLACE
) ? DSMR_ODEV
: 0)
298 | DSMR_DIPM_DISP
| DSMR_CSPM
;
299 rcar_du_crtc_write(rcrtc
, DSMR
, dsmr
);
301 /* Display timings */
302 rcar_du_crtc_write(rcrtc
, HDSR
, mode
->htotal
- mode
->hsync_start
- 19);
303 rcar_du_crtc_write(rcrtc
, HDER
, mode
->htotal
- mode
->hsync_start
+
304 mode
->hdisplay
- 19);
305 rcar_du_crtc_write(rcrtc
, HSWR
, mode
->hsync_end
-
306 mode
->hsync_start
- 1);
307 rcar_du_crtc_write(rcrtc
, HCR
, mode
->htotal
- 1);
309 rcar_du_crtc_write(rcrtc
, VDSR
, mode
->crtc_vtotal
-
310 mode
->crtc_vsync_end
- 2);
311 rcar_du_crtc_write(rcrtc
, VDER
, mode
->crtc_vtotal
-
312 mode
->crtc_vsync_end
+
313 mode
->crtc_vdisplay
- 2);
314 rcar_du_crtc_write(rcrtc
, VSPR
, mode
->crtc_vtotal
-
315 mode
->crtc_vsync_end
+
316 mode
->crtc_vsync_start
- 1);
317 rcar_du_crtc_write(rcrtc
, VCR
, mode
->crtc_vtotal
- 1);
319 rcar_du_crtc_write(rcrtc
, DESR
, mode
->htotal
- mode
->hsync_start
- 1);
320 rcar_du_crtc_write(rcrtc
, DEWR
, mode
->hdisplay
);
323 static unsigned int plane_zpos(struct rcar_du_plane
*plane
)
325 return plane
->plane
.state
->normalized_zpos
;
328 static const struct rcar_du_format_info
*
329 plane_format(struct rcar_du_plane
*plane
)
331 return to_rcar_plane_state(plane
->plane
.state
)->format
;
334 static void rcar_du_crtc_update_planes(struct rcar_du_crtc
*rcrtc
)
336 struct rcar_du_plane
*planes
[RCAR_DU_NUM_HW_PLANES
];
337 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
338 unsigned int num_planes
= 0;
339 unsigned int dptsr_planes
;
340 unsigned int hwplanes
= 0;
341 unsigned int prio
= 0;
345 for (i
= 0; i
< rcrtc
->group
->num_planes
; ++i
) {
346 struct rcar_du_plane
*plane
= &rcrtc
->group
->planes
[i
];
349 if (plane
->plane
.state
->crtc
!= &rcrtc
->crtc
||
350 !plane
->plane
.state
->visible
)
353 /* Insert the plane in the sorted planes array. */
354 for (j
= num_planes
++; j
> 0; --j
) {
355 if (plane_zpos(planes
[j
-1]) <= plane_zpos(plane
))
357 planes
[j
] = planes
[j
-1];
361 prio
+= plane_format(plane
)->planes
* 4;
364 for (i
= 0; i
< num_planes
; ++i
) {
365 struct rcar_du_plane
*plane
= planes
[i
];
366 struct drm_plane_state
*state
= plane
->plane
.state
;
367 unsigned int index
= to_rcar_plane_state(state
)->hwindex
;
370 dspr
|= (index
+ 1) << prio
;
371 hwplanes
|= 1 << index
;
373 if (plane_format(plane
)->planes
== 2) {
374 index
= (index
+ 1) % 8;
377 dspr
|= (index
+ 1) << prio
;
378 hwplanes
|= 1 << index
;
382 /* If VSP+DU integration is enabled the plane assignment is fixed. */
383 if (rcar_du_has(rcdu
, RCAR_DU_FEATURE_VSP1_SOURCE
)) {
384 if (rcdu
->info
->gen
< 3) {
385 dspr
= (rcrtc
->index
% 2) + 1;
386 hwplanes
= 1 << (rcrtc
->index
% 2);
388 dspr
= (rcrtc
->index
% 2) ? 3 : 1;
389 hwplanes
= 1 << ((rcrtc
->index
% 2) ? 2 : 0);
394 * Update the planes to display timing and dot clock generator
397 * Updating the DPTSR register requires restarting the CRTC group,
398 * resulting in visible flicker. To mitigate the issue only update the
399 * association if needed by enabled planes. Planes being disabled will
400 * keep their current association.
