Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / iommu / io-pgtable-arm-v7s.c
blob1d92ac948db74c158188b156201846b60055926d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPU-agnostic ARM page table allocator.
5 * ARMv7 Short-descriptor format, supporting
6 * - Basic memory attributes
7 * - Simplified access permissions (AP[2:1] model)
8 * - Backwards-compatible TEX remap
9 * - Large pages/supersections (if indicated by the caller)
11 * Not supporting:
12 * - Legacy access permissions (AP[2:0] model)
14 * Almost certainly never supporting:
15 * - PXN
16 * - Domains
18 * Copyright (C) 2014-2015 ARM Limited
19 * Copyright (c) 2014-2015 MediaTek Inc.
22 #define pr_fmt(fmt) "arm-v7s io-pgtable: " fmt
24 #include <linux/atomic.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/gfp.h>
27 #include <linux/io-pgtable.h>
28 #include <linux/iommu.h>
29 #include <linux/kernel.h>
30 #include <linux/kmemleak.h>
31 #include <linux/sizes.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/types.h>
36 #include <asm/barrier.h>
38 /* Struct accessors */
39 #define io_pgtable_to_data(x) \
40 container_of((x), struct arm_v7s_io_pgtable, iop)
42 #define io_pgtable_ops_to_data(x) \
43 io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
46 * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
47 * and 12 bits in a page. With some carefully-chosen coefficients we can
48 * hide the ugly inconsistencies behind these macros and at least let the
49 * rest of the code pretend to be somewhat sane.
51 #define ARM_V7S_ADDR_BITS 32
52 #define _ARM_V7S_LVL_BITS(lvl) (16 - (lvl) * 4)
53 #define ARM_V7S_LVL_SHIFT(lvl) (ARM_V7S_ADDR_BITS - (4 + 8 * (lvl)))
54 #define ARM_V7S_TABLE_SHIFT 10
56 #define ARM_V7S_PTES_PER_LVL(lvl) (1 << _ARM_V7S_LVL_BITS(lvl))
57 #define ARM_V7S_TABLE_SIZE(lvl) \
58 (ARM_V7S_PTES_PER_LVL(lvl) * sizeof(arm_v7s_iopte))
60 #define ARM_V7S_BLOCK_SIZE(lvl) (1UL << ARM_V7S_LVL_SHIFT(lvl))
61 #define ARM_V7S_LVL_MASK(lvl) ((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
62 #define ARM_V7S_TABLE_MASK ((u32)(~0U << ARM_V7S_TABLE_SHIFT))
63 #define _ARM_V7S_IDX_MASK(lvl) (ARM_V7S_PTES_PER_LVL(lvl) - 1)
64 #define ARM_V7S_LVL_IDX(addr, lvl) ({ \
65 int _l = lvl; \
66 ((u32)(addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l); \
70 * Large page/supersection entries are effectively a block of 16 page/section
71 * entries, along the lines of the LPAE contiguous hint, but all with the
72 * same output address. For want of a better common name we'll call them
73 * "contiguous" versions of their respective page/section entries here, but
74 * noting the distinction (WRT to TLB maintenance) that they represent *one*
75 * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
77 #define ARM_V7S_CONT_PAGES 16
79 /* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
80 #define ARM_V7S_PTE_TYPE_TABLE 0x1
81 #define ARM_V7S_PTE_TYPE_PAGE 0x2
82 #define ARM_V7S_PTE_TYPE_CONT_PAGE 0x1
84 #define ARM_V7S_PTE_IS_VALID(pte) (((pte) & 0x3) != 0)
85 #define ARM_V7S_PTE_IS_TABLE(pte, lvl) \
86 ((lvl) == 1 && (((pte) & 0x3) == ARM_V7S_PTE_TYPE_TABLE))
88 /* Page table bits */
89 #define ARM_V7S_ATTR_XN(lvl) BIT(4 * (2 - (lvl)))
90 #define ARM_V7S_ATTR_B BIT(2)
91 #define ARM_V7S_ATTR_C BIT(3)
92 #define ARM_V7S_ATTR_NS_TABLE BIT(3)
93 #define ARM_V7S_ATTR_NS_SECTION BIT(19)
95 #define ARM_V7S_CONT_SECTION BIT(18)
96 #define ARM_V7S_CONT_PAGE_XN_SHIFT 15
99 * The attribute bits are consistently ordered*, but occupy bits [17:10] of
100 * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
101 * fields relative to that 8-bit block, plus a total shift relative to the PTE.
