Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / memory / samsung / exynos5422-dmc.c
blobc5ee4121a4d22cd3fc2c5f84f1178eb8dc38eab6
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
5 */
7 #include <linux/clk.h>
8 #include <linux/devfreq.h>
9 #include <linux/devfreq-event.h>
10 #include <linux/device.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_opp.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/regulator/consumer.h>
21 #include <linux/slab.h>
22 #include "../jedec_ddr.h"
23 #include "../of_memory.h"
25 static int irqmode;
26 module_param(irqmode, int, 0644);
27 MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
29 #define EXYNOS5_DREXI_TIMINGAREF (0x0030)
30 #define EXYNOS5_DREXI_TIMINGROW0 (0x0034)
31 #define EXYNOS5_DREXI_TIMINGDATA0 (0x0038)
32 #define EXYNOS5_DREXI_TIMINGPOWER0 (0x003C)
33 #define EXYNOS5_DREXI_TIMINGROW1 (0x00E4)
34 #define EXYNOS5_DREXI_TIMINGDATA1 (0x00E8)
35 #define EXYNOS5_DREXI_TIMINGPOWER1 (0x00EC)
36 #define CDREX_PAUSE (0x2091c)
37 #define CDREX_LPDDR3PHY_CON3 (0x20a20)
38 #define CDREX_LPDDR3PHY_CLKM_SRC (0x20700)
39 #define EXYNOS5_TIMING_SET_SWI BIT(28)
40 #define USE_MX_MSPLL_TIMINGS (1)
41 #define USE_BPLL_TIMINGS (0)
42 #define EXYNOS5_AREF_NORMAL (0x2e)
44 #define DREX_PPCCLKCON (0x0130)
45 #define DREX_PEREV2CONFIG (0x013c)
46 #define DREX_PMNC_PPC (0xE000)
47 #define DREX_CNTENS_PPC (0xE010)
48 #define DREX_CNTENC_PPC (0xE020)
49 #define DREX_INTENS_PPC (0xE030)
50 #define DREX_INTENC_PPC (0xE040)
51 #define DREX_FLAG_PPC (0xE050)
52 #define DREX_PMCNT2_PPC (0xE130)
55 * A value for register DREX_PMNC_PPC which should be written to reset
56 * the cycle counter CCNT (a reference wall clock). It sets zero to the
57 * CCNT counter.
59 #define CC_RESET BIT(2)
62 * A value for register DREX_PMNC_PPC which does the reset of all performance
63 * counters to zero.
65 #define PPC_COUNTER_RESET BIT(1)
68 * Enables all configured counters (including cycle counter). The value should
69 * be written to the register DREX_PMNC_PPC.
71 #define PPC_ENABLE BIT(0)
73 /* A value for register DREX_PPCCLKCON which enables performance events clock.
74 * Must be written before first access to the performance counters register
75 * set, otherwise it could crash.
77 #define PEREV_CLK_EN BIT(0)
80 * Values which are used to enable counters, interrupts or configure flags of
81 * the performance counters. They configure counter 2 and cycle counter.
83 #define PERF_CNT2 BIT(2)
84 #define PERF_CCNT BIT(31)
87 * Performance event types which are used for setting the preferred event
88 * to track in the counters.
89 * There is a set of different types, the values are from range 0 to 0x6f.
90 * These settings should be written to the configuration register which manages
91 * the type of the event (register DREX_PEREV2CONFIG).
93 #define READ_TRANSFER_CH0 (0x6d)
94 #define READ_TRANSFER_CH1 (0x6f)
96 #define PERF_COUNTER_START_VALUE 0xff000000
97 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
99 /**
100 * struct dmc_opp_table - Operating level desciption
101 * @freq_hz: target frequency in Hz
102 * @volt_uv: target voltage in uV
104 * Covers frequency and voltage settings of the DMC operating mode.
106 struct dmc_opp_table {
107 u32 freq_hz;
108 u32 volt_uv;
112 * struct exynos5_dmc - main structure describing DMC device
113 * @dev: DMC device
114 * @df: devfreq device structure returned by devfreq framework
115 * @gov_data: configuration of devfreq governor
116 * @base_drexi0: DREX0 registers mapping
117 * @base_drexi1: DREX1 registers mapping
118 * @clk_regmap: regmap for clock controller registers
119 * @lock: protects curr_rate and frequency/voltage setting section
120 * @curr_rate: current frequency
121 * @curr_volt: current voltage
122 * @opp: OPP table
123 * @opp_count: number of 'opp' elements
124 * @timings_arr_size: number of 'timings' elements
125 * @timing_row: values for timing row register, for each OPP
126 * @timing_data: values for timing data register, for each OPP
127 * @timing_power: balues for timing power register, for each OPP
128 * @timings: DDR memory timings, from device tree
129 * @min_tck: DDR memory minimum timing values, from device tree
130 * @bypass_timing_row: value for timing row register for bypass timings
131 * @bypass_timing_data: value for timing data register for bypass timings
132 * @bypass_timing_power: value for timing power register for bypass
133 * timings
134 * @vdd_mif: Memory interface regulator
135 * @fout_spll: clock: SPLL
136 * @fout_bpll: clock: BPLL
137 * @mout_spll: clock: mux SPLL
138 * @mout_bpll: clock: mux BPLL
139 * @mout_mclk_cdrex: clock: mux mclk_cdrex
140 * @mout_mx_mspll_ccore: clock: mux mx_mspll_ccore
141 * @counter: devfreq events
142 * @num_counters: number of 'counter' elements
143 * @last_overflow_ts: time (in ns) of last overflow of each DREX
144 * @load: utilization in percents
145 * @total: total time between devfreq events
146 * @in_irq_mode: whether running in interrupt mode (true)
147 * or polling (false)
149 * The main structure for the Dynamic Memory Controller which covers clocks,
150 * memory regions, HW information, parameters and current operating mode.