402 mutex_lock(&rcrtc
->group
->lock
);
404 dptsr_planes
= rcrtc
->index
% 2 ? rcrtc
->group
->dptsr_planes
| hwplanes
405 : rcrtc
->group
->dptsr_planes
& ~hwplanes
;
407 if (dptsr_planes
!= rcrtc
->group
->dptsr_planes
) {
408 rcar_du_group_write(rcrtc
->group
, DPTSR
,
409 (dptsr_planes
<< 16) | dptsr_planes
);
410 rcrtc
->group
->dptsr_planes
= dptsr_planes
;
412 if (rcrtc
->group
->used_crtcs
)
413 rcar_du_group_restart(rcrtc
->group
);
416 /* Restart the group if plane sources have changed. */
417 if (rcrtc
->group
->need_restart
)
418 rcar_du_group_restart(rcrtc
->group
);
420 mutex_unlock(&rcrtc
->group
->lock
);
422 rcar_du_group_write(rcrtc
->group
, rcrtc
->index
% 2 ? DS2PR
: DS1PR
,
426 /* -----------------------------------------------------------------------------
430 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc
*rcrtc
)
432 struct drm_pending_vblank_event
*event
;
433 struct drm_device
*dev
= rcrtc
->crtc
.dev
;
436 spin_lock_irqsave(&dev
->event_lock
, flags
);
437 event
= rcrtc
->event
;
439 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
444 spin_lock_irqsave(&dev
->event_lock
, flags
);
445 drm_crtc_send_vblank_event(&rcrtc
->crtc
, event
);
446 wake_up(&rcrtc
->flip_wait
);
447 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
449 drm_crtc_vblank_put(&rcrtc
->crtc
);
452 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc
*rcrtc
)
454 struct drm_device
*dev
= rcrtc
->crtc
.dev
;
458 spin_lock_irqsave(&dev
->event_lock
, flags
);
459 pending
= rcrtc
->event
!= NULL
;
460 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
465 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc
*rcrtc
)
467 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
469 if (wait_event_timeout(rcrtc
->flip_wait
,
470 !rcar_du_crtc_page_flip_pending(rcrtc
),
471 msecs_to_jiffies(50)))
474 dev_warn(rcdu
->dev
, "page flip timeout\n");
476 rcar_du_crtc_finish_page_flip(rcrtc
);
479 /* -----------------------------------------------------------------------------
480 * Color Management Module (CMM)
483 static int rcar_du_cmm_check(struct drm_crtc
*crtc
,
484 struct drm_crtc_state
*state
)
486 struct drm_property_blob
*drm_lut
= state
->gamma_lut
;
487 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
488 struct device
*dev
= rcrtc
->dev
->dev
;
493 /* We only accept fully populated LUT tables. */
494 if (drm_color_lut_size(drm_lut
) != CM2_LUT_SIZE
) {
495 dev_err(dev
, "invalid gamma lut size: %zu bytes\n",
503 static void rcar_du_cmm_setup(struct drm_crtc
*crtc
)
505 struct drm_property_blob
*drm_lut
= crtc
->state
->gamma_lut
;
506 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
507 struct rcar_cmm_config cmm_config
= {};
513 cmm_config
.lut
.table
= (struct drm_color_lut
*)drm_lut
->data
;
515 rcar_cmm_setup(rcrtc
->cmm
, &cmm_config
);
518 /* -----------------------------------------------------------------------------
519 * Start/Stop and Suspend/Resume
522 static void rcar_du_crtc_setup(struct rcar_du_crtc
*rcrtc
)
524 /* Set display off and background to black */
525 rcar_du_crtc_write(rcrtc
, DOOR
, DOOR_RGB(0, 0, 0));
526 rcar_du_crtc_write(rcrtc
, BPOR
, BPOR_RGB(0, 0, 0));
528 /* Configure display timings and output routing */
529 rcar_du_crtc_set_display_timing(rcrtc
);
530 rcar_du_group_set_routing(rcrtc
->group
);
532 /* Start with all planes disabled. */
533 rcar_du_group_write(rcrtc
->group
, rcrtc
->index
% 2 ? DS2PR
: DS1PR
, 0);
535 /* Enable the VSP compositor. */
536 if (rcar_du_has(rcrtc
->dev
, RCAR_DU_FEATURE_VSP1_SOURCE
))
537 rcar_du_vsp_enable(rcrtc
);
539 /* Turn vertical blanking interrupt reporting on. */
540 drm_crtc_vblank_on(&rcrtc
->crtc
);
543 static int rcar_du_crtc_get(struct rcar_du_crtc
*rcrtc
)
548 * Guard against double-get, as the function is called from both the
549 * .atomic_enable() and .atomic_begin() handlers.
