Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / iommu / dma-iommu.c
blob4078358ed66ea86ddf61d24b982c159b35087d3a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
5 * Copyright (C) 2014-2015 ARM Ltd.
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
29 struct iommu_dma_msi_page {
30 struct list_head list;
31 dma_addr_t iova;
32 phys_addr_t phys;
35 enum iommu_dma_cookie_type {
36 IOMMU_DMA_IOVA_COOKIE,
37 IOMMU_DMA_MSI_COOKIE,
40 struct iommu_dma_cookie {
41 enum iommu_dma_cookie_type type;
42 union {
43 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 struct iova_domain iovad;
45 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
46 dma_addr_t msi_iova;
48 struct list_head msi_page_list;
50 /* Domain for flush queue callback; NULL if flush queue not in use */
51 struct iommu_domain *fq_domain;
54 void iommu_dma_free_cpu_cached_iovas(unsigned int cpu,
55 struct iommu_domain *domain)
57 struct iommu_dma_cookie *cookie = domain->iova_cookie;
58 struct iova_domain *iovad = &cookie->iovad;
60 free_cpu_cached_iovas(cpu, iovad);
63 static void iommu_dma_entry_dtor(unsigned long data)
65 struct page *freelist = (struct page *)data;
67 while (freelist) {
68 unsigned long p = (unsigned long)page_address(freelist);
70 freelist = freelist->freelist;
71 free_page(p);
75 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
77 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
78 return cookie->iovad.granule;
79 return PAGE_SIZE;
82 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
84 struct iommu_dma_cookie *cookie;
86 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
87 if (cookie) {
88 INIT_LIST_HEAD(&cookie->msi_page_list);
89 cookie->type = type;
91 return cookie;
94 /**
95 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
96 * @domain: IOMMU domain to prepare for DMA-API usage
98 * IOMMU drivers should normally call this from their domain_alloc
99 * callback when domain->type == IOMMU_DOMAIN_DMA.
101 int iommu_get_dma_cookie(struct iommu_domain *domain)
103 if (domain->iova_cookie)
104 return -EEXIST;
106 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
107 if (!domain->iova_cookie)
108 return -ENOMEM;
110 return 0;
112 EXPORT_SYMBOL(iommu_get_dma_cookie);
115 * iommu_get_msi_cookie - Acquire just MSI remapping resources
116 * @domain: IOMMU domain to prepare
117 * @base: Start address of IOVA region for MSI mappings
119 * Users who manage their own IOVA allocation and do not want DMA API support,
120 * but would still like to take advantage of automatic MSI remapping, can use
121 * this to initialise their own domain appropriately. Users should reserve a
122 * contiguous IOVA region, starting at @base, large enough to accommodate the
123 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
124 * used by the devices attached to @domain.
126 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
128 struct iommu_dma_cookie *cookie;
130 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
131 return -EINVAL;
133 if (domain->iova_cookie)
134 return -EEXIST;
136 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
137 if (!cookie)
138 return -ENOMEM;
140 cookie->msi_iova = base;
141 domain->iova_cookie = cookie;
142 return 0;
144 EXPORT_SYMBOL(iommu_get_msi_cookie);
147 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
148 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
149 * iommu_get_msi_cookie()
151 * IOMMU drivers should normally call this from their domain_free callback.
153 void iommu_put_dma_cookie(struct iommu_domain *domain)
155 struct iommu_dma_cookie *cookie = domain->iova_cookie;
156 struct iommu_dma_msi_page *msi, *tmp;
158 if (!cookie)
159 return;
161 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
162 put_iova_domain(&cookie->iovad);
164 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
165 list_del(&msi->list);
166 kfree(msi);
168 kfree(cookie);
169 domain->iova_cookie = NULL;
171 EXPORT_SYMBOL(iommu_put_dma_cookie);
174 * iommu_dma_get_resv_regions - Reserved region driver helper
175 * @dev: Device from iommu_get_resv_regions()
176 * @list: Reserved region list from iommu_get_resv_regions()
178 * IOMMU drivers can use this to implement their .get_resv_regions callback
179 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
180 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
181 * reservation.