152 struct exynos5_dmc {
153 struct device *dev;
154 struct devfreq *df;
155 struct devfreq_simple_ondemand_data gov_data;
156 void __iomem *base_drexi0;
157 void __iomem *base_drexi1;
158 struct regmap *clk_regmap;
159 /* Protects curr_rate and frequency/voltage setting section */
160 struct mutex lock;
161 unsigned long curr_rate;
162 unsigned long curr_volt;
163 struct dmc_opp_table *opp;
164 int opp_count;
165 u32 timings_arr_size;
166 u32 *timing_row;
167 u32 *timing_data;
168 u32 *timing_power;
169 const struct lpddr3_timings *timings;
170 const struct lpddr3_min_tck *min_tck;
171 u32 bypass_timing_row;
172 u32 bypass_timing_data;
173 u32 bypass_timing_power;
174 struct regulator *vdd_mif;
175 struct clk *fout_spll;
176 struct clk *fout_bpll;
177 struct clk *mout_spll;
178 struct clk *mout_bpll;
179 struct clk *mout_mclk_cdrex;
180 struct clk *mout_mx_mspll_ccore;
181 struct devfreq_event_dev **counter;
182 int num_counters;
183 u64 last_overflow_ts[2];
184 unsigned long load;
185 unsigned long total;
186 bool in_irq_mode;
189 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
190 { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
192 #define TIMING_VAL2REG(timing, t_val) \
193 ({ \
194 u32 __val; \
195 __val = (t_val) << (timing)->bit_beg; \
196 __val; \
199 struct timing_reg {
200 char *name;
201 int bit_beg;
202 int bit_end;
203 unsigned int val;
206 static const struct timing_reg timing_row_reg_fields[] = {
207 TIMING_FIELD("tRFC", 24, 31),
208 TIMING_FIELD("tRRD", 20, 23),
209 TIMING_FIELD("tRP", 16, 19),
210 TIMING_FIELD("tRCD", 12, 15),
211 TIMING_FIELD("tRC", 6, 11),
212 TIMING_FIELD("tRAS", 0, 5),
215 static const struct timing_reg timing_data_reg_fields[] = {
216 TIMING_FIELD("tWTR", 28, 31),
217 TIMING_FIELD("tWR", 24, 27),
218 TIMING_FIELD("tRTP", 20, 23),
219 TIMING_FIELD("tW2W-C2C", 14, 14),
220 TIMING_FIELD("tR2R-C2C", 12, 12),
221 TIMING_FIELD("WL", 8, 11),
222 TIMING_FIELD("tDQSCK", 4, 7),
223 TIMING_FIELD("RL", 0, 3),
226 static const struct timing_reg timing_power_reg_fields[] = {
227 TIMING_FIELD("tFAW", 26, 31),
228 TIMING_FIELD("tXSR", 16, 25),
229 TIMING_FIELD("tXP", 8, 15),
230 TIMING_FIELD("tCKE", 4, 7),
231 TIMING_FIELD("tMRD", 0, 3),
234 #define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
235 ARRAY_SIZE(timing_data_reg_fields) + \
236 ARRAY_SIZE(timing_power_reg_fields))
238 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
240 int i, ret;
242 for (i = 0; i < dmc->num_counters; i++) {
243 if (!dmc->counter[i])
244 continue;
245 ret = devfreq_event_set_event(dmc->counter[i]);
246 if (ret < 0)
247 return ret;
249 return 0;
252 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
254 int i, ret;
256 for (i = 0; i < dmc->num_counters; i++) {
257 if (!dmc->counter[i])
258 continue;
259 ret = devfreq_event_enable_edev(dmc->counter[i]);
260 if (ret < 0)
261 return ret;
263 return 0;
266 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
268 int i, ret;
270 for (i = 0; i < dmc->num_counters; i++) {
271 if (!dmc->counter[i])
272 continue;
273 ret = devfreq_event_disable_edev(dmc->counter[i]);
274 if (ret < 0)
275 return ret;
277 return 0;
281 * find_target_freq_id() - Finds requested frequency in local DMC configuration
282 * @dmc: device for which the information is checked
283 * @target_rate: requested frequency in KHz
285 * Seeks in the local DMC driver structure for the requested frequency value
286 * and returns index or error value.
288 static int find_target_freq_idx(struct exynos5_dmc *dmc,
289 unsigned long target_rate)
291 int i;
293 for (i = dmc->opp_count - 1; i >= 0; i--)
294 if (dmc->opp[i].freq_hz <= target_rate)
295 return i;
297 return -EINVAL;
301 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
302 * @dmc: device for which the new settings is going to be applied
303 * @set: boolean variable passing set value
305 * Changes the register set, which holds timing parameters.
306 * There is two register sets: 0 and 1. The register set 0
307 * is used in normal operation when the clock is provided from main PLL.
308 * The bank register set 1 is used when the main PLL frequency is going to be
309 * changed and the clock is taken from alternative, stable source.
310 * This function switches between these banks according to the
311 * currently used clock source.
313 static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
315 unsigned int reg;
316 int ret;
318 ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
319 if (ret)
320 return ret;
322 if (set)
323 reg |= EXYNOS5_TIMING_SET_SWI;
324 else
325 reg &= ~EXYNOS5_TIMING_SET_SWI;
327 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
329 return 0;
333 * exynos5_init_freq_table() - Initialized PM OPP framework
334 * @dmc: DMC device for which the frequencies are used for OPP init
335 * @profile: devfreq device's profile
337 * Populate the devfreq device's OPP table based on current frequency, voltage.
