Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / mtd / nand / raw / fsl_elbc_nand.c
blobaab93b9e6052d63196516fbe94546485178b8fbc
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Freescale Enhanced Local Bus Controller NAND driver
4 * Copyright © 2006-2007, 2010 Freescale Semiconductor
6 * Authors: Nick Spence <nick.spence@freescale.com>,
7 * Scott Wood <scottwood@freescale.com>
8 * Jack Lan <jack.lan@freescale.com>
9 * Roy Zang <tie-fei.zang@freescale.com>
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/ioport.h>
17 #include <linux/of_address.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/interrupt.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
27 #include <asm/io.h>
28 #include <asm/fsl_lbc.h>
30 #define MAX_BANKS 8
31 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
32 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
34 /* mtd information per set */
36 struct fsl_elbc_mtd {
37 struct nand_chip chip;
38 struct fsl_lbc_ctrl *ctrl;
40 struct device *dev;
41 int bank; /* Chip select bank number */
42 u8 __iomem *vbase; /* Chip select base virtual address */
43 int page_size; /* NAND page size (0=512, 1=2048) */
44 unsigned int fmr; /* FCM Flash Mode Register value */
47 /* Freescale eLBC FCM controller information */
49 struct fsl_elbc_fcm_ctrl {
50 struct nand_controller controller;
51 struct fsl_elbc_mtd *chips[MAX_BANKS];
53 u8 __iomem *addr; /* Address of assigned FCM buffer */
54 unsigned int page; /* Last page written to / read from */
55 unsigned int read_bytes; /* Number of bytes read during command */
56 unsigned int column; /* Saved column from SEQIN */
57 unsigned int index; /* Pointer to next byte to 'read' */
58 unsigned int status; /* status read from LTESR after last op */
59 unsigned int mdr; /* UPM/FCM Data Register value */
60 unsigned int use_mdr; /* Non zero if the MDR is to be set */
61 unsigned int oob; /* Non zero if operating on OOB data */
62 unsigned int counter; /* counter for the initializations */
63 unsigned int max_bitflips; /* Saved during READ0 cmd */
66 /* These map to the positions used by the FCM hardware ECC generator */
68 static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section,
69 struct mtd_oob_region *oobregion)
71 struct nand_chip *chip = mtd_to_nand(mtd);
72 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
74 if (section >= chip->ecc.steps)
75 return -ERANGE;
77 oobregion->offset = (16 * section) + 6;
78 if (priv->fmr & FMR_ECCM)
79 oobregion->offset += 2;
81 oobregion->length = chip->ecc.bytes;
83 return 0;
86 static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section,
87 struct mtd_oob_region *oobregion)
89 struct nand_chip *chip = mtd_to_nand(mtd);
90 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
92 if (section > chip->ecc.steps)
93 return -ERANGE;
95 if (!section) {
96 oobregion->offset = 0;
97 if (mtd->writesize > 512)
98 oobregion->offset++;
99 oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5;
100 } else {
101 oobregion->offset = (16 * section) -
102 ((priv->fmr & FMR_ECCM) ? 5 : 7);
103 if (section < chip->ecc.steps)
104 oobregion->length = 13;
105 else
106 oobregion->length = mtd->oobsize - oobregion->offset;
109 return 0;
112 static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = {
113 .ecc = fsl_elbc_ooblayout_ecc,
114 .free = fsl_elbc_ooblayout_free,
118 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
119 * interfere with ECC positions, that's why we implement our own descriptors.
120 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
122 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
123 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
125 static struct nand_bbt_descr bbt_main_descr = {
126 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
127 NAND_BBT_2BIT | NAND_BBT_VERSION,
128 .offs = 11,
129 .len = 4,
130 .veroffs = 15,
131 .maxblocks = 4,
132 .pattern = bbt_pattern,
135 static struct nand_bbt_descr bbt_mirror_descr = {
136 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
137 NAND_BBT_2BIT | NAND_BBT_VERSION,
138 .offs = 11,
139 .len = 4,
140 .veroffs = 15,
141 .maxblocks = 4,
142 .pattern = mirror_pattern,
145 /*=================================*/
148 * Set up the FCM hardware block and page address fields, and the fcm
149 * structure addr field to point to the correct FCM buffer in memory
151 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
153 struct nand_chip *chip = mtd_to_nand(mtd);
154 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
155 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
156 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
157 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
158 int buf_num;
160 elbc_fcm_ctrl->page = page_addr;
162 if (priv->page_size) {
164 * large page size chip : FPAR[PI] save the lowest 6 bits,
165 * FBAR[BLK] save the other bits.
