Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / media / dvb-frontends / stv0910.c
blob68d7c7b410712c49f8090670ed131830e41df516
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for the ST STV0910 DVB-S/S2 demodulator.
5 * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
6 * Marcus Metzler <mocm@metzlerbros.de>
7 * developed for Digital Devices GmbH
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * version 2 only, as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/firmware.h>
25 #include <linux/i2c.h>
26 #include <asm/div64.h>
28 #include <media/dvb_frontend.h>
29 #include "stv0910.h"
30 #include "stv0910_regs.h"
32 #define EXT_CLOCK 30000000
33 #define TUNING_DELAY 200
34 #define BER_SRC_S 0x20
35 #define BER_SRC_S2 0x20
37 static LIST_HEAD(stvlist);
39 enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO };
41 enum dvbs2_fectype { DVBS2_64K, DVBS2_16K };
43 enum dvbs2_mod_cod {
44 DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
45 DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4,
46 DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10,
47 DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6,
48 DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
49 DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
50 DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
51 DVBS2_32APSK_9_10
54 enum fe_stv0910_mod_cod {
55 FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
56 FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
57 FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
58 FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
59 FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
60 FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
61 FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
62 FE_32APSK_910
65 enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
67 static inline u32 muldiv32(u32 a, u32 b, u32 c)
69 u64 tmp64;
71 tmp64 = (u64)a * (u64)b;
72 do_div(tmp64, c);
74 return (u32)tmp64;
77 struct stv_base {
78 struct list_head stvlist;
80 u8 adr;
81 struct i2c_adapter *i2c;
82 struct mutex i2c_lock; /* shared I2C access protect */
83 struct mutex reg_lock; /* shared register write protect */
84 int count;
86 u32 extclk;
87 u32 mclk;
90 struct stv {
91 struct stv_base *base;
92 struct dvb_frontend fe;
93 int nr;
94 u16 regoff;
95 u8 i2crpt;
96 u8 tscfgh;
97 u8 tsgeneral;
98 u8 tsspeed;
99 u8 single;
100 unsigned long tune_time;
102 s32 search_range;
103 u32 started;
104 u32 demod_lock_time;
105 enum receive_mode receive_mode;
106 u32 demod_timeout;
107 u32 fec_timeout;
108 u32 first_time_lock;
109 u8 demod_bits;
110 u32 symbol_rate;
112 u8 last_viterbi_rate;
113 enum fe_code_rate puncture_rate;
114 enum fe_stv0910_mod_cod mod_cod;
115 enum dvbs2_fectype fectype;
116 u32 pilots;
117 enum fe_stv0910_roll_off feroll_off;
119 int is_standard_broadcast;
120 int is_vcm;
122 u32 cur_scrambling_code;
124 u32 last_bernumerator;
125 u32 last_berdenominator;
126 u8 berscale;
128 u8 vth[6];
131 struct sinit_table {
132 u16 address;
133 u8 data;
136 struct slookup {
137 s16 value;
138 u32 reg_value;
141 static int write_reg(struct stv *state, u16 reg, u8 val)
143 struct i2c_adapter *adap = state->base->i2c;
144 u8 data[3] = {reg >> 8, reg & 0xff, val};
145 struct i2c_msg msg = {.addr = state->base->adr, .flags = 0,
146 .buf = data, .len = 3};
148 if (i2c_transfer(adap, &msg, 1) != 1) {
149 dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n",
150 state->base->adr, reg, val);
151 return -EIO;
153 return 0;
156 static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
157 u16 reg, u8 *val, int count)
159 u8 msg[2] = {reg >> 8, reg & 0xff};
160 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
161 .buf = msg, .len = 2},
162 {.addr = adr, .flags = I2C_M_RD,
163 .buf = val, .len = count } };
165 if (i2c_transfer(adapter, msgs, 2) != 2) {
166 dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n",
167 adr, reg);
168 return -EIO;
170 return 0;
173 static int read_reg(struct stv *state, u16 reg, u8 *val)
175 return i2c_read_regs16(state->base->i2c, state->base->adr,
176 reg, val, 1);
179 static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
181 return i2c_read_regs16(state->base->i2c, state->base->adr,
182 reg, val, len);
185 static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val)
187 int status;
188 u8 tmp;
190 mutex_lock(&state->base->reg_lock);
191 status = read_reg(state, reg, &tmp);
192 if (!status)
193 status = write_reg(state, reg, (tmp & ~mask) | (val & mask));
194 mutex_unlock(&state->base->reg_lock);
195 return status;
198 static int write_field(struct stv *state, u32 field, u8 val)
200 int status;
201 u8 shift, mask, old, new;
203 status = read_reg(state, field >> 16, &old);
204 if (status)
205 return status;
206 mask = field & 0xff;
207 shift = (field >> 12) & 0xf;
208 new = ((val << shift) & mask) | (old & ~mask);
209 if (new == old)
210 return 0;
211 return write_reg(state, field >> 16, new);
214 #define SET_FIELD(_reg, _val) \
215 write_field(state, state->nr ? FSTV0910_P2_##_reg : \
216 FSTV0910_P1_##_reg, _val)
218 #define SET_REG(_reg, _val) \
219 write_reg(state, state->nr ? RSTV0910_P2_##_reg : \
220 RSTV0910_P1_##_reg, _val)
222 #define GET_REG(_reg, _val) \
223 read_reg(state, state->nr ? RSTV0910_P2_##_reg : \
224 RSTV0910_P1_##_reg, _val)
226 static const struct slookup s1_sn_lookup[] = {
227 { 0, 9242 }, /* C/N= 0dB */
228 { 5, 9105 }, /* C/N= 0.5dB */
229 { 10, 8950 }, /* C/N= 1.0dB */
230 { 15, 8780 }, /* C/N= 1.5dB */
231 { 20, 8566 }, /* C/N= 2.0dB */
232 { 25, 8366 }, /* C/N= 2.5dB */
233 { 30, 8146 }, /* C/N= 3.0dB */
234 { 35, 7908 }, /* C/N= 3.5dB */
235 { 40, 7666 }, /* C/N= 4.0dB */
236 { 45, 7405 }, /* C/N= 4.5dB */
237 { 50, 7136 }, /* C/N= 5.0dB */
238 { 55, 6861 }, /* C/N= 5.5dB */
239 { 60, 6576 }, /* C/N= 6.0dB */
240 { 65, 6330 }, /* C/N= 6.5dB */
241 { 70, 6048 }, /* C/N= 7.0dB */
242 { 75, 5768 }, /* C/N= 7.5dB */
243 { 80, 5492 }, /* C/N= 8.0dB */
244 { 85, 5224 }, /* C/N= 8.5dB */
245 { 90, 4959 }, /* C/N= 9.0dB */
246 { 95, 4709 }, /* C/N= 9.5dB */
247 { 100, 4467 }, /* C/N=10.0dB */
248 { 105, 4236 }, /* C/N=10.5dB */
249 { 110, 4013 }, /* C/N=11.0dB */
250 { 115, 3800 }, /* C/N=11.5dB */
251 { 120, 3598 }, /* C/N=12.0dB */
252 { 125, 3406 }, /* C/N=12.5dB */
253 { 130, 3225 }, /* C/N=13.0dB */
254 { 135, 3052 }, /* C/N=13.5dB */
255 { 140, 2889 }, /* C/N=14.0dB */
256 { 145, 2733 }, /* C/N=14.5dB */
257 { 150, 2587 }, /* C/N=15.0dB */
258 { 160, 2318 }, /* C/N=16.0dB */
259 { 170, 2077 }, /* C/N=17.0dB */
260 { 180, 1862 }, /* C/N=18.0dB */
261 { 190, 1670 }, /* C/N=19.0dB */
262 { 200, 1499 }, /* C/N=20.0dB */
263 { 210, 1347 }, /* C/N=21.0dB */
264 { 220, 1213 }, /* C/N=22.0dB */
265 { 230, 1095 }, /* C/N=23.0dB */
