1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * device driver for Conexant 2388x based TV cards
6 * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
8 * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@kernel.org>
10 * - video_ioctl2 conversion
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/kmod.h>
22 #include <linux/sound.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/videodev2.h>
27 #include <linux/mutex.h>
29 #include <media/v4l2-common.h>
30 #include <media/v4l2-ioctl.h>
32 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
33 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
34 MODULE_LICENSE("GPL v2");
36 /* ------------------------------------------------------------------ */
38 unsigned int cx88_core_debug
;
39 module_param_named(core_debug
, cx88_core_debug
, int, 0644);
40 MODULE_PARM_DESC(core_debug
, "enable debug messages [core]");
42 static unsigned int nicam
;
43 module_param(nicam
, int, 0644);
44 MODULE_PARM_DESC(nicam
, "tv audio is nicam");
46 static unsigned int nocomb
;
47 module_param(nocomb
, int, 0644);
48 MODULE_PARM_DESC(nocomb
, "disable comb filter");
50 #define dprintk0(fmt, arg...) \
51 printk(KERN_DEBUG pr_fmt("%s: core:" fmt), \
54 #define dprintk(level, fmt, arg...) do { \
55 if (cx88_core_debug >= level) \
56 printk(KERN_DEBUG pr_fmt("%s: core:" fmt), \
60 static unsigned int cx88_devcount
;
61 static LIST_HEAD(cx88_devlist
);
62 static DEFINE_MUTEX(devlist
);
64 #define NO_SYNC_LINE (-1U)
67 * @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
68 * generated _after_ lpi lines are transferred.
70 static __le32
*cx88_risc_field(__le32
*rp
, struct scatterlist
*sglist
,
71 unsigned int offset
, u32 sync_line
,
72 unsigned int bpl
, unsigned int padding
,
73 unsigned int lines
, unsigned int lpi
, bool jump
)
75 struct scatterlist
*sg
;
76 unsigned int line
, todo
, sol
;
79 (*rp
++) = cpu_to_le32(RISC_JUMP
);
83 /* sync instruction */
84 if (sync_line
!= NO_SYNC_LINE
)
85 *(rp
++) = cpu_to_le32(RISC_RESYNC
| sync_line
);
89 for (line
= 0; line
< lines
; line
++) {
90 while (offset
&& offset
>= sg_dma_len(sg
)) {
91 offset
-= sg_dma_len(sg
);
94 if (lpi
&& line
> 0 && !(line
% lpi
))
95 sol
= RISC_SOL
| RISC_IRQ1
| RISC_CNT_INC
;
98 if (bpl
<= sg_dma_len(sg
) - offset
) {
99 /* fits into current chunk */
100 *(rp
++) = cpu_to_le32(RISC_WRITE
| sol
|
102 *(rp
++) = cpu_to_le32(sg_dma_address(sg
) + offset
);
105 /* scanline needs to be split */
107 *(rp
++) = cpu_to_le32(RISC_WRITE
| sol
|
108 (sg_dma_len(sg
) - offset
));
109 *(rp
++) = cpu_to_le32(sg_dma_address(sg
) + offset
);
110 todo
-= (sg_dma_len(sg
) - offset
);
113 while (todo
> sg_dma_len(sg
)) {
114 *(rp
++) = cpu_to_le32(RISC_WRITE
|
116 *(rp
++) = cpu_to_le32(sg_dma_address(sg
));
117 todo
-= sg_dma_len(sg
);
120 *(rp
++) = cpu_to_le32(RISC_WRITE
| RISC_EOL
| todo
);
121 *(rp
++) = cpu_to_le32(sg_dma_address(sg
));
130 int cx88_risc_buffer(struct pci_dev
*pci
, struct cx88_riscmem
*risc
,
131 struct scatterlist
*sglist
,
132 unsigned int top_offset
, unsigned int bottom_offset
,
133 unsigned int bpl
, unsigned int padding
, unsigned int lines
)
135 u32 instructions
, fields
;
139 if (top_offset
!= UNSET
)
141 if (bottom_offset
!= UNSET
)
145 * estimate risc mem: worst case is one write per page border +
146 * one write per scan line + syncs + jump (all 2 dwords). Padding
147 * can cause next bpl to start close to a page border. First DMA
148 * region may be smaller than PAGE_SIZE
150 instructions
= fields
* (1 + ((bpl
+ padding
) * lines
) /
153 risc
->size
= instructions
* 8;
155 risc
->cpu
= pci_zalloc_consistent(pci
, risc
->size
, &risc
->dma
);