183 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
186 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
187 iort_iommu_msi_get_resv_regions(dev, list);
190 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
192 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
193 phys_addr_t start, phys_addr_t end)
195 struct iova_domain *iovad = &cookie->iovad;
196 struct iommu_dma_msi_page *msi_page;
197 int i, num_pages;
199 start -= iova_offset(iovad, start);
200 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
202 for (i = 0; i < num_pages; i++) {
203 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
204 if (!msi_page)
205 return -ENOMEM;
207 msi_page->phys = start;
208 msi_page->iova = start;
209 INIT_LIST_HEAD(&msi_page->list);
210 list_add(&msi_page->list, &cookie->msi_page_list);
211 start += iovad->granule;
214 return 0;
217 static int iova_reserve_pci_windows(struct pci_dev *dev,
218 struct iova_domain *iovad)
220 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
221 struct resource_entry *window;
222 unsigned long lo, hi;
223 phys_addr_t start = 0, end;
225 resource_list_for_each_entry(window, &bridge->windows) {
226 if (resource_type(window->res) != IORESOURCE_MEM)
227 continue;
229 lo = iova_pfn(iovad, window->res->start - window->offset);
230 hi = iova_pfn(iovad, window->res->end - window->offset);
231 reserve_iova(iovad, lo, hi);
234 /* Get reserved DMA windows from host bridge */
235 resource_list_for_each_entry(window, &bridge->dma_ranges) {
236 end = window->res->start - window->offset;
237 resv_iova:
238 if (end > start) {
239 lo = iova_pfn(iovad, start);
240 hi = iova_pfn(iovad, end);
241 reserve_iova(iovad, lo, hi);
242 } else {
243 /* dma_ranges list should be sorted */
244 dev_err(&dev->dev, "Failed to reserve IOVA\n");
245 return -EINVAL;
248 start = window->res->end - window->offset + 1;
249 /* If window is last entry */
250 if (window->node.next == &bridge->dma_ranges &&
251 end != ~(phys_addr_t)0) {
252 end = ~(phys_addr_t)0;
253 goto resv_iova;
257 return 0;
260 static int iova_reserve_iommu_regions(struct device *dev,
261 struct iommu_domain *domain)
263 struct iommu_dma_cookie *cookie = domain->iova_cookie;
264 struct iova_domain *iovad = &cookie->iovad;
265 struct iommu_resv_region *region;
266 LIST_HEAD(resv_regions);
267 int ret = 0;
269 if (dev_is_pci(dev)) {
270 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
271 if (ret)
272 return ret;
275 iommu_get_resv_regions(dev, &resv_regions);
276 list_for_each_entry(region, &resv_regions, list) {
277 unsigned long lo, hi;
279 /* We ARE the software that manages these! */
280 if (region->type == IOMMU_RESV_SW_MSI)
281 continue;
283 lo = iova_pfn(iovad, region->start);
284 hi = iova_pfn(iovad, region->start + region->length - 1);
285 reserve_iova(iovad, lo, hi);
287 if (region->type == IOMMU_RESV_MSI)
288 ret = cookie_init_hw_msi_region(cookie, region->start,
289 region->start + region->length);
290 if (ret)
291 break;
293 iommu_put_resv_regions(dev, &resv_regions);
295 return ret;
298 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
300 struct iommu_dma_cookie *cookie;
301 struct iommu_domain *domain;
303 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
304 domain = cookie->fq_domain;
306 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
307 * implies that ops->flush_iotlb_all must be non-NULL.
309 domain->ops->flush_iotlb_all(domain);
313 * iommu_dma_init_domain - Initialise a DMA mapping domain
314 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
315 * @base: IOVA at which the mappable address space starts
316 * @size: Size of IOVA space
317 * @dev: Device the domain is being initialised for
319 * @base and @size should be exact multiples of IOMMU page granularity to
320 * avoid rounding surprises. If necessary, we reserve the page at address 0
321 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
322 * any change which could make prior IOVAs invalid will fail.
324 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
325 u64 size, struct device *dev)
327 struct iommu_dma_cookie *cookie = domain->iova_cookie;
328 unsigned long order, base_pfn;
329 struct iova_domain *iovad;
330 int attr;
332 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
333 return -EINVAL;
335 iovad = &cookie->iovad;
337 /* Use the smallest supported page size for IOVA granularity */
338 order = __ffs(domain->pgsize_bitmap);
339 base_pfn = max_t(unsigned long, 1, base >> order);
341 /* Check the domain allows at least some access to the device... */
342 if (domain->geometry.force_aperture) {
343 if (base > domain->geometry.aperture_end ||
344 base + size <= domain->geometry.aperture_start) {
345 pr_warn("specified DMA range outside IOMMU capability\n");
346 return -EFAULT;
348 /* ...then finally give it a kicking to make sure it fits */
349 base_pfn = max_t(unsigned long, base_pfn,
350 domain->geometry.aperture_start >> order);
353 /* start_pfn is always nonzero for an already-initialised domain */
354 if (iovad->start_pfn) {
355 if (1UL << order != iovad->granule ||
356 base_pfn != iovad->start_pfn) {
357 pr_warn("Incompatible range for DMA domain\n");
358 return -EFAULT;
361 return 0;
364 init_iova_domain(iovad, 1UL << order, base_pfn);
366 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
367 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
368 if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
369 iommu_dma_entry_dtor))
370 pr_warn("iova flush queue initialization failed\n");
371 else
372 cookie->fq_domain = domain;
375 if (!dev)
376 return 0;
378 return iova_reserve_iommu_regions(dev, domain);
381 static int iommu_dma_deferred_attach(struct device *dev,
382 struct iommu_domain *domain)
384 const struct iommu_ops *ops = domain->ops;
386 if (!is_kdump_kernel())
387 return 0;
389 if (unlikely(ops->is_attach_deferred &&
390 ops->is_attach_deferred(domain, dev)))
391 return iommu_attach_device(domain, dev);
393 return 0;
397 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
398 * page flags.