266 { 240, 992 }, /* C/N=24.0dB */
267 { 250, 900 }, /* C/N=25.0dB */
268 { 260, 826 }, /* C/N=26.0dB */
269 { 270, 758 }, /* C/N=27.0dB */
270 { 280, 702 }, /* C/N=28.0dB */
271 { 290, 653 }, /* C/N=29.0dB */
272 { 300, 613 }, /* C/N=30.0dB */
273 { 310, 579 }, /* C/N=31.0dB */
274 { 320, 550 }, /* C/N=32.0dB */
275 { 330, 526 }, /* C/N=33.0dB */
276 { 350, 490 }, /* C/N=33.0dB */
277 { 400, 445 }, /* C/N=40.0dB */
278 { 450, 430 }, /* C/N=45.0dB */
279 { 500, 426 }, /* C/N=50.0dB */
280 { 510, 425 } /* C/N=51.0dB */
283 static const struct slookup s2_sn_lookup[] = {
284 { -30, 13950 }, /* C/N=-2.5dB */
285 { -25, 13580 }, /* C/N=-2.5dB */
286 { -20, 13150 }, /* C/N=-2.0dB */
287 { -15, 12760 }, /* C/N=-1.5dB */
288 { -10, 12345 }, /* C/N=-1.0dB */
289 { -5, 11900 }, /* C/N=-0.5dB */
290 { 0, 11520 }, /* C/N= 0dB */
291 { 5, 11080 }, /* C/N= 0.5dB */
292 { 10, 10630 }, /* C/N= 1.0dB */
293 { 15, 10210 }, /* C/N= 1.5dB */
294 { 20, 9790 }, /* C/N= 2.0dB */
295 { 25, 9390 }, /* C/N= 2.5dB */
296 { 30, 8970 }, /* C/N= 3.0dB */
297 { 35, 8575 }, /* C/N= 3.5dB */
298 { 40, 8180 }, /* C/N= 4.0dB */
299 { 45, 7800 }, /* C/N= 4.5dB */
300 { 50, 7430 }, /* C/N= 5.0dB */
301 { 55, 7080 }, /* C/N= 5.5dB */
302 { 60, 6720 }, /* C/N= 6.0dB */
303 { 65, 6320 }, /* C/N= 6.5dB */
304 { 70, 6060 }, /* C/N= 7.0dB */
305 { 75, 5760 }, /* C/N= 7.5dB */
306 { 80, 5480 }, /* C/N= 8.0dB */
307 { 85, 5200 }, /* C/N= 8.5dB */
308 { 90, 4930 }, /* C/N= 9.0dB */
309 { 95, 4680 }, /* C/N= 9.5dB */
310 { 100, 4425 }, /* C/N=10.0dB */
311 { 105, 4210 }, /* C/N=10.5dB */
312 { 110, 3980 }, /* C/N=11.0dB */
313 { 115, 3765 }, /* C/N=11.5dB */
314 { 120, 3570 }, /* C/N=12.0dB */
315 { 125, 3315 }, /* C/N=12.5dB */
316 { 130, 3140 }, /* C/N=13.0dB */
317 { 135, 2980 }, /* C/N=13.5dB */
318 { 140, 2820 }, /* C/N=14.0dB */
319 { 145, 2670 }, /* C/N=14.5dB */
320 { 150, 2535 }, /* C/N=15.0dB */
321 { 160, 2270 }, /* C/N=16.0dB */
322 { 170, 2035 }, /* C/N=17.0dB */
323 { 180, 1825 }, /* C/N=18.0dB */
324 { 190, 1650 }, /* C/N=19.0dB */
325 { 200, 1485 }, /* C/N=20.0dB */
326 { 210, 1340 }, /* C/N=21.0dB */
327 { 220, 1212 }, /* C/N=22.0dB */
328 { 230, 1100 }, /* C/N=23.0dB */
329 { 240, 1000 }, /* C/N=24.0dB */
330 { 250, 910 }, /* C/N=25.0dB */
331 { 260, 836 }, /* C/N=26.0dB */
332 { 270, 772 }, /* C/N=27.0dB */
333 { 280, 718 }, /* C/N=28.0dB */
334 { 290, 671 }, /* C/N=29.0dB */
335 { 300, 635 }, /* C/N=30.0dB */
336 { 310, 602 }, /* C/N=31.0dB */
337 { 320, 575 }, /* C/N=32.0dB */
338 { 330, 550 }, /* C/N=33.0dB */
339 { 350, 517 }, /* C/N=35.0dB */
340 { 400, 480 }, /* C/N=40.0dB */
341 { 450, 466 }, /* C/N=45.0dB */
342 { 500, 464 }, /* C/N=50.0dB */
343 { 510, 463 }, /* C/N=51.0dB */
346 static const struct slookup padc_lookup[] = {
347 { 0, 118000 }, /* PADC= +0dBm */
348 { -100, 93600 }, /* PADC= -1dBm */
349 { -200, 74500 }, /* PADC= -2dBm */
350 { -300, 59100 }, /* PADC= -3dBm */
351 { -400, 47000 }, /* PADC= -4dBm */
352 { -500, 37300 }, /* PADC= -5dBm */
353 { -600, 29650 }, /* PADC= -6dBm */
354 { -700, 23520 }, /* PADC= -7dBm */
355 { -900, 14850 }, /* PADC= -9dBm */
356 { -1100, 9380 }, /* PADC=-11dBm */
357 { -1300, 5910 }, /* PADC=-13dBm */
358 { -1500, 3730 }, /* PADC=-15dBm */
359 { -1700, 2354 }, /* PADC=-17dBm */
360 { -1900, 1485 }, /* PADC=-19dBm */
361 { -2000, 1179 }, /* PADC=-20dBm */
362 { -2100, 1000 }, /* PADC=-21dBm */
365 /*********************************************************************
366 * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
367 *********************************************************************/
368 static const u8 s2car_loop[] = {
370 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
371 * 20MPon 20MPoff 30MPon 30MPoff
374 /* FE_QPSK_14 */
375 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x2A, 0x1C, 0x3A, 0x3B,
376 /* FE_QPSK_13 */
377 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x3A, 0x0C, 0x3A, 0x2B,
378 /* FE_QPSK_25 */
379 0x1C, 0x3C, 0x1B, 0x3C, 0x3A, 0x1C, 0x3A, 0x3B, 0x3A, 0x2B,
380 /* FE_QPSK_12 */
381 0x0C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
382 /* FE_QPSK_35 */
383 0x1C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
384 /* FE_QPSK_23 */
385 0x2C, 0x2C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
386 /* FE_QPSK_34 */
387 0x3C, 0x2C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
388 /* FE_QPSK_45 */
389 0x0D, 0x3C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
390 /* FE_QPSK_56 */
391 0x1D, 0x3C, 0x0C, 0x2C, 0x2B, 0x1C, 0x1B, 0x3B, 0x0B, 0x1B,
392 /* FE_QPSK_89 */
393 0x3D, 0x0D, 0x0C, 0x2C, 0x2B, 0x0C, 0x2B, 0x2B, 0x0B, 0x0B,
394 /* FE_QPSK_910 */
395 0x1E, 0x0D, 0x1C, 0x2C, 0x3B, 0x0C, 0x2B, 0x2B, 0x1B, 0x0B,
396 /* FE_8PSK_35 */
397 0x28, 0x09, 0x28, 0x09, 0x28, 0x09, 0x28, 0x08, 0x28, 0x27,
398 /* FE_8PSK_23 */
399 0x19, 0x29, 0x19, 0x29, 0x19, 0x29, 0x38, 0x19, 0x28, 0x09,
400 /* FE_8PSK_34 */
401 0x1A, 0x0B, 0x1A, 0x3A, 0x0A, 0x2A, 0x39, 0x2A, 0x39, 0x1A,
402 /* FE_8PSK_56 */
403 0x2B, 0x2B, 0x1B, 0x1B, 0x0B, 0x1B, 0x1A, 0x0B, 0x1A, 0x1A,
404 /* FE_8PSK_89 */
405 0x0C, 0x0C, 0x3B, 0x3B, 0x1B, 0x1B, 0x2A, 0x0B, 0x2A, 0x2A,
406 /* FE_8PSK_910 */
407 0x0C, 0x1C, 0x0C, 0x3B, 0x2B, 0x1B, 0x3A, 0x0B, 0x2A, 0x2A,
409 /**********************************************************************
410 * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
411 **********************************************************************/
414 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
415 * 20MPoff 30MPon 30MPoff
418 /* FE_16APSK_23 */
419 0x0A, 0x0A, 0x0A, 0x0A, 0x1A, 0x0A, 0x39, 0x0A, 0x29, 0x0A,
420 /* FE_16APSK_34 */
421 0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0A, 0x2A, 0x0A, 0x1A, 0x0A,
422 /* FE_16APSK_45 */
423 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
424 /* FE_16APSK_56 */
425 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
426 /* FE_16APSK_89 */
427 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
428 /* FE_16APSK_910 */
429 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
430 /* FE_32APSK_34 */
431 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
432 /* FE_32APSK_45 */
433 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
434 /* FE_32APSK_56 */
435 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
436 /* FE_32APSK_89 */
437 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
438 /* FE_32APSK_910 */
439 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
442 static u8 get_optim_cloop(struct stv *state,
443 enum fe_stv0910_mod_cod mod_cod, u32 pilots)
445 int i = 0;
447 if (mod_cod >= FE_32APSK_910)
448 i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
449 else if (mod_cod >= FE_QPSK_14)
450 i = ((int)mod_cod - (int)FE_QPSK_14) * 10;
452 if (state->symbol_rate <= 3000000)
453 i += 0;
