1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2012 Texas Instruments, Inc.
7 * Aneesh V <aneesh@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/reboot.h>
13 #include <linux/platform_data/emif_plat.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
20 #include <linux/debugfs.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
28 #include "jedec_ddr.h"
29 #include "of_memory.h"
32 * struct emif_data - Per device static data for driver's use
33 * @duplicate: Whether the DDR devices attached to this EMIF
34 * instance are exactly same as that on EMIF1. In
35 * this case we can save some memory and processing
36 * @temperature_level: Maximum temperature of LPDDR2 devices attached
37 * to this EMIF - read from MR4 register. If there
38 * are two devices attached to this EMIF, this
39 * value is the maximum of the two temperature
41 * @node: node in the device list
42 * @base: base address of memory-mapped IO registers.
43 * @dev: device pointer.
44 * @addressing table with addressing information from the spec
45 * @regs_cache: An array of 'struct emif_regs' that stores
46 * calculated register values for different
47 * frequencies, to avoid re-calculating them on
48 * each DVFS transition.
49 * @curr_regs: The set of register values used in the last
50 * frequency change (i.e. corresponding to the
51 * frequency in effect at the moment)
52 * @plat_data: Pointer to saved platform data.
53 * @debugfs_root: dentry to the root folder for EMIF in debugfs
54 * @np_ddr: Pointer to ddr device tree node
60 struct list_head node
;
61 unsigned long irq_state
;
64 const struct lpddr2_addressing
*addressing
;
65 struct emif_regs
*regs_cache
[EMIF_MAX_NUM_FREQUENCIES
];
66 struct emif_regs
*curr_regs
;
67 struct emif_platform_data
*plat_data
;
68 struct dentry
*debugfs_root
;
69 struct device_node
*np_ddr
;
72 static struct emif_data
*emif1
;
73 static spinlock_t emif_lock
;
74 static unsigned long irq_state
;
75 static u32 t_ck
; /* DDR clock period in ps */
76 static LIST_HEAD(device_list
);
78 #ifdef CONFIG_DEBUG_FS
79 static void do_emif_regdump_show(struct seq_file
*s
, struct emif_data
*emif
,
80 struct emif_regs
*regs
)
82 u32 type
= emif
->plat_data
->device_info
->type
;
83 u32 ip_rev
= emif
->plat_data
->ip_rev
;
85 seq_printf(s
, "EMIF register cache dump for %dMHz\n",
88 seq_printf(s
, "ref_ctrl_shdw\t: 0x%08x\n", regs
->ref_ctrl_shdw
);
89 seq_printf(s
, "sdram_tim1_shdw\t: 0x%08x\n", regs
->sdram_tim1_shdw
);
90 seq_printf(s
, "sdram_tim2_shdw\t: 0x%08x\n", regs
->sdram_tim2_shdw
);
91 seq_printf(s
, "sdram_tim3_shdw\t: 0x%08x\n", regs
->sdram_tim3_shdw
);
93 if (ip_rev
== EMIF_4D
) {
94 seq_printf(s
, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
95 regs
->read_idle_ctrl_shdw_normal
);
96 seq_printf(s
, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97 regs
->read_idle_ctrl_shdw_volt_ramp
);
98 } else if (ip_rev
== EMIF_4D5
) {
99 seq_printf(s
, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
100 regs
->dll_calib_ctrl_shdw_normal
);
101 seq_printf(s
, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
102 regs
->dll_calib_ctrl_shdw_volt_ramp
);
105 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
) {
106 seq_printf(s
, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107 regs
->ref_ctrl_shdw_derated
);
108 seq_printf(s
, "sdram_tim1_shdw_derated\t: 0x%08x\n",
109 regs
->sdram_tim1_shdw_derated
);
110 seq_printf(s
, "sdram_tim3_shdw_derated\t: 0x%08x\n",
111 regs
->sdram_tim3_shdw_derated
);
115 static int emif_regdump_show(struct seq_file
*s
, void *unused
)
117 struct emif_data
*emif
= s
->private;
118 struct emif_regs
**regs_cache
;
122 regs_cache
= emif1
->regs_cache
;
124 regs_cache
= emif
->regs_cache
;
126 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++) {
127 do_emif_regdump_show(s
, emif
, regs_cache
[i
]);
134 DEFINE_SHOW_ATTRIBUTE(emif_regdump
);
136 static int emif_mr4_show(struct seq_file
*s
, void *unused
)
138 struct emif_data
*emif
= s
->private;
140 seq_printf(s
, "MR4=%d\n", emif
->temperature_level
);
144 DEFINE_SHOW_ATTRIBUTE(emif_mr4
);
146 static int __init_or_module
emif_debugfs_init(struct emif_data
*emif
)
148 emif
->debugfs_root
= debugfs_create_dir(dev_name(emif
->dev
), NULL
);
149 debugfs_create_file("regcache_dump", S_IRUGO
, emif
->debugfs_root
, emif
,
151 debugfs_create_file("mr4", S_IRUGO
, emif
->debugfs_root
, emif
,
156 static void __exit
emif_debugfs_exit(struct emif_data
*emif
)
158 debugfs_remove_recursive(emif
->debugfs_root
);
159 emif
->debugfs_root
= NULL
;
162 static inline int __init_or_module
emif_debugfs_init(struct emif_data
*emif
)
167 static inline void __exit
emif_debugfs_exit(struct emif_data
*emif
)
173 * Calculate the period of DDR clock from frequency value
175 static void set_ddr_clk_period(u32 freq
)
177 /* Divide 10^12 by frequency to get period in ps */
178 t_ck
= (u32
)DIV_ROUND_UP_ULL(1000000000000ull, freq
);
182 * Get bus width used by EMIF. Note that this may be different from the
183 * bus width of the DDR devices used. For instance two 16-bit DDR devices
184 * may be connected to a given CS of EMIF. In this case bus width as far
185 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
187 static u32
get_emif_bus_width(struct emif_data
*emif
)
190 void __iomem
*base
= emif
->base
;
192 width
= (readl(base
+ EMIF_SDRAM_CONFIG
) & NARROW_MODE_MASK
)
193 >> NARROW_MODE_SHIFT
;
194 width
= width
== 0 ? 32 : 16;
200 * Get the CL from SDRAM_CONFIG register
202 static u32
get_cl(struct emif_data
*emif
)
205 void __iomem
*base
= emif
->base
;
207 cl
= (readl(base
+ EMIF_SDRAM_CONFIG
) & CL_MASK
) >> CL_SHIFT
;
212 static void set_lpmode(struct emif_data
*emif
, u8 lpmode
)
215 void __iomem
*base
= emif
->base
;
218 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
222 * The EMIF supports power-down state for low power. The EMIF
223 * automatically puts the SDRAM into power-down after the memory is
224 * not accessed for a defined number of cycles and the
225 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
226 * As the EMIF supports automatic output impedance calibration, a ZQ
227 * calibration long command is issued every time it exits active
228 * power-down and precharge power-down modes. The EMIF waits and
229 * blocks any other command during this calibration.
230 * The EMIF does not allow selective disabling of ZQ calibration upon
231 * exit of power-down mode. Due to very short periods of power-down
232 * cycles, ZQ calibration overhead creates bandwidth issues and
233 * increases overall system power consumption. On the other hand,
234 * issuing ZQ calibration long commands when exiting self-refresh is
238 * Because there is no power consumption benefit of the power-down due
239 * to the calibration and there is a performance risk, the guideline
240 * is to not allow power-down state and, therefore, to not have set
241 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
243 if ((emif
->plat_data
->ip_rev
== EMIF_4D
) &&
244 (lpmode
== EMIF_LP_MODE_PWR_DN
)) {
246 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
247 /* rollback LP_MODE to Self-refresh mode */
248 lpmode
= EMIF_LP_MODE_SELF_REFRESH
;
251 temp
= readl(base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
252 temp
&= ~LP_MODE_MASK
;
253 temp
|= (lpmode
<< LP_MODE_SHIFT
);
254 writel(temp
, base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
257 static void do_freq_update(void)
259 struct emif_data
*emif
;
262 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
265 * The EMIF automatically puts the SDRAM into self-refresh mode
266 * after the EMIF has not performed accesses during
267 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
268 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
269 * to 0x2. If during a small window the following three events
271 * - The SR_TIMING counter expires
272 * - And frequency change is requested
273 * - And OCP access is requested
274 * Then it causes instable clock on the DDR interface.