399 * @dir: Direction of DMA transfer
400 * @coherent: Is the DMA master cache-coherent?
401 * @attrs: DMA attributes for the mapping
403 * Return: corresponding IOMMU API page protection flags
405 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
406 unsigned long attrs)
408 int prot = coherent ? IOMMU_CACHE : 0;
410 if (attrs & DMA_ATTR_PRIVILEGED)
411 prot |= IOMMU_PRIV;
413 switch (dir) {
414 case DMA_BIDIRECTIONAL:
415 return prot | IOMMU_READ | IOMMU_WRITE;
416 case DMA_TO_DEVICE:
417 return prot | IOMMU_READ;
418 case DMA_FROM_DEVICE:
419 return prot | IOMMU_WRITE;
420 default:
421 return 0;
425 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
426 size_t size, u64 dma_limit, struct device *dev)
428 struct iommu_dma_cookie *cookie = domain->iova_cookie;
429 struct iova_domain *iovad = &cookie->iovad;
430 unsigned long shift, iova_len, iova = 0;
432 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
433 cookie->msi_iova += size;
434 return cookie->msi_iova - size;
437 shift = iova_shift(iovad);
438 iova_len = size >> shift;
440 * Freeing non-power-of-two-sized allocations back into the IOVA caches
441 * will come back to bite us badly, so we have to waste a bit of space
442 * rounding up anything cacheable to make sure that can't happen. The
443 * order of the unadjusted size will still match upon freeing.
445 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
446 iova_len = roundup_pow_of_two(iova_len);
448 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
450 if (domain->geometry.force_aperture)
451 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
453 /* Try to get PCI devices a SAC address */
454 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
455 iova = alloc_iova_fast(iovad, iova_len,
456 DMA_BIT_MASK(32) >> shift, false);
458 if (!iova)
459 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
460 true);
462 return (dma_addr_t)iova << shift;
465 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
466 dma_addr_t iova, size_t size, struct page *freelist)
468 struct iova_domain *iovad = &cookie->iovad;
470 /* The MSI case is only ever cleaning up its most recent allocation */
471 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
472 cookie->msi_iova -= size;
473 else if (cookie->fq_domain) /* non-strict mode */
474 queue_iova(iovad, iova_pfn(iovad, iova),
475 size >> iova_shift(iovad),
476 (unsigned long)freelist);
477 else
478 free_iova_fast(iovad, iova_pfn(iovad, iova),
479 size >> iova_shift(iovad));
482 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
483 size_t size)
485 struct iommu_domain *domain = iommu_get_dma_domain(dev);
486 struct iommu_dma_cookie *cookie = domain->iova_cookie;
487 struct iova_domain *iovad = &cookie->iovad;
488 size_t iova_off = iova_offset(iovad, dma_addr);
489 struct iommu_iotlb_gather iotlb_gather;
490 size_t unmapped;
492 dma_addr -= iova_off;
493 size = iova_align(iovad, size + iova_off);
494 iommu_iotlb_gather_init(&iotlb_gather);
496 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
497 WARN_ON(unmapped != size);
499 if (!cookie->fq_domain)
500 iommu_iotlb_sync(domain, &iotlb_gather);
501 iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist);
504 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
505 size_t size, enum dma_data_direction dir,
506 unsigned long attrs)
508 struct iommu_domain *domain = iommu_get_dma_domain(dev);
509 struct iommu_dma_cookie *cookie = domain->iova_cookie;
510 struct iova_domain *iovad = &cookie->iovad;
511 phys_addr_t phys;
513 phys = iommu_iova_to_phys(domain, dma_addr);
514 if (WARN_ON(!phys))
515 return;
517 __iommu_dma_unmap(dev, dma_addr, size);
519 if (unlikely(is_swiotlb_buffer(phys)))
520 swiotlb_tbl_unmap_single(dev, phys, size,
521 iova_align(iovad, size), dir, attrs);
524 static bool dev_is_untrusted(struct device *dev)
526 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
529 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
530 size_t size, int prot, u64 dma_mask)
532 struct iommu_domain *domain = iommu_get_dma_domain(dev);
533 struct iommu_dma_cookie *cookie = domain->iova_cookie;
534 struct iova_domain *iovad = &cookie->iovad;
535 size_t iova_off = iova_offset(iovad, phys);
536 dma_addr_t iova;
538 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
539 return DMA_MAPPING_ERROR;
541 size = iova_align(iovad, size + iova_off);
543 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
544 if (!iova)
545 return DMA_MAPPING_ERROR;
547 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
548 iommu_dma_free_iova(cookie, iova, size, NULL);
549 return DMA_MAPPING_ERROR;
551 return iova + iova_off;
554 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
555 size_t org_size, dma_addr_t dma_mask, bool coherent,
556 enum dma_data_direction dir, unsigned long attrs)
558 int prot = dma_info_to_prot(dir, coherent, attrs);
559 struct iommu_domain *domain = iommu_get_dma_domain(dev);
560 struct iommu_dma_cookie *cookie = domain->iova_cookie;
561 struct iova_domain *iovad = &cookie->iovad;
562 size_t aligned_size = org_size;
563 void *padding_start;
564 size_t padding_size;
565 dma_addr_t iova;
568 * If both the physical buffer start address and size are
569 * page aligned, we don't need to use a bounce page.