454 else if (state->symbol_rate <= 7000000)
455 i += 2;
456 else if (state->symbol_rate <= 15000000)
457 i += 4;
458 else if (state->symbol_rate <= 25000000)
459 i += 6;
460 else
461 i += 8;
463 if (!pilots)
464 i += 1;
466 return s2car_loop[i];
469 static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate)
471 int status = 0;
472 u8 symb_freq0;
473 u8 symb_freq1;
474 u8 symb_freq2;
475 u8 symb_freq3;
476 u8 tim_offs0;
477 u8 tim_offs1;
478 u8 tim_offs2;
479 u32 symbol_rate;
480 s32 timing_offset;
482 *p_symbol_rate = 0;
483 if (!state->started)
484 return status;
486 read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3);
487 read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2);
488 read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1);
489 read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0);
490 read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2);
491 read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
492 read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
494 symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) |
495 ((u32)symb_freq1 << 8) | (u32)symb_freq0;
496 timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) |
497 (u32)tim_offs0;
499 if ((timing_offset & (1 << 23)) != 0)
500 timing_offset |= 0xFF000000; /* Sign extent */
502 symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32);
503 timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29);
505 *p_symbol_rate = symbol_rate + timing_offset;
507 return 0;
510 static int get_signal_parameters(struct stv *state)
512 u8 tmp;
514 if (!state->started)
515 return -EINVAL;
517 if (state->receive_mode == RCVMODE_DVBS2) {
518 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
519 state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
520 state->pilots = (tmp & 0x01) != 0;
521 state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1);
523 } else if (state->receive_mode == RCVMODE_DVBS) {
524 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
525 state->puncture_rate = FEC_NONE;
526 switch (tmp & 0x1F) {
527 case 0x0d:
528 state->puncture_rate = FEC_1_2;
529 break;
530 case 0x12:
531 state->puncture_rate = FEC_2_3;
532 break;
533 case 0x15:
534 state->puncture_rate = FEC_3_4;
535 break;
536 case 0x18:
537 state->puncture_rate = FEC_5_6;
538 break;
539 case 0x1a:
540 state->puncture_rate = FEC_7_8;
541 break;
543 state->is_vcm = 0;
544 state->is_standard_broadcast = 1;
545 state->feroll_off = FE_SAT_35;
547 return 0;
550 static int tracking_optimization(struct stv *state)
552 u8 tmp;
554 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
555 tmp &= ~0xC0;
557 switch (state->receive_mode) {
558 case RCVMODE_DVBS:
559 tmp |= 0x40;
560 break;
561 case RCVMODE_DVBS2:
562 tmp |= 0x80;
563 break;
564 default:
565 tmp |= 0xC0;
566 break;
568 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
570 if (state->receive_mode == RCVMODE_DVBS2) {
571 /* Disable Reed-Solomon */
572 write_shared_reg(state,
573 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01,
574 0x03);
576 if (state->fectype == DVBS2_64K) {
577 u8 aclc = get_optim_cloop(state, state->mod_cod,
578 state->pilots);
580 if (state->mod_cod <= FE_QPSK_910) {
581 write_reg(state, RSTV0910_P2_ACLC2S2Q +
582 state->regoff, aclc);
583 } else if (state->mod_cod <= FE_8PSK_910) {
584 write_reg(state, RSTV0910_P2_ACLC2S2Q +
585 state->regoff, 0x2a);
586 write_reg(state, RSTV0910_P2_ACLC2S28 +
587 state->regoff, aclc);
588 } else if (state->mod_cod <= FE_16APSK_910) {
589 write_reg(state, RSTV0910_P2_ACLC2S2Q +
590 state->regoff, 0x2a);
591 write_reg(state, RSTV0910_P2_ACLC2S216A +
592 state->regoff, aclc);
593 } else if (state->mod_cod <= FE_32APSK_910) {
594 write_reg(state, RSTV0910_P2_ACLC2S2Q +
595 state->regoff, 0x2a);
596 write_reg(state, RSTV0910_P2_ACLC2S232A +
597 state->regoff, aclc);
601 return 0;
604 static s32 table_lookup(const struct slookup *table,
605 int table_size, u32 reg_value)
607 s32 value;
608 int imin = 0;
609 int imax = table_size - 1;
610 int i;
611 s32 reg_diff;
613 /* Assumes Table[0].RegValue > Table[imax].RegValue */
614 if (reg_value >= table[0].reg_value) {
615 value = table[0].value;
616 } else if (reg_value <= table[imax].reg_value) {
617 value = table[imax].value;
618 } else {
619 while ((imax - imin) > 1) {
620 i = (imax + imin) / 2;
621 if ((table[imin].reg_value >= reg_value) &&
622 (reg_value >= table[i].reg_value))
623 imax = i;
624 else
625 imin = i;
628 reg_diff = table[imax].reg_value - table[imin].reg_value;
629 value = table[imin].value;
630 if (reg_diff != 0)
631 value += ((s32)(reg_value - table[imin].reg_value) *
632 (s32)(table[imax].value
633 - table[imin].value))
634 / (reg_diff);
637 return value;
640 static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise)
642 u8 data0;
643 u8 data1;
644 u16 data;
645 int n_lookup;
646 const struct slookup *lookup;
648 *signal_to_noise = 0;
650 if (!state->started)
651 return -EINVAL;
653 if (state->receive_mode == RCVMODE_DVBS2) {
654 read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff,
655 &data1);
656 read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff,
657 &data0);
658 n_lookup = ARRAY_SIZE(s2_sn_lookup);
659 lookup = s2_sn_lookup;
660 } else {
661 read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff,
662 &data1);
663 read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff,
664 &data0);
665 n_lookup = ARRAY_SIZE(s1_sn_lookup);
666 lookup = s1_sn_lookup;
668 data = (((u16)data1) << 8) | (u16)data0;
669 *signal_to_noise = table_lookup(lookup, n_lookup, data);
670 return 0;
673 static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
674 u32 *berdenominator)
676 u8 regs[3];
678 int status = read_regs(state,
679 RSTV0910_P2_ERRCNT12 + state->regoff,
680 regs, 3);
682 if (status)
683 return -EINVAL;
685 if ((regs[0] & 0x80) == 0) {
686 state->last_berdenominator = 1ULL << ((state->berscale * 2) +
687 10 + 3);
688 state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) |
689 ((u32)regs[1] << 8) | regs[2];
690 if (state->last_bernumerator < 256 && state->berscale < 6) {
691 state->berscale += 1;
692 status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
693 state->regoff,
694 0x20 | state->berscale);
695 } else if (state->last_bernumerator > 1024 &&
696 state->berscale > 2) {
697 state->berscale -= 1;
698 status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
699 state->regoff, 0x20 |
700 state->berscale);
703 *bernumerator = state->last_bernumerator;
704 *berdenominator = state->last_berdenominator;
705 return 0;
708 static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype)
710 static const u32 nbch[][2] = {
711 { 0, 0}, /* DUMMY_PLF */
712 {16200, 3240}, /* QPSK_1_4, */
713 {21600, 5400}, /* QPSK_1_3, */
714 {25920, 6480}, /* QPSK_2_5, */