103 #define ARM_V7S_ATTR_SHIFT(lvl) (16 - (lvl) * 6)
105 #define ARM_V7S_ATTR_MASK 0xff
106 #define ARM_V7S_ATTR_AP0 BIT(0)
107 #define ARM_V7S_ATTR_AP1 BIT(1)
108 #define ARM_V7S_ATTR_AP2 BIT(5)
109 #define ARM_V7S_ATTR_S BIT(6)
110 #define ARM_V7S_ATTR_NG BIT(7)
111 #define ARM_V7S_TEX_SHIFT 2
112 #define ARM_V7S_TEX_MASK 0x7
113 #define ARM_V7S_ATTR_TEX(val) (((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)
115 /* MediaTek extend the two bits for PA 32bit/33bit */
116 #define ARM_V7S_ATTR_MTK_PA_BIT32 BIT(9)
117 #define ARM_V7S_ATTR_MTK_PA_BIT33 BIT(4)
119 /* *well, except for TEX on level 2 large pages, of course :( */
120 #define ARM_V7S_CONT_PAGE_TEX_SHIFT 6
121 #define ARM_V7S_CONT_PAGE_TEX_MASK (ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)
123 /* Simplified access permissions */
124 #define ARM_V7S_PTE_AF ARM_V7S_ATTR_AP0
125 #define ARM_V7S_PTE_AP_UNPRIV ARM_V7S_ATTR_AP1
126 #define ARM_V7S_PTE_AP_RDONLY ARM_V7S_ATTR_AP2
128 /* Register bits */
129 #define ARM_V7S_RGN_NC 0
130 #define ARM_V7S_RGN_WBWA 1
131 #define ARM_V7S_RGN_WT 2
132 #define ARM_V7S_RGN_WB 3
134 #define ARM_V7S_PRRR_TYPE_DEVICE 1
135 #define ARM_V7S_PRRR_TYPE_NORMAL 2
136 #define ARM_V7S_PRRR_TR(n, type) (((type) & 0x3) << ((n) * 2))
137 #define ARM_V7S_PRRR_DS0 BIT(16)
138 #define ARM_V7S_PRRR_DS1 BIT(17)
139 #define ARM_V7S_PRRR_NS0 BIT(18)
140 #define ARM_V7S_PRRR_NS1 BIT(19)
141 #define ARM_V7S_PRRR_NOS(n) BIT((n) + 24)
143 #define ARM_V7S_NMRR_IR(n, attr) (((attr) & 0x3) << ((n) * 2))
144 #define ARM_V7S_NMRR_OR(n, attr) (((attr) & 0x3) << ((n) * 2 + 16))
146 #define ARM_V7S_TTBR_S BIT(1)
147 #define ARM_V7S_TTBR_NOS BIT(5)
148 #define ARM_V7S_TTBR_ORGN_ATTR(attr) (((attr) & 0x3) << 3)
149 #define ARM_V7S_TTBR_IRGN_ATTR(attr) \
150 ((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))
152 #ifdef CONFIG_ZONE_DMA32
153 #define ARM_V7S_TABLE_GFP_DMA GFP_DMA32
154 #define ARM_V7S_TABLE_SLAB_FLAGS SLAB_CACHE_DMA32
155 #else
156 #define ARM_V7S_TABLE_GFP_DMA GFP_DMA
157 #define ARM_V7S_TABLE_SLAB_FLAGS SLAB_CACHE_DMA
158 #endif
160 typedef u32 arm_v7s_iopte;
162 static bool selftest_running;
164 struct arm_v7s_io_pgtable {
165 struct io_pgtable iop;
167 arm_v7s_iopte *pgd;
168 struct kmem_cache *l2_tables;
169 spinlock_t split_lock;
172 static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl);
174 static dma_addr_t __arm_v7s_dma_addr(void *pages)
176 return (dma_addr_t)virt_to_phys(pages);
179 static bool arm_v7s_is_mtk_enabled(struct io_pgtable_cfg *cfg)
181 return IS_ENABLED(CONFIG_PHYS_ADDR_T_64BIT) &&
182 (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_EXT);
185 static arm_v7s_iopte paddr_to_iopte(phys_addr_t paddr, int lvl,
186 struct io_pgtable_cfg *cfg)
188 arm_v7s_iopte pte = paddr & ARM_V7S_LVL_MASK(lvl);
190 if (!arm_v7s_is_mtk_enabled(cfg))
191 return pte;
193 if (paddr & BIT_ULL(32))
194 pte |= ARM_V7S_ATTR_MTK_PA_BIT32;
195 if (paddr & BIT_ULL(33))
196 pte |= ARM_V7S_ATTR_MTK_PA_BIT33;
197 return pte;
200 static phys_addr_t iopte_to_paddr(arm_v7s_iopte pte, int lvl,
201 struct io_pgtable_cfg *cfg)
203 arm_v7s_iopte mask;
204 phys_addr_t paddr;
206 if (ARM_V7S_PTE_IS_TABLE(pte, lvl))
207 mask = ARM_V7S_TABLE_MASK;
208 else if (arm_v7s_pte_is_cont(pte, lvl))
209 mask = ARM_V7S_LVL_MASK(lvl) * ARM_V7S_CONT_PAGES;
210 else
211 mask = ARM_V7S_LVL_MASK(lvl);
213 paddr = pte & mask;
214 if (!arm_v7s_is_mtk_enabled(cfg))