571 if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
572 iova_offset(iovad, phys | org_size)) {
573 aligned_size = iova_align(iovad, org_size);
574 phys = swiotlb_tbl_map_single(dev, phys, org_size,
575 aligned_size, dir, attrs);
577 if (phys == DMA_MAPPING_ERROR)
578 return DMA_MAPPING_ERROR;
580 /* Cleanup the padding area. */
581 padding_start = phys_to_virt(phys);
582 padding_size = aligned_size;
584 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
585 (dir == DMA_TO_DEVICE ||
586 dir == DMA_BIDIRECTIONAL)) {
587 padding_start += org_size;
588 padding_size -= org_size;
591 memset(padding_start, 0, padding_size);
594 iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
595 if ((iova == DMA_MAPPING_ERROR) && is_swiotlb_buffer(phys))
596 swiotlb_tbl_unmap_single(dev, phys, org_size,
597 aligned_size, dir, attrs);
599 return iova;
602 static void __iommu_dma_free_pages(struct page **pages, int count)
604 while (count--)
605 __free_page(pages[count]);
606 kvfree(pages);
609 static struct page **__iommu_dma_alloc_pages(struct device *dev,
610 unsigned int count, unsigned long order_mask, gfp_t gfp)
612 struct page **pages;
613 unsigned int i = 0, nid = dev_to_node(dev);
615 order_mask &= (2U << MAX_ORDER) - 1;
616 if (!order_mask)
617 return NULL;
619 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
620 if (!pages)
621 return NULL;
623 /* IOMMU can map any pages, so himem can also be used here */
624 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
626 /* It makes no sense to muck about with huge pages */
627 gfp &= ~__GFP_COMP;
629 while (count) {
630 struct page *page = NULL;
631 unsigned int order_size;
634 * Higher-order allocations are a convenience rather
635 * than a necessity, hence using __GFP_NORETRY until
636 * falling back to minimum-order allocations.
638 for (order_mask &= (2U << __fls(count)) - 1;
639 order_mask; order_mask &= ~order_size) {
640 unsigned int order = __fls(order_mask);
641 gfp_t alloc_flags = gfp;
643 order_size = 1U << order;
644 if (order_mask > order_size)
645 alloc_flags |= __GFP_NORETRY;
646 page = alloc_pages_node(nid, alloc_flags, order);
647 if (!page)
648 continue;
649 if (order)
650 split_page(page, order);
651 break;
653 if (!page) {
654 __iommu_dma_free_pages(pages, i);
655 return NULL;
657 count -= order_size;
658 while (order_size--)
659 pages[i++] = page++;
661 return pages;
665 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
666 * @dev: Device to allocate memory for. Must be a real device
667 * attached to an iommu_dma_domain
668 * @size: Size of buffer in bytes
669 * @dma_handle: Out argument for allocated DMA handle
670 * @gfp: Allocation flags
671 * @prot: pgprot_t to use for the remapped mapping
672 * @attrs: DMA attributes for this allocation
674 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
675 * but an IOMMU which supports smaller pages might not map the whole thing.
677 * Return: Mapped virtual address, or NULL on failure.