167 out_be32(&lbc->fbar, page_addr >> 6);
168 out_be32(&lbc->fpar,
169 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
170 (oob ? FPAR_LP_MS : 0) | column);
171 buf_num = (page_addr & 1) << 2;
172 } else {
174 * small page size chip : FPAR[PI] save the lowest 5 bits,
175 * FBAR[BLK] save the other bits.
177 out_be32(&lbc->fbar, page_addr >> 5);
178 out_be32(&lbc->fpar,
179 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
180 (oob ? FPAR_SP_MS : 0) | column);
181 buf_num = page_addr & 7;
184 elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
185 elbc_fcm_ctrl->index = column;
187 /* for OOB data point to the second half of the buffer */
188 if (oob)
189 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
191 dev_vdbg(priv->dev, "set_addr: bank=%d, "
192 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
193 "index %x, pes %d ps %d\n",
194 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
195 elbc_fcm_ctrl->index,
196 chip->phys_erase_shift, chip->page_shift);
200 * execute FCM command and wait for it to complete
202 static int fsl_elbc_run_command(struct mtd_info *mtd)
204 struct nand_chip *chip = mtd_to_nand(mtd);
205 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
206 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
207 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
208 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
210 /* Setup the FMR[OP] to execute without write protection */
211 out_be32(&lbc->fmr, priv->fmr | 3);
212 if (elbc_fcm_ctrl->use_mdr)
213 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
215 dev_vdbg(priv->dev,
216 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
217 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
218 dev_vdbg(priv->dev,
219 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
220 "fbcr=%08x bank=%d\n",
221 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
222 in_be32(&lbc->fbcr), priv->bank);
224 ctrl->irq_status = 0;
225 /* execute special operation */
226 out_be32(&lbc->lsor, priv->bank);
228 /* wait for FCM complete flag or timeout */
229 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
230 FCM_TIMEOUT_MSECS * HZ/1000);
231 elbc_fcm_ctrl->status = ctrl->irq_status;
232 /* store mdr value in case it was needed */
233 if (elbc_fcm_ctrl->use_mdr)
234 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
236 elbc_fcm_ctrl->use_mdr = 0;
238 if (elbc_fcm_ctrl->status != LTESR_CC) {
239 dev_info(priv->dev,
240 "command failed: fir %x fcr %x status %x mdr %x\n",
241 in_be32(&lbc->fir), in_be32(&lbc->fcr),
242 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
243 return -EIO;
246 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
247 return 0;
249 elbc_fcm_ctrl->max_bitflips = 0;
251 if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
252 uint32_t lteccr = in_be32(&lbc->lteccr);
254 * if command was a full page read and the ELBC
255 * has the LTECCR register, then bits 12-15 (ppc order) of
256 * LTECCR indicates which 512 byte sub-pages had fixed errors.
257 * bits 28-31 are uncorrectable errors, marked elsewhere.
258 * for small page nand only 1 bit is used.
259 * if the ELBC doesn't have the lteccr register it reads 0
260 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
261 * count the number of sub-pages with bitflips and update
262 * ecc_stats.corrected accordingly.