715 {32400, 7200}, /* QPSK_1_2, */
716 {38880, 9720}, /* QPSK_3_5, */
717 {43200, 10800}, /* QPSK_2_3, */
718 {48600, 11880}, /* QPSK_3_4, */
719 {51840, 12600}, /* QPSK_4_5, */
720 {54000, 13320}, /* QPSK_5_6, */
721 {57600, 14400}, /* QPSK_8_9, */
722 {58320, 16000}, /* QPSK_9_10, */
723 {43200, 9720}, /* 8PSK_3_5, */
724 {48600, 10800}, /* 8PSK_2_3, */
725 {51840, 11880}, /* 8PSK_3_4, */
726 {54000, 13320}, /* 8PSK_5_6, */
727 {57600, 14400}, /* 8PSK_8_9, */
728 {58320, 16000}, /* 8PSK_9_10, */
729 {43200, 10800}, /* 16APSK_2_3, */
730 {48600, 11880}, /* 16APSK_3_4, */
731 {51840, 12600}, /* 16APSK_4_5, */
732 {54000, 13320}, /* 16APSK_5_6, */
733 {57600, 14400}, /* 16APSK_8_9, */
734 {58320, 16000}, /* 16APSK_9_10 */
735 {48600, 11880}, /* 32APSK_3_4, */
736 {51840, 12600}, /* 32APSK_4_5, */
737 {54000, 13320}, /* 32APSK_5_6, */
738 {57600, 14400}, /* 32APSK_8_9, */
739 {58320, 16000}, /* 32APSK_9_10 */
742 if (mod_cod >= DVBS2_QPSK_1_4 &&
743 mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K)
744 return nbch[mod_cod][fectype];
745 return 64800;
748 static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator,
749 u32 *berdenominator)
751 u8 regs[3];
753 int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
754 regs, 3);
756 if (status)
757 return -EINVAL;
759 if ((regs[0] & 0x80) == 0) {
760 state->last_berdenominator =
761 dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod,
762 state->fectype) <<
763 (state->berscale * 2);
764 state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) |
765 ((u32)regs[1] << 8) | regs[2];
766 if (state->last_bernumerator < 256 && state->berscale < 6) {
767 state->berscale += 1;
768 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
769 0x20 | state->berscale);
770 } else if (state->last_bernumerator > 1024 &&
771 state->berscale > 2) {
772 state->berscale -= 1;
773 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
774 0x20 | state->berscale);
777 *bernumerator = state->last_bernumerator;
778 *berdenominator = state->last_berdenominator;
779 return status;
782 static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
783 u32 *berdenominator)
785 *bernumerator = 0;
786 *berdenominator = 1;
788 switch (state->receive_mode) {
789 case RCVMODE_DVBS:
790 return get_bit_error_rate_s(state,
791 bernumerator, berdenominator);
792 case RCVMODE_DVBS2:
793 return get_bit_error_rate_s2(state,
794 bernumerator, berdenominator);
795 default:
796 break;
798 return 0;
801 static int set_mclock(struct stv *state, u32 master_clock)
803 u32 idf = 1;
804 u32 odf = 4;
805 u32 quartz = state->base->extclk / 1000000;
806 u32 fphi = master_clock / 1000000;
807 u32 ndiv = (fphi * odf * idf) / quartz;
808 u32 cp = 7;
809 u32 fvco;
811 if (ndiv >= 7 && ndiv <= 71)
812 cp = 7;
813 else if (ndiv >= 72 && ndiv <= 79)
814 cp = 8;
815 else if (ndiv >= 80 && ndiv <= 87)
816 cp = 9;
817 else if (ndiv >= 88 && ndiv <= 95)
818 cp = 10;
819 else if (ndiv >= 96 && ndiv <= 103)
820 cp = 11;
821 else if (ndiv >= 104 && ndiv <= 111)
822 cp = 12;
823 else if (ndiv >= 112 && ndiv <= 119)
824 cp = 13;
825 else if (ndiv >= 120 && ndiv <= 127)
826 cp = 14;
827 else if (ndiv >= 128 && ndiv <= 135)
828 cp = 15;
829 else if (ndiv >= 136 && ndiv <= 143)
830 cp = 16;
831 else if (ndiv >= 144 && ndiv <= 151)
832 cp = 17;
833 else if (ndiv >= 152 && ndiv <= 159)
834 cp = 18;
835 else if (ndiv >= 160 && ndiv <= 167)
836 cp = 19;
837 else if (ndiv >= 168 && ndiv <= 175)
838 cp = 20;
839 else if (ndiv >= 176 && ndiv <= 183)
840 cp = 21;
841 else if (ndiv >= 184 && ndiv <= 191)
842 cp = 22;
843 else if (ndiv >= 192 && ndiv <= 199)
844 cp = 23;
845 else if (ndiv >= 200 && ndiv <= 207)
846 cp = 24;
847 else if (ndiv >= 208 && ndiv <= 215)
848 cp = 25;
849 else if (ndiv >= 216 && ndiv <= 223)
850 cp = 26;
851 else if (ndiv >= 224 && ndiv <= 225)
852 cp = 27;
854 write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
855 write_reg(state, RSTV0910_NCOARSE2, odf);
856 write_reg(state, RSTV0910_NCOARSE1, ndiv);
858 fvco = (quartz * 2 * ndiv) / idf;
859 state->base->mclk = fvco / (2 * odf) * 1000000;
861 return 0;
864 static int stop(struct stv *state)
866 if (state->started) {
867 u8 tmp;
869 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
870 state->tscfgh | 0x01);
871 read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
872 tmp &= ~0x01; /* release reset DVBS2 packet delin */
873 write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
874 /* Blind optim*/
875 write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
876 /* Stop the demod */
877 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
878 state->started = 0;
880 state->receive_mode = RCVMODE_NONE;
881 return 0;
884 static void set_pls(struct stv *state, u32 pls_code)
886 if (pls_code == state->cur_scrambling_code)
887 return;
889 /* PLROOT2 bit 2 = gold code */
890 write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff,
891 pls_code & 0xff);
892 write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff,
893 (pls_code >> 8) & 0xff);
894 write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff,
895 0x04 | ((pls_code >> 16) & 0x03));
896 state->cur_scrambling_code = pls_code;
899 static void set_isi(struct stv *state, u32 isi)
901 if (isi == NO_STREAM_ID_FILTER)
902 return;
903 if (isi == 0x80000000) {
904 SET_FIELD(FORCE_CONTINUOUS, 1);
905 SET_FIELD(TSOUT_NOSYNC, 1);
906 } else {
907 SET_FIELD(FILTER_EN, 1);
908 write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff,
909 isi & 0xff);
910 write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff);
912 SET_FIELD(ALGOSWRST, 1);
913 SET_FIELD(ALGOSWRST, 0);
916 static void set_stream_modes(struct stv *state,
917 struct dtv_frontend_properties *p)
919 set_isi(state, p->stream_id);
920 set_pls(state, p->scrambling_sequence_index);
923 static int init_search_param(struct stv *state,
924 struct dtv_frontend_properties *p)
926 SET_FIELD(FORCE_CONTINUOUS, 0);
927 SET_FIELD(FRAME_MODE, 0);
928 SET_FIELD(FILTER_EN, 0);
929 SET_FIELD(TSOUT_NOSYNC, 0);
930 SET_FIELD(TSFIFO_EMBINDVB, 0);
931 SET_FIELD(TSDEL_SYNCBYTE, 0);
932 SET_REG(UPLCCST0, 0xe0);
933 SET_FIELD(TSINS_TOKEN, 0);
934 SET_FIELD(HYSTERESIS_THRESHOLD, 0);
935 SET_FIELD(ISIOBS_MODE, 1);
937 set_stream_modes(state, p);
938 return 0;
941 static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate)
943 u8 val;
945 switch (rate) {
946 case FEC_1_2:
947 val = 0x01;
948 break;
949 case FEC_2_3:
950 val = 0x02;
951 break;
952 case FEC_3_4:
953 val = 0x04;
954 break;
955 case FEC_5_6:
956 val = 0x08;
957 break;
958 case FEC_7_8:
959 val = 0x20;
960 break;
961 case FEC_NONE:
962 default:
963 val = 0x2f;
964 break;
967 return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, val);
970 static int set_vth_default(struct stv *state)