159 /* write risc instructions */
161 if (top_offset
!= UNSET
)
162 rp
= cx88_risc_field(rp
, sglist
, top_offset
, 0,
163 bpl
, padding
, lines
, 0, true);
164 if (bottom_offset
!= UNSET
)
165 rp
= cx88_risc_field(rp
, sglist
, bottom_offset
, 0x200,
166 bpl
, padding
, lines
, 0,
167 top_offset
== UNSET
);
169 /* save pointer to jmp instruction address */
171 WARN_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof(*risc
->cpu
) > risc
->size
);
174 EXPORT_SYMBOL(cx88_risc_buffer
);
176 int cx88_risc_databuffer(struct pci_dev
*pci
, struct cx88_riscmem
*risc
,
177 struct scatterlist
*sglist
, unsigned int bpl
,
178 unsigned int lines
, unsigned int lpi
)
184 * estimate risc mem: worst case is one write per page border +
185 * one write per scan line + syncs + jump (all 2 dwords). Here
186 * there is no padding and no sync. First DMA region may be smaller
189 instructions
= 1 + (bpl
* lines
) / PAGE_SIZE
+ lines
;
191 risc
->size
= instructions
* 8;
193 risc
->cpu
= pci_zalloc_consistent(pci
, risc
->size
, &risc
->dma
);
197 /* write risc instructions */
199 rp
= cx88_risc_field(rp
, sglist
, 0, NO_SYNC_LINE
, bpl
, 0,
202 /* save pointer to jmp instruction address */
204 WARN_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof(*risc
->cpu
) > risc
->size
);
207 EXPORT_SYMBOL(cx88_risc_databuffer
);
210 * our SRAM memory layout
214 * we are going to put all thr risc programs into host memory, so we
215 * can use the whole SDRAM for the DMA fifos. To simplify things, we
216 * use a static memory layout. That surely will waste memory in case
217 * we don't use all DMA channels at the same time (which will be the
218 * case most of the time). But that still gives us enough FIFO space
219 * to be able to deal with insane long pci latencies ...
221 * FIFO space allocations:
222 * channel 21 (y video) - 10.0k
223 * channel 22 (u video) - 2.0k
224 * channel 23 (v video) - 2.0k
225 * channel 24 (vbi) - 4.0k
226 * channels 25+26 (audio) - 4.0k
227 * channel 28 (mpeg) - 4.0k
228 * channel 27 (audio rds)- 3.0k
231 * Every channel has 160 bytes control data (64 bytes instruction
232 * queue and 6 CDT entries), which is close to 2k total.
235 * 0x0000 - 0x03ff CMDs / reserved
236 * 0x0400 - 0x0bff instruction queues + CDs
240 const struct sram_channel cx88_sram_channels
[] = {
242 .name
= "video y / packed",
243 .cmds_start
= 0x180040,
244 .ctrl_start
= 0x180400,
245 .cdt
= 0x180400 + 64,
246 .fifo_start
= 0x180c00,
247 .fifo_size
= 0x002800,
248 .ptr1_reg
= MO_DMA21_PTR1
,
249 .ptr2_reg
= MO_DMA21_PTR2
,
250 .cnt1_reg
= MO_DMA21_CNT1
,
251 .cnt2_reg
= MO_DMA21_CNT2
,
255 .cmds_start
= 0x180080,
256 .ctrl_start
= 0x1804a0,
257 .cdt
= 0x1804a0 + 64,
258 .fifo_start
= 0x183400,
259 .fifo_size
= 0x000800,
260 .ptr1_reg
= MO_DMA22_PTR1
,
261 .ptr2_reg
= MO_DMA22_PTR2
,
262 .cnt1_reg
= MO_DMA22_CNT1
,
263 .cnt2_reg
= MO_DMA22_CNT2
,
267 .cmds_start
= 0x1800c0,
268 .ctrl_start
= 0x180540,
269 .cdt
= 0x180540 + 64,
270 .fifo_start
= 0x183c00,
271 .fifo_size
= 0x000800,
272 .ptr1_reg
= MO_DMA23_PTR1
,
273 .ptr2_reg
= MO_DMA23_PTR2
,
274 .cnt1_reg
= MO_DMA23_CNT1
,
275 .cnt2_reg
= MO_DMA23_CNT2
,
279 .cmds_start
= 0x180100,
280 .ctrl_start
= 0x1805e0,
281 .cdt
= 0x1805e0 + 64,
282 .fifo_start
= 0x184400,
283 .fifo_size
= 0x001000,
284 .ptr1_reg
= MO_DMA24_PTR1
,
285 .ptr2_reg
= MO_DMA24_PTR2
,
286 .cnt1_reg
= MO_DMA24_CNT1
,
287 .cnt2_reg
= MO_DMA24_CNT2
,
290 .name
= "audio from",
291 .cmds_start
= 0x180140,
292 .ctrl_start
= 0x180680,
293 .cdt
= 0x180680 + 64,
294 .fifo_start
= 0x185400,
295 .fifo_size
= 0x001000,
296 .ptr1_reg
= MO_DMA25_PTR1
,
297 .ptr2_reg
= MO_DMA25_PTR2
,
298 .cnt1_reg
= MO_DMA25_CNT1
,
299 .cnt2_reg