277 * To avoid the occurrence of the three events, the workaround
278 * is to disable the self-refresh when requesting a frequency
279 * change. Before requesting a frequency change the software must
280 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
281 * frequency change has been done, the software can reprogram
282 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
284 list_for_each_entry(emif
, &device_list
, node
) {
285 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
286 set_lpmode(emif
, EMIF_LP_MODE_DISABLE
);
290 * TODO: Do FREQ_UPDATE here when an API
291 * is available for this as part of the new
295 list_for_each_entry(emif
, &device_list
, node
) {
296 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
297 set_lpmode(emif
, EMIF_LP_MODE_SELF_REFRESH
);
301 /* Find addressing table entry based on the device's type and density */
302 static const struct lpddr2_addressing
*get_addressing_table(
303 const struct ddr_device_info
*device_info
)
305 u32 index
, type
, density
;
307 type
= device_info
->type
;
308 density
= device_info
->density
;
311 case DDR_TYPE_LPDDR2_S4
:
314 case DDR_TYPE_LPDDR2_S2
:
316 case DDR_DENSITY_1Gb
:
317 case DDR_DENSITY_2Gb
:
328 return &lpddr2_jedec_addressing_table
[index
];
332 * Find the the right timing table from the array of timing
333 * tables of the device using DDR clock frequency
335 static const struct lpddr2_timings
*get_timings_table(struct emif_data
*emif
,
338 u32 i
, min
, max
, freq_nearest
;
339 const struct lpddr2_timings
*timings
= NULL
;
340 const struct lpddr2_timings
*timings_arr
= emif
->plat_data
->timings
;
341 struct device
*dev
= emif
->dev
;
343 /* Start with a very high frequency - 1GHz */
344 freq_nearest
= 1000000000;
347 * Find the timings table such that:
348 * 1. the frequency range covers the required frequency(safe) AND
349 * 2. the max_freq is closest to the required frequency(optimal)
351 for (i
= 0; i
< emif
->plat_data
->timings_arr_size
; i
++) {
352 max
= timings_arr
[i
].max_freq
;
353 min
= timings_arr
[i
].min_freq
;
354 if ((freq
>= min
) && (freq
<= max
) && (max
< freq_nearest
)) {
356 timings
= &timings_arr
[i
];
361 dev_err(dev
, "%s: couldn't find timings for - %dHz\n",
364 dev_dbg(dev
, "%s: timings table: freq %d, speed bin freq %d\n",
365 __func__
, freq
, freq_nearest
);
370 static u32
get_sdram_ref_ctrl_shdw(u32 freq
,
371 const struct lpddr2_addressing
*addressing
)
373 u32 ref_ctrl_shdw
= 0, val
= 0, freq_khz
, t_refi
;
375 /* Scale down frequency and t_refi to avoid overflow */
376 freq_khz
= freq
/ 1000;
377 t_refi
= addressing
->tREFI_ns
/ 100;
380 * refresh rate to be set is 'tREFI(in us) * freq in MHz
381 * division by 10000 to account for change in units
383 val
= t_refi
* freq_khz
/ 10000;
384 ref_ctrl_shdw
|= val
<< REFRESH_RATE_SHIFT
;
386 return ref_ctrl_shdw
;
389 static u32
get_sdram_tim_1_shdw(const struct lpddr2_timings
*timings
,
390 const struct lpddr2_min_tck
*min_tck
,
391 const struct lpddr2_addressing
*addressing
)
393 u32 tim1
= 0, val
= 0;
395 val
= max(min_tck
->tWTR
, DIV_ROUND_UP(timings
->tWTR
, t_ck
)) - 1;
396 tim1
|= val
<< T_WTR_SHIFT
;
398 if (addressing
->num_banks
== B8
)
399 val
= DIV_ROUND_UP(timings
->tFAW
, t_ck
*4);
401 val
= max(min_tck
->tRRD
, DIV_ROUND_UP(timings
->tRRD
, t_ck
));
402 tim1
|= (val
- 1) << T_RRD_SHIFT
;
404 val
= DIV_ROUND_UP(timings
->tRAS_min
+ timings
->tRPab
, t_ck
) - 1;
405 tim1
|= val
<< T_RC_SHIFT
;
407 val
= max(min_tck
->tRASmin
, DIV_ROUND_UP(timings
->tRAS_min
, t_ck
));
408 tim1
|= (val
- 1) << T_RAS_SHIFT
;
410 val
= max(min_tck
->tWR
, DIV_ROUND_UP(timings
->tWR
, t_ck
)) - 1;
411 tim1
|= val
<< T_WR_SHIFT
;
413 val
= max(min_tck
->tRCD
, DIV_ROUND_UP(timings
->tRCD
, t_ck
)) - 1;
414 tim1
|= val
<< T_RCD_SHIFT
;
416 val
= max(min_tck
->tRPab
, DIV_ROUND_UP(timings
->tRPab
, t_ck
)) - 1;
417 tim1
|= val
<< T_RP_SHIFT
;
422 static u32
get_sdram_tim_1_shdw_derated(const struct lpddr2_timings
*timings
,
423 const struct lpddr2_min_tck
*min_tck
,
424 const struct lpddr2_addressing
*addressing
)
426 u32 tim1
= 0, val
= 0;
428 val
= max(min_tck
->tWTR
, DIV_ROUND_UP(timings
->tWTR
, t_ck
)) - 1;
429 tim1
= val
<< T_WTR_SHIFT
;
432 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
433 * to tFAW for de-rating
435 if (addressing
->num_banks
== B8
) {
436 val
= DIV_ROUND_UP(timings
->tFAW
+ 7500, 4 * t_ck
) - 1;
438 val
= DIV_ROUND_UP(timings
->tRRD
+ 1875, t_ck
);
439 val
= max(min_tck
->tRRD
, val
) - 1;
441 tim1
|= val
<< T_RRD_SHIFT
;
443 val
= DIV_ROUND_UP(timings
->tRAS_min
+ timings
->tRPab
+ 1875, t_ck
);
444 tim1
|= (val
- 1) << T_RC_SHIFT
;
446 val
= DIV_ROUND_UP(timings
->tRAS_min
+ 1875, t_ck
);
447 val
= max(min_tck
->tRASmin
, val
) - 1;
448 tim1
|= val
<< T_RAS_SHIFT
;
450 val
= max(min_tck
->tWR
, DIV_ROUND_UP(timings
->tWR
, t_ck
)) - 1;
451 tim1
|= val
<< T_WR_SHIFT
;
453 val
= max(min_tck
->tRCD
, DIV_ROUND_UP(timings
->tRCD
+ 1875, t_ck
));
454 tim1
|= (val
- 1) << T_RCD_SHIFT
;
456 val
= max(min_tck
->tRPab
, DIV_ROUND_UP(timings
->tRPab
+ 1875, t_ck
));
457 tim1
|= (val
- 1) << T_RP_SHIFT
;
462 static u32
get_sdram_tim_2_shdw(const struct lpddr2_timings
*timings
,
463 const struct lpddr2_min_tck
*min_tck
,
464 const struct lpddr2_addressing
*addressing
,
467 u32 tim2
= 0, val
= 0;
469 val
= min_tck
->tCKE
- 1;
470 tim2
|= val
<< T_CKE_SHIFT
;
472 val
= max(min_tck
->tRTP
, DIV_ROUND_UP(timings
->tRTP
, t_ck
)) - 1;
473 tim2
|= val
<< T_RTP_SHIFT
;
475 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
476 val
= DIV_ROUND_UP(addressing
->tRFCab_ps
+ 10000, t_ck
) - 1;
477 tim2
|= val
<< T_XSNR_SHIFT
;
479 /* XSRD same as XSNR for LPDDR2 */
480 tim2
|= val
<< T_XSRD_SHIFT
;
482 val
= max(min_tck
->tXP
, DIV_ROUND_UP(timings
->tXP
, t_ck
)) - 1;
483 tim2
|= val
<< T_XP_SHIFT
;
488 static u32
get_sdram_tim_3_shdw(const struct lpddr2_timings
*timings
,
489 const struct lpddr2_min_tck
*min_tck
,
490 const struct lpddr2_addressing
*addressing
,
491 u32 type
, u32 ip_rev
, u32 derated
)
493 u32 tim3
= 0, val
= 0, t_dqsck
;
495 val
= timings
->tRAS_max_ns
/ addressing
->tREFI_ns
- 1;
496 val
= val
> 0xF ? 0xF : val
;
497 tim3
|= val
<< T_RAS_MAX_SHIFT
;
499 val
= DIV_ROUND_UP(addressing
->tRFCab_ps
, t_ck
) - 1;
500 tim3
|= val
<< T_RFC_SHIFT
;
502 t_dqsck
= (derated
== EMIF_DERATED_TIMINGS
) ?