972 state->vth[0] = 0xd7;
973 state->vth[1] = 0x85;
974 state->vth[2] = 0x58;
975 state->vth[3] = 0x3a;
976 state->vth[4] = 0x34;
977 state->vth[5] = 0x28;
978 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
979 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
980 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
981 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
982 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
983 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
984 return 0;
987 static int set_vth(struct stv *state)
989 static const struct slookup vthlookup_table[] = {
990 {250, 8780}, /* C/N= 1.5dB */
991 {100, 7405}, /* C/N= 4.5dB */
992 {40, 6330}, /* C/N= 6.5dB */
993 {12, 5224}, /* C/N= 8.5dB */
994 {5, 4236} /* C/N=10.5dB */
997 int i;
998 u8 tmp[2];
999 int status = read_regs(state,
1000 RSTV0910_P2_NNOSDATAT1 + state->regoff,
1001 tmp, 2);
1002 u16 reg_value = (tmp[0] << 8) | tmp[1];
1003 s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table),
1004 reg_value);
1006 for (i = 0; i < 6; i += 1)
1007 if (state->vth[i] > vth)
1008 state->vth[i] = vth;
1010 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
1011 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
1012 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
1013 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
1014 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
1015 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
1016 return status;
1019 static int start(struct stv *state, struct dtv_frontend_properties *p)
1021 s32 freq;
1022 u8 reg_dmdcfgmd;
1023 u16 symb;
1025 if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
1026 return -EINVAL;
1028 state->receive_mode = RCVMODE_NONE;
1029 state->demod_lock_time = 0;
1031 /* Demod Stop */
1032 if (state->started)
1033 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
1035 init_search_param(state, p);
1037 if (p->symbol_rate <= 1000000) { /* SR <=1Msps */
1038 state->demod_timeout = 3000;
1039 state->fec_timeout = 2000;
1040 } else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */
1041 state->demod_timeout = 2500;
1042 state->fec_timeout = 1300;
1043 } else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */
1044 state->demod_timeout = 1000;
1045 state->fec_timeout = 650;
1046 } else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */
1047 state->demod_timeout = 700;
1048 state->fec_timeout = 350;
1049 } else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */
1050 state->demod_timeout = 400;
1051 state->fec_timeout = 200;
1052 } else { /* SR >=20Msps */
1053 state->demod_timeout = 300;
1054 state->fec_timeout = 200;
1057 /* Set the Init Symbol rate */
1058 symb = muldiv32(p->symbol_rate, 65536, state->base->mclk);
1059 write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
1060 ((symb >> 8) & 0x7F));
1061 write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
1063 state->demod_bits |= 0x80;
1064 write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits);
1066 /* FE_STV0910_SetSearchStandard */
1067 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &reg_dmdcfgmd);
1068 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
1069 reg_dmdcfgmd |= 0xC0);
1071 write_shared_reg(state,
1072 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00);
1074 /* Disable DSS */
1075 write_reg(state, RSTV0910_P2_FECM + state->regoff, 0x00);
1076 write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
1078 enable_puncture_rate(state, FEC_NONE);
1080 /* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */
1081 write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
1082 write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
1083 write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
1084 write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
1085 write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
1086 write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79);
1088 write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29);
1089 write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09);
1090 write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84);
1091 write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84);
1094 * Reset CAR3, bug DVBS2->DVBS1 lock
1095 * Note: The bit is only pulsed -> no lock on shared register needed
1097 write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08);
1098 write_reg(state, RSTV0910_TSTRES0, 0);
1100 set_vth_default(state);
1101 /* Reset demod */
1102 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1104 write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
1106 if (p->symbol_rate <= 5000000)
1107 freq = (state->search_range / 2000) + 80;
1108 else
1109 freq = (state->search_range / 2000) + 1600;
1110 freq = (freq << 16) / (state->base->mclk / 1000);
1112 write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
1113 (freq >> 8) & 0xff);
1114 write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff));
1115 /* CFR Low Setting */
1116 freq = -freq;
1117 write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
1118 (freq >> 8) & 0xff);
1119 write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff));
1121 /* init the demod frequency offset to 0 */
1122 write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
1123 write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
1125 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1126 /* Trigger acq */
1127 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
1129 state->demod_lock_time += TUNING_DELAY;
1130 state->started = 1;
1132 return 0;
1135 static int init_diseqc(struct stv *state)
1137 u16 offs = state->nr ? 0x40 : 0; /* Address offset */
1138 u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
1140 /* Disable receiver */
1141 write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
1142 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
1143 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
1144 write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq);
1145 return 0;
1148 static int probe(struct stv *state)
1150 u8 id;
1152 state->receive_mode = RCVMODE_NONE;
1153 state->started = 0;
1155 if (read_reg(state, RSTV0910_MID, &id) < 0)
1156 return -ENODEV;
1158 if (id != 0x51)
1159 return -EINVAL;
1161 /* Configure the I2C repeater to off */
1162 write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
1163 /* Configure the I2C repeater to off */
1164 write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
1165 /* Set the I2C to oversampling ratio */
1166 write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */
1168 write_reg(state, RSTV0910_OUTCFG, 0x00); /* OUTCFG */
1169 write_reg(state, RSTV0910_PADCFG, 0x05); /* RFAGC Pads Dev = 05 */
1170 write_reg(state, RSTV0910_SYNTCTRL, 0x02); /* SYNTCTRL */