679 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
680 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
681 unsigned long attrs)
683 struct iommu_domain *domain = iommu_get_dma_domain(dev);
684 struct iommu_dma_cookie *cookie = domain->iova_cookie;
685 struct iova_domain *iovad = &cookie->iovad;
686 bool coherent = dev_is_dma_coherent(dev);
687 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
688 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
689 struct page **pages;
690 struct sg_table sgt;
691 dma_addr_t iova;
692 void *vaddr;
694 *dma_handle = DMA_MAPPING_ERROR;
696 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
697 return NULL;
699 min_size = alloc_sizes & -alloc_sizes;
700 if (min_size < PAGE_SIZE) {
701 min_size = PAGE_SIZE;
702 alloc_sizes |= PAGE_SIZE;
703 } else {
704 size = ALIGN(size, min_size);
706 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
707 alloc_sizes = min_size;
709 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
710 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
711 gfp);
712 if (!pages)
713 return NULL;
715 size = iova_align(iovad, size);
716 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
717 if (!iova)
718 goto out_free_pages;
720 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
721 goto out_free_iova;
723 if (!(ioprot & IOMMU_CACHE)) {
724 struct scatterlist *sg;
725 int i;
727 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
728 arch_dma_prep_coherent(sg_page(sg), sg->length);
731 if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
732 < size)
733 goto out_free_sg;
735 vaddr = dma_common_pages_remap(pages, size, prot,
736 __builtin_return_address(0));
737 if (!vaddr)
738 goto out_unmap;
740 *dma_handle = iova;
741 sg_free_table(&sgt);
742 return vaddr;
744 out_unmap:
745 __iommu_dma_unmap(dev, iova, size);
746 out_free_sg:
747 sg_free_table(&sgt);
748 out_free_iova:
749 iommu_dma_free_iova(cookie, iova, size, NULL);
750 out_free_pages:
751 __iommu_dma_free_pages(pages, count);
752 return NULL;
755 static void iommu_dma_sync_single_for_cpu(struct device *dev,
756 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
758 phys_addr_t phys;
760 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
761 return;
763 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
764 if (!dev_is_dma_coherent(dev))
765 arch_sync_dma_for_cpu(phys, size, dir);
767 if (is_swiotlb_buffer(phys))
768 swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_CPU);
771 static void iommu_dma_sync_single_for_device(struct device *dev,
772 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
774 phys_addr_t phys;
776 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
777 return;
779 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
780 if (is_swiotlb_buffer(phys))
781 swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_DEVICE);
783 if (!dev_is_dma_coherent(dev))
784 arch_sync_dma_for_device(phys, size, dir);
787 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
788 struct scatterlist *sgl, int nelems,
789 enum dma_data_direction dir)
791 struct scatterlist *sg;
792 int i;
794 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
795 return;
797 for_each_sg(sgl, sg, nelems, i) {
798 if (!dev_is_dma_coherent(dev))
799 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
801 if (is_swiotlb_buffer(sg_phys(sg)))
802 swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
803 dir, SYNC_FOR_CPU);
807 static void iommu_dma_sync_sg_for_device(struct device *dev,
808 struct scatterlist *sgl, int nelems,
809 enum dma_data_direction dir)
811 struct scatterlist *sg;
812 int i;
814 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
815 return;
817 for_each_sg(sgl, sg, nelems, i) {
818 if (is_swiotlb_buffer(sg_phys(sg)))
819 swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
820 dir, SYNC_FOR_DEVICE);
822 if (!dev_is_dma_coherent(dev))
823 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
827 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
828 unsigned long offset, size_t size, enum dma_data_direction dir,
829 unsigned long attrs)
831 phys_addr_t phys = page_to_phys(page) + offset;
832 bool coherent = dev_is_dma_coherent(dev);
833 dma_addr_t dma_handle;
835 dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
836 coherent, dir, attrs);
837 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
838 dma_handle != DMA_MAPPING_ERROR)
839 arch_sync_dma_for_device(phys, size, dir);
840 return dma_handle;
843 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
844 size_t size, enum dma_data_direction dir, unsigned long attrs)
846 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
847 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
848 __iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
852 * Prepare a successfully-mapped scatterlist to give back to the caller.
854 * At this point the segments are already laid out by iommu_dma_map_sg() to
855 * avoid individually crossing any boundaries, so we merely need to check a
856 * segment's start address to avoid concatenating across one.
858 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
859 dma_addr_t dma_addr)
861 struct scatterlist *s, *cur = sg;
862 unsigned long seg_mask = dma_get_seg_boundary(dev);
863 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
864 int i, count = 0;
866 for_each_sg(sg, s, nents, i) {
867 /* Restore this segment's original unaligned fields first */
868 unsigned int s_iova_off = sg_dma_address(s);
869 unsigned int s_length = sg_dma_len(s);
870 unsigned int s_iova_len = s->length;
872 s->offset += s_iova_off;
873 s->length = s_length;
874 sg_dma_address(s) = DMA_MAPPING_ERROR;
875 sg_dma_len(s) = 0;
878 * Now fill in the real DMA data. If...
879 * - there is a valid output segment to append to
880 * - and this segment starts on an IOVA page boundary
881 * - but doesn't fall at a segment boundary
882 * - and wouldn't make the resulting output segment too long
884 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
885 (max_len - cur_len >= s_length)) {
886 /* ...then concatenate it with the previous one */
887 cur_len += s_length;
888 } else {
889 /* Otherwise start the next output segment */
890 if (i > 0)
891 cur = sg_next(cur);
892 cur_len = s_length;
893 count++;
895 sg_dma_address(cur) = dma_addr + s_iova_off;
898 sg_dma_len(cur) = cur_len;
899 dma_addr += s_iova_len;
901 if (s_length + s_iova_off < s_iova_len)
902 cur_len = 0;
904 return count;
908 * If mapping failed, then just restore the original list,
909 * but making sure the DMA fields are invalidated.