503 timings
->tDQSCK_max_derated
: timings
->tDQSCK_max
;
504 if (ip_rev
== EMIF_4D5
)
505 val
= DIV_ROUND_UP(t_dqsck
+ 1000, t_ck
) - 1;
507 val
= DIV_ROUND_UP(t_dqsck
, t_ck
) - 1;
509 tim3
|= val
<< T_TDQSCKMAX_SHIFT
;
511 val
= DIV_ROUND_UP(timings
->tZQCS
, t_ck
) - 1;
512 tim3
|= val
<< ZQ_ZQCS_SHIFT
;
514 val
= DIV_ROUND_UP(timings
->tCKESR
, t_ck
);
515 val
= max(min_tck
->tCKESR
, val
) - 1;
516 tim3
|= val
<< T_CKESR_SHIFT
;
518 if (ip_rev
== EMIF_4D5
) {
519 tim3
|= (EMIF_T_CSTA
- 1) << T_CSTA_SHIFT
;
521 val
= DIV_ROUND_UP(EMIF_T_PDLL_UL
, 128) - 1;
522 tim3
|= val
<< T_PDLL_UL_SHIFT
;
528 static u32
get_zq_config_reg(const struct lpddr2_addressing
*addressing
,
529 bool cs1_used
, bool cal_resistors_per_cs
)
533 val
= EMIF_ZQCS_INTERVAL_US
* 1000 / addressing
->tREFI_ns
;
534 zq
|= val
<< ZQ_REFINTERVAL_SHIFT
;
536 val
= DIV_ROUND_UP(T_ZQCL_DEFAULT_NS
, T_ZQCS_DEFAULT_NS
) - 1;
537 zq
|= val
<< ZQ_ZQCL_MULT_SHIFT
;
539 val
= DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS
, T_ZQCL_DEFAULT_NS
) - 1;
540 zq
|= val
<< ZQ_ZQINIT_MULT_SHIFT
;
542 zq
|= ZQ_SFEXITEN_ENABLE
<< ZQ_SFEXITEN_SHIFT
;
544 if (cal_resistors_per_cs
)
545 zq
|= ZQ_DUALCALEN_ENABLE
<< ZQ_DUALCALEN_SHIFT
;
547 zq
|= ZQ_DUALCALEN_DISABLE
<< ZQ_DUALCALEN_SHIFT
;
549 zq
|= ZQ_CS0EN_MASK
; /* CS0 is used for sure */
551 val
= cs1_used
? 1 : 0;
552 zq
|= val
<< ZQ_CS1EN_SHIFT
;
557 static u32
get_temp_alert_config(const struct lpddr2_addressing
*addressing
,
558 const struct emif_custom_configs
*custom_configs
, bool cs1_used
,
559 u32 sdram_io_width
, u32 emif_bus_width
)
561 u32 alert
= 0, interval
, devcnt
;
563 if (custom_configs
&& (custom_configs
->mask
&
564 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
))
565 interval
= custom_configs
->temp_alert_poll_interval_ms
;
567 interval
= TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS
;
569 interval
*= 1000000; /* Convert to ns */
570 interval
/= addressing
->tREFI_ns
; /* Convert to refresh cycles */
571 alert
|= (interval
<< TA_REFINTERVAL_SHIFT
);
574 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
575 * also to this form and subtract to get TA_DEVCNT, which is
578 emif_bus_width
= __fls(emif_bus_width
) - 1;
579 devcnt
= emif_bus_width
- sdram_io_width
;
580 alert
|= devcnt
<< TA_DEVCNT_SHIFT
;
582 /* DEVWDT is in 'log2(x) - 3' form */
583 alert
|= (sdram_io_width
- 2) << TA_DEVWDT_SHIFT
;
585 alert
|= 1 << TA_SFEXITEN_SHIFT
;
586 alert
|= 1 << TA_CS0EN_SHIFT
;
587 alert
|= (cs1_used
? 1 : 0) << TA_CS1EN_SHIFT
;
592 static u32
get_read_idle_ctrl_shdw(u8 volt_ramp
)
594 u32 idle
= 0, val
= 0;
597 * Maximum value in normal conditions and increased frequency
598 * when voltage is ramping
601 val
= READ_IDLE_INTERVAL_DVFS
/ t_ck
/ 64 - 1;
606 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
607 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
609 idle
|= val
<< DLL_CALIB_INTERVAL_SHIFT
;
610 idle
|= EMIF_READ_IDLE_LEN_VAL
<< ACK_WAIT_SHIFT
;
615 static u32
get_dll_calib_ctrl_shdw(u8 volt_ramp
)
617 u32 calib
= 0, val
= 0;
619 if (volt_ramp
== DDR_VOLTAGE_RAMPING
)
620 val
= DLL_CALIB_INTERVAL_DVFS
/ t_ck
/ 16 - 1;
622 val
= 0; /* Disabled when voltage is stable */
624 calib
|= val
<< DLL_CALIB_INTERVAL_SHIFT
;
625 calib
|= DLL_CALIB_ACK_WAIT_VAL
<< ACK_WAIT_SHIFT
;
630 static u32
get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings
*timings
,
633 u32 phy
= EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY
, val
= 0;
635 val
= RL
+ DIV_ROUND_UP(timings
->tDQSCK_max
, t_ck
) - 1;
636 phy
|= val
<< READ_LATENCY_SHIFT_4D
;
638 if (freq
<= 100000000)
639 val
= EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY
;
640 else if (freq
<= 200000000)
641 val
= EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY
;
643 val
= EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY
;
645 phy
|= val
<< DLL_SLAVE_DLY_CTRL_SHIFT_4D
;
650 static u32
get_phy_ctrl_1_intelliphy_4d5(u32 freq
, u8 cl
)
652 u32 phy
= EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY
, half_delay
;
655 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
656 * half-delay is not needed else set half-delay
658 if (freq
>= 265000000 && freq
< 267000000)
663 phy
|= half_delay
<< DLL_HALF_DELAY_SHIFT_4D5
;
664 phy
|= ((cl
+ DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS
,
665 t_ck
) - 1) << READ_LATENCY_SHIFT_4D5
);
670 static u32
get_ext_phy_ctrl_2_intelliphy_4d5(void)
672 u32 fifo_we_slave_ratio
;
674 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
675 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256, t_ck
);
677 return fifo_we_slave_ratio
| fifo_we_slave_ratio
<< 11 |
678 fifo_we_slave_ratio
<< 22;
681 static u32
get_ext_phy_ctrl_3_intelliphy_4d5(void)
683 u32 fifo_we_slave_ratio
;
685 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
686 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256, t_ck
);
688 return fifo_we_slave_ratio
>> 10 | fifo_we_slave_ratio
<< 1 |
689 fifo_we_slave_ratio
<< 12 | fifo_we_slave_ratio
<< 23;
692 static u32
get_ext_phy_ctrl_4_intelliphy_4d5(void)
694 u32 fifo_we_slave_ratio
;
696 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
697 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256, t_ck
);
699 return fifo_we_slave_ratio
>> 9 | fifo_we_slave_ratio
<< 2 |
700 fifo_we_slave_ratio
<< 13;
703 static u32
get_pwr_mgmt_ctrl(u32 freq
, struct emif_data
*emif
, u32 ip_rev
)
705 u32 pwr_mgmt_ctrl
= 0, timeout
;
706 u32 lpmode
= EMIF_LP_MODE_SELF_REFRESH
;
707 u32 timeout_perf
= EMIF_LP_MODE_TIMEOUT_PERFORMANCE
;
708 u32 timeout_pwr
= EMIF_LP_MODE_TIMEOUT_POWER
;
709 u32 freq_threshold
= EMIF_LP_MODE_FREQ_THRESHOLD
;
713 struct emif_custom_configs
*cust_cfgs
= emif
->plat_data
->custom_configs
;
715 if (cust_cfgs
&& (cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_LPMODE
)) {
716 lpmode
= cust_cfgs
->lpmode
;
717 timeout_perf
= cust_cfgs
->lpmode_timeout_performance
;
718 timeout_pwr
= cust_cfgs
->lpmode_timeout_power
;
719 freq_threshold
= cust_cfgs
->lpmode_freq_threshold
;
722 /* Timeout based on DDR frequency */
723 timeout
= freq
>= freq_threshold
? timeout_perf
: timeout_pwr
;
726 * The value to be set in register is "log2(timeout) - 3"
727 * if timeout < 16 load 0 in register
728 * if timeout is not a power of 2, round to next highest power of 2
733 if (timeout
& (timeout
- 1))
735 timeout
= __fls(timeout
) - 3;
739 case EMIF_LP_MODE_CLOCK_STOP
:
740 shift
= CS_TIM_SHIFT
;
743 case EMIF_LP_MODE_SELF_REFRESH
:
744 /* Workaround for errata i735 */
748 shift
= SR_TIM_SHIFT
;
751 case EMIF_LP_MODE_PWR_DN
:
752 shift
= PD_TIM_SHIFT
;
755 case EMIF_LP_MODE_DISABLE
:
761 /* Round to maximum in case of overflow, BUT warn! */
762 if (lpmode
!= EMIF_LP_MODE_DISABLE
&& timeout
> mask
>> shift
) {
763 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
768 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
769 timeout
, mask
>> shift
);
770 timeout
= mask
>> shift
;
773 /* Setup required timing */
774 pwr_mgmt_ctrl
= (timeout
<< shift
) & mask
;
775 /* setup a default mask for rest of the modes */
776 pwr_mgmt_ctrl
|= (SR_TIM_MASK
| CS_TIM_MASK
| PD_TIM_MASK
) &
779 /* No CS_TIM in EMIF_4D5 */
780 if (ip_rev
== EMIF_4D5
)
781 pwr_mgmt_ctrl
&= ~CS_TIM_MASK
;
783 pwr_mgmt_ctrl
|= lpmode
<< LP_MODE_SHIFT
;
785 return pwr_mgmt_ctrl
;
789 * Get the temperature level of the EMIF instance:
790 * Reads the MR4 register of attached SDRAM parts to find out the temperature
791 * level. If there are two parts attached(one on each CS), then the temperature
792 * level for the EMIF instance is the higher of the two temperatures.