339 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
340 struct devfreq_dev_profile *profile)
342 int i, ret;
343 int idx;
344 unsigned long freq;
346 ret = dev_pm_opp_of_add_table(dmc->dev);
347 if (ret < 0) {
348 dev_err(dmc->dev, "Failed to get OPP table\n");
349 return ret;
352 dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
354 dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
355 sizeof(struct dmc_opp_table), GFP_KERNEL);
356 if (!dmc->opp)
357 goto err_opp;
359 idx = dmc->opp_count - 1;
360 for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
361 struct dev_pm_opp *opp;
363 opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
364 if (IS_ERR(opp))
365 goto err_opp;
367 dmc->opp[idx - i].freq_hz = freq;
368 dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
370 dev_pm_opp_put(opp);
373 return 0;
375 err_opp:
376 dev_pm_opp_of_remove_table(dmc->dev);
378 return -EINVAL;
382 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
383 * @dmc: device for which the new settings is going to be applied
385 * Low-level function for changing timings for DRAM memory clocking from
386 * 'bypass' clock source (fixed frequency @400MHz).
387 * It uses timing bank registers set 1.
389 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
391 writel(EXYNOS5_AREF_NORMAL,
392 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
394 writel(dmc->bypass_timing_row,
395 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
396 writel(dmc->bypass_timing_row,
397 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
398 writel(dmc->bypass_timing_data,
399 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
400 writel(dmc->bypass_timing_data,
401 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
402 writel(dmc->bypass_timing_power,
403 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
404 writel(dmc->bypass_timing_power,
405 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
409 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
410 * @dmc: device for which the new settings is going to be applied
411 * @target_rate: target frequency of the DMC
413 * Low-level function for changing timings for DRAM memory operating from main
414 * clock source (BPLL), which can have different frequencies. Thus, each
415 * frequency must have corresponding timings register values in order to keep
416 * the needed delays.
417 * It uses timing bank registers set 0.
419 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
420 unsigned long target_rate)
422 int idx;
424 for (idx = dmc->opp_count - 1; idx >= 0; idx--)
425 if (dmc->opp[idx].freq_hz <= target_rate)
426 break;
428 if (idx < 0)
429 return -EINVAL;
431 writel(EXYNOS5_AREF_NORMAL,
432 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
434 writel(dmc->timing_row[idx],
435 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
436 writel(dmc->timing_row[idx],
437 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
438 writel(dmc->timing_data[idx],
439 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
440 writel(dmc->timing_data[idx],
441 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
442 writel(dmc->timing_power[idx],
443 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
444 writel(dmc->timing_power[idx],
445 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
447 return 0;
451 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
452 * @dmc: device for which it is going to be set
453 * @target_volt: new voltage which is chosen to be final
455 * Function tries to align voltage to the safe level for 'normal' mode.
456 * It checks the need of higher voltage and changes the value. The target
457 * voltage might be lower that currently set and still the system will be
458 * stable.
460 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
461 unsigned long target_volt)
463 int ret = 0;
465 if (dmc->curr_volt <= target_volt)
466 return 0;
468 ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
469 target_volt);
470 if (!ret)
471 dmc->curr_volt = target_volt;
473 return ret;
477 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
478 * @dmc: device for which it is going to be set
479 * @target_volt: new voltage which is chosen to be final
481 * Function tries to align voltage to the safe level for the 'bypass' mode.
482 * It checks the need of higher voltage and changes the value.
483 * The target voltage must not be less than currently needed, because
484 * for current frequency the device might become unstable.
486 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
487 unsigned long target_volt)
489 int ret = 0;
491 if (dmc->curr_volt >= target_volt)
492 return 0;
494 ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
495 target_volt);
496 if (!ret)
497 dmc->curr_volt = target_volt;
499 return ret;
503 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
504 * @dmc: device for which it is going to be set
505 * @target_rate: new frequency which is chosen to be final
507 * Function changes the DRAM timings for the temporary 'bypass' mode.
509 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
510 unsigned long target_rate)
512 int idx = find_target_freq_idx(dmc, target_rate);
514 if (idx < 0)
515 return -EINVAL;
517 exynos5_set_bypass_dram_timings(dmc);
519 return 0;
523 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
524 * @dmc: DMC device for which the switching is going to happen
525 * @target_rate: new frequency which is going to be set as a final
526 * @target_volt: new voltage which is going to be set as a final
528 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
529 * This mode is used only temporary but if required, changes voltage and timings
530 * for DRAM chips. It switches the main clock to stable clock source for the
531 * period of the main PLL reconfiguration.
533 static int
534 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
535 unsigned long target_rate,
536 unsigned long target_volt)
538 int ret;
541 * Having higher voltage for a particular frequency does not harm
542 * the chip. Use it for the temporary frequency change when one
543 * voltage manipulation might be avoided.
545 ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
546 if (ret)
547 return ret;
550 * Longer delays for DRAM does not cause crash, the opposite does.
552 ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
553 if (ret)
554 return ret;
557 * Delays are long enough, so use them for the new coming clock.
559 ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
561 return ret;
565 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
566 * using safe procedure
567 * @dmc: device for which the frequency is going to be changed
568 * @target_rate: requested new frequency
569 * @target_volt: requested voltage which corresponds to the new frequency
571 * The DMC frequency change procedure requires a few steps.
572 * The main requirement is to change the clock source in the clk mux
573 * for the time of main clock PLL locking. The assumption is that the
574 * alternative clock source set as parent is stable.