1171 write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */
1172 write_reg(state, RSTV0910_CFGEXT, 0x02); /* CFGEXT */
1174 if (state->single)
1175 write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */
1176 else
1177 write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
1179 write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */
1180 write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */
1182 write_reg(state, RSTV0910_P1_CAR3CFG, 0x02);
1183 write_reg(state, RSTV0910_P2_CAR3CFG, 0x02);
1184 write_reg(state, RSTV0910_P1_DMDCFG4, 0x04);
1185 write_reg(state, RSTV0910_P2_DMDCFG4, 0x04);
1187 write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
1188 write_reg(state, RSTV0910_TSTRES0, 0x00);
1190 write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00);
1191 write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00);
1193 write_reg(state, RSTV0910_P1_TMGCFG2, 0x80);
1194 write_reg(state, RSTV0910_P2_TMGCFG2, 0x80);
1196 set_mclock(state, 135000000);
1198 /* TS output */
1199 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1200 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1201 write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */
1202 write_reg(state, RSTV0910_P1_TSCFGL, 0x20);
1204 write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed);
1206 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1207 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1208 write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */
1209 write_reg(state, RSTV0910_P2_TSCFGL, 0x20);
1211 write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed);
1213 /* Reset stream merger */
1214 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1215 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1216 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1217 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1219 write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
1220 write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
1222 write_reg(state, RSTV0910_P1_TSINSDELM, 0x17);
1223 write_reg(state, RSTV0910_P1_TSINSDELL, 0xff);
1225 write_reg(state, RSTV0910_P2_TSINSDELM, 0x17);
1226 write_reg(state, RSTV0910_P2_TSINSDELL, 0xff);
1228 init_diseqc(state);
1229 return 0;
1232 static int gate_ctrl(struct dvb_frontend *fe, int enable)
1234 struct stv *state = fe->demodulator_priv;
1235 u8 i2crpt = state->i2crpt & ~0x86;
1238 * mutex_lock note: Concurrent I2C gate bus accesses must be
1239 * prevented (STV0910 = dual demod on a single IC with a single I2C
1240 * gate/bus, and two tuners attached), similar to most (if not all)
1241 * other I2C host interfaces/buses.
1243 * enable=1 (open I2C gate) will grab the lock
1244 * enable=0 (close I2C gate) releases the lock
1247 if (enable) {
1248 mutex_lock(&state->base->i2c_lock);
1249 i2crpt |= 0x80;
1250 } else {
1251 i2crpt |= 0x02;
1254 if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
1255 RSTV0910_P1_I2CRPT, i2crpt) < 0) {
1256 /* don't hold the I2C bus lock on failure */
1257 if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1258 mutex_unlock(&state->base->i2c_lock);
1259 dev_err(&state->base->i2c->dev,
1260 "%s() write_reg failure (enable=%d)\n",
1261 __func__, enable);
1262 return -EIO;
1265 state->i2crpt = i2crpt;
1267 if (!enable)
1268 if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1269 mutex_unlock(&state->base->i2c_lock);
1270 return 0;
1273 static void release(struct dvb_frontend *fe)
1275 struct stv *state = fe->demodulator_priv;
1277 state->base->count--;
1278 if (state->base->count == 0) {
1279 list_del(&state->base->stvlist);
1280 kfree(state->base);
1282 kfree(state);
1285 static int set_parameters(struct dvb_frontend *fe)
1287 int stat = 0;
1288 struct stv *state = fe->demodulator_priv;
1289 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1291 stop(state);
1292 if (fe->ops.tuner_ops.set_params)
1293 fe->ops.tuner_ops.set_params(fe);
1294 state->symbol_rate = p->symbol_rate;
1295 stat = start(state, p);
1296 return stat;
1299 static int manage_matype_info(struct stv *state)
1301 if (!state->started)
1302 return -EINVAL;
1303 if (state->receive_mode == RCVMODE_DVBS2) {
1304 u8 bbheader[2];
1306 read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
1307 bbheader, 2);
1308 state->feroll_off =
1309 (enum fe_stv0910_roll_off)(bbheader[0] & 0x03);
1310 state->is_vcm = (bbheader[0] & 0x10) == 0;
1311 state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
1312 } else if (state->receive_mode == RCVMODE_DVBS) {
1313 state->is_vcm = 0;
1314 state->is_standard_broadcast = 1;
1315 state->feroll_off = FE_SAT_35;
1317 return 0;
1320 static int read_snr(struct dvb_frontend *fe)
1322 struct stv *state = fe->demodulator_priv;
1323 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1324 s32 snrval;
1326 if (!get_signal_to_noise(state, &snrval)) {
1327 p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1328 p->cnr.stat[0].svalue = 100 * snrval; /* fix scale */
1329 } else {
1330 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1333 return 0;
1336 static int read_ber(struct dvb_frontend *fe)
1338 struct stv *state = fe->demodulator_priv;
1339 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1340 u32 n, d;
1342 get_bit_error_rate(state, &n, &d);
1344 p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1345 p->pre_bit_error.stat[0].uvalue = n;
1346 p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1347 p->pre_bit_count.stat[0].uvalue = d;
1349 return 0;
1352 static void read_signal_strength(struct dvb_frontend *fe)
1354 struct stv *state = fe->demodulator_priv;
1355 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1356 u8 reg[2];
1357 u16 agc;
1358 s32 padc, power = 0;
1359 int i;
1361 read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
1363 agc = (((u32)reg[0]) << 8) | reg[1];
1365 for (i = 0; i < 5; i += 1) {
1366 read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
1367 power += (u32)reg[0] * (u32)reg[0]
1368 + (u32)reg[1] * (u32)reg[1];
1369 usleep_range(3000, 4000);
1371 power /= 5;
1373 padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352;
1375 p->strength.stat[0].scale = FE_SCALE_DECIBEL;
1376 p->strength.stat[0].svalue = (padc - agc);
1379 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
1381 struct stv *state = fe->demodulator_priv;
1382 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1383 u8 dmd_state = 0;
1384 u8 dstatus = 0;
1385 enum receive_mode cur_receive_mode = RCVMODE_NONE;
1386 u32 feclock = 0;
1388 *status = 0;
1390 read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state);
1392 if (dmd_state & 0x40) {
1393 read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus);
1394 if (dstatus & 0x08)
1395 cur_receive_mode = (dmd_state & 0x20) ?
