Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / mtd / nand / raw / davinci_nand.c
blob118da9944e3bc8661c93e605aacfa1b10d06395c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
5 * Copyright © 2006 Texas Instruments.
7 * Port to 2.6.23 Copyright © 2008 by:
8 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
9 * Troy Kisky <troy.kisky@boundarydevices.com>
10 * Dirk Behme <Dirk.Behme@gmail.com>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/err.h>
17 #include <linux/iopoll.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/slab.h>
21 #include <linux/of_device.h>
22 #include <linux/of.h>
24 #include <linux/platform_data/mtd-davinci.h>
25 #include <linux/platform_data/mtd-davinci-aemif.h>
28 * This is a device driver for the NAND flash controller found on the
29 * various DaVinci family chips. It handles up to four SoC chipselects,
30 * and some flavors of secondary chipselect (e.g. based on A12) as used
31 * with multichip packages.
33 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
34 * available on chips like the DM355 and OMAP-L137 and needed with the
35 * more error-prone MLC NAND chips.
37 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
38 * outputs in a "wire-AND" configuration, with no per-chip signals.
40 struct davinci_nand_info {
41 struct nand_controller controller;
42 struct nand_chip chip;
44 struct platform_device *pdev;
46 bool is_readmode;
48 void __iomem *base;
49 void __iomem *vaddr;
51 void __iomem *current_cs;
53 uint32_t mask_chipsel;
54 uint32_t mask_ale;
55 uint32_t mask_cle;
57 uint32_t core_chipsel;
59 struct davinci_aemif_timing *timing;
62 static DEFINE_SPINLOCK(davinci_nand_lock);
63 static bool ecc4_busy;
65 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
67 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
70 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
71 int offset)
73 return __raw_readl(info->base + offset);
76 static inline void davinci_nand_writel(struct davinci_nand_info *info,
77 int offset, unsigned long value)
79 __raw_writel(value, info->base + offset);
82 /*----------------------------------------------------------------------*/
85 * 1-bit hardware ECC ... context maintained for each core chipselect
88 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
90 struct davinci_nand_info *info = to_davinci_nand(mtd);
92 return davinci_nand_readl(info, NANDF1ECC_OFFSET
93 + 4 * info->core_chipsel);
96 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
98 struct davinci_nand_info *info;
99 uint32_t nandcfr;
100 unsigned long flags;
102 info = to_davinci_nand(nand_to_mtd(chip));
104 /* Reset ECC hardware */
105 nand_davinci_readecc_1bit(nand_to_mtd(chip));
107 spin_lock_irqsave(&davinci_nand_lock, flags);
109 /* Restart ECC hardware */
110 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
111 nandcfr |= BIT(8 + info->core_chipsel);
112 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
114 spin_unlock_irqrestore(&davinci_nand_lock, flags);
118 * Read hardware ECC value and pack into three bytes
120 static int nand_davinci_calculate_1bit(struct nand_chip *chip,
121 const u_char *dat, u_char *ecc_code)
123 unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
124 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
126 /* invert so that erased block ecc is correct */
127 ecc24 = ~ecc24;
128 ecc_code[0] = (u_char)(ecc24);
129 ecc_code[1] = (u_char)(ecc24 >> 8);
130 ecc_code[2] = (u_char)(ecc24 >> 16);
132 return 0;
135 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
136 u_char *read_ecc, u_char *calc_ecc)
138 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
139 (read_ecc[2] << 16);
140 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
141 (calc_ecc[2] << 16);
142 uint32_t diff = eccCalc ^ eccNand;
144 if (diff) {
145 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
146 /* Correctable error */
147 if ((diff >> (12 + 3)) < chip->ecc.size) {
148 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
149 return 1;
150 } else {
151 return -EBADMSG;
153 } else if (!(diff & (diff - 1))) {
154 /* Single bit ECC error in the ECC itself,
155 * nothing to fix */
156 return 1;
157 } else {
158 /* Uncorrectable error */
159 return -EBADMSG;
163 return 0;
166 /*----------------------------------------------------------------------*/
169 * 4-bit hardware ECC ... context maintained over entire AEMIF
171 * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED
172 * since that forces use of a problematic "infix OOB" layout.
173 * Among other things, it trashes manufacturer bad block markers.
174 * Also, and specific to this hardware, it ECC-protects the "prepad"
175 * in the OOB ... while having ECC protection for parts of OOB would
176 * seem useful, the current MTD stack sometimes wants to update the
177 * OOB without recomputing ECC.