551 if (rcrtc
->initialized
)
554 ret
= clk_prepare_enable(rcrtc
->clock
);
558 ret
= clk_prepare_enable(rcrtc
->extclock
);
562 ret
= rcar_du_group_get(rcrtc
->group
);
566 rcar_du_crtc_setup(rcrtc
);
567 rcrtc
->initialized
= true;
572 clk_disable_unprepare(rcrtc
->extclock
);
574 clk_disable_unprepare(rcrtc
->clock
);
578 static void rcar_du_crtc_put(struct rcar_du_crtc
*rcrtc
)
580 rcar_du_group_put(rcrtc
->group
);
582 clk_disable_unprepare(rcrtc
->extclock
);
583 clk_disable_unprepare(rcrtc
->clock
);
585 rcrtc
->initialized
= false;
588 static void rcar_du_crtc_start(struct rcar_du_crtc
*rcrtc
)
593 * Select master sync mode. This enables display operation in master
594 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
597 interlaced
= rcrtc
->crtc
.mode
.flags
& DRM_MODE_FLAG_INTERLACE
;
598 rcar_du_crtc_dsysr_clr_set(rcrtc
, DSYSR_TVM_MASK
| DSYSR_SCM_MASK
,
599 (interlaced
? DSYSR_SCM_INT_VIDEO
: 0) |
602 rcar_du_group_start_stop(rcrtc
->group
, true);
605 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc
*rcrtc
)
607 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
608 struct drm_crtc
*crtc
= &rcrtc
->crtc
;
611 /* Make sure vblank interrupts are enabled. */
612 drm_crtc_vblank_get(crtc
);
615 * Disable planes and calculate how many vertical blanking interrupts we
616 * have to wait for. If a vertical blanking interrupt has been triggered
617 * but not processed yet, we don't know whether it occurred before or
618 * after the planes got disabled. We thus have to wait for two vblank
619 * interrupts in that case.
621 spin_lock_irq(&rcrtc
->vblank_lock
);
622 rcar_du_group_write(rcrtc
->group
, rcrtc
->index
% 2 ? DS2PR
: DS1PR
, 0);
623 status
= rcar_du_crtc_read(rcrtc
, DSSR
);
624 rcrtc
->vblank_count
= status
& DSSR_VBK
? 2 : 1;
625 spin_unlock_irq(&rcrtc
->vblank_lock
);
627 if (!wait_event_timeout(rcrtc
->vblank_wait
, rcrtc
->vblank_count
== 0,
628 msecs_to_jiffies(100)))
629 dev_warn(rcdu
->dev
, "vertical blanking timeout\n");
631 drm_crtc_vblank_put(crtc
);
634 static void rcar_du_crtc_stop(struct rcar_du_crtc
*rcrtc
)
636 struct drm_crtc
*crtc
= &rcrtc
->crtc
;
639 * Disable all planes and wait for the change to take effect. This is
640 * required as the plane enable registers are updated on vblank, and no
641 * vblank will occur once the CRTC is stopped. Disabling planes when
642 * starting the CRTC thus wouldn't be enough as it would start scanning
643 * out immediately from old frame buffers until the next vblank.
645 * This increases the CRTC stop delay, especially when multiple CRTCs
646 * are stopped in one operation as we now wait for one vblank per CRTC.
647 * Whether this can be improved needs to be researched.
649 rcar_du_crtc_disable_planes(rcrtc
);
652 * Disable vertical blanking interrupt reporting. We first need to wait
653 * for page flip completion before stopping the CRTC as userspace
654 * expects page flips to eventually complete.
656 rcar_du_crtc_wait_page_flip(rcrtc
);
657 drm_crtc_vblank_off(crtc
);
659 /* Disable the VSP compositor. */
660 if (rcar_du_has(rcrtc
->dev
, RCAR_DU_FEATURE_VSP1_SOURCE
))
661 rcar_du_vsp_disable(rcrtc
);
664 rcar_cmm_disable(rcrtc
->cmm
);
667 * Select switch sync mode. This stops display operation and configures
668 * the HSYNC and VSYNC signals as inputs.