= MO_DMA25_CNT2
,
303 .cmds_start
= 0x180180,
304 .ctrl_start
= 0x180720,
305 .cdt
= 0x180680 + 64, /* same as audio IN */
306 .fifo_start
= 0x185400, /* same as audio IN */
307 .fifo_size
= 0x001000, /* same as audio IN */
308 .ptr1_reg
= MO_DMA26_PTR1
,
309 .ptr2_reg
= MO_DMA26_PTR2
,
310 .cnt1_reg
= MO_DMA26_CNT1
,
311 .cnt2_reg
= MO_DMA26_CNT2
,
315 .cmds_start
= 0x180200,
316 .ctrl_start
= 0x1807C0,
317 .cdt
= 0x1807C0 + 64,
318 .fifo_start
= 0x186400,
319 .fifo_size
= 0x001000,
320 .ptr1_reg
= MO_DMA28_PTR1
,
321 .ptr2_reg
= MO_DMA28_PTR2
,
322 .cnt1_reg
= MO_DMA28_CNT1
,
323 .cnt2_reg
= MO_DMA28_CNT2
,
327 .cmds_start
= 0x1801C0,
328 .ctrl_start
= 0x180860,
329 .cdt
= 0x180860 + 64,
330 .fifo_start
= 0x187400,
331 .fifo_size
= 0x000C00,
332 .ptr1_reg
= MO_DMA27_PTR1
,
333 .ptr2_reg
= MO_DMA27_PTR2
,
334 .cnt1_reg
= MO_DMA27_CNT1
,
335 .cnt2_reg
= MO_DMA27_CNT2
,
338 EXPORT_SYMBOL(cx88_sram_channels
);
340 int cx88_sram_channel_setup(struct cx88_core
*core
,
341 const struct sram_channel
*ch
,
342 unsigned int bpl
, u32 risc
)
344 unsigned int i
, lines
;
347 bpl
= (bpl
+ 7) & ~7; /* alignment */
349 lines
= ch
->fifo_size
/ bpl
;
355 for (i
= 0; i
< lines
; i
++)
356 cx_write(cdt
+ 16 * i
, ch
->fifo_start
+ bpl
* i
);
359 cx_write(ch
->cmds_start
+ 0, risc
);
360 cx_write(ch
->cmds_start
+ 4, cdt
);
361 cx_write(ch
->cmds_start
+ 8, (lines
* 16) >> 3);
362 cx_write(ch
->cmds_start
+ 12, ch
->ctrl_start
);
363 cx_write(ch
->cmds_start
+ 16, 64 >> 2);
364 for (i
= 20; i
< 64; i
+= 4)
365 cx_write(ch
->cmds_start
+ i
, 0);
368 cx_write(ch
->ptr1_reg
, ch
->fifo_start
);
369 cx_write(ch
->ptr2_reg
, cdt
);
370 cx_write(ch
->cnt1_reg
, (bpl
>> 3) - 1);
371 cx_write(ch
->cnt2_reg
, (lines
* 16) >> 3);
373 dprintk(2, "sram setup %s: bpl=%d lines=%d\n", ch
->name
, bpl
, lines
);
376 EXPORT_SYMBOL(cx88_sram_channel_setup
);
378 /* ------------------------------------------------------------------ */
379 /* debug helper code */
381 static int cx88_risc_decode(u32 risc
)
383 static const char * const instr
[16] = {
384 [RISC_SYNC
>> 28] = "sync",
385 [RISC_WRITE
>> 28] = "write",
386 [RISC_WRITEC
>> 28] = "writec",
387 [RISC_READ
>> 28] = "read",
388 [RISC_READC
>> 28] = "readc",
389 [RISC_JUMP
>> 28] = "jump",
390 [RISC_SKIP
>> 28] = "skip",
391 [RISC_WRITERM
>> 28] = "writerm",
392 [RISC_WRITECM
>> 28] = "writecm",
393 [RISC_WRITECR
>> 28] = "writecr",
395 static int const incr
[16] = {
396 [RISC_WRITE
>> 28] = 2,
397 [RISC_JUMP
>> 28] = 2,
398 [RISC_WRITERM
>> 28] = 3,
399 [RISC_WRITECM
>> 28] = 3,
400 [RISC_WRITECR
>> 28] = 4,
402 static const char * const bits
[] = {
403 "12", "13", "14", "resync",
404 "cnt0", "cnt1", "18", "19",
405 "20", "21", "22", "23",
406 "irq1", "irq2", "eol", "sol",
410 dprintk0("0x%08x [ %s", risc
,
411 instr
[risc
>> 28] ? instr
[risc
>> 28] : "INVALID");
412 for (i
= ARRAY_SIZE(bits
) - 1; i
>= 0; i
--)
413 if (risc
& (1 << (i
+ 12)))
414 pr_cont(" %s", bits
[i
]);
415 pr_cont(" count=%d ]\n", risc
& 0xfff);
416 return incr
[risc
>> 28] ? incr
[risc
>> 28] : 1;
419 void cx88_sram_channel_dump(struct cx88_core
*core
,
420 const struct sram_channel
*ch
)
422 static const char * const name
[] = {
436 unsigned int i
, j
, n
;
438 dprintk0("%s - dma channel status dump\n", ch
->name
);
439 for (i
= 0; i
< ARRAY_SIZE(name
); i
++)
440 dprintk0(" cmds: %-12s: 0x%08x\n",
441 name
[i
], cx_read(ch
->cmds_start
+ 4 * i
));
442 for (n
= 1, i
= 0; i
< 4; i
++) {
443 risc
= cx_read(ch
->cmds_start
+ 4 * (i
+ 11));
444 pr_cont(" risc%d: ", i
);
446 pr_cont("0x%08x [ arg #%d ]\n", risc
, n
);
448 n
= cx88_risc_decode(risc
);
450 for (i
= 0; i
< 16; i
+= n
) {
451 risc
= cx_read(ch