215 return paddr;
217 if (pte & ARM_V7S_ATTR_MTK_PA_BIT32)
218 paddr |= BIT_ULL(32);
219 if (pte & ARM_V7S_ATTR_MTK_PA_BIT33)
220 paddr |= BIT_ULL(33);
221 return paddr;
224 static arm_v7s_iopte *iopte_deref(arm_v7s_iopte pte, int lvl,
225 struct arm_v7s_io_pgtable *data)
227 return phys_to_virt(iopte_to_paddr(pte, lvl, &data->iop.cfg));
230 static void *__arm_v7s_alloc_table(int lvl, gfp_t gfp,
231 struct arm_v7s_io_pgtable *data)
233 struct io_pgtable_cfg *cfg = &data->iop.cfg;
234 struct device *dev = cfg->iommu_dev;
235 phys_addr_t phys;
236 dma_addr_t dma;
237 size_t size = ARM_V7S_TABLE_SIZE(lvl);
238 void *table = NULL;
240 if (lvl == 1)
241 table = (void *)__get_free_pages(
242 __GFP_ZERO | ARM_V7S_TABLE_GFP_DMA, get_order(size));
243 else if (lvl == 2)
244 table = kmem_cache_zalloc(data->l2_tables, gfp);
245 phys = virt_to_phys(table);
246 if (phys != (arm_v7s_iopte)phys) {
247 /* Doesn't fit in PTE */
248 dev_err(dev, "Page table does not fit in PTE: %pa", &phys);
249 goto out_free;
251 if (table && !cfg->coherent_walk) {
252 dma = dma_map_single(dev, table, size, DMA_TO_DEVICE);
253 if (dma_mapping_error(dev, dma))
254 goto out_free;
256 * We depend on the IOMMU being able to work with any physical
257 * address directly, so if the DMA layer suggests otherwise by
258 * translating or truncating them, that bodes very badly...
260 if (dma != phys)
261 goto out_unmap;
263 if (lvl == 2)
264 kmemleak_ignore(table);
265 return table;
267 out_unmap:
268 dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
269 dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
270 out_free:
271 if (lvl == 1)
272 free_pages((unsigned long)table, get_order(size));
273 else
274 kmem_cache_free(data->l2_tables, table);
275 return NULL;
278 static void __arm_v7s_free_table(void *table, int lvl,
279 struct arm_v7s_io_pgtable *data)
281 struct io_pgtable_cfg *cfg = &data->iop.cfg;
282 struct device *dev = cfg->iommu_dev;
283 size_t size = ARM_V7S_TABLE_SIZE(lvl);
285 if (!cfg->coherent_walk)
286 dma_unmap_single(dev, __arm_v7s_dma_addr(table), size,
287 DMA_TO_DEVICE);
288 if (lvl == 1)
289 free_pages((unsigned long)table, get_order(size));
290 else
291 kmem_cache_free(data->l2_tables, table);
294 static void __arm_v7s_pte_sync(arm_v7s_iopte *ptep, int num_entries,
295 struct io_pgtable_cfg *cfg)
297 if (cfg->coherent_walk)
298 return;
300 dma_sync_single_for_device(cfg->iommu_dev, __arm_v7s_dma_addr(ptep),
301 num_entries * sizeof(*ptep), DMA_TO_DEVICE);
303 static void __arm_v7s_set_pte(arm_v7s_iopte *ptep, arm_v7s_iopte pte,
304 int num_entries, struct io_pgtable_cfg *cfg)
306 int i;
308 for (i = 0; i < num_entries; i++)
309 ptep[i] = pte;
311 __arm_v7s_pte_sync(ptep, num_entries, cfg);
314 static arm_v7s_iopte arm_v7s_prot_to_pte(int prot, int lvl,
315 struct io_pgtable_cfg *cfg)
317 bool ap = !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS);
318 arm_v7s_iopte pte = ARM_V7S_ATTR_NG | ARM_V7S_ATTR_S;
320 if (!(prot & IOMMU_MMIO))
321 pte |= ARM_V7S_ATTR_TEX(1);
322 if (ap) {
323 pte |= ARM_V7S_PTE_AF;
324 if (!(prot & IOMMU_PRIV))
325 pte |= ARM_V7S_PTE_AP_UNPRIV;
326 if (!(prot & IOMMU_WRITE))
327 pte |= ARM_V7S_PTE_AP_RDONLY;
329 pte <<= ARM_V7S_ATTR_SHIFT(lvl);
331 if ((prot & IOMMU_NOEXEC) && ap)
332 pte |= ARM_V7S_ATTR_XN(lvl);
333 if (prot & IOMMU_MMIO)
334 pte |= ARM_V7S_ATTR_B;
335 else if (prot & IOMMU_CACHE)
336 pte |= ARM_V7S_ATTR_B | ARM_V7S_ATTR_C;