180 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
182 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
183 unsigned long flags;
184 u32 val;
186 /* Reset ECC hardware */
187 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
189 spin_lock_irqsave(&davinci_nand_lock, flags);
191 /* Start 4-bit ECC calculation for read/write */
192 val = davinci_nand_readl(info, NANDFCR_OFFSET);
193 val &= ~(0x03 << 4);
194 val |= (info->core_chipsel << 4) | BIT(12);
195 davinci_nand_writel(info, NANDFCR_OFFSET, val);
197 info->is_readmode = (mode == NAND_ECC_READ);
199 spin_unlock_irqrestore(&davinci_nand_lock, flags);
202 /* Read raw ECC code after writing to NAND. */
203 static void
204 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
206 const u32 mask = 0x03ff03ff;
208 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
209 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
210 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
211 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
214 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
215 static int nand_davinci_calculate_4bit(struct nand_chip *chip,
216 const u_char *dat, u_char *ecc_code)
218 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
219 u32 raw_ecc[4], *p;
220 unsigned i;
222 /* After a read, terminate ECC calculation by a dummy read
223 * of some 4-bit ECC register. ECC covers everything that
224 * was read; correct() just uses the hardware state, so
225 * ecc_code is not needed.
227 if (info->is_readmode) {
228 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
229 return 0;
232 /* Pack eight raw 10-bit ecc values into ten bytes, making
233 * two passes which each convert four values (in upper and
234 * lower halves of two 32-bit words) into five bytes. The
235 * ROM boot loader uses this same packing scheme.
237 nand_davinci_readecc_4bit(info, raw_ecc);
238 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
239 *ecc_code++ = p[0] & 0xff;
240 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
241 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
242 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
243 *ecc_code++ = (p[1] >> 18) & 0xff;
246 return 0;
249 /* Correct up to 4 bits in data we just read, using state left in the
250 * hardware plus the ecc_code computed when it was first written.
252 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
253 u_char *ecc_code, u_char *null)
255 int i;
256 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
257 unsigned short ecc10[8];
258 unsigned short *ecc16;
259 u32 syndrome[4];
260 u32 ecc_state;
261 unsigned num_errors, corrected;
262 unsigned long timeo;
264 /* Unpack ten bytes into eight 10 bit values. We know we're
265 * little-endian, and use type punning for less shifting/masking.
267 if (WARN_ON(0x01 & (uintptr_t)ecc_code))
268 return -EINVAL;
269 ecc16 = (unsigned short *)ecc_code;
271 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
272 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
273 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
274 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
275 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
276 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
277 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
278 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
280 /* Tell ECC controller about the expected ECC codes. */
281 for (i = 7; i >= 0; i--)
282 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
284 /* Allow time for syndrome calculation ... then read it.
285 * A syndrome of all zeroes 0 means no detected errors.
287 davinci_nand_readl(info, NANDFSR_OFFSET);
288 nand_davinci_readecc_4bit(info, syndrome);
289 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
290 return 0;
293 * Clear any previous address calculation by doing a dummy read of an
294 * error address register.
296 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
298 /* Start address calculation, and wait for it to complete.
299 * We _could_ start reading more data while this is working,
300 * to speed up the overall page read.
302 davinci_nand_writel(info, NANDFCR_OFFSET,
303 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
306 * ECC_STATE field reads 0x3 (Error correction complete) immediately
307 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
308 * begin trying to poll for the state, you may fall right out of your
309 * loop without any of the correction calculations having taken place.
310 * The recommendation from the hardware team is to initially delay as
311 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
312 * correction state.