794 static void get_temperature_level(struct emif_data
*emif
)
796 u32 temp
, temperature_level
;
801 /* Read mode register 4 */
802 writel(DDR_MR4
, base
+ EMIF_LPDDR2_MODE_REG_CONFIG
);
803 temperature_level
= readl(base
+ EMIF_LPDDR2_MODE_REG_DATA
);
804 temperature_level
= (temperature_level
& MR4_SDRAM_REF_RATE_MASK
) >>
805 MR4_SDRAM_REF_RATE_SHIFT
;
807 if (emif
->plat_data
->device_info
->cs1_used
) {
808 writel(DDR_MR4
| CS_MASK
, base
+ EMIF_LPDDR2_MODE_REG_CONFIG
);
809 temp
= readl(base
+ EMIF_LPDDR2_MODE_REG_DATA
);
810 temp
= (temp
& MR4_SDRAM_REF_RATE_MASK
)
811 >> MR4_SDRAM_REF_RATE_SHIFT
;
812 temperature_level
= max(temp
, temperature_level
);
815 /* treat everything less than nominal(3) in MR4 as nominal */
816 if (unlikely(temperature_level
< SDRAM_TEMP_NOMINAL
))
817 temperature_level
= SDRAM_TEMP_NOMINAL
;
819 /* if we get reserved value in MR4 persist with the existing value */
820 if (likely(temperature_level
!= SDRAM_TEMP_RESERVED_4
))
821 emif
->temperature_level
= temperature_level
;
825 * Program EMIF shadow registers that are not dependent on temperature
828 static void setup_registers(struct emif_data
*emif
, struct emif_regs
*regs
)
830 void __iomem
*base
= emif
->base
;
832 writel(regs
->sdram_tim2_shdw
, base
+ EMIF_SDRAM_TIMING_2_SHDW
);
833 writel(regs
->phy_ctrl_1_shdw
, base
+ EMIF_DDR_PHY_CTRL_1_SHDW
);
834 writel(regs
->pwr_mgmt_ctrl_shdw
,
835 base
+ EMIF_POWER_MANAGEMENT_CTRL_SHDW
);
837 /* Settings specific for EMIF4D5 */
838 if (emif
->plat_data
->ip_rev
!= EMIF_4D5
)
840 writel(regs
->ext_phy_ctrl_2_shdw
, base
+ EMIF_EXT_PHY_CTRL_2_SHDW
);
841 writel(regs
->ext_phy_ctrl_3_shdw
, base
+ EMIF_EXT_PHY_CTRL_3_SHDW
);
842 writel(regs
->ext_phy_ctrl_4_shdw
, base
+ EMIF_EXT_PHY_CTRL_4_SHDW
);
846 * When voltage ramps dll calibration and forced read idle should
849 static void setup_volt_sensitive_regs(struct emif_data
*emif
,
850 struct emif_regs
*regs
, u32 volt_state
)
853 void __iomem
*base
= emif
->base
;
856 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
857 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
858 * is an alias of the respective read_idle_ctrl_shdw_* (members of
859 * a union). So, the below code takes care of both cases
861 if (volt_state
== DDR_VOLTAGE_RAMPING
)
862 calib_ctrl
= regs
->dll_calib_ctrl_shdw_volt_ramp
;
864 calib_ctrl
= regs
->dll_calib_ctrl_shdw_normal
;
866 writel(calib_ctrl
, base
+ EMIF_DLL_CALIB_CTRL_SHDW
);
870 * setup_temperature_sensitive_regs() - set the timings for temperature
871 * sensitive registers. This happens once at initialisation time based
872 * on the temperature at boot time and subsequently based on the temperature
873 * alert interrupt. Temperature alert can happen when the temperature
874 * increases or drops. So this function can have the effect of either
875 * derating the timings or going back to nominal values.