264 if (lteccr & 0x000F000F)
265 out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
266 if (lteccr & 0x000F0000) {
267 mtd->ecc_stats.corrected++;
268 elbc_fcm_ctrl->max_bitflips = 1;
272 return 0;
275 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
277 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
278 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
279 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
281 if (priv->page_size) {
282 out_be32(&lbc->fir,
283 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
284 (FIR_OP_CA << FIR_OP1_SHIFT) |
285 (FIR_OP_PA << FIR_OP2_SHIFT) |
286 (FIR_OP_CM1 << FIR_OP3_SHIFT) |
287 (FIR_OP_RBW << FIR_OP4_SHIFT));
289 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
290 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
291 } else {
292 out_be32(&lbc->fir,
293 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
294 (FIR_OP_CA << FIR_OP1_SHIFT) |
295 (FIR_OP_PA << FIR_OP2_SHIFT) |
296 (FIR_OP_RBW << FIR_OP3_SHIFT));
298 if (oob)
299 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
300 else
301 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
305 /* cmdfunc send commands to the FCM */
306 static void fsl_elbc_cmdfunc(struct nand_chip *chip, unsigned int command,
307 int column, int page_addr)
309 struct mtd_info *mtd = nand_to_mtd(chip);
310 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
311 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
312 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
313 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
315 elbc_fcm_ctrl->use_mdr = 0;
317 /* clear the read buffer */
318 elbc_fcm_ctrl->read_bytes = 0;
319 if (command != NAND_CMD_PAGEPROG)
320 elbc_fcm_ctrl->index = 0;
322 switch (command) {
323 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
324 case NAND_CMD_READ1:
325 column += 256;
326 fallthrough;
327 case NAND_CMD_READ0:
328 dev_dbg(priv->dev,
329 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
330 " 0x%x, column: 0x%x.\n", page_addr, column);
333 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
334 set_addr(mtd, 0, page_addr, 0);
336 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
337 elbc_fcm_ctrl->index += column;
339 fsl_elbc_do_read(chip, 0);
340 fsl_elbc_run_command(mtd);
341 return;
343 /* RNDOUT moves the pointer inside the page */
344 case NAND_CMD_RNDOUT:
345 dev_dbg(priv->dev,
346 "fsl_elbc_cmdfunc: NAND_CMD_RNDOUT, column: 0x%x.\n",
347 column);
349 elbc_fcm_ctrl->index = column;
350 return;
352 /* READOOB reads only the OOB because no ECC is performed. */
353 case NAND_CMD_READOOB:
354 dev_vdbg(priv->dev,
355 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
356 " 0x%x, column: 0x%x.\n", page_addr, column);
358 out_be32(&lbc->fbcr, mtd->oobsize - column);
359 set_addr(mtd, column, page_addr, 1);
361 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
363 fsl_elbc_do_read(chip, 1);
364 fsl_elbc_run_command(mtd);
365 return;
367 case NAND_CMD_READID:
368 case NAND_CMD_PARAM:
369 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
371 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
372 (FIR_OP_UA << FIR_OP1_SHIFT) |
373 (FIR_OP_RBW << FIR_OP2_SHIFT));
374 out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
376 * although currently it's 8 bytes for READID, we always read
377 * the maximum 256 bytes(for PARAM)
379 out_be32(&lbc->fbcr, 256);
380 elbc_fcm_ctrl->read_bytes = 256;
381 elbc_fcm_ctrl->use_mdr = 1;
382 elbc_fcm_ctrl->mdr = column;
383 set_addr(mtd, 0, 0, 0);
384 fsl_elbc_run_command(mtd);
385 return;
387 /* ERASE1 stores the block and page address */
388 case NAND_CMD_ERASE1:
389 dev_vdbg(priv->dev,
390 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
391 "page_addr: 0x%x.\n", page_addr);
392 set_addr(mtd, 0, page_addr, 0);
393 return;
395 /* ERASE2 uses the block and page address from ERASE1 */
396 case NAND_CMD_ERASE2:
397 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
399 out_be32(&lbc->fir,
400 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
401 (FIR_OP_PA << FIR_OP1_SHIFT) |
402 (FIR_OP_CM2 << FIR_OP2_SHIFT) |
403 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
404 (FIR_OP_RS << FIR_OP4_SHIFT));
406 out_be32(&lbc->fcr,
407 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
408 (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
409 (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
411 out_be32(&lbc->fbcr, 0);
412 elbc_fcm_ctrl->read_bytes = 0;
413 elbc_fcm_ctrl->use_mdr = 1;
415 fsl_elbc_run_command(mtd);
416 return;
418 /* SEQIN sets up the addr buffer and all registers except the length */