->ctrl_start
+ 4 * i
);
452 dprintk0(" iq %x: ", i
);
453 n
= cx88_risc_decode(risc
);
454 for (j
= 1; j
< n
; j
++) {
455 risc
= cx_read(ch
->ctrl_start
+ 4 * (i
+ j
));
456 pr_cont(" iq %x: 0x%08x [ arg #%d ]\n",
461 dprintk0("fifo: 0x%08x -> 0x%x\n",
462 ch
->fifo_start
, ch
->fifo_start
+ ch
->fifo_size
);
463 dprintk0("ctrl: 0x%08x -> 0x%x\n",
464 ch
->ctrl_start
, ch
->ctrl_start
+ 6 * 16);
465 dprintk0(" ptr1_reg: 0x%08x\n", cx_read(ch
->ptr1_reg
));
466 dprintk0(" ptr2_reg: 0x%08x\n", cx_read(ch
->ptr2_reg
));
467 dprintk0(" cnt1_reg: 0x%08x\n", cx_read(ch
->cnt1_reg
));
468 dprintk0(" cnt2_reg: 0x%08x\n", cx_read(ch
->cnt2_reg
));
470 EXPORT_SYMBOL(cx88_sram_channel_dump
);
472 static const char *cx88_pci_irqs
[32] = {
473 "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
474 "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
475 "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
476 "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
479 void cx88_print_irqbits(const char *tag
, const char *strings
[],
480 int len
, u32 bits
, u32 mask
)
484 dprintk0("%s [0x%x]", tag
, bits
);
485 for (i
= 0; i
< len
; i
++) {
486 if (!(bits
& (1 << i
)))
489 pr_cont(" %s", strings
[i
]);
492 if (!(mask
& (1 << i
)))
498 EXPORT_SYMBOL(cx88_print_irqbits
);
500 /* ------------------------------------------------------------------ */
502 int cx88_core_irq(struct cx88_core
*core
, u32 status
)
506 if (status
& PCI_INT_IR_SMPINT
) {
511 cx88_print_irqbits("irq pci",
512 cx88_pci_irqs
, ARRAY_SIZE(cx88_pci_irqs
),
513 status
, core
->pci_irqmask
);
516 EXPORT_SYMBOL(cx88_core_irq
);
518 void cx88_wakeup(struct cx88_core
*core
,
519 struct cx88_dmaqueue
*q
, u32 count
)
521 struct cx88_buffer
*buf
;
523 buf
= list_entry(q
->active
.next
,
524 struct cx88_buffer
, list
);
525 buf
->vb
.vb2_buf
.timestamp
= ktime_get_ns();
526 buf
->vb
.field
= core
->field
;
527 buf
->vb
.sequence
= q
->count
++;
528 list_del(&buf
->list
);
529 vb2_buffer_done(&buf
->vb
.vb2_buf
, VB2_BUF_STATE_DONE
);
531 EXPORT_SYMBOL(cx88_wakeup
);
533 void cx88_shutdown(struct cx88_core
*core
)
535 /* disable RISC controller + IRQs */
536 cx_write(MO_DEV_CNTRL2
, 0);
538 /* stop dma transfers */
539 cx_write(MO_VID_DMACNTRL
, 0x0);
540 cx_write(MO_AUD_DMACNTRL
, 0x0);
541 cx_write(MO_TS_DMACNTRL
, 0x0);
542 cx_write(MO_VIP_DMACNTRL
, 0x0);
543 cx_write(MO_GPHST_DMACNTRL
, 0x0);
545 /* stop interrupts */
546 cx_write(MO_PCI_INTMSK
, 0x0);
547 cx_write(MO_VID_INTMSK
, 0x0);
548 cx_write(MO_AUD_INTMSK
, 0x0);
549 cx_write(MO_TS_INTMSK
, 0x0);
550 cx_write(MO_VIP_INTMSK
, 0x0);
551 cx_write(MO_GPHST_INTMSK
, 0x0);
554 cx_write(VID_CAPTURE_CONTROL
, 0);
556 EXPORT_SYMBOL(cx88_shutdown
);
558 int cx88_reset(struct cx88_core
*core
)
563 /* clear irq status */
564 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
565 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
566 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
572 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH21
],
574 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH22
], 128, 0);
575 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH23
], 128, 0);
576 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH24
], 128, 0);
577 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], 128, 0);
578 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], 128, 0);
579 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH28
],
581 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH27
], 128, 0);
584 cx_write(MO_INPUT_FORMAT
, ((1 << 13) | // agc enable
585 (1 << 12) | // agc gain
586 (1 << 11) | // adaptibe agc
587 (0 << 10) | // chroma agc
588 (0 << 9) | // ckillen