877 static void setup_temperature_sensitive_regs(struct emif_data
*emif
,
878 struct emif_regs
*regs
)
880 u32 tim1
, tim3
, ref_ctrl
, type
;
881 void __iomem
*base
= emif
->base
;
884 type
= emif
->plat_data
->device_info
->type
;
886 tim1
= regs
->sdram_tim1_shdw
;
887 tim3
= regs
->sdram_tim3_shdw
;
888 ref_ctrl
= regs
->ref_ctrl_shdw
;
890 /* No de-rating for non-lpddr2 devices */
891 if (type
!= DDR_TYPE_LPDDR2_S2
&& type
!= DDR_TYPE_LPDDR2_S4
)
894 temperature
= emif
->temperature_level
;
895 if (temperature
== SDRAM_TEMP_HIGH_DERATE_REFRESH
) {
896 ref_ctrl
= regs
->ref_ctrl_shdw_derated
;
897 } else if (temperature
== SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS
) {
898 tim1
= regs
->sdram_tim1_shdw_derated
;
899 tim3
= regs
->sdram_tim3_shdw_derated
;
900 ref_ctrl
= regs
->ref_ctrl_shdw_derated
;
904 writel(tim1
, base
+ EMIF_SDRAM_TIMING_1_SHDW
);
905 writel(tim3
, base
+ EMIF_SDRAM_TIMING_3_SHDW
);
906 writel(ref_ctrl
, base
+ EMIF_SDRAM_REFRESH_CTRL_SHDW
);
909 static irqreturn_t
handle_temp_alert(void __iomem
*base
, struct emif_data
*emif
)
912 irqreturn_t ret
= IRQ_HANDLED
;
913 struct emif_custom_configs
*custom_configs
;
915 spin_lock_irqsave(&emif_lock
, irq_state
);
916 old_temp_level
= emif
->temperature_level
;
917 get_temperature_level(emif
);
919 if (unlikely(emif
->temperature_level
== old_temp_level
)) {
921 } else if (!emif
->curr_regs
) {
922 dev_err(emif
->dev
, "temperature alert before registers are calculated, not de-rating timings\n");
926 custom_configs
= emif
->plat_data
->custom_configs
;
929 * IF we detect higher than "nominal rating" from DDR sensor
930 * on an unsupported DDR part, shutdown system
932 if (custom_configs
&& !(custom_configs
->mask
&
933 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART
)) {
934 if (emif
->temperature_level
>= SDRAM_TEMP_HIGH_DERATE_REFRESH
) {
936 "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
937 __func__
, emif
->temperature_level
);
939 * Temperature far too high - do kernel_power_off()
940 * from thread context
942 emif
->temperature_level
= SDRAM_TEMP_VERY_HIGH_SHUTDOWN
;
943 ret
= IRQ_WAKE_THREAD
;
948 if (emif
->temperature_level
< old_temp_level
||
949 emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
) {
951 * Temperature coming down - defer handling to thread OR
952 * Temperature far too high - do kernel_power_off() from
955 ret
= IRQ_WAKE_THREAD
;
957 /* Temperature is going up - handle immediately */
958 setup_temperature_sensitive_regs(emif
, emif
->curr_regs
);
963 spin_unlock_irqrestore(&emif_lock
, irq_state
);
967 static irqreturn_t
emif_interrupt_handler(int irq
, void *dev_id
)
970 struct emif_data
*emif
= dev_id
;
971 void __iomem
*base
= emif
->base
;
972 struct device
*dev
= emif
->dev
;
973 irqreturn_t ret
= IRQ_HANDLED
;
975 /* Save the status and clear it */
976 interrupts
= readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
977 writel(interrupts
, base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
980 * Handle temperature alert
981 * Temperature alert should be same for all ports
982 * So, it's enough to process it only for one of the ports
984 if (interrupts
& TA_SYS_MASK
)
985 ret
= handle_temp_alert(base
, emif
);
987 if (interrupts
& ERR_SYS_MASK
)
988 dev_err(dev
, "Access error from SYS port - %x\n", interrupts
);
990 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
) {
991 /* Save the status and clear it */
992 interrupts
= readl(base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
993 writel(interrupts
, base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
995 if (interrupts
& ERR_LL_MASK
)
996 dev_err(dev
, "Access error from LL port - %x\n",
1003 static irqreturn_t
emif_threaded_isr(int irq
, void *dev_id
)
1005 struct emif_data
*emif
= dev_id
;
1007 if (emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
) {
1008 dev_emerg(emif
->dev
, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1010 /* If we have Power OFF ability, use it, else try restarting */
1014 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1015 kernel_restart("SDRAM Over-temp Emergency restart");
1020 spin_lock_irqsave(&emif_lock
, irq_state
);
1022 if (emif
->curr_regs
) {
1023 setup_temperature_sensitive_regs(emif
, emif
->curr_regs
);
1026 dev_err(emif
->dev
, "temperature alert before registers are calculated, not de-rating timings\n");
1029 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1034 static void clear_all_interrupts(struct emif_data
*emif
)
1036 void __iomem
*base
= emif
->base
;
1038 writel(readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
),
1039 base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
1040 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
)
1041 writel(readl(base
+ EMIF_LL_OCP_INTERRUPT_STATUS
),
1042 base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
1045 static void disable_and_clear_all_interrupts(struct emif_data
*emif
)
1047 void __iomem
*base
= emif
->base
;
1049 /* Disable all interrupts */
1050 writel(readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET
),
1051 base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR
);
1052 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
)
1053 writel(readl(base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_SET
),
1054 base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR
);
1056 /* Clear all interrupts */
1057 clear_all_interrupts(emif
);
1060 static int __init_or_module
setup_interrupts(struct emif_data
*emif
, u32 irq
)
1062 u32 interrupts
, type
;
1063 void __iomem
*base
= emif
->base
;
1065 type
= emif
->plat_data
->device_info
->type
;
1067 clear_all_interrupts(emif
);
1069 /* Enable interrupts for SYS interface */
1070 interrupts
= EN_ERR_SYS_MASK
;
1071 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
)
1072 interrupts
|= EN_TA_SYS_MASK
;
1073 writel(interrupts
, base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET
);
1075 /* Enable interrupts for LL interface */
1076 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
) {
1077 /* TA need not be enabled for LL */
1078 interrupts
= EN_ERR_LL_MASK
;
1079 writel(interrupts
, base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_SET
);
1082 /* setup IRQ handlers */
1083 return devm_request_threaded_irq(emif
->dev
, irq
,
1084 emif_interrupt_handler
,
1086 0, dev_name(emif
->dev
),
1091 static void __init_or_module
emif_onetime_settings(struct emif_data
*emif
)
1093 u32 pwr_mgmt_ctrl
, zq
, temp_alert_cfg
;
1094 void __iomem
*base
= emif
->base
;
1095 const struct lpddr2_addressing
*addressing
;
1096 const struct ddr_device_info
*device_info
;
1098 device_info
= emif
->plat_data
->device_info
;
1099 addressing
= get_addressing_table(device_info
);
1102 * Init power management settings
1103 * We don't know the frequency yet. Use a high frequency
1104 * value for a conservative timeout setting
1106 pwr_mgmt_ctrl
= get_pwr_mgmt_ctrl(1000000000, emif
,
1107 emif
->plat_data
->ip_rev
);
1108 emif
->lpmode
= (pwr_mgmt_ctrl
& LP_MODE_MASK
) >> LP_MODE_SHIFT
;
1109 writel(pwr_mgmt_ctrl
, base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
1111 /* Init ZQ calibration settings */
1112 zq
= get_zq_config_reg(addressing
, device_info
->cs1_used
,
1113 device_info
->cal_resistors_per_cs
);
1114 writel(zq
, base
+ EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG
);
1116 /* Check temperature level temperature level*/
1117 get_temperature_level(emif
);
1118 if (emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
)
1119 dev_emerg(emif
->dev
, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1121 /* Init temperature polling */
1122 temp_alert_cfg
= get_temp_alert_config(addressing
,
1123 emif
->plat_data
->custom_configs
, device_info
->cs1_used
,
1124 device_info
->io_width
, get_emif_bus_width(emif
));
1125 writel(temp_alert_cfg
, base
+ EMIF_TEMPERATURE_ALERT_CONFIG
);
1128 * Program external PHY control registers that are not frequency
1131 if (emif
->plat_data
->phy_type
!= EMIF_PHY_TYPE_INTELLIPHY
)
1133 writel(EMIF_EXT_PHY_CTRL_1_VAL
, base
+ EMIF_EXT_PHY_CTRL_1_SHDW
);
1134 writel(EMIF_EXT_PHY_CTRL_5_VAL
, base
+ EMIF_EXT_PHY_CTRL_5_SHDW
);
1135 writel(EMIF_EXT_PHY_CTRL_6_VAL
, base
+ EMIF_EXT_PHY_CTRL_6_SHDW
);
1136 writel(EMIF_EXT_PHY_CTRL_7_VAL
, base
+ EMIF_EXT_PHY_CTRL_7_SHDW
);
1137 writel(EMIF_EXT_PHY_CTRL_8_VAL
, base
+ EMIF_EXT_PHY_CTRL_8_SHDW
);
1138 writel(EMIF_EXT_PHY_CTRL_9_VAL
, base
+ EMIF_EXT_PHY_CTRL_9_SHDW
);
1139 writel(EMIF_EXT_PHY_CTRL_10_VAL
, base