338 pte |= ARM_V7S_PTE_TYPE_PAGE;
339 if (lvl == 1 && (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS))
340 pte |= ARM_V7S_ATTR_NS_SECTION;
342 return pte;
345 static int arm_v7s_pte_to_prot(arm_v7s_iopte pte, int lvl)
347 int prot = IOMMU_READ;
348 arm_v7s_iopte attr = pte >> ARM_V7S_ATTR_SHIFT(lvl);
350 if (!(attr & ARM_V7S_PTE_AP_RDONLY))
351 prot |= IOMMU_WRITE;
352 if (!(attr & ARM_V7S_PTE_AP_UNPRIV))
353 prot |= IOMMU_PRIV;
354 if ((attr & (ARM_V7S_TEX_MASK << ARM_V7S_TEX_SHIFT)) == 0)
355 prot |= IOMMU_MMIO;
356 else if (pte & ARM_V7S_ATTR_C)
357 prot |= IOMMU_CACHE;
358 if (pte & ARM_V7S_ATTR_XN(lvl))
359 prot |= IOMMU_NOEXEC;
361 return prot;
364 static arm_v7s_iopte arm_v7s_pte_to_cont(arm_v7s_iopte pte, int lvl)
366 if (lvl == 1) {
367 pte |= ARM_V7S_CONT_SECTION;
368 } else if (lvl == 2) {
369 arm_v7s_iopte xn = pte & ARM_V7S_ATTR_XN(lvl);
370 arm_v7s_iopte tex = pte & ARM_V7S_CONT_PAGE_TEX_MASK;
372 pte ^= xn | tex | ARM_V7S_PTE_TYPE_PAGE;
373 pte |= (xn << ARM_V7S_CONT_PAGE_XN_SHIFT) |
374 (tex << ARM_V7S_CONT_PAGE_TEX_SHIFT) |
375 ARM_V7S_PTE_TYPE_CONT_PAGE;
377 return pte;
380 static arm_v7s_iopte arm_v7s_cont_to_pte(arm_v7s_iopte pte, int lvl)
382 if (lvl == 1) {
383 pte &= ~ARM_V7S_CONT_SECTION;
384 } else if (lvl == 2) {
385 arm_v7s_iopte xn = pte & BIT(ARM_V7S_CONT_PAGE_XN_SHIFT);
386 arm_v7s_iopte tex = pte & (ARM_V7S_CONT_PAGE_TEX_MASK <<
387 ARM_V7S_CONT_PAGE_TEX_SHIFT);
389 pte ^= xn | tex | ARM_V7S_PTE_TYPE_CONT_PAGE;
390 pte |= (xn >> ARM_V7S_CONT_PAGE_XN_SHIFT) |
391 (tex >> ARM_V7S_CONT_PAGE_TEX_SHIFT) |
392 ARM_V7S_PTE_TYPE_PAGE;
394 return pte;
397 static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl)
399 if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte, lvl))
400 return pte & ARM_V7S_CONT_SECTION;
401 else if (lvl == 2)
402 return !(pte & ARM_V7S_PTE_TYPE_PAGE);
403 return false;
406 static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *,
407 struct iommu_iotlb_gather *, unsigned long,
408 size_t, int, arm_v7s_iopte *);
410 static int arm_v7s_init_pte(struct arm_v7s_io_pgtable *data,
411 unsigned long iova, phys_addr_t paddr, int prot,
412 int lvl, int num_entries, arm_v7s_iopte *ptep)
414 struct io_pgtable_cfg *cfg = &data->iop.cfg;
415 arm_v7s_iopte pte;
416 int i;
418 for (i = 0; i < num_entries; i++)
419 if (ARM_V7S_PTE_IS_TABLE(ptep[i], lvl)) {
421 * We need to unmap and free the old table before
422 * overwriting it with a block entry.
424 arm_v7s_iopte *tblp;
425 size_t sz = ARM_V7S_BLOCK_SIZE(lvl);
427 tblp = ptep - ARM_V7S_LVL_IDX(iova, lvl);
428 if (WARN_ON(__arm_v7s_unmap(data, NULL, iova + i * sz,
429 sz, lvl, tblp) != sz))
430 return -EINVAL;
431 } else if (ptep[i]) {
432 /* We require an unmap first */
433 WARN_ON(!selftest_running);
434 return -EEXIST;
437 pte = arm_v7s_prot_to_pte(prot, lvl, cfg);
438 if (num_entries > 1)
439 pte = arm_v7s_pte_to_cont(pte, lvl);
441 pte |= paddr_to_iopte(paddr, lvl, cfg);
443 __arm_v7s_set_pte(ptep, pte, num_entries, cfg);
444 return 0;
447 static arm_v7s_iopte arm_v7s_install_table(arm_v7s_iopte *table,
448 arm_v7s_iopte *ptep,
449 arm_v7s_iopte curr,
450 struct io_pgtable_cfg *cfg)
452 arm_v7s_iopte old, new;
454 new = virt_to_phys(table) | ARM_V7S_PTE_TYPE_TABLE;
455 if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
456 new |= ARM_V7S_ATTR_NS_TABLE;
459 * Ensure the table itself is visible before its PTE can be.
