Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / mtd / nand / raw / gpmi-nand / gpmi-nand.c
blob5cdf05bcbf8faacfb24ee71758ff0182a3517836
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale GPMI NAND Flash Driver
5 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
31 #define MXS_SET_ADDR 0x4
32 #define MXS_CLR_ADDR 0x8
34 * Clear the bit and poll it cleared. This is usually called with
35 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36 * (bit 30).
38 static int clear_poll_bit(void __iomem *addr, u32 mask)
40 int timeout = 0x400;
42 /* clear the bit */
43 writel(mask, addr + MXS_CLR_ADDR);
46 * SFTRST needs 3 GPMI clocks to settle, the reference manual
47 * recommends to wait 1us.
49 udelay(1);
51 /* poll the bit becoming clear */
52 while ((readl(addr) & mask) && --timeout)
53 /* nothing */;
55 return !timeout;
58 #define MODULE_CLKGATE (1 << 30)
59 #define MODULE_SFTRST (1 << 31)
61 * The current mxs_reset_block() will do two things:
62 * [1] enable the module.
63 * [2] reset the module.
65 * In most of the cases, it's ok.
66 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67 * If you try to soft reset the BCH block, it becomes unusable until
68 * the next hard reset. This case occurs in the NAND boot mode. When the board
69 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71 * You will see a DMA timeout in this case. The bug has been fixed
72 * in the following chips, such as MX28.
74 * To avoid this bug, just add a new parameter `just_enable` for
75 * the mxs_reset_block(), and rewrite it here.
77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
79 int ret;
80 int timeout = 0x400;
82 /* clear and poll SFTRST */
83 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84 if (unlikely(ret))
85 goto error;
87 /* clear CLKGATE */
88 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
90 if (!just_enable) {
91 /* set SFTRST to reset the block */
92 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93 udelay(1);
95 /* poll CLKGATE becoming set */
96 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97 /* nothing */;
98 if (unlikely(!timeout))
99 goto error;
102 /* clear and poll SFTRST */
103 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104 if (unlikely(ret))
105 goto error;
107 /* clear and poll CLKGATE */
108 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109 if (unlikely(ret))
110 goto error;
112 return 0;
114 error:
115 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116 return -ETIMEDOUT;
119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
121 struct clk *clk;
122 int ret;
123 int i;
125 for (i = 0; i < GPMI_CLK_MAX; i++) {
126 clk = this->resources.clock[i];
127 if (!clk)
128 break;
130 if (v) {
131 ret = clk_prepare_enable(clk);
132 if (ret)
133 goto err_clk;
134 } else {
135 clk_disable_unprepare(clk);
138 return 0;
140 err_clk:
141 for (; i > 0; i--)
142 clk_disable_unprepare(this->resources.clock[i - 1]);
143 return ret;
146 static int gpmi_init(struct gpmi_nand_data *this)
148 struct resources *r = &this->resources;
149 int ret;
151 ret = pm_runtime_get_sync(this->dev);
152 if (ret < 0) {
153 pm_runtime_put_noidle(this->dev);
154 return ret;
157 ret = gpmi_reset_block(r->gpmi_regs, false);
158 if (ret)
159 goto err_out;
162 * Reset BCH here, too. We got failures otherwise :(
163 * See later BCH reset for explanation of MX23 and MX28 handling
165 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
166 if (ret)
167 goto err_out;
169 /* Choose NAND mode. */
170 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
172 /* Set the IRQ polarity. */
173 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
174 r->gpmi_regs + HW_GPMI_CTRL1_SET);
176 /* Disable Write-Protection. */
177 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
179 /* Select BCH ECC. */
180 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
183 * Decouple the chip select from dma channel. We use dma0 for all
184 * the chips, force all NAND RDY_BUSY inputs to be sourced from
185 * RDY_BUSY0.