575 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
576 * clock. This requires alignment in DRAM timing parameters for the new
577 * T-period. There is two bank sets for keeping DRAM
578 * timings: set 0 and set 1. The set 0 is used when main clock source is
579 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
580 * the two bank sets is part of the process.
581 * The voltage must also be aligned to the minimum required level. There is
582 * this intermediate step with switching to 'bypass' parent clock source.
583 * if the old voltage is lower, it requires an increase of the voltage level.
584 * The complexity of the voltage manipulation is hidden in low level function.
585 * In this function there is last alignment of the voltage level at the end.
587 static int
588 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
589 unsigned long target_rate,
590 unsigned long target_volt)
592 int ret;
594 ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
595 target_volt);
596 if (ret)
597 return ret;
600 * Voltage is set at least to a level needed for this frequency,
601 * so switching clock source is safe now.
603 clk_prepare_enable(dmc->fout_spll);
604 clk_prepare_enable(dmc->mout_spll);
605 clk_prepare_enable(dmc->mout_mx_mspll_ccore);
607 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
608 if (ret)
609 goto disable_clocks;
612 * We are safe to increase the timings for current bypass frequency.
613 * Thanks to this the settings will be ready for the upcoming clock
614 * source change.
616 exynos5_dram_change_timings(dmc, target_rate);
618 clk_set_rate(dmc->fout_bpll, target_rate);
620 ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
621 if (ret)
622 goto disable_clocks;
624 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
625 if (ret)
626 goto disable_clocks;
629 * Make sure if the voltage is not from 'bypass' settings and align to
630 * the right level for power efficiency.
632 ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
634 disable_clocks:
635 clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
636 clk_disable_unprepare(dmc->mout_spll);
637 clk_disable_unprepare(dmc->fout_spll);
639 return ret;
643 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
644 * table.
645 * @dmc: device for which the frequency is going to be changed
646 * @freq: requested frequency in KHz
647 * @target_rate: returned frequency which is the same or lower than
648 * requested
649 * @target_volt: returned voltage which corresponds to the returned
650 * frequency
651 * @flags: devfreq flags provided for this frequency change request
653 * Function gets requested frequency and checks OPP framework for needed
654 * frequency and voltage. It populates the values 'target_rate' and
655 * 'target_volt' or returns error value when OPP framework fails.
657 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
658 unsigned long *freq,
659 unsigned long *target_rate,
660 unsigned long *target_volt, u32 flags)
662 struct dev_pm_opp *opp;
664 opp = devfreq_recommended_opp(dmc->dev, freq, flags);
665 if (IS_ERR(opp))
666 return PTR_ERR(opp);
668 *target_rate = dev_pm_opp_get_freq(opp);
669 *target_volt = dev_pm_opp_get_voltage(opp);
670 dev_pm_opp_put(opp);
672 return 0;
676 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
677 * @dev: device for which the frequency is going to be changed
678 * @freq: requested frequency in KHz
679 * @flags: flags provided for this frequency change request
681 * An entry function provided to the devfreq framework which provides frequency
682 * change of the DMC. The function gets the possible rate from OPP table based
683 * on requested frequency. It calls the next function responsible for the
684 * frequency and voltage change. In case of failure, does not set 'curr_rate'
685 * and returns error value to the framework.
687 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
688 u32 flags)
690 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
691 unsigned long target_rate = 0;
692 unsigned long target_volt = 0;
693 int ret;
695 ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
696 flags);
698 if (ret)
699 return ret;
701 if (target_rate == dmc->curr_rate)
702 return 0;
704 mutex_lock(&dmc->lock);
706 ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
708 if (ret) {
709 mutex_unlock(&dmc->lock);
710 return ret;
713 dmc->curr_rate = target_rate;
715 mutex_unlock(&dmc->lock);
716 return 0;
720 * exynos5_counters_get() - Gets the performance counters values.
721 * @dmc: device for which the counters are going to be checked
722 * @load_count: variable which is populated with counter value
723 * @total_count: variable which is used as 'wall clock' reference
725 * Function which provides performance counters values. It sums up counters for
726 * two DMC channels. The 'total_count' is used as a reference and max value.
727 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
729 static int exynos5_counters_get(struct exynos5_dmc *dmc,
730 unsigned long *load_count,
731 unsigned long *total_count)
733 unsigned long total = 0;
734 struct devfreq_event_data event;
735 int ret, i;
737 *load_count = 0;
739 /* Take into account only read+write counters, but stop all */
740 for (i = 0; i < dmc->num_counters; i++) {
741 if (!dmc->counter[i])
742 continue;
744 ret = devfreq_event_get_event(dmc->counter[i], &event);
745 if (ret < 0)
746 return ret;
748 *load_count += event.load_count;
750 if (total < event.total_count)
751 total = event.total_count;
754 *total_count = total;
756 return 0;
760 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
761 * @dmc: device for which the counters are going to be checked
762 * @beg_value: initial value for the counter
764 * Function which enables needed counters, interrupts and sets initial values
765 * then starts the counters.
767 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
768 u32 beg_value)
770 /* Enable interrupts for counter 2 */
771 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
772 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
774 /* Enable counter 2 and CCNT */
775 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
776 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
778 /* Clear overflow flag for all counters */
779 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
780 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
782 /* Reset all counters */
783 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
784 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
787 * Set start value for the counters, the number of samples that
788 * will be gathered is calculated as: 0xffffffff - beg_value
790 writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
791 writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
793 /* Start all counters */
794 writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
795 writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
799 * exynos5_dmc_perf_events_calc() - Calculate utilization
800 * @dmc: device for which the counters are going to be checked
801 * @diff_ts: time between last interrupt and current one
803 * Function which calculates needed utilization for the devfreq governor.