419 case NAND_CMD_SEQIN: {
420 __be32 fcr;
421 dev_vdbg(priv->dev,
422 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
423 "page_addr: 0x%x, column: 0x%x.\n",
424 page_addr, column);
426 elbc_fcm_ctrl->column = column;
427 elbc_fcm_ctrl->use_mdr = 1;
429 if (column >= mtd->writesize) {
430 /* OOB area */
431 column -= mtd->writesize;
432 elbc_fcm_ctrl->oob = 1;
433 } else {
434 WARN_ON(column != 0);
435 elbc_fcm_ctrl->oob = 0;
438 fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
439 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
440 (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
442 if (priv->page_size) {
443 out_be32(&lbc->fir,
444 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
445 (FIR_OP_CA << FIR_OP1_SHIFT) |
446 (FIR_OP_PA << FIR_OP2_SHIFT) |
447 (FIR_OP_WB << FIR_OP3_SHIFT) |
448 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
449 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
450 (FIR_OP_RS << FIR_OP6_SHIFT));
451 } else {
452 out_be32(&lbc->fir,
453 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
454 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
455 (FIR_OP_CA << FIR_OP2_SHIFT) |
456 (FIR_OP_PA << FIR_OP3_SHIFT) |
457 (FIR_OP_WB << FIR_OP4_SHIFT) |
458 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
459 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
460 (FIR_OP_RS << FIR_OP7_SHIFT));
462 if (elbc_fcm_ctrl->oob)
463 /* OOB area --> READOOB */
464 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
465 else
466 /* First 256 bytes --> READ0 */
467 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
470 out_be32(&lbc->fcr, fcr);
471 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
472 return;
475 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
476 case NAND_CMD_PAGEPROG: {
477 dev_vdbg(priv->dev,
478 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
479 "writing %d bytes.\n", elbc_fcm_ctrl->index);
481 /* if the write did not start at 0 or is not a full page
482 * then set the exact length, otherwise use a full page
483 * write so the HW generates the ECC.
485 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
486 elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
487 out_be32(&lbc->fbcr,
488 elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
489 else
490 out_be32(&lbc->fbcr, 0);
492 fsl_elbc_run_command(mtd);
493 return;
496 /* CMD_STATUS must read the status byte while CEB is active */
497 /* Note - it does not wait for the ready line */
498 case NAND_CMD_STATUS:
499 out_be32(&lbc->fir,
500 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
501 (FIR_OP_RBW << FIR_OP1_SHIFT));
502 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
503 out_be32(&lbc->fbcr, 1);
504 set_addr(mtd, 0, 0, 0);
505 elbc_fcm_ctrl->read_bytes = 1;
507 fsl_elbc_run_command(mtd);
509 /* The chip always seems to report that it is
510 * write-protected, even when it is not.
512 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
513 return;
515 /* RESET without waiting for the ready line */
516 case NAND_CMD_RESET:
517 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
518 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
519 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
520 fsl_elbc_run_command(mtd);
521 return;
523 default:
524 dev_err(priv->dev,
525 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
526 command);
530 static void fsl_elbc_select_chip(struct nand_chip *chip, int cs)
532 /* The hardware does not seem to support multiple
533 * chips per bank.
538 * Write buf to the FCM Controller Data Buffer
540 static void fsl_elbc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
542 struct mtd_info *mtd = nand_to_mtd(chip);
543 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
544 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
545 unsigned int bufsize = mtd->writesize + mtd->oobsize;
547 if (len <= 0) {
548 dev_err(priv->dev, "write_buf of %d bytes", len);
549 elbc_fcm_ctrl->status = 0;
550 return;
553 if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
554 dev_err(priv->dev,
555 "write_buf beyond end of buffer "
556 "(%d requested, %u available)\n",
557 len, bufsize - elbc_fcm_ctrl->index);
558 len = bufsize - elbc_fcm_ctrl->index;
561 memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
563 * This is workaround for the weird elbc hangs during nand write,
564 * Scott Wood says: "...perhaps difference in how long it takes a
565 * write to make it through the localbus compared to a write to IMMR
566 * is causing problems, and sync isn't helping for some reason."