460 * Whilst we could get away with cmpxchg64_release below, this
461 * doesn't have any ordering semantics when !CONFIG_SMP.
463 dma_wmb();
465 old = cmpxchg_relaxed(ptep, curr, new);
466 __arm_v7s_pte_sync(ptep, 1, cfg);
468 return old;
471 static int __arm_v7s_map(struct arm_v7s_io_pgtable *data, unsigned long iova,
472 phys_addr_t paddr, size_t size, int prot,
473 int lvl, arm_v7s_iopte *ptep, gfp_t gfp)
475 struct io_pgtable_cfg *cfg = &data->iop.cfg;
476 arm_v7s_iopte pte, *cptep;
477 int num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
479 /* Find our entry at the current level */
480 ptep += ARM_V7S_LVL_IDX(iova, lvl);
482 /* If we can install a leaf entry at this level, then do so */
483 if (num_entries)
484 return arm_v7s_init_pte(data, iova, paddr, prot,
485 lvl, num_entries, ptep);
487 /* We can't allocate tables at the final level */
488 if (WARN_ON(lvl == 2))
489 return -EINVAL;
491 /* Grab a pointer to the next level */
492 pte = READ_ONCE(*ptep);
493 if (!pte) {
494 cptep = __arm_v7s_alloc_table(lvl + 1, gfp, data);
495 if (!cptep)
496 return -ENOMEM;
498 pte = arm_v7s_install_table(cptep, ptep, 0, cfg);
499 if (pte)
500 __arm_v7s_free_table(cptep, lvl + 1, data);
501 } else {
502 /* We've no easy way of knowing if it's synced yet, so... */
503 __arm_v7s_pte_sync(ptep, 1, cfg);
506 if (ARM_V7S_PTE_IS_TABLE(pte, lvl)) {
507 cptep = iopte_deref(pte, lvl, data);
508 } else if (pte) {
509 /* We require an unmap first */
510 WARN_ON(!selftest_running);
511 return -EEXIST;
514 /* Rinse, repeat */
515 return __arm_v7s_map(data, iova, paddr, size, prot, lvl + 1, cptep, gfp);
518 static int arm_v7s_map(struct io_pgtable_ops *ops, unsigned long iova,
519 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
521 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
522 struct io_pgtable *iop = &data->iop;
523 int ret;
525 if (WARN_ON(iova >= (1ULL << data->iop.cfg.ias) ||
526 paddr >= (1ULL << data->iop.cfg.oas)))
527 return -ERANGE;
529 /* If no access, then nothing to do */
530 if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
531 return 0;
533 ret = __arm_v7s_map(data, iova, paddr, size, prot, 1, data->pgd, gfp);
535 * Synchronise all PTE updates for the new mapping before there's
536 * a chance for anything to kick off a table walk for the new iova.
538 if (iop->cfg.quirks & IO_PGTABLE_QUIRK_TLBI_ON_MAP) {
539 io_pgtable_tlb_flush_walk(iop, iova, size,
540 ARM_V7S_BLOCK_SIZE(2));
541 } else {
542 wmb();
545 return ret;
548 static void arm_v7s_free_pgtable(struct io_pgtable *iop)
550 struct arm_v7s_io_pgtable *data = io_pgtable_to_data(iop);
551 int i;
553 for (i = 0; i < ARM_V7S_PTES_PER_LVL(1); i++) {
554 arm_v7s_iopte pte = data->pgd[i];
556 if (ARM_V7S_PTE_IS_TABLE(pte, 1))
557 __arm_v7s_free_table(iopte_deref(pte, 1, data),
558 2, data);
560 __arm_v7s_free_table(data->pgd, 1, data);
561 kmem_cache_destroy(data->l2_tables);
562 kfree(data);
565 static arm_v7s_iopte arm_v7s_split_cont(struct arm_v7s_io_pgtable *data,
566 unsigned long iova, int idx, int lvl,
567 arm_v7s_iopte *ptep)
569 struct io_pgtable *iop = &data->iop;
570 arm_v7s_iopte pte;
571 size_t size = ARM_V7S_BLOCK_SIZE(lvl);
572 int i;
574 /* Check that we didn't lose a race to get the lock */
575 pte = *ptep;
576 if (!arm_v7s_pte_is_cont(pte, lvl))
577 return pte;
579 ptep -= idx & (ARM_V7S_CONT_PAGES - 1);
580 pte = arm_v7s_cont_to_pte(pte, lvl);
581 for (i = 0; i < ARM_V7S_CONT_PAGES; i++)
582 ptep[i] = pte + i * size;
584 __arm_v7s_pte_sync(ptep, ARM_V7S_CONT_PAGES, &iop->cfg);