+ EMIF_EXT_PHY_CTRL_10_SHDW
);
1140 writel(EMIF_EXT_PHY_CTRL_11_VAL
, base
+ EMIF_EXT_PHY_CTRL_11_SHDW
);
1141 writel(EMIF_EXT_PHY_CTRL_12_VAL
, base
+ EMIF_EXT_PHY_CTRL_12_SHDW
);
1142 writel(EMIF_EXT_PHY_CTRL_13_VAL
, base
+ EMIF_EXT_PHY_CTRL_13_SHDW
);
1143 writel(EMIF_EXT_PHY_CTRL_14_VAL
, base
+ EMIF_EXT_PHY_CTRL_14_SHDW
);
1144 writel(EMIF_EXT_PHY_CTRL_15_VAL
, base
+ EMIF_EXT_PHY_CTRL_15_SHDW
);
1145 writel(EMIF_EXT_PHY_CTRL_16_VAL
, base
+ EMIF_EXT_PHY_CTRL_16_SHDW
);
1146 writel(EMIF_EXT_PHY_CTRL_17_VAL
, base
+ EMIF_EXT_PHY_CTRL_17_SHDW
);
1147 writel(EMIF_EXT_PHY_CTRL_18_VAL
, base
+ EMIF_EXT_PHY_CTRL_18_SHDW
);
1148 writel(EMIF_EXT_PHY_CTRL_19_VAL
, base
+ EMIF_EXT_PHY_CTRL_19_SHDW
);
1149 writel(EMIF_EXT_PHY_CTRL_20_VAL
, base
+ EMIF_EXT_PHY_CTRL_20_SHDW
);
1150 writel(EMIF_EXT_PHY_CTRL_21_VAL
, base
+ EMIF_EXT_PHY_CTRL_21_SHDW
);
1151 writel(EMIF_EXT_PHY_CTRL_22_VAL
, base
+ EMIF_EXT_PHY_CTRL_22_SHDW
);
1152 writel(EMIF_EXT_PHY_CTRL_23_VAL
, base
+ EMIF_EXT_PHY_CTRL_23_SHDW
);
1153 writel(EMIF_EXT_PHY_CTRL_24_VAL
, base
+ EMIF_EXT_PHY_CTRL_24_SHDW
);
1156 static void get_default_timings(struct emif_data
*emif
)
1158 struct emif_platform_data
*pd
= emif
->plat_data
;
1160 pd
->timings
= lpddr2_jedec_timings
;
1161 pd
->timings_arr_size
= ARRAY_SIZE(lpddr2_jedec_timings
);
1163 dev_warn(emif
->dev
, "%s: using default timings\n", __func__
);
1166 static int is_dev_data_valid(u32 type
, u32 density
, u32 io_width
, u32 phy_type
,
1167 u32 ip_rev
, struct device
*dev
)
1171 valid
= (type
== DDR_TYPE_LPDDR2_S4
||
1172 type
== DDR_TYPE_LPDDR2_S2
)
1173 && (density
>= DDR_DENSITY_64Mb
1174 && density
<= DDR_DENSITY_8Gb
)
1175 && (io_width
>= DDR_IO_WIDTH_8
1176 && io_width
<= DDR_IO_WIDTH_32
);
1178 /* Combinations of EMIF and PHY revisions that we support today */
1181 valid
= valid
&& (phy_type
== EMIF_PHY_TYPE_ATTILAPHY
);
1184 valid
= valid
&& (phy_type
== EMIF_PHY_TYPE_INTELLIPHY
);
1191 dev_err(dev
, "%s: invalid DDR details\n", __func__
);
1195 static int is_custom_config_valid(struct emif_custom_configs
*cust_cfgs
,
1200 if ((cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_LPMODE
) &&
1201 (cust_cfgs
->lpmode
!= EMIF_LP_MODE_DISABLE
))
1202 valid
= cust_cfgs
->lpmode_freq_threshold
&&
1203 cust_cfgs
->lpmode_timeout_performance
&&
1204 cust_cfgs
->lpmode_timeout_power
;
1206 if (cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
)
1207 valid
= valid
&& cust_cfgs
->temp_alert_poll_interval_ms
;
1210 dev_warn(dev
, "%s: invalid custom configs\n", __func__
);
1215 #if defined(CONFIG_OF)
1216 static void __init_or_module
of_get_custom_configs(struct device_node
*np_emif
,
1217 struct emif_data
*emif
)
1219 struct emif_custom_configs
*cust_cfgs
= NULL
;
1221 const __be32
*lpmode
, *poll_intvl
;
1223 lpmode
= of_get_property(np_emif
, "low-power-mode", &len
);
1224 poll_intvl
= of_get_property(np_emif
, "temp-alert-poll-interval", &len
);
1226 if (lpmode
|| poll_intvl
)
1227 cust_cfgs
= devm_kzalloc(emif
->dev
, sizeof(*cust_cfgs
),
1234 cust_cfgs
->mask
|= EMIF_CUSTOM_CONFIG_LPMODE
;
1235 cust_cfgs
->lpmode
= be32_to_cpup(lpmode
);
1236 of_property_read_u32(np_emif
,
1237 "low-power-mode-timeout-performance",
1238 &cust_cfgs
->lpmode_timeout_performance
);
1239 of_property_read_u32(np_emif
,
1240 "low-power-mode-timeout-power",
1241 &cust_cfgs
->lpmode_timeout_power
);
1242 of_property_read_u32(np_emif
,
1243 "low-power-mode-freq-threshold",
1244 &cust_cfgs
->lpmode_freq_threshold
);
1249 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
;
1250 cust_cfgs
->temp_alert_poll_interval_ms
=
1251 be32_to_cpup(poll_intvl
);
1254 if (of_find_property(np_emif
, "extended-temp-part", &len
))
1255 cust_cfgs
->mask
|= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART
;
1257 if (!is_custom_config_valid(cust_cfgs
, emif
->dev
)) {
1258 devm_kfree(emif
->dev
, cust_cfgs
);
1262 emif
->plat_data
->custom_configs
= cust_cfgs
;
1265 static void __init_or_module
of_get_ddr_info(struct device_node
*np_emif
,
1266 struct device_node
*np_ddr
,
1267 struct ddr_device_info
*dev_info
)
1269 u32 density
= 0, io_width
= 0;
1272 if (of_find_property(np_emif
, "cs1-used", &len
))
1273 dev_info
->cs1_used
= true;
1275 if (of_find_property(np_emif
, "cal-resistor-per-cs", &len
))
1276 dev_info
->cal_resistors_per_cs
= true;
1278 if (of_device_is_compatible(np_ddr
, "jedec,lpddr2-s4"))
1279 dev_info
->type
= DDR_TYPE_LPDDR2_S4
;
1280 else if (of_device_is_compatible(np_ddr
, "jedec,lpddr2-s2"))
1281 dev_info
->type
= DDR_TYPE_LPDDR2_S2
;
1283 of_property_read_u32(np_ddr
, "density", &density
);
1284 of_property_read_u32(np_ddr
, "io-width", &io_width
);
1286 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1287 if (density
& (density
- 1))
1288 dev_info
->density
= 0;
1290 dev_info
->density
= __fls(density
) - 5;
1292 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1293 if (io_width
& (io_width
- 1))
1294 dev_info
->io_width
= 0;
1296 dev_info
->io_width
= __fls(io_width
) - 1;
1299 static struct emif_data
* __init_or_module
of_get_memory_device_details(
1300 struct device_node
*np_emif
, struct device
*dev
)
1302 struct emif_data
*emif
= NULL
;
1303 struct ddr_device_info
*dev_info
= NULL
;
1304 struct emif_platform_data
*pd
= NULL
;
1305 struct device_node
*np_ddr
;
1308 np_ddr
= of_parse_phandle(np_emif
, "device-handle", 0);
1311 emif
= devm_kzalloc(dev
, sizeof(struct emif_data
), GFP_KERNEL
);
1312 pd
= devm_kzalloc(dev
, sizeof(*pd
), GFP_KERNEL
);
1313 dev_info
= devm_kzalloc(dev
, sizeof(*dev_info
), GFP_KERNEL
);
1315 if (!emif
|| !pd
|| !dev_info
) {
1316 dev_err(dev
, "%s: Out of memory!!\n",
1321 emif
->plat_data
= pd
;
1322 pd
->device_info
= dev_info
;
1324 emif
->np_ddr
= np_ddr
;
1325 emif
->temperature_level
= SDRAM_TEMP_NOMINAL
;
1327 if (of_device_is_compatible(np_emif
, "ti,emif-4d"))
1328 emif
->plat_data
->ip_rev
= EMIF_4D
;
1329 else if (of_device_is_compatible(np_emif
, "ti,emif-4d5"))
1330 emif
->plat_data
->ip_rev
= EMIF_4D5
;
1332 of_property_read_u32(np_emif
, "phy-type", &pd
->phy_type
);
1334 if (of_find_property(np_emif
, "hw-caps-ll-interface", &len
))
1335 pd
->hw_caps
|= EMIF_HW_CAPS_LL_INTERFACE
;
1337 of_get_ddr_info(np_emif
, np_ddr
, dev_info
);
1338 if (!is_dev_data_valid(pd
->device_info
->type
, pd
->device_info
->density
,
1339 pd
->device_info
->io_width
, pd
->phy_type
, pd
->ip_rev
,
1341 dev_err(dev
, "%s: invalid device data!!\n", __func__
);
1345 * For EMIF instances other than EMIF1 see if the devices connected
1346 * are exactly same as on EMIF1(which is typically the case). If so,
1347 * mark it as a duplicate of EMIF1. This will save some memory and
1350 if (emif1
&& emif1
->np_ddr
== np_ddr
) {
1351 emif
->duplicate
= true;
1354 dev_warn(emif
->dev
, "%s: Non-symmetric DDR geometry\n",
1358 of_get_custom_configs(np_emif
, emif
);
1359 emif
->plat_data
->timings
= of_get_ddr_timings(np_ddr
, emif
->dev
,
1360 emif
->plat_data
->device_info
->type
,
1361 &emif
->plat_data
->timings_arr_size
);
1363 emif
->plat_data
->min_tck
= of_get_min_tck(np_ddr
, emif
->dev
);
1374 static struct emif_data
* __init_or_module
of_get_memory_device_details(
1375 struct device_node
*np_emif
, struct device
*dev
)
1381 static struct emif_data
*__init_or_module
get_device_details(
1382 struct platform_device
*pdev
)
1385 struct emif_data
*emif
= NULL
;
1386 struct ddr_device_info
*dev_info
;
1387 struct emif_custom_configs
*cust_cfgs
;
1388 struct emif_platform_data
*pd
;
1392 pd
= pdev
->dev
.platform_data
;
1395 if (!(pd
&& pd
->device_info
&& is_dev_data_valid(pd
->device_info
->type
,
1396 pd
->device_info
->density
, pd
->device_info
->io_width
,
1397 pd
->phy_type
, pd
->ip_rev
, dev
))) {
1398 dev_err(dev
, "%s: invalid device data\n", __func__
);
1402 emif
= devm_kzalloc(dev
, sizeof(*emif
), GFP_KERNEL
);
1403 temp
= devm_kzalloc(dev
, sizeof(*pd
), GFP_KERNEL
);
1404 dev_info
= devm_kzalloc(dev
, sizeof(*dev_info
), GFP_KERNEL
);
1406 if (!emif
|| !pd
|| !dev_info
) {
1407 dev_err(dev
, "%s:%d: allocation error\n", __func__
, __LINE__
);
1411 memcpy(temp
, pd
, sizeof(*pd
));
1413 memcpy(dev_info
, pd
->device_info
, sizeof(*dev_info
));
1415 pd
->device_info
= dev_info
;
1416 emif
->plat_data
= pd
;
1418 emif
->temperature_level
= SDRAM_TEMP_NOMINAL
;
1421 * For EMIF instances other than EMIF1 see if the devices connected
1422 * are exactly same as on EMIF1(which is typically the case). If so,
1423 * mark it as a duplicate of EMIF1 and skip copying timings data.