567 * Reading back the last byte helps though.
569 in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
571 elbc_fcm_ctrl->index += len;
575 * read a byte from either the FCM hardware buffer if it has any data left
576 * otherwise issue a command to read a single byte.
578 static u8 fsl_elbc_read_byte(struct nand_chip *chip)
580 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
581 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
583 /* If there are still bytes in the FCM, then use the next byte. */
584 if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
585 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
587 dev_err(priv->dev, "read_byte beyond end of buffer\n");
588 return ERR_BYTE;
592 * Read from the FCM Controller Data Buffer
594 static void fsl_elbc_read_buf(struct nand_chip *chip, u8 *buf, int len)
596 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
597 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
598 int avail;
600 if (len < 0)
601 return;
603 avail = min((unsigned int)len,
604 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
605 memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
606 elbc_fcm_ctrl->index += avail;
608 if (len > avail)
609 dev_err(priv->dev,
610 "read_buf beyond end of buffer "
611 "(%d requested, %d available)\n",
612 len, avail);
615 /* This function is called after Program and Erase Operations to
616 * check for success or failure.
618 static int fsl_elbc_wait(struct nand_chip *chip)
620 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
621 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
623 if (elbc_fcm_ctrl->status != LTESR_CC)
624 return NAND_STATUS_FAIL;
626 /* The chip always seems to report that it is
627 * write-protected, even when it is not.
629 return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
632 static int fsl_elbc_read_page(struct nand_chip *chip, uint8_t *buf,
633 int oob_required, int page)
635 struct mtd_info *mtd = nand_to_mtd(chip);
636 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
637 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
638 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
640 nand_read_page_op(chip, page, 0, buf, mtd->writesize);
641 if (oob_required)
642 fsl_elbc_read_buf(chip, chip->oob_poi, mtd->oobsize);
644 if (fsl_elbc_wait(chip) & NAND_STATUS_FAIL)
645 mtd->ecc_stats.failed++;
647 return elbc_fcm_ctrl->max_bitflips;
650 /* ECC will be calculated automatically, and errors will be detected in
651 * waitfunc.
653 static int fsl_elbc_write_page(struct nand_chip *chip, const uint8_t *buf,
654 int oob_required, int page)
656 struct mtd_info *mtd = nand_to_mtd(chip);
658 nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
659 fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
661 return nand_prog_page_end_op(chip);
664 /* ECC will be calculated automatically, and errors will be detected in
665 * waitfunc.
667 static int fsl_elbc_write_subpage(struct nand_chip *chip, uint32_t offset,
668 uint32_t data_len, const uint8_t *buf,
669 int oob_required, int page)
671 struct mtd_info *mtd = nand_to_mtd(chip);
673 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
674 fsl_elbc_write_buf(chip, buf, mtd->writesize);
675 fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
676 return nand_prog_page_end_op(chip);
679 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
681 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
682 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
683 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
684 struct nand_chip *chip = &priv->chip;
685 struct mtd_info *mtd = nand_to_mtd(chip);
687 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
689 /* Fill in fsl_elbc_mtd structure */
690 mtd->dev.parent = priv->dev;
691 nand_set_flash_node(chip, priv->dev->of_node);
693 /* set timeout to maximum */
694 priv->fmr = 15 << FMR_CWTO_SHIFT;
695 if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
696 priv->fmr |= FMR_ECCM;
698 /* fill in nand_chip structure */
699 /* set up function call table */
700 chip->legacy.read_byte = fsl_elbc_read_byte;
701 chip->legacy.write_buf = fsl_elbc_write_buf;
702 chip->legacy.read_buf = fsl_elbc_read_buf;
703 chip->legacy.select_chip = fsl_elbc_select_chip;