314 timeo = jiffies + usecs_to_jiffies(100);
315 do {
316 ecc_state = (davinci_nand_readl(info,
317 NANDFSR_OFFSET) >> 8) & 0x0f;
318 cpu_relax();
319 } while ((ecc_state < 4) && time_before(jiffies, timeo));
321 for (;;) {
322 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
324 switch ((fsr >> 8) & 0x0f) {
325 case 0: /* no error, should not happen */
326 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
327 return 0;
328 case 1: /* five or more errors detected */
329 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
330 return -EBADMSG;
331 case 2: /* error addresses computed */
332 case 3:
333 num_errors = 1 + ((fsr >> 16) & 0x03);
334 goto correct;
335 default: /* still working on it */
336 cpu_relax();
337 continue;
341 correct:
342 /* correct each error */
343 for (i = 0, corrected = 0; i < num_errors; i++) {
344 int error_address, error_value;
346 if (i > 1) {
347 error_address = davinci_nand_readl(info,
348 NAND_ERR_ADD2_OFFSET);
349 error_value = davinci_nand_readl(info,
350 NAND_ERR_ERRVAL2_OFFSET);
351 } else {
352 error_address = davinci_nand_readl(info,
353 NAND_ERR_ADD1_OFFSET);
354 error_value = davinci_nand_readl(info,
355 NAND_ERR_ERRVAL1_OFFSET);
358 if (i & 1) {
359 error_address >>= 16;
360 error_value >>= 16;
362 error_address &= 0x3ff;
363 error_address = (512 + 7) - error_address;
365 if (error_address < 512) {
366 data[error_address] ^= error_value;
367 corrected++;
371 return corrected;
375 * nand_read_page_hwecc_oob_first - hw ecc, read oob first
376 * @chip: nand chip info structure
377 * @buf: buffer to store read data
378 * @oob_required: caller requires OOB data read to chip->oob_poi
379 * @page: page number to read
381 * Hardware ECC for large page chips, require OOB to be read first. For this
382 * ECC mode, the write_page method is re-used from ECC_HW. These methods
383 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
384 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
385 * the data area, by overwriting the NAND manufacturer bad block markings.
387 static int nand_davinci_read_page_hwecc_oob_first(struct nand_chip *chip,
388 uint8_t *buf,
389 int oob_required, int page)
391 struct mtd_info *mtd = nand_to_mtd(chip);
392 int i, eccsize = chip->ecc.size, ret;
393 int eccbytes = chip->ecc.bytes;
394 int eccsteps = chip->ecc.steps;
395 uint8_t *p = buf;
396 uint8_t *ecc_code = chip->ecc.code_buf;
397 uint8_t *ecc_calc = chip->ecc.calc_buf;
398 unsigned int max_bitflips = 0;
400 /* Read the OOB area first */
401 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
402 if (ret)
403 return ret;
405 ret = nand_read_page_op(chip, page, 0, NULL, 0);
406 if (ret)
407 return ret;
409 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
410 chip->ecc.total);
411 if (ret)
412 return ret;
414 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
415 int stat;
417 chip->ecc.hwctl(chip, NAND_ECC_READ);
419 ret = nand_read_data_op(chip, p, eccsize, false, false);
420 if (ret)
421 return ret;
423 chip->ecc.calculate(chip, p, &ecc_calc[i]);
425 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
426 if (stat == -EBADMSG &&
427 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
428 /* check for empty pages with bitflips */
429 stat = nand_check_erased_ecc_chunk(p, eccsize,
430 &ecc_code[i],
431 eccbytes, NULL, 0,
432 chip->ecc.strength);
435 if (stat < 0) {
436 mtd->ecc_stats.failed++;
437 } else {
438 mtd->ecc_stats.corrected += stat;
439 max_bitflips = max_t(unsigned int, max_bitflips, stat);
442 return max_bitflips;
445 /*----------------------------------------------------------------------*/
447 /* An ECC layout for using 4-bit ECC with small-page flash, storing
448 * ten ECC bytes plus the manufacturer's bad block marker byte, and
449 * and not overlapping the default BBT markers.