591 /* setup image format */
592 cx_andor(MO_COLOR_CTRL
, 0x4000, 0x4000);
594 /* setup FIFO Thresholds */
595 cx_write(MO_PDMA_STHRSH
, 0x0807);
596 cx_write(MO_PDMA_DTHRSH
, 0x0807);
598 /* fixes flashing of image */
599 cx_write(MO_AGC_SYNC_TIP1
, 0x0380000F);
600 cx_write(MO_AGC_BACK_VBI
, 0x00E00555);
602 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
603 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
604 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
606 /* Reset on-board parts */
607 cx_write(MO_SRST_IO
, 0);
608 usleep_range(10000, 20000);
609 cx_write(MO_SRST_IO
, 1);
613 EXPORT_SYMBOL(cx88_reset
);
615 /* ------------------------------------------------------------------ */
617 static inline unsigned int norm_swidth(v4l2_std_id norm
)
619 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 754 : 922;
622 static inline unsigned int norm_hdelay(v4l2_std_id norm
)
624 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 135 : 186;
627 static inline unsigned int norm_vdelay(v4l2_std_id norm
)
629 return (norm
& V4L2_STD_625_50
) ? 0x24 : 0x18;
632 static inline unsigned int norm_fsc8(v4l2_std_id norm
)
634 if (norm
& V4L2_STD_PAL_M
)
635 return 28604892; // 3.575611 MHz
637 if (norm
& (V4L2_STD_PAL_Nc
))
638 return 28656448; // 3.582056 MHz
640 if (norm
& V4L2_STD_NTSC
) // All NTSC/M and variants
641 return 28636360; // 3.57954545 MHz +/- 10 Hz
644 * SECAM have also different sub carrier for chroma,
645 * but step_db and step_dr, at cx88_set_tvnorm already handles that.
647 * The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
650 return 35468950; // 4.43361875 MHz +/- 5 Hz
653 static inline unsigned int norm_htotal(v4l2_std_id norm
)
655 unsigned int fsc4
= norm_fsc8(norm
) / 2;
657 /* returns 4*FSC / vtotal / frames per seconds */
658 return (norm
& V4L2_STD_625_50
) ?
659 ((fsc4
+ 312) / 625 + 12) / 25 :
660 ((fsc4
+ 262) / 525 * 1001 + 15000) / 30000;
663 static inline unsigned int norm_vbipack(v4l2_std_id norm
)
665 return (norm
& V4L2_STD_625_50
) ? 511 : 400;
668 int cx88_set_scale(struct cx88_core
*core
, unsigned int width
,
669 unsigned int height
, enum v4l2_field field
)
671 unsigned int swidth
= norm_swidth(core
->tvnorm
);
672 unsigned int sheight
= norm_maxh(core
->tvnorm
);
675 dprintk(1, "set_scale: %dx%d [%s%s,%s]\n", width
, height
,
676 V4L2_FIELD_HAS_TOP(field
) ? "T" : "",
677 V4L2_FIELD_HAS_BOTTOM(field
) ? "B" : "",
678 v4l2_norm_to_name(core
->tvnorm
));
679 if (!V4L2_FIELD_HAS_BOTH(field
))
682 // recalc H delay and scale registers
683 value
= (width
* norm_hdelay(core
->tvnorm
)) / swidth
;
685 cx_write(MO_HDELAY_EVEN
, value
);
686 cx_write(MO_HDELAY_ODD
, value
);
687 dprintk(1, "set_scale: hdelay 0x%04x (width %d)\n", value
, swidth
);
689 value
= (swidth
* 4096 / width
) - 4096;
690 cx_write(MO_HSCALE_EVEN
, value
);
691 cx_write(MO_HSCALE_ODD
, value
);
692 dprintk(1, "set_scale: hscale 0x%04x\n", value
);
694 cx_write(MO_HACTIVE_EVEN
, width
);
695 cx_write(MO_HACTIVE_ODD
, width
);
696 dprintk(1, "set_scale: hactive 0x%04x\n", width
);
698 // recalc V scale Register (delay is constant)
699 cx_write(MO_VDELAY_EVEN
, norm_vdelay(core
->tvnorm
));
700 cx_write(MO_VDELAY_ODD
, norm_vdelay(core
->tvnorm
));
701 dprintk(1, "set_scale: vdelay 0x%04x\n", norm_vdelay(core
->tvnorm
));
703 value
= (0x10000 - (sheight
* 512 / height
- 512)) & 0x1fff;
704 cx_write(MO_VSCALE_EVEN
, value
);
705 cx_write(MO_VSCALE_ODD
, value
);
706 dprintk(1, "set_scale: vscale 0x%04x\n", value
);
708 cx_write(MO_VACTIVE_EVEN
, sheight
);
709 cx_write(MO_VACTIVE_ODD
, sheight
);
710 dprintk(1, "set_scale: vactive 0x%04x\n", sheight
);
714 value