911 static void __invalidate_sg(struct scatterlist *sg, int nents)
913 struct scatterlist *s;
914 int i;
916 for_each_sg(sg, s, nents, i) {
917 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
918 s->offset += sg_dma_address(s);
919 if (sg_dma_len(s))
920 s->length = sg_dma_len(s);
921 sg_dma_address(s) = DMA_MAPPING_ERROR;
922 sg_dma_len(s) = 0;
926 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
927 int nents, enum dma_data_direction dir, unsigned long attrs)
929 struct scatterlist *s;
930 int i;
932 for_each_sg(sg, s, nents, i)
933 __iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
934 sg_dma_len(s), dir, attrs);
937 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
938 int nents, enum dma_data_direction dir, unsigned long attrs)
940 struct scatterlist *s;
941 int i;
943 for_each_sg(sg, s, nents, i) {
944 sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
945 s->length, dma_get_mask(dev),
946 dev_is_dma_coherent(dev), dir, attrs);
947 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
948 goto out_unmap;
949 sg_dma_len(s) = s->length;
952 return nents;
954 out_unmap:
955 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
956 return 0;
960 * The DMA API client is passing in a scatterlist which could describe
961 * any old buffer layout, but the IOMMU API requires everything to be
962 * aligned to IOMMU pages. Hence the need for this complicated bit of
963 * impedance-matching, to be able to hand off a suitably-aligned list,
964 * but still preserve the original offsets and sizes for the caller.
966 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
967 int nents, enum dma_data_direction dir, unsigned long attrs)
969 struct iommu_domain *domain = iommu_get_dma_domain(dev);
970 struct iommu_dma_cookie *cookie = domain->iova_cookie;
971 struct iova_domain *iovad = &cookie->iovad;
972 struct scatterlist *s, *prev = NULL;
973 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
974 dma_addr_t iova;
975 size_t iova_len = 0;
976 unsigned long mask = dma_get_seg_boundary(dev);
977 int i;
979 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
980 return 0;
982 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
983 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
985 if (dev_is_untrusted(dev))
986 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
989 * Work out how much IOVA space we need, and align the segments to
990 * IOVA granules for the IOMMU driver to handle. With some clever
991 * trickery we can modify the list in-place, but reversibly, by
992 * stashing the unaligned parts in the as-yet-unused DMA fields.
994 for_each_sg(sg, s, nents, i) {
995 size_t s_iova_off = iova_offset(iovad, s->offset);
996 size_t s_length = s->length;
997 size_t pad_len = (mask - iova_len + 1) & mask;
999 sg_dma_address(s) = s_iova_off;
1000 sg_dma_len(s) = s_length;
1001 s->offset -= s_iova_off;
1002 s_length = iova_align(iovad, s_length + s_iova_off);
1003 s->length = s_length;
1006 * Due to the alignment of our single IOVA allocation, we can
1007 * depend on these assumptions about the segment boundary mask:
1008 * - If mask size >= IOVA size, then the IOVA range cannot
1009 * possibly fall across a boundary, so we don't care.
1010 * - If mask size < IOVA size, then the IOVA range must start
1011 * exactly on a boundary, therefore we can lay things out
1012 * based purely on segment lengths without needing to know
1013 * the actual addresses beforehand.
1014 * - The mask must be a power of 2, so pad_len == 0 if
1015 * iova_len == 0, thus we cannot dereference prev the first
1016 * time through here (i.e. before it has a meaningful value).
1018 if (pad_len && pad_len < s_length - 1) {
1019 prev->length += pad_len;
1020 iova_len += pad_len;
1023 iova_len += s_length;
1024 prev = s;
1027 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1028 if (!iova)
1029 goto out_restore_sg;
1032 * We'll leave any physical concatenation to the IOMMU driver's
1033 * implementation - it knows better than we do.
1035 if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
1036 goto out_free_iova;
1038 return __finalise_sg(dev, sg, nents, iova);
1040 out_free_iova:
1041 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1042 out_restore_sg:
1043 __invalidate_sg(sg, nents);
1044 return 0;
1047 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1048 int nents, enum dma_data_direction dir, unsigned long attrs)
1050 dma_addr_t start, end;
1051 struct scatterlist *tmp;
1052 int i;
1054 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1055 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1057 if (dev_is_untrusted(dev)) {
1058 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1059 return;
1063 * The scatterlist segments are mapped into a single
1064 * contiguous IOVA allocation, so this is incredibly easy.