670 * TODO: Find another way to stop the display for DUs that don't support
673 if (rcar_du_has(rcrtc
->dev
, RCAR_DU_FEATURE_TVM_SYNC
))
674 rcar_du_crtc_dsysr_clr_set(rcrtc
, DSYSR_TVM_MASK
,
677 rcar_du_group_start_stop(rcrtc
->group
, false);
680 /* -----------------------------------------------------------------------------
684 static int rcar_du_crtc_atomic_check(struct drm_crtc
*crtc
,
685 struct drm_atomic_state
*state
)
687 struct drm_crtc_state
*crtc_state
= drm_atomic_get_new_crtc_state(state
,
689 struct rcar_du_crtc_state
*rstate
= to_rcar_crtc_state(crtc_state
);
690 struct drm_encoder
*encoder
;
693 ret
= rcar_du_cmm_check(crtc
, crtc_state
);
697 /* Store the routes from the CRTC output to the DU outputs. */
700 drm_for_each_encoder_mask(encoder
, crtc
->dev
,
701 crtc_state
->encoder_mask
) {
702 struct rcar_du_encoder
*renc
;
704 /* Skip the writeback encoder. */
705 if (encoder
->encoder_type
== DRM_MODE_ENCODER_VIRTUAL
)
708 renc
= to_rcar_encoder(encoder
);
709 rstate
->outputs
|= BIT(renc
->output
);
715 static void rcar_du_crtc_atomic_enable(struct drm_crtc
*crtc
,
716 struct drm_atomic_state
*state
)
718 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
719 struct rcar_du_crtc_state
*rstate
= to_rcar_crtc_state(crtc
->state
);
720 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
723 rcar_cmm_enable(rcrtc
->cmm
);
724 rcar_du_crtc_get(rcrtc
);
727 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
728 * the DU channel. We need to enable its clock output explicitly if
729 * the LVDS output is disabled.
731 if (rcdu
->info
->lvds_clk_mask
& BIT(rcrtc
->index
) &&
732 rstate
->outputs
== BIT(RCAR_DU_OUTPUT_DPAD0
)) {
733 struct rcar_du_encoder
*encoder
=
734 rcdu
->encoders
[RCAR_DU_OUTPUT_LVDS0
+ rcrtc
->index
];
735 const struct drm_display_mode
*mode
=
736 &crtc
->state
->adjusted_mode
;
737 struct drm_bridge
*bridge
;
739 bridge
= drm_bridge_chain_get_first_bridge(&encoder
->base
);
740 rcar_lvds_clk_enable(bridge
, mode
->clock
* 1000);
743 rcar_du_crtc_start(rcrtc
);
746 * TODO: The chip manual indicates that CMM tables should be written
747 * after the DU channel has been activated. Investigate the impact
748 * of this restriction on the first displayed frame.
750 rcar_du_cmm_setup(crtc
);
753 static void rcar_du_crtc_atomic_disable(struct drm_crtc
*crtc
,
754 struct drm_atomic_state
*state
)
756 struct drm_crtc_state
*old_state
= drm_atomic_get_old_crtc_state(state
,
758 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
759 struct rcar_du_crtc_state
*rstate
= to_rcar_crtc_state(old_state
);
760 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
762 rcar_du_crtc_stop(rcrtc
);
763 rcar_du_crtc_put(rcrtc
);
765 if (rcdu
->info
->lvds_clk_mask
& BIT(rcrtc
->index
) &&
766 rstate
->outputs
== BIT(RCAR_DU_OUTPUT_DPAD0
)) {
767 struct rcar_du_encoder
*encoder
=
768 rcdu
->encoders
[RCAR_DU_OUTPUT_LVDS0
+ rcrtc
->index
];
769 struct drm_bridge
*bridge
;
772 * Disable the LVDS clock output, see
773 * rcar_du_crtc_atomic_enable().