1424 * This will save some memory and some computation later.
1426 emif
->duplicate
= emif1
&& (memcmp(dev_info
,
1427 emif1
->plat_data
->device_info
,
1428 sizeof(struct ddr_device_info
)) == 0);
1430 if (emif
->duplicate
) {
1435 dev_warn(emif
->dev
, "%s: Non-symmetric DDR geometry\n",
1440 * Copy custom configs - ignore allocation error, if any, as
1441 * custom_configs is not very critical
1443 cust_cfgs
= pd
->custom_configs
;
1444 if (cust_cfgs
&& is_custom_config_valid(cust_cfgs
, dev
)) {
1445 temp
= devm_kzalloc(dev
, sizeof(*cust_cfgs
), GFP_KERNEL
);
1447 memcpy(temp
, cust_cfgs
, sizeof(*cust_cfgs
));
1449 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1451 pd
->custom_configs
= temp
;
1455 * Copy timings and min-tck values from platform data. If it is not
1456 * available or if memory allocation fails, use JEDEC defaults
1458 size
= sizeof(struct lpddr2_timings
) * pd
->timings_arr_size
;
1460 temp
= devm_kzalloc(dev
, size
, GFP_KERNEL
);
1462 memcpy(temp
, pd
->timings
, size
);
1465 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1467 get_default_timings(emif
);
1470 get_default_timings(emif
);
1474 temp
= devm_kzalloc(dev
, sizeof(*pd
->min_tck
), GFP_KERNEL
);
1476 memcpy(temp
, pd
->min_tck
, sizeof(*pd
->min_tck
));
1479 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1481 pd
->min_tck
= &lpddr2_jedec_min_tck
;
1484 pd
->min_tck
= &lpddr2_jedec_min_tck
;
1494 static int __init_or_module
emif_probe(struct platform_device
*pdev
)
1496 struct emif_data
*emif
;
1497 struct resource
*res
;
1500 if (pdev
->dev
.of_node
)
1501 emif
= of_get_memory_device_details(pdev
->dev
.of_node
, &pdev
->dev
);
1503 emif
= get_device_details(pdev
);
1506 pr_err("%s: error getting device data\n", __func__
);
1510 list_add(&emif
->node
, &device_list
);
1511 emif
->addressing
= get_addressing_table(emif
->plat_data
->device_info
);
1513 /* Save pointers to each other in emif and device structures */
1514 emif
->dev
= &pdev
->dev
;
1515 platform_set_drvdata(pdev
, emif
);
1517 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1518 emif
->base
= devm_ioremap_resource(emif
->dev
, res
);
1519 if (IS_ERR(emif
->base
))
1522 irq
= platform_get_irq(pdev
, 0);
1526 emif_onetime_settings(emif
);
1527 emif_debugfs_init(emif
);
1528 disable_and_clear_all_interrupts(emif
);
1529 setup_interrupts(emif
, irq
);
1531 /* One-time actions taken on probing the first device */
1534 spin_lock_init(&emif_lock
);
1537 * TODO: register notifiers for frequency and voltage
1538 * change here once the respective frameworks are
1543 dev_info(&pdev
->dev
, "%s: device configured with addr = %p and IRQ%d\n",
1544 __func__
, emif
->base
, irq
);
1551 static int __exit
emif_remove(struct platform_device
*pdev
)
1553 struct emif_data
*emif
= platform_get_drvdata(pdev
);
1555 emif_debugfs_exit(emif
);
1560 static void emif_shutdown(struct platform_device
*pdev
)
1562 struct emif_data
*emif
= platform_get_drvdata(pdev
);
1564 disable_and_clear_all_interrupts(emif
);
1567 static int get_emif_reg_values(struct emif_data
*emif
, u32 freq
,
1568 struct emif_regs
*regs
)
1570 u32 ip_rev
, phy_type
;
1572 const struct lpddr2_timings
*timings
;
1573 const struct lpddr2_min_tck
*min_tck
;
1574 const struct ddr_device_info
*device_info
;
1575 const struct lpddr2_addressing
*addressing
;
1576 struct emif_data
*emif_for_calc
;
1581 * If the devices on this EMIF instance is duplicate of EMIF1,
1582 * use EMIF1 details for the calculation
1584 emif_for_calc
= emif
->duplicate
? emif1
: emif
;
1585 timings
= get_timings_table(emif_for_calc
, freq
);
1586 addressing
= emif_for_calc
->addressing
;
1587 if (!timings
|| !addressing
) {
1588 dev_err(dev
, "%s: not enough data available for %dHz",
1593 device_info
= emif_for_calc
->plat_data
->device_info
;
1594 type
= device_info
->type
;
1595 ip_rev
= emif_for_calc
->plat_data
->ip_rev
;
1596 phy_type
= emif_for_calc
->plat_data
->phy_type
;
1598 min_tck
= emif_for_calc
->plat_data
->min_tck
;
1600 set_ddr_clk_period(freq
);
1602 regs
->ref_ctrl_shdw
= get_sdram_ref_ctrl_shdw(freq
, addressing
);
1603 regs
->sdram_tim1_shdw
= get_sdram_tim_1_shdw(timings
, min_tck
,
1605 regs
->sdram_tim2_shdw
= get_sdram_tim_2_shdw(timings
, min_tck
,
1607 regs
->sdram_tim3_shdw
= get_sdram_tim_3_shdw(timings
, min_tck
,
1608 addressing
, type
, ip_rev
, EMIF_NORMAL_TIMINGS
);
1612 if (phy_type
== EMIF_PHY_TYPE_ATTILAPHY
&& ip_rev
== EMIF_4D
) {
1613 regs
->phy_ctrl_1_shdw
= get_ddr_phy_ctrl_1_attilaphy_4d(
1615 } else if (phy_type
== EMIF_PHY_TYPE_INTELLIPHY
&& ip_rev
== EMIF_4D5
) {
1616 regs
->phy_ctrl_1_shdw
= get_phy_ctrl_1_intelliphy_4d5(freq
, cl
);
1617 regs
->ext_phy_ctrl_2_shdw
= get_ext_phy_ctrl_2_intelliphy_4d5();
1618 regs
->ext_phy_ctrl_3_shdw
= get_ext_phy_ctrl_3_intelliphy_4d5();
1619 regs
->ext_phy_ctrl_4_shdw
= get_ext_phy_ctrl_4_intelliphy_4d5();
1624 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1625 regs
->pwr_mgmt_ctrl_shdw
=
1626 get_pwr_mgmt_ctrl(freq
, emif_for_calc
, ip_rev
) &
1627 (CS_TIM_MASK
| SR_TIM_MASK
| PD_TIM_MASK
);
1629 if (ip_rev
& EMIF_4D
) {
1630 regs
->read_idle_ctrl_shdw_normal
=
1631 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE
);
1633 regs
->read_idle_ctrl_shdw_volt_ramp
=
1634 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING
);
1635 } else if (ip_rev
& EMIF_4D5
) {
1636 regs
->dll_calib_ctrl_shdw_normal
=
1637 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE
);
1639 regs
->dll_calib_ctrl_shdw_volt_ramp
=
1640 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING
);
1643 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
) {
1644 regs
->ref_ctrl_shdw_derated
= get_sdram_ref_ctrl_shdw(freq
/ 4,
1647 regs
->sdram_tim1_shdw_derated
=
1648 get_sdram_tim_1_shdw_derated(timings
, min_tck
,
1651 regs
->sdram_tim3_shdw_derated
= get_sdram_tim_3_shdw(timings
,
1652 min_tck
, addressing
, type
, ip_rev
,
1653 EMIF_DERATED_TIMINGS
);
1662 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1663 * given frequency(freq):
1665 * As an optimisation, every EMIF instance other than EMIF1 shares the
1666 * register cache with EMIF1 if the devices connected on this instance
1667 * are same as that on EMIF1(indicated by the duplicate flag)
1669 * If we do not have an entry corresponding to the frequency given, we
1670 * allocate a new entry and calculate the values
1672 * Upon finding the right reg dump, save it in curr_regs. It can be
1673 * directly used for thermal de-rating and voltage ramping changes.