|= (1 << 19); // CFILT (default)
715 if (core
->tvnorm
& V4L2_STD_SECAM
) {
719 if (INPUT(core
->input
).type
== CX88_VMUX_SVIDEO
)
720 value
|= (1 << 13) | (1 << 5);
721 if (field
== V4L2_FIELD_INTERLACED
)
722 value
|= (1 << 3); // VINT (interlaced vertical scaling)
724 value
|= (1 << 0); // 3-tap interpolation
726 value
|= (1 << 1); // 5-tap interpolation
728 value
|= (3 << 5); // disable comb filter
730 cx_andor(MO_FILTER_EVEN
, 0x7ffc7f, value
); /* preserve PEAKEN, PSEL */
731 cx_andor(MO_FILTER_ODD
, 0x7ffc7f, value
);
732 dprintk(1, "set_scale: filter 0x%04x\n", value
);
736 EXPORT_SYMBOL(cx88_set_scale
);
738 static const u32 xtal
= 28636363;
740 static int set_pll(struct cx88_core
*core
, int prescale
, u32 ofreq
)
742 static const u32 pre
[] = { 0, 0, 0, 3, 2, 1 };
752 pll
= ofreq
* 8 * prescale
* (u64
)(1 << 20);
754 reg
= (pll
& 0x3ffffff) | (pre
[prescale
] << 26);
755 if (((reg
>> 20) & 0x3f) < 14) {
756 pr_err("pll out of range\n");
760 dprintk(1, "set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
761 reg
, cx_read(MO_PLL_REG
), ofreq
);
762 cx_write(MO_PLL_REG
, reg
);
763 for (i
= 0; i
< 100; i
++) {
764 reg
= cx_read(MO_DEVICE_STATUS
);
765 if (reg
& (1 << 2)) {
766 dprintk(1, "pll locked [pre=%d,ofreq=%d]\n",
770 dprintk(1, "pll not locked yet, waiting ...\n");
771 usleep_range(10000, 20000);
773 dprintk(1, "pll NOT locked [pre=%d,ofreq=%d]\n", prescale
, ofreq
);
777 int cx88_start_audio_dma(struct cx88_core
*core
)
779 /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
780 int bpl
= cx88_sram_channels
[SRAM_CH25
].fifo_size
/ 4;
782 int rds_bpl
= cx88_sram_channels
[SRAM_CH27
].fifo_size
/ AUD_RDS_LINES
;
784 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
785 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
788 /* setup fifo + format */
789 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], bpl
, 0);
790 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], bpl
, 0);
791 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH27
],
794 cx_write(MO_AUDD_LNGTH
, bpl
); /* fifo bpl size */
795 cx_write(MO_AUDR_LNGTH
, rds_bpl
); /* fifo bpl size */
797 /* enable Up, Down and Audio RDS fifo */
798 cx_write(MO_AUD_DMACNTRL
, 0x0007);
803 int cx88_stop_audio_dma(struct cx88_core
*core
)
805 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
806 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
810 cx_write(MO_AUD_DMACNTRL
, 0x0000);
815 static int set_tvaudio(struct cx88_core
*core
)
817 v4l2_std_id norm
= core
->tvnorm
;
819 if (INPUT(core
->input
).type
!= CX88_VMUX_TELEVISION
&&
820 INPUT(core
->input
).type
!= CX88_VMUX_CABLE
)
823 if (V4L2_STD_PAL_BG
& norm
) {
824 core
->tvaudio
= WW_BG
;
826 } else if (V4L2_STD_PAL_DK
& norm
) {
827 core
->tvaudio
= WW_DK
;
829 } else if (V4L2_STD_PAL_I
& norm
) {
830 core
->tvaudio
= WW_I
;
832 } else if (V4L2_STD_SECAM_L
& norm
) {
833 core
->tvaudio
= WW_L
;
835 } else if ((V4L2_STD_SECAM_B
| V4L2_STD_SECAM_G
| V4L2_STD_SECAM_H
) &
837 core
->tvaudio
= WW_BG
;
839 } else if (V4L2_STD_SECAM_DK
& norm
) {
840 core
->tvaudio
= WW_DK
;
842 } else if ((V4L2_STD_NTSC_M
& norm
) ||
843 (V4L2_STD_PAL_M
& norm
)) {
844 core
->tvaudio
= WW_BTSC
;
846 } else if (V4L2_STD_NTSC_M_JP
& norm
) {
847 core
->tvaudio
= WW_EIAJ
;
850 pr_info("tvaudio support needs work for this tv norm [%s], sorry\n",
851 v4l2_norm_to_name(core
->tvnorm
));
852 core
->tvaudio
= WW_NONE
;
856 cx_andor(MO_AFECFG_IO
, 0x1f, 0x0);
857 cx88_set_tvaudio(core
);
858 /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
861 * This should be needed only on cx88-alsa. It seems that some cx88 chips have
862 * bugs and does require DMA enabled for it to work.