1066 start = sg_dma_address(sg);
1067 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1068 if (sg_dma_len(tmp) == 0)
1069 break;
1070 sg = tmp;
1072 end = sg_dma_address(sg) + sg_dma_len(sg);
1073 __iommu_dma_unmap(dev, start, end - start);
1076 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1077 size_t size, enum dma_data_direction dir, unsigned long attrs)
1079 return __iommu_dma_map(dev, phys, size,
1080 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1081 dma_get_mask(dev));
1084 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1085 size_t size, enum dma_data_direction dir, unsigned long attrs)
1087 __iommu_dma_unmap(dev, handle, size);
1090 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1092 size_t alloc_size = PAGE_ALIGN(size);
1093 int count = alloc_size >> PAGE_SHIFT;
1094 struct page *page = NULL, **pages = NULL;
1096 /* Non-coherent atomic allocation? Easy */
1097 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1098 dma_free_from_pool(dev, cpu_addr, alloc_size))
1099 return;
1101 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1103 * If it the address is remapped, then it's either non-coherent
1104 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1106 pages = dma_common_find_pages(cpu_addr);
1107 if (!pages)
1108 page = vmalloc_to_page(cpu_addr);
1109 dma_common_free_remap(cpu_addr, alloc_size);
1110 } else {
1111 /* Lowmem means a coherent atomic or CMA allocation */
1112 page = virt_to_page(cpu_addr);
1115 if (pages)
1116 __iommu_dma_free_pages(pages, count);
1117 if (page)
1118 dma_free_contiguous(dev, page, alloc_size);
1121 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1122 dma_addr_t handle, unsigned long attrs)
1124 __iommu_dma_unmap(dev, handle, size);
1125 __iommu_dma_free(dev, size, cpu_addr);
1128 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1129 struct page **pagep, gfp_t gfp, unsigned long attrs)
1131 bool coherent = dev_is_dma_coherent(dev);
1132 size_t alloc_size = PAGE_ALIGN(size);
1133 int node = dev_to_node(dev);
1134 struct page *page = NULL;
1135 void *cpu_addr;
1137 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1138 if (!page)
1139 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1140 if (!page)
1141 return NULL;
1143 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1144 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1146 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1147 prot, __builtin_return_address(0));
1148 if (!cpu_addr)
1149 goto out_free_pages;
1151 if (!coherent)
1152 arch_dma_prep_coherent(page, size);
1153 } else {
1154 cpu_addr = page_address(page);
1157 *pagep = page;
1158 memset(cpu_addr, 0, alloc_size);
1159 return cpu_addr;
1160 out_free_pages:
1161 dma_free_contiguous(dev, page, alloc_size);
1162 return NULL;
1165 static void *iommu_dma_alloc(struct device *dev, size_t size,
1166 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1168 bool coherent = dev_is_dma_coherent(dev);
1169 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1170 struct page *page = NULL;
1171 void *cpu_addr;
1173 gfp |= __GFP_ZERO;
1175 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1176 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1177 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1178 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1181 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1182 !gfpflags_allow_blocking(gfp) && !coherent)
1183 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1184 gfp, NULL);
1185 else
1186 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1187 if (!cpu_addr)
1188 return NULL;
1190 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1191 dev->coherent_dma_mask);
1192 if (*handle == DMA_MAPPING_ERROR) {
1193 __iommu_dma_free(dev, size, cpu_addr);
1194 return NULL;
1197 return cpu_addr;
1200 #ifdef CONFIG_DMA_REMAP
1201 static void *iommu_dma_alloc_noncoherent(struct device *dev, size_t size,
1202 dma_addr_t *handle, enum dma_data_direction dir, gfp_t gfp)
1204 if (!gfpflags_allow_blocking(gfp)) {
1205 struct page *page;
1207 page = dma_common_alloc_pages(dev, size, handle, dir, gfp);
1208 if (!page)
1209 return NULL;
1210 return page_address(page);
1213 return iommu_dma_alloc_remap(dev, size, handle, gfp | __GFP_ZERO,
1214 PAGE_KERNEL, 0);
1217 static void iommu_dma_free_noncoherent(struct device *dev, size_t size,
1218 void *cpu_addr, dma_addr_t handle, enum dma_data_direction dir)
1220 __iommu_dma_unmap(dev, handle, size);
1221 __iommu_dma_free(dev, size, cpu_addr);
1223 #else
1224 #define iommu_dma_alloc_noncoherent NULL
1225 #define iommu_dma_free_noncoherent NULL
1226 #endif /* CONFIG_DMA_REMAP */
1228 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1229 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1230 unsigned long attrs)
1232 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1233 unsigned long pfn, off = vma->vm_pgoff;
1234 int ret;
1236 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1238 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1239 return ret;
1241 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1242 return -ENXIO;
1244 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1245 struct page **pages = dma_common_find_pages(cpu_addr);
1247 if (pages)