804 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
805 * between interrupts, which approximates utilization.
807 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
810 * This is a simple algorithm for managing traffic on DMC.
811 * When there is almost no load the counters overflow every 4s,
812 * no mater the DMC frequency.
813 * The high load might be approximated using linear function.
814 * Knowing that, simple calculation can provide 'busy_time' and
815 * 'total_time' to the devfreq governor which picks up target
816 * frequency.
817 * We want a fast ramp up and slow decay in frequency change function.
819 if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
821 * Set higher utilization for the simple_ondemand governor.
822 * The governor should increase the frequency of the DMC.
824 dmc->load = 70;
825 dmc->total = 100;
826 } else {
828 * Set low utilization for the simple_ondemand governor.
829 * The governor should decrease the frequency of the DMC.
831 dmc->load = 35;
832 dmc->total = 100;
835 dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
839 * exynos5_dmc_perf_events_check() - Checks the status of the counters
840 * @dmc: device for which the counters are going to be checked
842 * Function which is called from threaded IRQ to check the counters state
843 * and to call approximation for the needed utilization.
845 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
847 u32 val;
848 u64 diff_ts, ts;
850 ts = ktime_get_ns();
852 /* Stop all counters */
853 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
854 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
856 /* Check the source in interrupt flag registers (which channel) */
857 val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
858 if (val) {
859 diff_ts = ts - dmc->last_overflow_ts[0];
860 dmc->last_overflow_ts[0] = ts;
861 dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n", val);
862 } else {
863 val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
864 diff_ts = ts - dmc->last_overflow_ts[1];
865 dmc->last_overflow_ts[1] = ts;
866 dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n", val);
869 exynos5_dmc_perf_events_calc(dmc, diff_ts);
871 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
875 * exynos5_dmc_enable_perf_events() - Enable performance events
876 * @dmc: device for which the counters are going to be checked
878 * Function which is setup needed environment and enables counters.
880 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
882 u64 ts;
884 /* Enable Performance Event Clock */
885 writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
886 writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
888 /* Select read transfers as performance event2 */
889 writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
890 writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
892 ts = ktime_get_ns();
893 dmc->last_overflow_ts[0] = ts;
894 dmc->last_overflow_ts[1] = ts;
896 /* Devfreq shouldn't be faster than initialization, play safe though. */
897 dmc->load = 99;
898 dmc->total = 100;
902 * exynos5_dmc_disable_perf_events() - Disable performance events
903 * @dmc: device for which the counters are going to be checked
905 * Function which stops, disables performance event counters and interrupts.
907 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
909 /* Stop all counters */
910 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
911 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
913 /* Disable interrupts for counter 2 */
914 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
915 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
917 /* Disable counter 2 and CCNT */
918 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
919 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
921 /* Clear overflow flag for all counters */
922 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
923 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
927 * exynos5_dmc_get_status() - Read current DMC performance statistics.
928 * @dev: device for which the statistics are requested
929 * @stat: structure which has statistic fields
931 * Function reads the DMC performance counters and calculates 'busy_time'
932 * and 'total_time'. To protect from overflow, the values are shifted right
933 * by 10. After read out the counters are setup to count again.
935 static int exynos5_dmc_get_status(struct device *dev,
936 struct devfreq_dev_status *stat)
938 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
939 unsigned long load, total;
940 int ret;
942 if (dmc->in_irq_mode) {
943 mutex_lock(&dmc->lock);
944 stat->current_frequency = dmc->curr_rate;
945 mutex_unlock(&dmc->lock);
947 stat->busy_time = dmc->load;
948 stat->total_time = dmc->total;
949 } else {
950 ret = exynos5_counters_get(dmc, &load, &total);
951 if (ret < 0)
952 return -EINVAL;
954 /* To protect from overflow, divide by 1024 */
955 stat->busy_time = load >> 10;
956 stat->total_time = total >> 10;
958 ret = exynos5_counters_set_event(dmc);
959 if (ret < 0) {
960 dev_err(dev, "could not set event counter\n");
961 return ret;
965 return 0;
969 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
970 * @dev: device for which the framework checks operating frequency
971 * @freq: returned frequency value
973 * It returns the currently used frequency of the DMC. The real operating
974 * frequency might be lower when the clock source value could not be divided
975 * to the requested value.
977 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
979 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
981 mutex_lock(&dmc->lock);
982 *freq = dmc->curr_rate;
983 mutex_unlock(&dmc->lock);
985 return 0;
989 * exynos5_dmc_df_profile - Devfreq governor's profile structure
991 * It provides to the devfreq framework needed functions and polling period.
993 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
994 .timer = DEVFREQ_TIMER_DELAYED,
995 .target = exynos5_dmc_target,
996 .get_dev_status = exynos5_dmc_get_status,
997 .get_cur_freq = exynos5_dmc_get_cur_freq,
1001 * exynos5_dmc_align_initial_frequency() - Align initial frequency value
1002 * @dmc: device for which the frequency is going to be set
1003 * @bootloader_init_freq: initial frequency set by the bootloader in KHz
1005 * The initial bootloader frequency, which is present during boot, might be
1006 * different that supported frequency values in the driver. It is possible
1007 * due to different PLL settings or used PLL as a source.
1008 * This function provides the 'initial_freq' for the devfreq framework
1009 * statistics engine which supports only registered values. Thus, some alignment
1010 * must be made.