1396 RCVMODE_DVBS : RCVMODE_DVBS2;
1398 if (cur_receive_mode == RCVMODE_NONE) {
1399 set_vth(state);
1401 /* reset signal statistics */
1402 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1403 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1404 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1405 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1407 return 0;
1410 *status |= (FE_HAS_SIGNAL
1411 | FE_HAS_CARRIER
1412 | FE_HAS_VITERBI
1413 | FE_HAS_SYNC);
1415 if (state->receive_mode == RCVMODE_NONE) {
1416 state->receive_mode = cur_receive_mode;
1417 state->demod_lock_time = jiffies;
1418 state->first_time_lock = 1;
1420 get_signal_parameters(state);
1421 tracking_optimization(state);
1423 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1424 state->tscfgh);
1425 usleep_range(3000, 4000);
1426 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1427 state->tscfgh | 0x01);
1428 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1429 state->tscfgh);
1431 if (dmd_state & 0x40) {
1432 if (state->receive_mode == RCVMODE_DVBS2) {
1433 u8 pdelstatus;
1435 read_reg(state,
1436 RSTV0910_P2_PDELSTATUS1 + state->regoff,
1437 &pdelstatus);
1438 feclock = (pdelstatus & 0x02) != 0;
1439 } else {
1440 u8 vstatus;
1442 read_reg(state,
1443 RSTV0910_P2_VSTATUSVIT + state->regoff,
1444 &vstatus);
1445 feclock = (vstatus & 0x08) != 0;
1449 if (feclock) {
1450 *status |= FE_HAS_LOCK;
1452 if (state->first_time_lock) {
1453 u8 tmp;
1455 state->first_time_lock = 0;
1457 manage_matype_info(state);
1459 if (state->receive_mode == RCVMODE_DVBS2) {
1461 * FSTV0910_P2_MANUALSX_ROLLOFF,
1462 * FSTV0910_P2_MANUALS2_ROLLOFF = 0
1464 state->demod_bits &= ~0x84;
1465 write_reg(state,
1466 RSTV0910_P2_DEMOD + state->regoff,
1467 state->demod_bits);
1468 read_reg(state,
1469 RSTV0910_P2_PDELCTRL2 + state->regoff,
1470 &tmp);
1471 /* reset DVBS2 packet delinator error counter */
1472 tmp |= 0x40;
1473 write_reg(state,
1474 RSTV0910_P2_PDELCTRL2 + state->regoff,
1475 tmp);
1476 /* reset DVBS2 packet delinator error counter */
1477 tmp &= ~0x40;
1478 write_reg(state,
1479 RSTV0910_P2_PDELCTRL2 + state->regoff,
1480 tmp);
1482 state->berscale = 2;
1483 state->last_bernumerator = 0;
1484 state->last_berdenominator = 1;
1485 /* force to PRE BCH Rate */
1486 write_reg(state,
1487 RSTV0910_P2_ERRCTRL1 + state->regoff,
1488 BER_SRC_S2 | state->berscale);
1489 } else {
1490 state->berscale = 2;
1491 state->last_bernumerator = 0;
1492 state->last_berdenominator = 1;
1493 /* force to PRE RS Rate */
1494 write_reg(state,
1495 RSTV0910_P2_ERRCTRL1 + state->regoff,
1496 BER_SRC_S | state->berscale);
1498 /* Reset the Total packet counter */
1499 write_reg(state,
1500 RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
1502 * Reset the packet Error counter2 (and Set it to
1503 * infinite error count mode)
1505 write_reg(state,
1506 RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
1508 set_vth_default(state);
1509 if (state->receive_mode == RCVMODE_DVBS)
1510 enable_puncture_rate(state,
1511 state->puncture_rate);
1514 /* Use highest signaled ModCod for quality */
1515 if (state->is_vcm) {
1516 u8 tmp;
1517 enum fe_stv0910_mod_cod mod_cod;
1519 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff,
1520 &tmp);
1521 mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
1523 if (mod_cod > state->mod_cod)
1524 state->mod_cod = mod_cod;
1528 /* read signal statistics */
1530 /* read signal strength */
1531 read_signal_strength(fe);
1533 /* read carrier/noise on FE_HAS_CARRIER */
1534 if (*status & FE_HAS_CARRIER)
1535 read_snr(fe);
1536 else
1537 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1539 /* read ber */
1540 if (*status & FE_HAS_VITERBI) {
1541 read_ber(fe);
1542 } else {
1543 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1544 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1547 return 0;
1550 static int get_frontend(struct dvb_frontend *fe,
1551 struct dtv_frontend_properties *p)
1553 struct stv *state = fe->demodulator_priv;
1554 u8 tmp;
1555 u32 symbolrate;
1557 if (state->receive_mode == RCVMODE_DVBS2) {
1558 u32 mc;
1559 const enum fe_modulation modcod2mod[0x20] = {
1560 QPSK, QPSK, QPSK, QPSK,
1561 QPSK, QPSK, QPSK, QPSK,
1562 QPSK, QPSK, QPSK, QPSK,
1563 PSK_8, PSK_8, PSK_8, PSK_8,
1564 PSK_8, PSK_8, APSK_16, APSK_16,
1565 APSK_16, APSK_16, APSK_16, APSK_16,
1566 APSK_32, APSK_32, APSK_32, APSK_32,
1567 APSK_32,
1569 const enum fe_code_rate modcod2fec[0x20] = {
1570 FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5,
1571 FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
1572 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1573 FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
1574 FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
1575 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1576 FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
1577 FEC_9_10
1579 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
1580 mc = ((tmp & 0x7c) >> 2);
1581 p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF;
1582 p->modulation = modcod2mod[mc];
1583 p->fec_inner = modcod2fec[mc];
1584 } else if (state->receive_mode == RCVMODE_DVBS) {
1585 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
1586 switch (tmp & 0x1F) {
1587 case 0x0d:
1588 p->fec_inner = FEC_1_2;
1589 break;
1590 case 0x12:
1591 p->fec_inner = FEC_2_3;
1592 break;
1593 case 0x15:
1594 p->fec_inner = FEC_3_4;
1595 break;
1596 case 0x18:
1597 p->fec_inner = FEC_5_6;
1598 break;
1599 case 0x1a:
1600 p->fec_inner = FEC_7_8;
1601 break;
1602 default:
1603 p->fec_inner = FEC_NONE;
1604 break;
1606 p->rolloff = ROLLOFF_35;
1609 if (state->receive_mode != RCVMODE_NONE) {
1610 get_cur_symbol_rate(state, &symbolrate);