451 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
452 struct mtd_oob_region *oobregion)
454 if (section > 2)
455 return -ERANGE;
457 if (!section) {
458 oobregion->offset = 0;
459 oobregion->length = 5;
460 } else if (section == 1) {
461 oobregion->offset = 6;
462 oobregion->length = 2;
463 } else {
464 oobregion->offset = 13;
465 oobregion->length = 3;
468 return 0;
471 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
472 struct mtd_oob_region *oobregion)
474 if (section > 1)
475 return -ERANGE;
477 if (!section) {
478 oobregion->offset = 8;
479 oobregion->length = 5;
480 } else {
481 oobregion->offset = 16;
482 oobregion->length = mtd->oobsize - 16;
485 return 0;
488 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
489 .ecc = hwecc4_ooblayout_small_ecc,
490 .free = hwecc4_ooblayout_small_free,
493 #if defined(CONFIG_OF)
494 static const struct of_device_id davinci_nand_of_match[] = {
495 {.compatible = "ti,davinci-nand", },
496 {.compatible = "ti,keystone-nand", },
499 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
501 static struct davinci_nand_pdata
502 *nand_davinci_get_pdata(struct platform_device *pdev)
504 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
505 struct davinci_nand_pdata *pdata;
506 const char *mode;
507 u32 prop;
509 pdata = devm_kzalloc(&pdev->dev,
510 sizeof(struct davinci_nand_pdata),
511 GFP_KERNEL);
512 pdev->dev.platform_data = pdata;
513 if (!pdata)
514 return ERR_PTR(-ENOMEM);
515 if (!of_property_read_u32(pdev->dev.of_node,
516 "ti,davinci-chipselect", &prop))
517 pdata->core_chipsel = prop;
518 else
519 return ERR_PTR(-EINVAL);
521 if (!of_property_read_u32(pdev->dev.of_node,
522 "ti,davinci-mask-ale", &prop))
523 pdata->mask_ale = prop;
524 if (!of_property_read_u32(pdev->dev.of_node,
525 "ti,davinci-mask-cle", &prop))
526 pdata->mask_cle = prop;
527 if (!of_property_read_u32(pdev->dev.of_node,
528 "ti,davinci-mask-chipsel", &prop))
529 pdata->mask_chipsel = prop;
530 if (!of_property_read_string(pdev->dev.of_node,
531 "ti,davinci-ecc-mode", &mode)) {
532 if (!strncmp("none", mode, 4))
533 pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE;
534 if (!strncmp("soft", mode, 4))
535 pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
536 if (!strncmp("hw", mode, 2))
537 pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
539 if (!of_property_read_u32(pdev->dev.of_node,
540 "ti,davinci-ecc-bits", &prop))
541 pdata->ecc_bits = prop;
543 if (!of_property_read_u32(pdev->dev.of_node,
544 "ti,davinci-nand-buswidth", &prop) && prop == 16)
545 pdata->options |= NAND_BUSWIDTH_16;
547 if (of_property_read_bool(pdev->dev.of_node,
548 "ti,davinci-nand-use-bbt"))
549 pdata->bbt_options = NAND_BBT_USE_FLASH;
552 * Since kernel v4.8, this driver has been fixed to enable
553 * use of 4-bit hardware ECC with subpages and verified on
554 * TI's keystone EVMs (K2L, K2HK and K2E).
555 * However, in the interest of not breaking systems using
556 * existing UBI partitions, sub-page writes are not being
557 * (re)enabled. If you want to use subpage writes on Keystone
558 * platforms (i.e. do not have any existing UBI partitions),
559 * then use "ti,davinci-nand" as the compatible in your
560 * device-tree file.
562 if (of_device_is_compatible(pdev->dev.of_node,
563 "ti,keystone-nand")) {
564 pdata->options |= NAND_NO_SUBPAGE_WRITE;
568 return dev_get_platdata(&pdev->dev);
570 #else
571 static struct davinci_nand_pdata
572 *nand_davinci_get_pdata(struct platform_device *pdev)
574 return dev_get_platdata(&pdev->dev);
576 #endif
578 static int davinci_nand_attach_chip(struct nand_chip *chip)
580 struct mtd_info *mtd = nand_to_mtd(chip);
581 struct davinci_nand_info *info = to_davinci_nand(mtd);
582 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
583 int ret = 0;
585 if (IS_ERR(pdata))
586 return PTR_ERR(pdata);
588 /* Use board-specific ECC config */
589 chip->ecc.engine_type = pdata->engine_type;
590 chip->ecc.placement = pdata->ecc_placement;
592 switch (chip->ecc.engine_type) {
593 case NAND_ECC_ENGINE_TYPE_NONE:
594 pdata->ecc_bits = 0;
595 break;
596 case NAND_ECC_ENGINE_TYPE_SOFT:
597 pdata->ecc_bits = 0;
599 * This driver expects Hamming based ECC when engine_type is set
600 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
601 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo
602 * field to davinci_nand_pdata.
604 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
605 break;
606 case NAND_ECC_ENGINE_TYPE_ON_HOST:
607 if (pdata->ecc_bits == 4) {
608 int chunks = mtd->writesize / 512;
610 if (!chunks || mtd->oobsize < 16) {
611 dev_dbg(&info->pdev->dev, "too small\n");
612 return -EINVAL;
616 * No sanity checks: CPUs must support this,
617 * and the chips may not use NAND_BUSWIDTH_16.