704 chip->legacy.cmdfunc = fsl_elbc_cmdfunc;
705 chip->legacy.waitfunc = fsl_elbc_wait;
706 chip->legacy.set_features = nand_get_set_features_notsupp;
707 chip->legacy.get_features = nand_get_set_features_notsupp;
709 chip->bbt_td = &bbt_main_descr;
710 chip->bbt_md = &bbt_mirror_descr;
712 /* set up nand options */
713 chip->bbt_options = NAND_BBT_USE_FLASH;
715 chip->controller = &elbc_fcm_ctrl->controller;
716 nand_set_controller_data(chip, priv);
718 return 0;
721 static int fsl_elbc_attach_chip(struct nand_chip *chip)
723 struct mtd_info *mtd = nand_to_mtd(chip);
724 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
725 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
726 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
727 unsigned int al;
729 switch (chip->ecc.engine_type) {
731 * if ECC was not chosen in DT, decide whether to use HW or SW ECC from
732 * CS Base Register
734 case NAND_ECC_ENGINE_TYPE_NONE:
735 /* If CS Base Register selects full hardware ECC then use it */
736 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
737 BR_DECC_CHK_GEN) {
738 chip->ecc.read_page = fsl_elbc_read_page;
739 chip->ecc.write_page = fsl_elbc_write_page;
740 chip->ecc.write_subpage = fsl_elbc_write_subpage;
742 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
743 mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
744 chip->ecc.size = 512;
745 chip->ecc.bytes = 3;
746 chip->ecc.strength = 1;
747 } else {
748 /* otherwise fall back to default software ECC */
749 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
750 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
752 break;
754 /* if SW ECC was chosen in DT, we do not need to set anything here */
755 case NAND_ECC_ENGINE_TYPE_SOFT:
756 break;
758 /* should we also implement *_ECC_ENGINE_CONTROLLER to do as above? */
759 default:
760 return -EINVAL;
763 /* calculate FMR Address Length field */
764 al = 0;
765 if (chip->pagemask & 0xffff0000)
766 al++;
767 if (chip->pagemask & 0xff000000)
768 al++;
770 priv->fmr |= al << FMR_AL_SHIFT;
772 dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
773 nanddev_ntargets(&chip->base));
774 dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
775 nanddev_target_size(&chip->base));
776 dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
777 chip->pagemask);
778 dev_dbg(priv->dev, "fsl_elbc_init: nand->legacy.chip_delay = %d\n",
779 chip->legacy.chip_delay);
780 dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
781 chip->badblockpos);
782 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
783 chip->chip_shift);
784 dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
785 chip->page_shift);
786 dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
787 chip->phys_erase_shift);
788 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.engine_type = %d\n",
789 chip->ecc.engine_type);
790 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
791 chip->ecc.steps);
792 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
793 chip->ecc.bytes);
794 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
795 chip->ecc.total);
796 dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n",
797 mtd->ooblayout);
798 dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
799 dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
800 dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
801 mtd->erasesize);
802 dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
803 mtd->writesize);
804 dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
805 mtd->oobsize);
807 /* adjust Option Register and ECC to match Flash page size */
808 if (mtd->writesize == 512) {
809 priv->page_size = 0;
810 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
811 } else if (mtd->writesize == 2048) {
812 priv->page_size = 1;
813 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
814 } else {
815 dev_err(priv->dev,
816 "fsl_elbc_init: page size %d is not supported\n",
817 mtd->writesize);
818 return -ENOTSUPP;
821 return 0;
824 static const struct nand_controller_ops fsl_elbc_controller_ops = {
825 .attach_chip = fsl_elbc_attach_chip,
828 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
830 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
831 struct mtd_info *mtd = nand_to_mtd(&priv->chip);