775 bridge
= drm_bridge_chain_get_first_bridge(&encoder
->base
);
776 rcar_lvds_clk_disable(bridge
);
779 spin_lock_irq(&crtc
->dev
->event_lock
);
780 if (crtc
->state
->event
) {
781 drm_crtc_send_vblank_event(crtc
, crtc
->state
->event
);
782 crtc
->state
->event
= NULL
;
784 spin_unlock_irq(&crtc
->dev
->event_lock
);
787 static void rcar_du_crtc_atomic_begin(struct drm_crtc
*crtc
,
788 struct drm_atomic_state
*state
)
790 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
792 WARN_ON(!crtc
->state
->enable
);
795 * If a mode set is in progress we can be called with the CRTC disabled.
796 * We thus need to first get and setup the CRTC in order to configure
797 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
798 * kept awake until the .atomic_enable() call that will follow. The get
799 * operation in .atomic_enable() will in that case be a no-op, and the
800 * CRTC will be put later in .atomic_disable().
802 * If a mode set is not in progress the CRTC is enabled, and the
803 * following get call will be a no-op. There is thus no need to balance
804 * it in .atomic_flush() either.
806 rcar_du_crtc_get(rcrtc
);
808 /* If the active state changed, we let .atomic_enable handle CMM. */
809 if (crtc
->state
->color_mgmt_changed
&& !crtc
->state
->active_changed
)
810 rcar_du_cmm_setup(crtc
);
812 if (rcar_du_has(rcrtc
->dev
, RCAR_DU_FEATURE_VSP1_SOURCE
))
813 rcar_du_vsp_atomic_begin(rcrtc
);
816 static void rcar_du_crtc_atomic_flush(struct drm_crtc
*crtc
,
817 struct drm_atomic_state
*state
)
819 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
820 struct drm_device
*dev
= rcrtc
->crtc
.dev
;
823 rcar_du_crtc_update_planes(rcrtc
);
825 if (crtc
->state
->event
) {
826 WARN_ON(drm_crtc_vblank_get(crtc
) != 0);
828 spin_lock_irqsave(&dev
->event_lock
, flags
);
829 rcrtc
->event
= crtc
->state
->event
;
830 crtc
->state
->event
= NULL
;
831 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
834 if (rcar_du_has(rcrtc
->dev
, RCAR_DU_FEATURE_VSP1_SOURCE
))
835 rcar_du_vsp_atomic_flush(rcrtc
);
838 static enum drm_mode_status
839 rcar_du_crtc_mode_valid(struct drm_crtc
*crtc
,
840 const struct drm_display_mode
*mode
)
842 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
843 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
844 bool interlaced
= mode
->flags
& DRM_MODE_FLAG_INTERLACE
;
847 if (interlaced
&& !rcar_du_has(rcdu
, RCAR_DU_FEATURE_INTERLACED
))
848 return MODE_NO_INTERLACE
;
851 * The hardware requires a minimum combined horizontal sync and back
852 * porch of 20 pixels and a minimum vertical back porch of 3 lines.
854 if (mode
->htotal
- mode
->hsync_start
< 20)
855 return MODE_HBLANK_NARROW
;
857 vbp
= (mode
->vtotal
- mode
->vsync_end
) / (interlaced
? 2 : 1);
859 return MODE_VBLANK_NARROW
;
864 static const struct drm_crtc_helper_funcs crtc_helper_funcs
= {
865 .atomic_check
= rcar_du_crtc_atomic_check
,
866 .atomic_begin
= rcar_du_crtc_atomic_begin
,
867 .atomic_flush
= rcar_du_crtc_atomic_flush
,
868 .atomic_enable
= rcar_du_crtc_atomic_enable
,
869 .atomic_disable
= rcar_du_crtc_atomic_disable
,
870 .mode_valid
= rcar_du_crtc_mode_valid
,
873 static void rcar_du_crtc_crc_init(struct rcar_du_crtc
*rcrtc
)
875 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
876 const char **sources
;