620 /* No sharing 4-bit hardware between chipselects yet */
621 spin_lock_irq(&davinci_nand_lock);
622 if (ecc4_busy)
623 ret = -EBUSY;
624 else
625 ecc4_busy = true;
626 spin_unlock_irq(&davinci_nand_lock);
628 if (ret == -EBUSY)
629 return ret;
631 chip->ecc.calculate = nand_davinci_calculate_4bit;
632 chip->ecc.correct = nand_davinci_correct_4bit;
633 chip->ecc.hwctl = nand_davinci_hwctl_4bit;
634 chip->ecc.bytes = 10;
635 chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
636 chip->ecc.algo = NAND_ECC_ALGO_BCH;
639 * Update ECC layout if needed ... for 1-bit HW ECC, the
640 * default is OK, but it allocates 6 bytes when only 3
641 * are needed (for each 512 bytes). For 4-bit HW ECC,
642 * the default is not usable: 10 bytes needed, not 6.
644 * For small page chips, preserve the manufacturer's
645 * badblock marking data ... and make sure a flash BBT
646 * table marker fits in the free bytes.
648 if (chunks == 1) {
649 mtd_set_ooblayout(mtd,
650 &hwecc4_small_ooblayout_ops);
651 } else if (chunks == 4 || chunks == 8) {
652 mtd_set_ooblayout(mtd,
653 nand_get_large_page_ooblayout());
654 chip->ecc.read_page = nand_davinci_read_page_hwecc_oob_first;
655 } else {
656 return -EIO;
658 } else {
659 /* 1bit ecc hamming */
660 chip->ecc.calculate = nand_davinci_calculate_1bit;
661 chip->ecc.correct = nand_davinci_correct_1bit;
662 chip->ecc.hwctl = nand_davinci_hwctl_1bit;
663 chip->ecc.bytes = 3;
664 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
666 chip->ecc.size = 512;
667 chip->ecc.strength = pdata->ecc_bits;
668 break;
669 default:
670 return -EINVAL;
673 return ret;
676 static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
677 unsigned int len, bool force_8bit)
679 u32 alignment = ((uintptr_t)buf | len) & 3;
681 if (force_8bit || (alignment & 1))
682 ioread8_rep(info->current_cs, buf, len);
683 else if (alignment & 3)
684 ioread16_rep(info->current_cs, buf, len >> 1);
685 else
686 ioread32_rep(info->current_cs, buf, len >> 2);
689 static void nand_davinci_data_out(struct davinci_nand_info *info,
690 const void *buf, unsigned int len,
691 bool force_8bit)
693 u32 alignment = ((uintptr_t)buf | len) & 3;
695 if (force_8bit || (alignment & 1))
696 iowrite8_rep(info->current_cs, buf, len);
697 else if (alignment & 3)
698 iowrite16_rep(info->current_cs, buf, len >> 1);
699 else
700 iowrite32_rep(info->current_cs, buf, len >> 2);
703 static int davinci_nand_exec_instr(struct davinci_nand_info *info,
704 const struct nand_op_instr *instr)
706 unsigned int i, timeout_us;
707 u32 status;
708 int ret;
710 switch (instr->type) {
711 case NAND_OP_CMD_INSTR:
712 iowrite8(instr->ctx.cmd.opcode,
713 info->current_cs + info->mask_cle);
714 break;
716 case NAND_OP_ADDR_INSTR:
717 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
718 iowrite8(instr->ctx.addr.addrs[i],
719 info->current_cs + info->mask_ale);
721 break;
723 case NAND_OP_DATA_IN_INSTR:
724 nand_davinci_data_in(info, instr->ctx.data.buf.in,
725 instr->ctx.data.len,
726 instr->ctx.data.force_8bit);
727 break;
729 case NAND_OP_DATA_OUT_INSTR:
730 nand_davinci_data_out(info, instr->ctx.data.buf.out,
731 instr->ctx.data.len,
732 instr->ctx.data.force_8bit);
733 break;
735 case NAND_OP_WAITRDY_INSTR:
736 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
737 ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
738 status, status & BIT(0), 100,
739 timeout_us);
740 if (ret)
741 return ret;
743 break;
746 if (instr->delay_ns)
747 ndelay(instr->delay_ns);
749 return 0;
752 static int davinci_nand_exec_op(struct nand_chip *chip,
753 const struct nand_operation *op,
754 bool check_only)
756 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
757 unsigned int i;
759 if (check_only)
760 return 0;
762 info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);
764 for (i = 0; i < op->ninstrs; i++) {
765 int ret;
767 ret = davinci_nand_exec_instr(info, &op->instrs[i]);
768 if (ret)
769 return ret;
772 return 0;
775 static const struct nand_controller_ops davinci_nand_controller_ops = {
776 .attach_chip = davinci_nand_attach_chip,
777 .exec_op = davinci_nand_exec_op,
780 static int nand_davinci_probe(struct platform_device *pdev)
782 struct davinci_nand_pdata *pdata;
783 struct davinci_nand_info *info;
784 struct resource *res1;
785 struct resource *res2;
786 void __iomem *vaddr;
787 void __iomem *base;
788 int ret;
789 uint32_t val;
790 struct mtd_info *mtd;
792 pdata = nand_davinci_get_pdata(pdev);
793 if (IS_ERR(pdata))
794 return PTR_ERR(pdata);
796 /* insist on board-specific configuration */
797 if (!pdata)
798 return -ENODEV;
800 /* which external chipselect will we be managing? */
801 if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
802 return -ENODEV;
804 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
805 if (!info)
806 return -ENOMEM;
808 platform_set_drvdata(pdev, info);
810 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
811 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
812 if (!res1 || !res2) {
813 dev_err(&pdev->dev, "resource missing\n");
814 return -EINVAL;
817 vaddr = devm_ioremap_resource(&pdev->dev, res1);
818 if (IS_ERR(vaddr))
819 return PTR_ERR(vaddr);
822 * This registers range is used to setup NAND settings. In case with
823 * TI AEMIF driver, the same memory address range is requested already
824 * by AEMIF, so we cannot request it twice, just ioremap.