1012 static unsigned long
1013 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
1014 unsigned long bootloader_init_freq)
1016 unsigned long aligned_freq;
1017 int idx;
1019 idx = find_target_freq_idx(dmc, bootloader_init_freq);
1020 if (idx >= 0)
1021 aligned_freq = dmc->opp[idx].freq_hz;
1022 else
1023 aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
1025 return aligned_freq;
1029 * create_timings_aligned() - Create register values and align with standard
1030 * @dmc: device for which the frequency is going to be set
1031 * @reg_timing_row: array to fill with values for timing row register
1032 * @reg_timing_data: array to fill with values for timing data register
1033 * @reg_timing_power: array to fill with values for timing power register
1034 * @clk_period_ps: the period of the clock, known as tCK
1036 * The function calculates timings and creates a register value ready for
1037 * a frequency transition. The register contains a few timings. They are
1038 * shifted by a known offset. The timing value is calculated based on memory
1039 * specyfication: minimal time required and minimal cycles required.
1041 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1042 u32 *reg_timing_data, u32 *reg_timing_power,
1043 u32 clk_period_ps)
1045 u32 val;
1046 const struct timing_reg *reg;
1048 if (clk_period_ps == 0)
1049 return -EINVAL;
1051 *reg_timing_row = 0;
1052 *reg_timing_data = 0;
1053 *reg_timing_power = 0;
1055 val = dmc->timings->tRFC / clk_period_ps;
1056 val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1057 val = max(val, dmc->min_tck->tRFC);
1058 reg = &timing_row_reg_fields[0];
1059 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1061 val = dmc->timings->tRRD / clk_period_ps;
1062 val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1063 val = max(val, dmc->min_tck->tRRD);
1064 reg = &timing_row_reg_fields[1];
1065 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1067 val = dmc->timings->tRPab / clk_period_ps;
1068 val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1069 val = max(val, dmc->min_tck->tRPab);
1070 reg = &timing_row_reg_fields[2];
1071 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1073 val = dmc->timings->tRCD / clk_period_ps;
1074 val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1075 val = max(val, dmc->min_tck->tRCD);
1076 reg = &timing_row_reg_fields[3];
1077 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1079 val = dmc->timings->tRC / clk_period_ps;
1080 val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1081 val = max(val, dmc->min_tck->tRC);
1082 reg = &timing_row_reg_fields[4];
1083 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1085 val = dmc->timings->tRAS / clk_period_ps;
1086 val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1087 val = max(val, dmc->min_tck->tRAS);
1088 reg = &timing_row_reg_fields[5];
1089 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1091 /* data related timings */
1092 val = dmc->timings->tWTR / clk_period_ps;
1093 val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1094 val = max(val, dmc->min_tck->tWTR);
1095 reg = &timing_data_reg_fields[0];
1096 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1098 val = dmc->timings->tWR / clk_period_ps;
1099 val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1100 val = max(val, dmc->min_tck->tWR);
1101 reg = &timing_data_reg_fields[1];
1102 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1104 val = dmc->timings->tRTP / clk_period_ps;
1105 val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1106 val = max(val, dmc->min_tck->tRTP);
1107 reg = &timing_data_reg_fields[2];
1108 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1110 val = dmc->timings->tW2W_C2C / clk_period_ps;
1111 val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1112 val = max(val, dmc->min_tck->tW2W_C2C);
1113 reg = &timing_data_reg_fields[3];
1114 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1116 val = dmc->timings->tR2R_C2C / clk_period_ps;
1117 val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1118 val = max(val, dmc->min_tck->tR2R_C2C);
1119 reg = &timing_data_reg_fields[4];
1120 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1122 val = dmc->timings->tWL / clk_period_ps;
1123 val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1124 val = max(val, dmc->min_tck->tWL);
1125 reg = &timing_data_reg_fields[5];
1126 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1128 val = dmc->timings->tDQSCK / clk_period_ps;
1129 val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1130 val = max(val, dmc->min_tck->tDQSCK);
1131 reg = &timing_data_reg_fields[6];
1132 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1134 val = dmc->timings->tRL / clk_period_ps;
1135 val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1136 val = max(val, dmc->min_tck->tRL);
1137 reg = &timing_data_reg_fields[7];
1138 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1140 /* power related timings */
1141 val = dmc->timings->tFAW / clk_period_ps;
1142 val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1143 val = max(val, dmc->min_tck->tFAW);
1144 reg = &timing_power_reg_fields[0];
1145 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1147 val = dmc->timings->tXSR / clk_period_ps;
1148 val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1149 val = max(val, dmc->min_tck->tXSR);
1150 reg = &timing_power_reg_fields[1];
1151 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1153 val = dmc->timings->tXP / clk_period_ps;
1154 val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1155 val = max(val, dmc->min_tck->tXP);
1156 reg = &timing_power_reg_fields[2];
1157 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1159 val = dmc->timings->tCKE / clk_period_ps;
1160 val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1161 val = max(val, dmc->min_tck->tCKE);
1162 reg = &timing_power_reg_fields[3];
1163 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1165 val = dmc->timings->tMRD / clk_period_ps;
1166 val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1167 val = max(val, dmc->min_tck->tMRD);
1168 reg = &timing_power_reg_fields[4];
1169 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1171 return 0;
1175 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1176 * @dmc: device for which the frequency is going to be set
1178 * The function parses DT entries with DRAM information.