880 /* CRC available only on Gen3 HW. */
881 if (rcdu
->info
->gen
< 3)
884 /* Reserve 1 for "auto" source. */
885 count
= rcrtc
->vsp
->num_planes
+ 1;
887 sources
= kmalloc_array(count
, sizeof(*sources
), GFP_KERNEL
);
891 sources
[0] = kstrdup("auto", GFP_KERNEL
);
895 for (i
= 0; i
< rcrtc
->vsp
->num_planes
; ++i
) {
896 struct drm_plane
*plane
= &rcrtc
->vsp
->planes
[i
].plane
;
899 sprintf(name
, "plane%u", plane
->base
.id
);
900 sources
[i
+ 1] = kstrdup(name
, GFP_KERNEL
);
905 rcrtc
->sources
= sources
;
906 rcrtc
->sources_count
= count
;
917 static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc
*rcrtc
)
924 for (i
= 0; i
< rcrtc
->sources_count
; i
++)
925 kfree(rcrtc
->sources
[i
]);
926 kfree(rcrtc
->sources
);
928 rcrtc
->sources
= NULL
;
929 rcrtc
->sources_count
= 0;
932 static struct drm_crtc_state
*
933 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc
*crtc
)
935 struct rcar_du_crtc_state
*state
;
936 struct rcar_du_crtc_state
*copy
;
938 if (WARN_ON(!crtc
->state
))
941 state
= to_rcar_crtc_state(crtc
->state
);
942 copy
= kmemdup(state
, sizeof(*state
), GFP_KERNEL
);
946 __drm_atomic_helper_crtc_duplicate_state(crtc
, ©
->state
);
951 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc
*crtc
,
952 struct drm_crtc_state
*state
)
954 __drm_atomic_helper_crtc_destroy_state(state
);
955 kfree(to_rcar_crtc_state(state
));
958 static void rcar_du_crtc_cleanup(struct drm_crtc
*crtc
)
960 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
962 rcar_du_crtc_crc_cleanup(rcrtc
);
964 return drm_crtc_cleanup(crtc
);
967 static void rcar_du_crtc_reset(struct drm_crtc
*crtc
)
969 struct rcar_du_crtc_state
*state
;
972 rcar_du_crtc_atomic_destroy_state(crtc
, crtc
->state
);
976 state
= kzalloc(sizeof(*state
), GFP_KERNEL
);
980 state
->crc
.source
= VSP1_DU_CRC_NONE
;
981 state
->crc
.index
= 0;
983 __drm_atomic_helper_crtc_reset(crtc
, &state
->state
);
986 static int rcar_du_crtc_enable_vblank(struct drm_crtc
*crtc
)
988 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
990 rcar_du_crtc_write(rcrtc
, DSRCR
, DSRCR_VBCL
);
991 rcar_du_crtc_set(rcrtc
, DIER
, DIER_VBE
);
992 rcrtc
->vblank_enable
= true;
997 static void rcar_du_crtc_disable_vblank(struct drm_crtc
*crtc
)
999 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
1001 rcar_du_crtc_clr(rcrtc
, DIER
, DIER_VBE
);
1002 rcrtc
->vblank_enable
= false;
1005 static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc
*rcrtc
,
1006 const char *source_name
,
1007 enum vsp1_du_crc_source
*source
)
1013 * Parse the source name. Supported values are "plane%u" to compute the
1014 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1015 * CRC on the composer (VSP) output.
1019 *source
= VSP1_DU_CRC_NONE
;
1021 } else if (!strcmp(source_name
, "auto")) {
1022 *source
= VSP1_DU_CRC_OUTPUT
;
1024 } else if (strstarts(source_name
, "plane")) {
1027 *source
= VSP1_DU_CRC_PLANE
;
1029 ret
= kstrtouint(source_name
+ strlen("plane"), 10, &index
);
1033 for (i
= 0; i
< rcrtc
->vsp
->num_planes
; ++i
) {
1034 if (index
== rcrtc
->vsp
->planes
[i
].plane
.base
.id
)
1042 static int rcar_du_crtc_verify_crc_source(struct drm_crtc
*crtc
,
1043 const char *source_name
,
1046 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
1047 enum vsp1_du_crc_source source
;