1675 static struct emif_regs
*get_regs(struct emif_data
*emif
, u32 freq
)
1678 struct emif_regs
**regs_cache
;
1679 struct emif_regs
*regs
= NULL
;
1683 if (emif
->curr_regs
&& emif
->curr_regs
->freq
== freq
) {
1684 dev_dbg(dev
, "%s: using curr_regs - %u Hz", __func__
, freq
);
1685 return emif
->curr_regs
;
1688 if (emif
->duplicate
)
1689 regs_cache
= emif1
->regs_cache
;
1691 regs_cache
= emif
->regs_cache
;
1693 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++) {
1694 if (regs_cache
[i
]->freq
== freq
) {
1695 regs
= regs_cache
[i
];
1697 "%s: reg dump found in reg cache for %u Hz\n",
1704 * If we don't have an entry for this frequency in the cache create one
1705 * and calculate the values
1708 regs
= devm_kzalloc(emif
->dev
, sizeof(*regs
), GFP_ATOMIC
);
1712 if (get_emif_reg_values(emif
, freq
, regs
)) {
1713 devm_kfree(emif
->dev
, regs
);
1718 * Now look for an un-used entry in the cache and save the
1719 * newly created struct. If there are no free entries
1720 * over-write the last entry
1722 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++)
1725 if (i
>= EMIF_MAX_NUM_FREQUENCIES
) {
1726 dev_warn(dev
, "%s: regs_cache full - reusing a slot!!\n",
1728 i
= EMIF_MAX_NUM_FREQUENCIES
- 1;
1729 devm_kfree(emif
->dev
, regs_cache
[i
]);
1731 regs_cache
[i
] = regs
;
1737 static void do_volt_notify_handling(struct emif_data
*emif
, u32 volt_state
)
1739 dev_dbg(emif
->dev
, "%s: voltage notification : %d", __func__
,
1742 if (!emif
->curr_regs
) {
1744 "%s: volt-notify before registers are ready: %d\n",
1745 __func__
, volt_state
);
1749 setup_volt_sensitive_regs(emif
, emif
->curr_regs
, volt_state
);
1753 * TODO: voltage notify handling should be hooked up to
1754 * regulator framework as soon as the necessary support
1755 * is available in mainline kernel. This function is un-used
1758 static void __attribute__((unused
)) volt_notify_handling(u32 volt_state
)
1760 struct emif_data
*emif
;
1762 spin_lock_irqsave(&emif_lock
, irq_state
);
1764 list_for_each_entry(emif
, &device_list
, node
)
1765 do_volt_notify_handling(emif
, volt_state
);
1768 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1771 static void do_freq_pre_notify_handling(struct emif_data
*emif
, u32 new_freq
)
1773 struct emif_regs
*regs
;
1775 regs
= get_regs(emif
, new_freq
);
1779 emif
->curr_regs
= regs
;
1782 * Update the shadow registers:
1783 * Temperature and voltage-ramp sensitive settings are also configured
1784 * in terms of DDR cycles. So, we need to update them too when there
1787 dev_dbg(emif
->dev
, "%s: setting up shadow registers for %uHz",
1788 __func__
, new_freq
);
1789 setup_registers(emif
, regs
);
1790 setup_temperature_sensitive_regs(emif
, regs
);
1791 setup_volt_sensitive_regs(emif
, regs
, DDR_VOLTAGE_STABLE
);
1794 * Part of workaround for errata i728. See do_freq_update()
1797 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
1798 set_lpmode(emif
, EMIF_LP_MODE_DISABLE
);
1802 * TODO: frequency notify handling should be hooked up to
1803 * clock framework as soon as the necessary support is
1804 * available in mainline kernel. This function is un-used
1807 static void __attribute__((unused
)) freq_pre_notify_handling(u32 new_freq
)
1809 struct emif_data
*emif
;
1812 * NOTE: we are taking the spin-lock here and releases it
1813 * only in post-notifier. This doesn't look good and
1814 * Sparse complains about it, but this seems to be
1815 * un-avoidable. We need to lock a sequence of events
1816 * that is split between EMIF and clock framework.
1818 * 1. EMIF driver updates EMIF timings in shadow registers in the
1819 * frequency pre-notify callback from clock framework
1820 * 2. clock framework sets up the registers for the new frequency
1821 * 3. clock framework initiates a hw-sequence that updates
1822 * the frequency EMIF timings synchronously.
1824 * All these 3 steps should be performed as an atomic operation
1825 * vis-a-vis similar sequence in the EMIF interrupt handler
1826 * for temperature events. Otherwise, there could be race
1827 * conditions that could result in incorrect EMIF timings for
1830 spin_lock_irqsave(&emif_lock
, irq_state
);
1832 list_for_each_entry(emif
, &device_list
, node
)
1833 do_freq_pre_notify_handling(emif
, new_freq
);
1836 static void do_freq_post_notify_handling(struct emif_data
*emif
)
1839 * Part of workaround for errata i728. See do_freq_update()
1842 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
1843 set_lpmode(emif
, EMIF_LP_MODE_SELF_REFRESH
);
1847 * TODO: frequency notify handling should be hooked up to
1848 * clock framework as soon as the necessary support is
1849 * available in mainline kernel. This function is un-used
1852 static void __attribute__((unused
)) freq_post_notify_handling(void)
1854 struct emif_data
*emif
;
1856 list_for_each_entry(emif
, &device_list
, node
)
1857 do_freq_post_notify_handling(emif
);
1860 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1863 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1866 #if defined(CONFIG_OF)
1867 static const struct of_device_id emif_of_match
[] = {
1868 { .compatible
= "ti,emif-4d" },
1869 { .compatible
= "ti,emif-4d5" },
1872 MODULE_DEVICE_TABLE(of
, emif_of_match
);
1875 static struct platform_driver emif_driver
= {
1876 .remove
= __exit_p(emif_remove
),
1877 .shutdown
= emif_shutdown
,
1880 .of_match_table
= of_match_ptr(emif_of_match
),
1884 module_platform_driver_probe(emif_driver
, emif_probe
);
1886 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1887 MODULE_LICENSE("GPL");
1888 MODULE_ALIAS("platform:emif");
1889 MODULE_AUTHOR("Texas Instruments Inc");