1180 static int of_get_dram_timings(struct exynos5_dmc *dmc)
1182 int ret = 0;
1183 int idx;
1184 struct device_node *np_ddr;
1185 u32 freq_mhz, clk_period_ps;
1187 np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1188 if (!np_ddr) {
1189 dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1190 return -EINVAL;
1193 dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1194 sizeof(u32), GFP_KERNEL);
1195 if (!dmc->timing_row)
1196 return -ENOMEM;
1198 dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1199 sizeof(u32), GFP_KERNEL);
1200 if (!dmc->timing_data)
1201 return -ENOMEM;
1203 dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1204 sizeof(u32), GFP_KERNEL);
1205 if (!dmc->timing_power)
1206 return -ENOMEM;
1208 dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1209 DDR_TYPE_LPDDR3,
1210 &dmc->timings_arr_size);
1211 if (!dmc->timings) {
1212 of_node_put(np_ddr);
1213 dev_warn(dmc->dev, "could not get timings from DT\n");
1214 return -EINVAL;
1217 dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1218 if (!dmc->min_tck) {
1219 of_node_put(np_ddr);
1220 dev_warn(dmc->dev, "could not get tck from DT\n");
1221 return -EINVAL;
1224 /* Sorted array of OPPs with frequency ascending */
1225 for (idx = 0; idx < dmc->opp_count; idx++) {
1226 freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1227 clk_period_ps = 1000000 / freq_mhz;
1229 ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1230 &dmc->timing_data[idx],
1231 &dmc->timing_power[idx],
1232 clk_period_ps);
1235 of_node_put(np_ddr);
1237 /* Take the highest frequency's timings as 'bypass' */
1238 dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1239 dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1240 dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1242 return ret;
1246 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1247 * @dmc: DMC structure containing needed fields
1249 * Get the needed clocks defined in DT device, enable and set the right parents.
1250 * Read current frequency and initialize the initial rate for governor.
1252 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1254 int ret;
1255 unsigned long target_volt = 0;
1256 unsigned long target_rate = 0;
1257 unsigned int tmp;
1259 dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1260 if (IS_ERR(dmc->fout_spll))
1261 return PTR_ERR(dmc->fout_spll);
1263 dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1264 if (IS_ERR(dmc->fout_bpll))
1265 return PTR_ERR(dmc->fout_bpll);
1267 dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1268 if (IS_ERR(dmc->mout_mclk_cdrex))
1269 return PTR_ERR(dmc->mout_mclk_cdrex);
1271 dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1272 if (IS_ERR(dmc->mout_bpll))
1273 return PTR_ERR(dmc->mout_bpll);
1275 dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1276 "mout_mx_mspll_ccore");
1277 if (IS_ERR(dmc->mout_mx_mspll_ccore))
1278 return PTR_ERR(dmc->mout_mx_mspll_ccore);
1280 dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1281 if (IS_ERR(dmc->mout_spll)) {
1282 dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1283 if (IS_ERR(dmc->mout_spll))
1284 return PTR_ERR(dmc->mout_spll);
1288 * Convert frequency to KHz values and set it for the governor.
1290 dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1291 dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1292 exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1294 ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1295 &target_volt, 0);
1296 if (ret)
1297 return ret;
1299 dmc->curr_volt = target_volt;
1301 clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1303 clk_prepare_enable(dmc->fout_bpll);
1304 clk_prepare_enable(dmc->mout_bpll);
1307 * Some bootloaders do not set clock routes correctly.
1308 * Stop one path in clocks to PHY.
1310 regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1311 tmp &= ~(BIT(1) | BIT(0));
1312 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1314 return 0;
1318 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1319 * @dmc: DMC for which it does the setup
1321 * Initialization of performance counters in DMC for estimating usage.
1322 * The counter's values are used for calculation of a memory bandwidth and based
1323 * on that the governor changes the frequency.
1324 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1326 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1328 int counters_size;
1329 int ret, i;
1331 dmc->num_counters = devfreq_event_get_edev_count(dmc->dev,
1332 "devfreq-events");
1333 if (dmc->num_counters < 0) {
1334 dev_err(dmc->dev, "could not get devfreq-event counters\n");
1335 return dmc->num_counters;
1338 counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1339 dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1340 if (!dmc->counter)
1341 return -ENOMEM;
1343 for (i = 0; i < dmc->num_counters; i++) {
1344 dmc->counter[i] =
1345 devfreq_event_get_edev_by_phandle(dmc->dev,
1346 "devfreq-events", i);
1347 if (IS_ERR_OR_NULL(dmc->counter[i]))
1348 return -EPROBE_DEFER;
1351 ret = exynos5_counters_enable_edev(dmc);
1352 if (ret < 0) {
1353 dev_err(dmc->dev, "could not enable event counter\n");
1354 return ret;
1357 ret = exynos5_counters_set_event(dmc);
1358 if (ret < 0) {
1359 exynos5_counters_disable_edev(dmc);
1360 dev_err(dmc->dev, "could not set event counter\n");
1361 return ret;
1364 return 0;
1368 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1369 * @dmc: device which is used for changing this feature
1371 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1372 * changes its configuration. In such situation access to the memory is blocked
1373 * in DMC automatically. This feature is used when clock frequency change
1374 * request appears and touches clock tree.
1376 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1378 unsigned int val;
1379 int ret;
1381 ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1382 if (ret)
1383 return ret;
1385 val |= 1UL;
1386 regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1388 return 0;
1391 static irqreturn_t dmc_irq_thread(int irq, void *priv)
1393 int res;
1394 struct exynos5_dmc *dmc = priv;
1396 mutex_lock(&dmc->df->lock);
1397 exynos5_dmc_perf_events_check(dmc);
1398 res = update_devfreq(dmc->df);
1399 mutex_unlock(&dmc->df->lock);
1401 if (res)
1402 dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1404 return IRQ_HANDLED;
1408 * exynos5_dmc_probe() - Probe function for the DMC driver
1409 * @pdev: platform device for which the driver is going to be initialized
1411 * Initialize basic components: clocks, regulators, performance counters, etc.