825 * The AEMIF and NAND drivers not use the same registers in this range.
827 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
828 if (!base) {
829 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
830 return -EADDRNOTAVAIL;
833 info->pdev = pdev;
834 info->base = base;
835 info->vaddr = vaddr;
837 mtd = nand_to_mtd(&info->chip);
838 mtd->dev.parent = &pdev->dev;
839 nand_set_flash_node(&info->chip, pdev->dev.of_node);
841 /* options such as NAND_BBT_USE_FLASH */
842 info->chip.bbt_options = pdata->bbt_options;
843 /* options such as 16-bit widths */
844 info->chip.options = pdata->options;
845 info->chip.bbt_td = pdata->bbt_td;
846 info->chip.bbt_md = pdata->bbt_md;
847 info->timing = pdata->timing;
849 info->current_cs = info->vaddr;
850 info->core_chipsel = pdata->core_chipsel;
851 info->mask_chipsel = pdata->mask_chipsel;
853 /* use nandboot-capable ALE/CLE masks by default */
854 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
855 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
857 spin_lock_irq(&davinci_nand_lock);
859 /* put CSxNAND into NAND mode */
860 val = davinci_nand_readl(info, NANDFCR_OFFSET);
861 val |= BIT(info->core_chipsel);
862 davinci_nand_writel(info, NANDFCR_OFFSET, val);
864 spin_unlock_irq(&davinci_nand_lock);
866 /* Scan to find existence of the device(s) */
867 nand_controller_init(&info->controller);
868 info->controller.ops = &davinci_nand_controller_ops;
869 info->chip.controller = &info->controller;
870 ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
871 if (ret < 0) {
872 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
873 return ret;
876 if (pdata->parts)
877 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
878 else
879 ret = mtd_device_register(mtd, NULL, 0);
880 if (ret < 0)
881 goto err_cleanup_nand;
883 val = davinci_nand_readl(info, NRCSR_OFFSET);
884 dev_info(&pdev->dev, "controller rev. %d.%d\n",
885 (val >> 8) & 0xff, val & 0xff);
887 return 0;
889 err_cleanup_nand:
890 nand_cleanup(&info->chip);
892 return ret;
895 static int nand_davinci_remove(struct platform_device *pdev)
897 struct davinci_nand_info *info = platform_get_drvdata(pdev);
898 struct nand_chip *chip = &info->chip;
899 int ret;
901 spin_lock_irq(&davinci_nand_lock);
902 if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED)
903 ecc4_busy = false;
904 spin_unlock_irq(&davinci_nand_lock);
906 ret = mtd_device_unregister(nand_to_mtd(chip));
907 WARN_ON(ret);
908 nand_cleanup(chip);
910 return 0;
913 static struct platform_driver nand_davinci_driver = {
914 .probe = nand_davinci_probe,
915 .remove = nand_davinci_remove,
916 .driver = {
917 .name = "davinci_nand",
918 .of_match_table = of_match_ptr(davinci_nand_of_match),
921 MODULE_ALIAS("platform:davinci_nand");
923 module_platform_driver(nand_davinci_driver);
925 MODULE_LICENSE("GPL");
926 MODULE_AUTHOR("Texas Instruments");
927 MODULE_DESCRIPTION("Davinci NAND flash driver");