1049 if (rcar_du_crtc_parse_crc_source(rcrtc
, source_name
, &source
) < 0) {
1050 DRM_DEBUG_DRIVER("unknown source %s\n", source_name
);
1058 static const char *const *
1059 rcar_du_crtc_get_crc_sources(struct drm_crtc
*crtc
, size_t *count
)
1061 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
1063 *count
= rcrtc
->sources_count
;
1064 return rcrtc
->sources
;
1067 static int rcar_du_crtc_set_crc_source(struct drm_crtc
*crtc
,
1068 const char *source_name
)
1070 struct rcar_du_crtc
*rcrtc
= to_rcar_crtc(crtc
);
1071 struct drm_modeset_acquire_ctx ctx
;
1072 struct drm_crtc_state
*crtc_state
;
1073 struct drm_atomic_state
*state
;
1074 enum vsp1_du_crc_source source
;
1078 ret
= rcar_du_crtc_parse_crc_source(rcrtc
, source_name
, &source
);
1084 /* Perform an atomic commit to set the CRC source. */
1085 drm_modeset_acquire_init(&ctx
, 0);
1087 state
= drm_atomic_state_alloc(crtc
->dev
);
1093 state
->acquire_ctx
= &ctx
;
1096 crtc_state
= drm_atomic_get_crtc_state(state
, crtc
);
1097 if (!IS_ERR(crtc_state
)) {
1098 struct rcar_du_crtc_state
*rcrtc_state
;
1100 rcrtc_state
= to_rcar_crtc_state(crtc_state
);
1101 rcrtc_state
->crc
.source
= source
;
1102 rcrtc_state
->crc
.index
= index
;
1104 ret
= drm_atomic_commit(state
);
1106 ret
= PTR_ERR(crtc_state
);
1109 if (ret
== -EDEADLK
) {
1110 drm_atomic_state_clear(state
);
1111 drm_modeset_backoff(&ctx
);
1115 drm_atomic_state_put(state
);
1118 drm_modeset_drop_locks(&ctx
);
1119 drm_modeset_acquire_fini(&ctx
);
1124 static const struct drm_crtc_funcs crtc_funcs_gen2
= {
1125 .reset
= rcar_du_crtc_reset
,
1126 .destroy
= drm_crtc_cleanup
,
1127 .set_config
= drm_atomic_helper_set_config
,
1128 .page_flip
= drm_atomic_helper_page_flip
,
1129 .atomic_duplicate_state
= rcar_du_crtc_atomic_duplicate_state
,
1130 .atomic_destroy_state
= rcar_du_crtc_atomic_destroy_state
,
1131 .enable_vblank
= rcar_du_crtc_enable_vblank
,
1132 .disable_vblank
= rcar_du_crtc_disable_vblank
,
1135 static const struct drm_crtc_funcs crtc_funcs_gen3
= {
1136 .reset
= rcar_du_crtc_reset
,
1137 .destroy
= rcar_du_crtc_cleanup
,
1138 .set_config
= drm_atomic_helper_set_config
,
1139 .page_flip
= drm_atomic_helper_page_flip
,
1140 .atomic_duplicate_state
= rcar_du_crtc_atomic_duplicate_state
,
1141 .atomic_destroy_state
= rcar_du_crtc_atomic_destroy_state
,
1142 .enable_vblank
= rcar_du_crtc_enable_vblank
,
1143 .disable_vblank
= rcar_du_crtc_disable_vblank
,
1144 .set_crc_source
= rcar_du_crtc_set_crc_source
,
1145 .verify_crc_source
= rcar_du_crtc_verify_crc_source
,
1146 .get_crc_sources
= rcar_du_crtc_get_crc_sources
,
1147 .gamma_set
= drm_atomic_helper_legacy_gamma_set
,
1150 /* -----------------------------------------------------------------------------
1151 * Interrupt Handling
1154 static irqreturn_t
rcar_du_crtc_irq(int irq
, void *arg
)
1156 struct rcar_du_crtc
*rcrtc
= arg
;
1157 struct rcar_du_device
*rcdu
= rcrtc
->dev
;
1158 irqreturn_t ret
= IRQ_NONE
;
1161 spin_lock(&rcrtc
->vblank_lock
);
1163 status
= rcar_du_crtc_read(rcrtc
, DSSR
);
1164 rcar_du_crtc_write(rcrtc
, DSRCR
, status
& DSRCR_MASK
);
1166 if (status
& DSSR_VBK
) {
1168 * Wake up the vblank wait if the counter reaches 0. This must
1169 * be protected by the vblank_lock to avoid races in
1170 * rcar_du_crtc_disable_planes().