586 size *= ARM_V7S_CONT_PAGES;
587 io_pgtable_tlb_flush_walk(iop, iova, size, size);
588 return pte;
591 static size_t arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable *data,
592 struct iommu_iotlb_gather *gather,
593 unsigned long iova, size_t size,
594 arm_v7s_iopte blk_pte,
595 arm_v7s_iopte *ptep)
597 struct io_pgtable_cfg *cfg = &data->iop.cfg;
598 arm_v7s_iopte pte, *tablep;
599 int i, unmap_idx, num_entries, num_ptes;
601 tablep = __arm_v7s_alloc_table(2, GFP_ATOMIC, data);
602 if (!tablep)
603 return 0; /* Bytes unmapped */
605 num_ptes = ARM_V7S_PTES_PER_LVL(2);
606 num_entries = size >> ARM_V7S_LVL_SHIFT(2);
607 unmap_idx = ARM_V7S_LVL_IDX(iova, 2);
609 pte = arm_v7s_prot_to_pte(arm_v7s_pte_to_prot(blk_pte, 1), 2, cfg);
610 if (num_entries > 1)
611 pte = arm_v7s_pte_to_cont(pte, 2);
613 for (i = 0; i < num_ptes; i += num_entries, pte += size) {
614 /* Unmap! */
615 if (i == unmap_idx)
616 continue;
618 __arm_v7s_set_pte(&tablep[i], pte, num_entries, cfg);
621 pte = arm_v7s_install_table(tablep, ptep, blk_pte, cfg);
622 if (pte != blk_pte) {
623 __arm_v7s_free_table(tablep, 2, data);
625 if (!ARM_V7S_PTE_IS_TABLE(pte, 1))
626 return 0;
628 tablep = iopte_deref(pte, 1, data);
629 return __arm_v7s_unmap(data, gather, iova, size, 2, tablep);
632 io_pgtable_tlb_add_page(&data->iop, gather, iova, size);
633 return size;
636 static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *data,
637 struct iommu_iotlb_gather *gather,
638 unsigned long iova, size_t size, int lvl,
639 arm_v7s_iopte *ptep)
641 arm_v7s_iopte pte[ARM_V7S_CONT_PAGES];
642 struct io_pgtable *iop = &data->iop;
643 int idx, i = 0, num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
645 /* Something went horribly wrong and we ran out of page table */
646 if (WARN_ON(lvl > 2))
647 return 0;
649 idx = ARM_V7S_LVL_IDX(iova, lvl);
650 ptep += idx;
651 do {
652 pte[i] = READ_ONCE(ptep[i]);
653 if (WARN_ON(!ARM_V7S_PTE_IS_VALID(pte[i])))
654 return 0;
655 } while (++i < num_entries);
658 * If we've hit a contiguous 'large page' entry at this level, it
659 * needs splitting first, unless we're unmapping the whole lot.
661 * For splitting, we can't rewrite 16 PTEs atomically, and since we
662 * can't necessarily assume TEX remap we don't have a software bit to
663 * mark live entries being split. In practice (i.e. DMA API code), we
664 * will never be splitting large pages anyway, so just wrap this edge
665 * case in a lock for the sake of correctness and be done with it.
667 if (num_entries <= 1 && arm_v7s_pte_is_cont(pte[0], lvl)) {
668 unsigned long flags;
670 spin_lock_irqsave(&data->split_lock, flags);
671 pte[0] = arm_v7s_split_cont(data, iova, idx, lvl, ptep);
672 spin_unlock_irqrestore(&data->split_lock, flags);
675 /* If the size matches this level, we're in the right place */
676 if (num_entries) {
677 size_t blk_size = ARM_V7S_BLOCK_SIZE(lvl);
679 __arm_v7s_set_pte(ptep, 0, num_entries, &iop->cfg);
681 for (i = 0; i < num_entries; i++) {
682 if (ARM_V7S_PTE_IS_TABLE(pte[i], lvl)) {
683 /* Also flush any partial walks */
684 io_pgtable_tlb_flush_walk(iop, iova, blk_size,
685 ARM_V7S_BLOCK_SIZE(lvl + 1));
686 ptep = iopte_deref(pte[i], lvl, data);
687 __arm_v7s_free_table(ptep, lvl + 1, data);
688 } else if (iop->cfg.quirks & IO_PGTABLE_QUIRK_NON_STRICT) {
690 * Order the PTE update against queueing the IOVA, to
691 * guarantee that a flush callback from a different CPU
692 * has observed it before the TLBIALL can be issued.