864 cx88_start_audio_dma(core
);
868 int cx88_set_tvnorm(struct cx88_core
*core
, v4l2_std_id norm
)
873 u32 step_db
, step_dr
;
875 u32 bdelay
, agcdelay
, htotal
;
876 u32 cxiformat
, cxoformat
;
878 if (norm
== core
->tvnorm
)
880 if (core
->v4ldev
&& (vb2_is_busy(&core
->v4ldev
->vb2_vidq
) ||
881 vb2_is_busy(&core
->v4ldev
->vb2_vbiq
)))
883 if (core
->dvbdev
&& vb2_is_busy(&core
->dvbdev
->vb2_mpegq
))
886 fsc8
= norm_fsc8(norm
);
892 if (norm
& V4L2_STD_NTSC_M_JP
) {
893 cxiformat
= VideoFormatNTSCJapan
;
894 cxoformat
= 0x181f0008;
895 } else if (norm
& V4L2_STD_NTSC_443
) {
896 cxiformat
= VideoFormatNTSC443
;
897 cxoformat
= 0x181f0008;
898 } else if (norm
& V4L2_STD_PAL_M
) {
899 cxiformat
= VideoFormatPALM
;
900 cxoformat
= 0x1c1f0008;
901 } else if (norm
& V4L2_STD_PAL_N
) {
902 cxiformat
= VideoFormatPALN
;
903 cxoformat
= 0x1c1f0008;
904 } else if (norm
& V4L2_STD_PAL_Nc
) {
905 cxiformat
= VideoFormatPALNC
;
906 cxoformat
= 0x1c1f0008;
907 } else if (norm
& V4L2_STD_PAL_60
) {
908 cxiformat
= VideoFormatPAL60
;
909 cxoformat
= 0x181f0008;
910 } else if (norm
& V4L2_STD_NTSC
) {
911 cxiformat
= VideoFormatNTSC
;
912 cxoformat
= 0x181f0008;
913 } else if (norm
& V4L2_STD_SECAM
) {
914 step_db
= 4250000 * 8;
915 step_dr
= 4406250 * 8;
917 cxiformat
= VideoFormatSECAM
;
918 cxoformat
= 0x181f0008;
920 cxiformat
= VideoFormatPAL
;
921 cxoformat
= 0x181f0008;
924 dprintk(1, "set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
925 v4l2_norm_to_name(core
->tvnorm
), fsc8
, adc_clock
, vdec_clock
,
927 set_pll(core
, 2, vdec_clock
);
929 dprintk(1, "set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
930 cxiformat
, cx_read(MO_INPUT_FORMAT
) & 0x0f);
932 * Chroma AGC must be disabled if SECAM is used, we enable it
933 * by default on PAL and NTSC
935 cx_andor(MO_INPUT_FORMAT
, 0x40f,
936 norm
& V4L2_STD_SECAM
? cxiformat
: cxiformat
| 0x400);
938 // FIXME: as-is from DScaler
939 dprintk(1, "set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
940 cxoformat
, cx_read(MO_OUTPUT_FORMAT
));
941 cx_write(MO_OUTPUT_FORMAT
, cxoformat
);
943 // MO_SCONV_REG = adc clock / video dec clock * 2^17
944 tmp64
= adc_clock
* (u64
)(1 << 17);
945 do_div(tmp64
, vdec_clock
);
946 dprintk(1, "set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
947 (u32
)tmp64
, cx_read(MO_SCONV_REG
));
948 cx_write(MO_SCONV_REG
, (u32
)tmp64
);
950 // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
951 tmp64
= step_db
* (u64
)(1 << 22);
952 do_div(tmp64
, vdec_clock
);
953 dprintk(1, "set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
954 (u32
)tmp64
, cx_read(MO_SUB_STEP
));
955 cx_write(MO_SUB_STEP
, (u32
)tmp64
);
957 // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
958 tmp64
= step_dr
* (u64
)(1 << 22);
959 do_div(tmp64
, vdec_clock
);
960 dprintk(1, "set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
961 (u32
)tmp64
, cx_read(MO_SUB_STEP_DR
));
962 cx_write(MO_SUB_STEP_DR
, (u32
)tmp64
);
965 bdelay
= vdec_clock
* 65 / 20000000 + 21;