1172 if (rcrtc
->vblank_count
) {
1173 if (--rcrtc
->vblank_count
== 0)
1174 wake_up(&rcrtc
->vblank_wait
);
1178 spin_unlock(&rcrtc
->vblank_lock
);
1180 if (status
& DSSR_VBK
) {
1181 if (rcdu
->info
->gen
< 3) {
1182 drm_crtc_handle_vblank(&rcrtc
->crtc
);
1183 rcar_du_crtc_finish_page_flip(rcrtc
);
1192 /* -----------------------------------------------------------------------------
1196 int rcar_du_crtc_create(struct rcar_du_group
*rgrp
, unsigned int swindex
,
1197 unsigned int hwindex
)
1199 static const unsigned int mmio_offsets
[] = {
1200 DU0_REG_OFFSET
, DU1_REG_OFFSET
, DU2_REG_OFFSET
, DU3_REG_OFFSET
1203 struct rcar_du_device
*rcdu
= rgrp
->dev
;
1204 struct platform_device
*pdev
= to_platform_device(rcdu
->dev
);
1205 struct rcar_du_crtc
*rcrtc
= &rcdu
->crtcs
[swindex
];
1206 struct drm_crtc
*crtc
= &rcrtc
->crtc
;
1207 struct drm_plane
*primary
;
1208 unsigned int irqflags
;
1215 /* Get the CRTC clock and the optional external clock. */
1216 if (rcar_du_has(rcdu
, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK
)) {
1217 sprintf(clk_name
, "du.%u", hwindex
);
1223 rcrtc
->clock
= devm_clk_get(rcdu
->dev
, name
);
1224 if (IS_ERR(rcrtc
->clock
)) {
1225 dev_err(rcdu
->dev
, "no clock for DU channel %u\n", hwindex
);
1226 return PTR_ERR(rcrtc
->clock
);
1229 sprintf(clk_name
, "dclkin.%u", hwindex
);
1230 clk
= devm_clk_get(rcdu
->dev
, clk_name
);
1232 rcrtc
->extclock
= clk
;
1233 } else if (PTR_ERR(clk
) == -EPROBE_DEFER
) {
1234 return -EPROBE_DEFER
;
1235 } else if (rcdu
->info
->dpll_mask
& BIT(hwindex
)) {
1237 * DU channels that have a display PLL can't use the internal
1238 * system clock and thus require an external clock.
1241 dev_err(rcdu
->dev
, "can't get dclkin.%u: %d\n", hwindex
, ret
);
1245 init_waitqueue_head(&rcrtc
->flip_wait
);
1246 init_waitqueue_head(&rcrtc
->vblank_wait
);
1247 spin_lock_init(&rcrtc
->vblank_lock
);
1250 rcrtc
->group
= rgrp
;
1251 rcrtc
->mmio_offset
= mmio_offsets
[hwindex
];
1252 rcrtc
->index
= hwindex
;
1253 rcrtc
->dsysr
= (rcrtc
->index
% 2 ? 0 : DSYSR_DRES
) | DSYSR_TVM_TVSYNC
;
1255 if (rcar_du_has(rcdu
, RCAR_DU_FEATURE_VSP1_SOURCE
))
1256 primary
= &rcrtc
->vsp
->planes
[rcrtc
->vsp_pipe
].plane
;
1258 primary
= &rgrp
->planes
[swindex
% 2].plane
;
1260 ret
= drm_crtc_init_with_planes(rcdu
->ddev
, crtc
, primary
, NULL
,
1261 rcdu
->info
->gen
<= 2 ?
1262 &crtc_funcs_gen2
: &crtc_funcs_gen3
,
1267 /* CMM might be disabled for this CRTC. */
1268 if (rcdu
->cmms
[swindex
]) {
1269 rcrtc
->cmm
= rcdu
->cmms
[swindex
];
1270 rgrp
->cmms_mask
|= BIT(hwindex
% 2);
1272 drm_mode_crtc_set_gamma_size(crtc
, CM2_LUT_SIZE
);
1273 drm_crtc_enable_color_mgmt(crtc
, 0, false, CM2_LUT_SIZE
);
1276 drm_crtc_helper_add(crtc
, &crtc_helper_funcs
);
1278 /* Register the interrupt handler. */
1279 if (rcar_du_has(rcdu
, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK
)) {
1280 /* The IRQ's are associated with the CRTC (sw)index. */
1281 irq
= platform_get_irq(pdev
, swindex
);
1284 irq
= platform_get_irq(pdev
, 0);
1285 irqflags
= IRQF_SHARED
;
1289 dev_err(rcdu
->dev
, "no IRQ for CRTC %u\n", swindex
);
1293 ret
= devm_request_irq(rcdu
->dev
, irq
, rcar_du_crtc_irq
, irqflags
,
1294 dev_name(rcdu
->dev
), rcrtc
);
1297 "failed to register IRQ for CRTC %u\n", swindex
);
1301 rcar_du_crtc_crc_init(rcrtc
);