694 smp_wmb();
695 } else {
696 io_pgtable_tlb_add_page(iop, gather, iova, blk_size);
698 iova += blk_size;
700 return size;
701 } else if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte[0], lvl)) {
703 * Insert a table at the next level to map the old region,
704 * minus the part we want to unmap
706 return arm_v7s_split_blk_unmap(data, gather, iova, size, pte[0],
707 ptep);
710 /* Keep on walkin' */
711 ptep = iopte_deref(pte[0], lvl, data);
712 return __arm_v7s_unmap(data, gather, iova, size, lvl + 1, ptep);
715 static size_t arm_v7s_unmap(struct io_pgtable_ops *ops, unsigned long iova,
716 size_t size, struct iommu_iotlb_gather *gather)
718 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
720 if (WARN_ON(upper_32_bits(iova)))
721 return 0;
723 return __arm_v7s_unmap(data, gather, iova, size, 1, data->pgd);
726 static phys_addr_t arm_v7s_iova_to_phys(struct io_pgtable_ops *ops,
727 unsigned long iova)
729 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
730 arm_v7s_iopte *ptep = data->pgd, pte;
731 int lvl = 0;
732 u32 mask;
734 do {
735 ptep += ARM_V7S_LVL_IDX(iova, ++lvl);
736 pte = READ_ONCE(*ptep);
737 ptep = iopte_deref(pte, lvl, data);
738 } while (ARM_V7S_PTE_IS_TABLE(pte, lvl));
740 if (!ARM_V7S_PTE_IS_VALID(pte))
741 return 0;
743 mask = ARM_V7S_LVL_MASK(lvl);
744 if (arm_v7s_pte_is_cont(pte, lvl))
745 mask *= ARM_V7S_CONT_PAGES;
746 return iopte_to_paddr(pte, lvl, &data->iop.cfg) | (iova & ~mask);
749 static struct io_pgtable *arm_v7s_alloc_pgtable(struct io_pgtable_cfg *cfg,
750 void *cookie)
752 struct arm_v7s_io_pgtable *data;
754 if (cfg->ias > ARM_V7S_ADDR_BITS)
755 return NULL;
757 if (cfg->oas > (arm_v7s_is_mtk_enabled(cfg) ? 34 : ARM_V7S_ADDR_BITS))
758 return NULL;
760 if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS |
761 IO_PGTABLE_QUIRK_NO_PERMS |
762 IO_PGTABLE_QUIRK_TLBI_ON_MAP |
763 IO_PGTABLE_QUIRK_ARM_MTK_EXT |
764 IO_PGTABLE_QUIRK_NON_STRICT))
765 return NULL;
767 /* If ARM_MTK_4GB is enabled, the NO_PERMS is also expected. */
768 if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_EXT &&
769 !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS))
770 return NULL;
772 data = kmalloc(sizeof(*data), GFP_KERNEL);
773 if (!data)
774 return NULL;
776 spin_lock_init(&data->split_lock);
777 data->l2_tables = kmem_cache_create("io-pgtable_armv7s_l2",
778 ARM_V7S_TABLE_SIZE(2),
779 ARM_V7S_TABLE_SIZE(2),
780 ARM_V7S_TABLE_SLAB_FLAGS, NULL);
781 if (!data->l2_tables)
782 goto out_free_data;
784 data->iop.ops = (struct io_pgtable_ops) {
785 .map = arm_v7s_map,
786 .unmap = arm_v7s_unmap,
787 .iova_to_phys = arm_v7s_iova_to_phys,
790 /* We have to do this early for __arm_v7s_alloc_table to work... */
791 data->iop.cfg = *cfg;
794 * Unless the IOMMU driver indicates supersection support by
795 * having SZ_16M set in the initial bitmap, they won't be used.
797 cfg->pgsize_bitmap &= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
799 /* TCR: T0SZ=0, EAE=0 (if applicable) */
800 cfg->arm_v7s_cfg.tcr = 0;
803 * TEX remap: the indices used map to the closest equivalent types
804 * under the non-TEX-remap interpretation of those attribute bits,
805 * excepting various implementation-defined aspects of shareability.