833 kfree(mtd->name);
835 if (priv->vbase)
836 iounmap(priv->vbase);
838 elbc_fcm_ctrl->chips[priv->bank] = NULL;
839 kfree(priv);
840 return 0;
843 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
845 static int fsl_elbc_nand_probe(struct platform_device *pdev)
847 struct fsl_lbc_regs __iomem *lbc;
848 struct fsl_elbc_mtd *priv;
849 struct resource res;
850 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
851 static const char *part_probe_types[]
852 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
853 int ret;
854 int bank;
855 struct device *dev;
856 struct device_node *node = pdev->dev.of_node;
857 struct mtd_info *mtd;
859 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
860 return -ENODEV;
861 lbc = fsl_lbc_ctrl_dev->regs;
862 dev = fsl_lbc_ctrl_dev->dev;
864 /* get, allocate and map the memory resource */
865 ret = of_address_to_resource(node, 0, &res);
866 if (ret) {
867 dev_err(dev, "failed to get resource\n");
868 return ret;
871 /* find which chip select it is connected to */
872 for (bank = 0; bank < MAX_BANKS; bank++)
873 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
874 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
875 (in_be32(&lbc->bank[bank].br) &
876 in_be32(&lbc->bank[bank].or) & BR_BA)
877 == fsl_lbc_addr(res.start))
878 break;
880 if (bank >= MAX_BANKS) {
881 dev_err(dev, "address did not match any chip selects\n");
882 return -ENODEV;
885 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
886 if (!priv)
887 return -ENOMEM;
889 mutex_lock(&fsl_elbc_nand_mutex);
890 if (!fsl_lbc_ctrl_dev->nand) {
891 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
892 if (!elbc_fcm_ctrl) {
893 mutex_unlock(&fsl_elbc_nand_mutex);
894 ret = -ENOMEM;
895 goto err;
897 elbc_fcm_ctrl->counter++;
899 nand_controller_init(&elbc_fcm_ctrl->controller);
900 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
901 } else {
902 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
904 mutex_unlock(&fsl_elbc_nand_mutex);
906 elbc_fcm_ctrl->chips[bank] = priv;
907 priv->bank = bank;
908 priv->ctrl = fsl_lbc_ctrl_dev;
909 priv->dev = &pdev->dev;
910 dev_set_drvdata(priv->dev, priv);
912 priv->vbase = ioremap(res.start, resource_size(&res));
913 if (!priv->vbase) {
914 dev_err(dev, "failed to map chip region\n");
915 ret = -ENOMEM;
916 goto err;
919 mtd = nand_to_mtd(&priv->chip);
920 mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
921 if (!nand_to_mtd(&priv->chip)->name) {
922 ret = -ENOMEM;
923 goto err;
926 ret = fsl_elbc_chip_init(priv);
927 if (ret)
928 goto err;
930 priv->chip.controller->ops = &fsl_elbc_controller_ops;
931 ret = nand_scan(&priv->chip, 1);
932 if (ret)
933 goto err;
935 /* First look for RedBoot table or partitions on the command
936 * line, these take precedence over device tree information */
937 ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
938 if (ret)
939 goto cleanup_nand;
941 pr_info("eLBC NAND device at 0x%llx, bank %d\n",
942 (unsigned long long)res.start, priv->bank);
944 return 0;
946 cleanup_nand:
947 nand_cleanup(&priv->chip);
948 err:
949 fsl_elbc_chip_remove(priv);
951 return ret;
954 static int fsl_elbc_nand_remove(struct platform_device *pdev)
956 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
957 struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
958 struct nand_chip *chip = &priv->chip;
959 int ret;
961 ret = mtd_device_unregister(nand_to_mtd(chip));
962 WARN_ON(ret);
963 nand_cleanup(chip);
965 fsl_elbc_chip_remove(priv);
967 mutex_lock(&fsl_elbc_nand_mutex);
968 elbc_fcm_ctrl->counter--;
969 if (!elbc_fcm_ctrl->counter) {
970 fsl_lbc_ctrl_dev->nand = NULL;
971 kfree(elbc_fcm_ctrl);
973 mutex_unlock(&fsl_elbc_nand_mutex);
975 return 0;
979 static const struct of_device_id fsl_elbc_nand_match[] = {
980 { .compatible = "fsl,elbc-fcm-nand", },
983 MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
985 static struct platform_driver fsl_elbc_nand_driver = {
986 .driver = {
987 .name = "fsl,elbc-fcm-nand",
988 .of_match_table = fsl_elbc_nand_match,
990 .probe = fsl_elbc_nand_probe,
991 .remove = fsl_elbc_nand_remove,
994 module_platform_driver(fsl_elbc_nand_driver);
996 MODULE_LICENSE("GPL");
997 MODULE_AUTHOR("Freescale");
998 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");