1611 p->symbol_rate = symbolrate;
1613 return 0;
1616 static int tune(struct dvb_frontend *fe, bool re_tune,
1617 unsigned int mode_flags,
1618 unsigned int *delay, enum fe_status *status)
1620 struct stv *state = fe->demodulator_priv;
1621 int r;
1623 if (re_tune) {
1624 r = set_parameters(fe);
1625 if (r)
1626 return r;
1627 state->tune_time = jiffies;
1630 r = read_status(fe, status);
1631 if (r)
1632 return r;
1634 if (*status & FE_HAS_LOCK)
1635 return 0;
1636 *delay = HZ;
1638 return 0;
1641 static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
1643 return DVBFE_ALGO_HW;
1646 static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1648 struct stv *state = fe->demodulator_priv;
1649 u16 offs = state->nr ? 0x40 : 0;
1651 switch (tone) {
1652 case SEC_TONE_ON:
1653 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
1654 case SEC_TONE_OFF:
1655 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
1656 default:
1657 break;
1659 return -EINVAL;
1662 static int wait_dis(struct stv *state, u8 flag, u8 val)
1664 int i;
1665 u8 stat;
1666 u16 offs = state->nr ? 0x40 : 0;
1668 for (i = 0; i < 10; i++) {
1669 read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
1670 if ((stat & flag) == val)
1671 return 0;
1672 usleep_range(10000, 11000);
1674 return -ETIMEDOUT;
1677 static int send_master_cmd(struct dvb_frontend *fe,
1678 struct dvb_diseqc_master_cmd *cmd)
1680 struct stv *state = fe->demodulator_priv;
1681 int i;
1683 SET_FIELD(DISEQC_MODE, 2);
1684 SET_FIELD(DIS_PRECHARGE, 1);
1685 for (i = 0; i < cmd->msg_len; i++) {
1686 wait_dis(state, 0x40, 0x00);
1687 SET_REG(DISTXFIFO, cmd->msg[i]);
1689 SET_FIELD(DIS_PRECHARGE, 0);
1690 wait_dis(state, 0x20, 0x20);
1691 return 0;
1694 static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst)
1696 struct stv *state = fe->demodulator_priv;
1697 u8 value;
1699 if (burst == SEC_MINI_A) {
1700 SET_FIELD(DISEQC_MODE, 3);
1701 value = 0x00;
1702 } else {
1703 SET_FIELD(DISEQC_MODE, 2);
1704 value = 0xFF;
1707 SET_FIELD(DIS_PRECHARGE, 1);
1708 wait_dis(state, 0x40, 0x00);
1709 SET_REG(DISTXFIFO, value);
1710 SET_FIELD(DIS_PRECHARGE, 0);
1711 wait_dis(state, 0x20, 0x20);
1713 return 0;
1716 static int sleep(struct dvb_frontend *fe)
1718 struct stv *state = fe->demodulator_priv;
1720 stop(state);
1721 return 0;
1724 static const struct dvb_frontend_ops stv0910_ops = {
1725 .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
1726 .info = {
1727 .name = "ST STV0910",
1728 .frequency_min_hz = 950 * MHz,
1729 .frequency_max_hz = 2150 * MHz,
1730 .symbol_rate_min = 100000,
1731 .symbol_rate_max = 70000000,
1732 .caps = FE_CAN_INVERSION_AUTO |
1733 FE_CAN_FEC_AUTO |
1734 FE_CAN_QPSK |
1735 FE_CAN_2G_MODULATION |
1736 FE_CAN_MULTISTREAM
1738 .sleep = sleep,
1739 .release = release,
1740 .i2c_gate_ctrl = gate_ctrl,
1741 .set_frontend = set_parameters,
1742 .get_frontend_algo = get_algo,
1743 .get_frontend = get_frontend,
1744 .tune = tune,
1745 .read_status = read_status,
1746 .set_tone = set_tone,
1748 .diseqc_send_master_cmd = send_master_cmd,
1749 .diseqc_send_burst = send_burst,
1752 static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
1754 struct stv_base *p;
1756 list_for_each_entry(p, &stvlist, stvlist)
1757 if (p->i2c == i2c && p->adr == adr)
1758 return p;
1759 return NULL;
1762 static void stv0910_init_stats(struct stv *state)
1764 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1766 p->strength.len = 1;
1767 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1768 p->cnr.len = 1;
1769 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1770 p->pre_bit_error.len = 1;
1771 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1772 p->pre_bit_count.len = 1;
1773 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1776 struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
1777 struct stv0910_cfg *cfg,
1778 int nr)
1780 struct stv *state;
1781 struct stv_base *base;
1783 state = kzalloc(sizeof(*state), GFP_KERNEL);
1784 if (!state)
1785 return NULL;
1787 state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
1788 state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00;
1789 state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
1790 /* use safe tsspeed value if unspecified through stv0910_cfg */
1791 state->tsspeed = (cfg->tsspeed ? cfg->tsspeed : 0x28);
1792 state->nr = nr;
1793 state->regoff = state->nr ? 0 : 0x200;
1794 state->search_range = 16000000;
1795 state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */
1796 state->receive_mode = RCVMODE_NONE;
1797 state->cur_scrambling_code = (~0U);
1798 state->single = cfg->single ? 1 : 0;
1800 base = match_base(i2c, cfg->adr);
1801 if (base) {
1802 base->count++;
1803 state->base = base;
1804 } else {
1805 base = kzalloc(sizeof(*base), GFP_KERNEL);
1806 if (!base)
1807 goto fail;
1808 base->i2c = i2c;
1809 base->adr = cfg->adr;
1810 base->count = 1;
1811 base->extclk = cfg->clk ? cfg->clk : 30000000;
1813 mutex_init(&base->i2c_lock);
1814 mutex_init(&base->reg_lock);
1815 state->base = base;
1816 if (probe(state) < 0) {
1817 dev_info(&i2c->dev, "No demod found at adr %02X on %s\n",
1818 cfg->adr, dev_name(&i2c->dev));
1819 kfree(base);
1820 goto fail;
1822 list_add(&base->stvlist, &stvlist);
1824 state->fe.ops = stv0910_ops;
1825 state->fe.demodulator_priv = state;
1826 state->nr = nr;
1828 dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n",
1829 state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
1831 stv0910_init_stats(state);
1833 return &state->fe;
1835 fail:
1836 kfree(state);
1837 return NULL;
1839 EXPORT_SYMBOL_GPL(stv0910_attach);
1841 MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver");
1842 MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel");
1843 MODULE_LICENSE("GPL v2");