1412 * Read out product version and based on the information setup
1413 * internal structures for the controller (frequency and voltage) and for DRAM
1414 * memory parameters: timings for each operating frequency.
1415 * Register new devfreq device for controlling DVFS of the DMC.
1417 static int exynos5_dmc_probe(struct platform_device *pdev)
1419 int ret = 0;
1420 struct device *dev = &pdev->dev;
1421 struct device_node *np = dev->of_node;
1422 struct exynos5_dmc *dmc;
1423 int irq[2];
1425 dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1426 if (!dmc)
1427 return -ENOMEM;
1429 mutex_init(&dmc->lock);
1431 dmc->dev = dev;
1432 platform_set_drvdata(pdev, dmc);
1434 dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1435 if (IS_ERR(dmc->base_drexi0))
1436 return PTR_ERR(dmc->base_drexi0);
1438 dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1439 if (IS_ERR(dmc->base_drexi1))
1440 return PTR_ERR(dmc->base_drexi1);
1442 dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1443 "samsung,syscon-clk");
1444 if (IS_ERR(dmc->clk_regmap))
1445 return PTR_ERR(dmc->clk_regmap);
1447 ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1448 if (ret) {
1449 dev_warn(dev, "couldn't initialize frequency settings\n");
1450 return ret;
1453 dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1454 if (IS_ERR(dmc->vdd_mif)) {
1455 ret = PTR_ERR(dmc->vdd_mif);
1456 return ret;
1459 ret = exynos5_dmc_init_clks(dmc);
1460 if (ret)
1461 return ret;
1463 ret = of_get_dram_timings(dmc);
1464 if (ret) {
1465 dev_warn(dev, "couldn't initialize timings settings\n");
1466 goto remove_clocks;
1469 ret = exynos5_dmc_set_pause_on_switching(dmc);
1470 if (ret) {
1471 dev_warn(dev, "couldn't get access to PAUSE register\n");
1472 goto remove_clocks;
1475 /* There is two modes in which the driver works: polling or IRQ */
1476 irq[0] = platform_get_irq_byname(pdev, "drex_0");
1477 irq[1] = platform_get_irq_byname(pdev, "drex_1");
1478 if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1479 ret = devm_request_threaded_irq(dev, irq[0], NULL,
1480 dmc_irq_thread, IRQF_ONESHOT,
1481 dev_name(dev), dmc);
1482 if (ret) {
1483 dev_err(dev, "couldn't grab IRQ\n");
1484 goto remove_clocks;
1487 ret = devm_request_threaded_irq(dev, irq[1], NULL,
1488 dmc_irq_thread, IRQF_ONESHOT,
1489 dev_name(dev), dmc);
1490 if (ret) {
1491 dev_err(dev, "couldn't grab IRQ\n");
1492 goto remove_clocks;
1496 * Setup default thresholds for the devfreq governor.
1497 * The values are chosen based on experiments.
1499 dmc->gov_data.upthreshold = 55;
1500 dmc->gov_data.downdifferential = 5;
1502 exynos5_dmc_enable_perf_events(dmc);
1504 dmc->in_irq_mode = 1;
1505 } else {
1506 ret = exynos5_performance_counters_init(dmc);
1507 if (ret) {
1508 dev_warn(dev, "couldn't probe performance counters\n");
1509 goto remove_clocks;
1513 * Setup default thresholds for the devfreq governor.
1514 * The values are chosen based on experiments.
1516 dmc->gov_data.upthreshold = 10;
1517 dmc->gov_data.downdifferential = 5;
1519 exynos5_dmc_df_profile.polling_ms = 100;
1522 dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1523 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1524 &dmc->gov_data);
1526 if (IS_ERR(dmc->df)) {
1527 ret = PTR_ERR(dmc->df);
1528 goto err_devfreq_add;
1531 if (dmc->in_irq_mode)
1532 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1534 dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1536 return 0;
1538 err_devfreq_add:
1539 if (dmc->in_irq_mode)
1540 exynos5_dmc_disable_perf_events(dmc);
1541 else
1542 exynos5_counters_disable_edev(dmc);
1543 remove_clocks:
1544 clk_disable_unprepare(dmc->mout_bpll);
1545 clk_disable_unprepare(dmc->fout_bpll);
1547 return ret;
1551 * exynos5_dmc_remove() - Remove function for the platform device
1552 * @pdev: platform device which is going to be removed
1554 * The function relies on 'devm' framework function which automatically
1555 * clean the device's resources. It just calls explicitly disable function for
1556 * the performance counters.
1558 static int exynos5_dmc_remove(struct platform_device *pdev)
1560 struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1562 if (dmc->in_irq_mode)
1563 exynos5_dmc_disable_perf_events(dmc);
1564 else
1565 exynos5_counters_disable_edev(dmc);
1567 clk_disable_unprepare(dmc->mout_bpll);
1568 clk_disable_unprepare(dmc->fout_bpll);
1570 dev_pm_opp_remove_table(dmc->dev);
1572 return 0;
1575 static const struct of_device_id exynos5_dmc_of_match[] = {
1576 { .compatible = "samsung,exynos5422-dmc", },
1577 { },
1579 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1581 static struct platform_driver exynos5_dmc_platdrv = {
1582 .probe = exynos5_dmc_probe,
1583 .remove = exynos5_dmc_remove,
1584 .driver = {
1585 .name = "exynos5-dmc",
1586 .of_match_table = exynos5_dmc_of_match,
1589 module_platform_driver(exynos5_dmc_platdrv);
1590 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1591 MODULE_LICENSE("GPL v2");
1592 MODULE_AUTHOR("Lukasz Luba");