807 cfg->arm_v7s_cfg.prrr = ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE) |
808 ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL) |
809 ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL) |
810 ARM_V7S_PRRR_DS0 | ARM_V7S_PRRR_DS1 |
811 ARM_V7S_PRRR_NS1 | ARM_V7S_PRRR_NOS(7);
812 cfg->arm_v7s_cfg.nmrr = ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA) |
813 ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA);
815 /* Looking good; allocate a pgd */
816 data->pgd = __arm_v7s_alloc_table(1, GFP_KERNEL, data);
817 if (!data->pgd)
818 goto out_free_data;
820 /* Ensure the empty pgd is visible before any actual TTBR write */
821 wmb();
823 /* TTBR */
824 cfg->arm_v7s_cfg.ttbr = virt_to_phys(data->pgd) | ARM_V7S_TTBR_S |
825 (cfg->coherent_walk ? (ARM_V7S_TTBR_NOS |
826 ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA) |
827 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA)) :
828 (ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_NC) |
829 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_NC)));
830 return &data->iop;
832 out_free_data:
833 kmem_cache_destroy(data->l2_tables);
834 kfree(data);
835 return NULL;
838 struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns = {
839 .alloc = arm_v7s_alloc_pgtable,
840 .free = arm_v7s_free_pgtable,
843 #ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST
845 static struct io_pgtable_cfg *cfg_cookie __initdata;
847 static void __init dummy_tlb_flush_all(void *cookie)
849 WARN_ON(cookie != cfg_cookie);
852 static void __init dummy_tlb_flush(unsigned long iova, size_t size,
853 size_t granule, void *cookie)
855 WARN_ON(cookie != cfg_cookie);
856 WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
859 static void __init dummy_tlb_add_page(struct iommu_iotlb_gather *gather,
860 unsigned long iova, size_t granule,
861 void *cookie)
863 dummy_tlb_flush(iova, granule, granule, cookie);
866 static const struct iommu_flush_ops dummy_tlb_ops __initconst = {
867 .tlb_flush_all = dummy_tlb_flush_all,
868 .tlb_flush_walk = dummy_tlb_flush,
869 .tlb_add_page = dummy_tlb_add_page,
872 #define __FAIL(ops) ({ \
873 WARN(1, "selftest: test failed\n"); \
874 selftest_running = false; \
875 -EFAULT; \
878 static int __init arm_v7s_do_selftests(void)
880 struct io_pgtable_ops *ops;
881 struct io_pgtable_cfg cfg = {
882 .tlb = &dummy_tlb_ops,
883 .oas = 32,
884 .ias = 32,
885 .coherent_walk = true,
886 .quirks = IO_PGTABLE_QUIRK_ARM_NS,
887 .pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
889 unsigned int iova, size, iova_start;
890 unsigned int i, loopnr = 0;
892 selftest_running = true;
894 cfg_cookie = &cfg;
896 ops = alloc_io_pgtable_ops(ARM_V7S, &cfg, &cfg);
897 if (!ops) {
898 pr_err("selftest: failed to allocate io pgtable ops\n");
899 return -EINVAL;
903 * Initial sanity checks.
904 * Empty page tables shouldn't provide any translations.
906 if (ops->iova_to_phys(ops, 42))
907 return __FAIL(ops);
909 if (ops->iova_to_phys(ops, SZ_1G + 42))
910 return __FAIL(ops);
912 if (ops->iova_to_phys(ops, SZ_2G + 42))
913 return __FAIL(ops);
916 * Distinct mappings of different granule sizes.
918 iova = 0;
919 for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
920 size = 1UL << i;
921 if (ops->map(ops, iova, iova, size, IOMMU_READ |
922 IOMMU_WRITE |
923 IOMMU_NOEXEC |
924 IOMMU_CACHE, GFP_KERNEL))
925 return __FAIL(ops);
927 /* Overlapping mappings */
928 if (!ops->map(ops, iova, iova + size, size,
929 IOMMU_READ | IOMMU_NOEXEC, GFP_KERNEL))
930 return __FAIL(ops);
932 if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
933 return __FAIL(ops);
935 iova += SZ_16M;
936 loopnr++;
939 /* Partial unmap */
940 i = 1;
941 size = 1UL << __ffs(cfg.pgsize_bitmap);
942 while (i < loopnr) {
943 iova_start = i * SZ_16M;
944 if (ops->unmap(ops, iova_start + size, size, NULL) != size)
945 return __FAIL(ops);
947 /* Remap of partial unmap */
948 if (ops->map(ops, iova_start + size, size, size, IOMMU_READ, GFP_KERNEL))
949 return __FAIL(ops);
951 if (ops->iova_to_phys(ops, iova_start + size + 42)
952 != (size + 42))
953 return __FAIL(ops);
954 i++;
957 /* Full unmap */
958 iova = 0;
959 for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
960 size = 1UL << i;
962 if (ops->unmap(ops, iova, size, NULL) != size)
963 return __FAIL(ops);
965 if (ops->iova_to_phys(ops, iova + 42))
966 return __FAIL(ops);
968 /* Remap full block */
969 if (ops->map(ops, iova, iova, size, IOMMU_WRITE, GFP_KERNEL))
970 return __FAIL(ops);
972 if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
973 return __FAIL(ops);
975 iova += SZ_16M;
978 free_io_pgtable_ops(ops);
980 selftest_running = false;
982 pr_info("self test ok\n");
983 return 0;
985 subsys_initcall(arm_v7s_do_selftests);
986 #endif