1248 return vm_map_pages(vma, pages, nr_pages);
1249 pfn = vmalloc_to_pfn(cpu_addr);
1250 } else {
1251 pfn = page_to_pfn(virt_to_page(cpu_addr));
1254 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1255 vma->vm_end - vma->vm_start,
1256 vma->vm_page_prot);
1259 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1260 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1261 unsigned long attrs)
1263 struct page *page;
1264 int ret;
1266 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1267 struct page **pages = dma_common_find_pages(cpu_addr);
1269 if (pages) {
1270 return sg_alloc_table_from_pages(sgt, pages,
1271 PAGE_ALIGN(size) >> PAGE_SHIFT,
1272 0, size, GFP_KERNEL);
1275 page = vmalloc_to_page(cpu_addr);
1276 } else {
1277 page = virt_to_page(cpu_addr);
1280 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1281 if (!ret)
1282 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1283 return ret;
1286 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1288 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1290 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1293 static const struct dma_map_ops iommu_dma_ops = {
1294 .alloc = iommu_dma_alloc,
1295 .free = iommu_dma_free,
1296 .alloc_pages = dma_common_alloc_pages,
1297 .free_pages = dma_common_free_pages,
1298 .alloc_noncoherent = iommu_dma_alloc_noncoherent,
1299 .free_noncoherent = iommu_dma_free_noncoherent,
1300 .mmap = iommu_dma_mmap,
1301 .get_sgtable = iommu_dma_get_sgtable,
1302 .map_page = iommu_dma_map_page,
1303 .unmap_page = iommu_dma_unmap_page,
1304 .map_sg = iommu_dma_map_sg,
1305 .unmap_sg = iommu_dma_unmap_sg,
1306 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1307 .sync_single_for_device = iommu_dma_sync_single_for_device,
1308 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1309 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1310 .map_resource = iommu_dma_map_resource,
1311 .unmap_resource = iommu_dma_unmap_resource,
1312 .get_merge_boundary = iommu_dma_get_merge_boundary,
1316 * The IOMMU core code allocates the default DMA domain, which the underlying
1317 * IOMMU driver needs to support via the dma-iommu layer.
1319 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1321 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1323 if (!domain)
1324 goto out_err;
1327 * The IOMMU core code allocates the default DMA domain, which the
1328 * underlying IOMMU driver needs to support via the dma-iommu layer.
1330 if (domain->type == IOMMU_DOMAIN_DMA) {
1331 if (iommu_dma_init_domain(domain, dma_base, size, dev))
1332 goto out_err;
1333 dev->dma_ops = &iommu_dma_ops;
1336 return;
1337 out_err:
1338 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1339 dev_name(dev));
1342 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1343 phys_addr_t msi_addr, struct iommu_domain *domain)
1345 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1346 struct iommu_dma_msi_page *msi_page;
1347 dma_addr_t iova;
1348 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1349 size_t size = cookie_msi_granule(cookie);
1351 msi_addr &= ~(phys_addr_t)(size - 1);
1352 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1353 if (msi_page->phys == msi_addr)
1354 return msi_page;
1356 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1357 if (!msi_page)
1358 return NULL;
1360 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1361 if (!iova)
1362 goto out_free_page;
1364 if (iommu_map(domain, iova, msi_addr, size, prot))
1365 goto out_free_iova;
1367 INIT_LIST_HEAD(&msi_page->list);
1368 msi_page->phys = msi_addr;
1369 msi_page->iova = iova;
1370 list_add(&msi_page->list, &cookie->msi_page_list);
1371 return msi_page;
1373 out_free_iova:
1374 iommu_dma_free_iova(cookie, iova, size, NULL);
1375 out_free_page:
1376 kfree(msi_page);
1377 return NULL;
1380 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1382 struct device *dev = msi_desc_to_dev(desc);
1383 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1384 struct iommu_dma_msi_page *msi_page;
1385 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1387 if (!domain || !domain->iova_cookie) {
1388 desc->iommu_cookie = NULL;
1389 return 0;
1393 * In fact the whole prepare operation should already be serialised by
1394 * irq_domain_mutex further up the callchain, but that's pretty subtle
1395 * on its own, so consider this locking as failsafe documentation...
1397 mutex_lock(&msi_prepare_lock);
1398 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1399 mutex_unlock(&msi_prepare_lock);
1401 msi_desc_set_iommu_cookie(desc, msi_page);
1403 if (!msi_page)
1404 return -ENOMEM;
1405 return 0;
1408 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1409 struct msi_msg *msg)
1411 struct device *dev = msi_desc_to_dev(desc);
1412 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1413 const struct iommu_dma_msi_page *msi_page;
1415 msi_page = msi_desc_get_iommu_cookie(desc);
1417 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1418 return;
1420 msg->address_hi = upper_32_bits(msi_page->iova);
1421 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1422 msg->address_lo += lower_32_bits(msi_page->iova);
1425 static int iommu_dma_init(void)
1427 return iova_cache_get();
1429 arch_initcall(iommu_dma_init);