966 agcdelay
= vdec_clock
* 68 / 20000000 + 15;
968 "set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
969 (bdelay
<< 8) | agcdelay
, cx_read(MO_AGC_BURST
),
971 cx_write(MO_AGC_BURST
, (bdelay
<< 8) | agcdelay
);
974 tmp64
= norm_htotal(norm
) * (u64
)vdec_clock
;
978 "set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
979 htotal
, cx_read(MO_HTOTAL
), (u32
)tmp64
);
980 cx_andor(MO_HTOTAL
, 0x07ff, htotal
);
982 // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
983 // the effective vbi offset ~244 samples, the same as the Bt8x8
984 cx_write(MO_VBI_PACKET
, (10 << 11) | norm_vbipack(norm
));
986 // this is needed as well to set all tvnorm parameter
987 cx88_set_scale(core
, 320, 240, V4L2_FIELD_INTERLACED
);
993 call_all(core
, video
, s_std
, norm
);
996 * The chroma_agc control should be inaccessible
997 * if the video format is SECAM
999 v4l2_ctrl_grab(core
->chroma_agc
, cxiformat
== VideoFormatSECAM
);
1004 EXPORT_SYMBOL(cx88_set_tvnorm
);
1006 /* ------------------------------------------------------------------ */
1008 void cx88_vdev_init(struct cx88_core
*core
,
1009 struct pci_dev
*pci
,
1010 struct video_device
*vfd
,
1011 const struct video_device
*template_
,
1017 * The dev pointer of v4l2_device is NULL, instead we set the
1018 * video_device dev_parent pointer to the correct PCI bus device.
1019 * This driver is a rare example where there is one v4l2_device,
1020 * but the video nodes have different parent (PCI) devices.
1022 vfd
->v4l2_dev
= &core
->v4l2_dev
;
1023 vfd
->dev_parent
= &pci
->dev
;
1024 vfd
->release
= video_device_release_empty
;
1025 vfd
->lock
= &core
->lock
;
1026 snprintf(vfd
->name
, sizeof(vfd
->name
), "%s %s (%s)",
1027 core
->name
, type
, core
->board
.name
);
1029 EXPORT_SYMBOL(cx88_vdev_init
);
1031 struct cx88_core
*cx88_core_get(struct pci_dev
*pci
)
1033 struct cx88_core
*core
;
1035 mutex_lock(&devlist
);
1036 list_for_each_entry(core
, &cx88_devlist
, devlist
) {
1037 if (pci
->bus
->number
!= core
->pci_bus
)
1039 if (PCI_SLOT(pci
->devfn
) != core
->pci_slot
)
1042 if (cx88_get_resources(core
, pci
) != 0) {
1043 mutex_unlock(&devlist
);
1046 refcount_inc(&core
->refcount
);
1047 mutex_unlock(&devlist
);
1051 core
= cx88_core_create(pci
, cx88_devcount
);
1054 list_add_tail(&core
->devlist
, &cx88_devlist
);
1057 mutex_unlock(&devlist
);
1060 EXPORT_SYMBOL(cx88_core_get
);
1062 void cx88_core_put(struct cx88_core
*core
, struct pci_dev
*pci
)
1064 release_mem_region(pci_resource_start(pci
, 0),
1065 pci_resource_len(pci
, 0));
1067 if (!refcount_dec_and_test(&core
->refcount
))
1070 mutex_lock(&devlist
);
1072 if (core
->i2c_rc
== 0) {
1073 i2c_unregister_device(core
->i2c_rtc
);
1074 i2c_del_adapter(&core
->i2c_adap
);
1076 list_del(&core
->devlist
);
1077 iounmap(core
->lmmio
);
1079 mutex_unlock(&devlist
);
1080 v4l2_ctrl_handler_free(&core
->video_hdl
);
1081 v4l2_ctrl_handler_free(&core
->audio_hdl
);
1082 v4l2_device_unregister(&core
->v4l2_dev
);
1085 EXPORT_SYMBOL(cx88_core_put
);