187 writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
188 r->gpmi_regs + HW_GPMI_CTRL1_SET);
190 err_out:
191 pm_runtime_mark_last_busy(this->dev);
192 pm_runtime_put_autosuspend(this->dev);
193 return ret;
196 /* This function is very useful. It is called only when the bug occur. */
197 static void gpmi_dump_info(struct gpmi_nand_data *this)
199 struct resources *r = &this->resources;
200 struct bch_geometry *geo = &this->bch_geometry;
201 u32 reg;
202 int i;
204 dev_err(this->dev, "Show GPMI registers :\n");
205 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
206 reg = readl(r->gpmi_regs + i * 0x10);
207 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
210 /* start to print out the BCH info */
211 dev_err(this->dev, "Show BCH registers :\n");
212 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
213 reg = readl(r->bch_regs + i * 0x10);
214 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
216 dev_err(this->dev, "BCH Geometry :\n"
217 "GF length : %u\n"
218 "ECC Strength : %u\n"
219 "Page Size in Bytes : %u\n"
220 "Metadata Size in Bytes : %u\n"
221 "ECC Chunk Size in Bytes: %u\n"
222 "ECC Chunk Count : %u\n"
223 "Payload Size in Bytes : %u\n"
224 "Auxiliary Size in Bytes: %u\n"
225 "Auxiliary Status Offset: %u\n"
226 "Block Mark Byte Offset : %u\n"
227 "Block Mark Bit Offset : %u\n",
228 geo->gf_len,
229 geo->ecc_strength,
230 geo->page_size,
231 geo->metadata_size,
232 geo->ecc_chunk_size,
233 geo->ecc_chunk_count,
234 geo->payload_size,
235 geo->auxiliary_size,
236 geo->auxiliary_status_offset,
237 geo->block_mark_byte_offset,
238 geo->block_mark_bit_offset);
241 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
243 struct bch_geometry *geo = &this->bch_geometry;
245 /* Do the sanity check. */
246 if (GPMI_IS_MXS(this)) {
247 /* The mx23/mx28 only support the GF13. */
248 if (geo->gf_len == 14)
249 return false;
251 return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
255 * If we can get the ECC information from the nand chip, we do not
256 * need to calculate them ourselves.
258 * We may have available oob space in this case.
260 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
261 unsigned int ecc_strength,
262 unsigned int ecc_step)
264 struct bch_geometry *geo = &this->bch_geometry;
265 struct nand_chip *chip = &this->nand;
266 struct mtd_info *mtd = nand_to_mtd(chip);
267 unsigned int block_mark_bit_offset;
269 switch (ecc_step) {
270 case SZ_512:
271 geo->gf_len = 13;
272 break;
273 case SZ_1K:
274 geo->gf_len = 14;
275 break;
276 default:
277 dev_err(this->dev,
278 "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
279 nanddev_get_ecc_requirements(&chip->base)->strength,
280 nanddev_get_ecc_requirements(&chip->base)->step_size);
281 return -EINVAL;
283 geo->ecc_chunk_size = ecc_step;
284 geo->ecc_strength = round_up(ecc_strength, 2);
285 if (!gpmi_check_ecc(this))
286 return -EINVAL;
288 /* Keep the C >= O */
289 if (geo->ecc_chunk_size < mtd->oobsize) {
290 dev_err(this->dev,
291 "unsupported nand chip. ecc size: %d, oob size : %d\n",
292 ecc_step, mtd->oobsize);
293 return -EINVAL;
296 /* The default value, see comment in the legacy_set_geometry(). */
297 geo->metadata_size = 10;
299 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
302 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
304 * | P |
305 * |<----------------------------------------------------->|
306 * | |
307 * | (Block Mark) |
308 * | P' | | | |
309 * |<-------------------------------------------->| D | | O' |
310 * | |<---->| |<--->|
311 * V V V V V
312 * +---+----------+-+----------+-+----------+-+----------+-+-----+
313 * | M | data |E| data |E| data |E| data |E| |
314 * +---+----------+-+----------+-+----------+-+----------+-+-----+
315 * ^ ^
316 * | O |
317 * |<------------>|
318 * | |
320 * P : the page size for BCH module.
321 * E : The ECC strength.
322 * G : the length of Galois Field.
323 * N : The chunk count of per page.
324 * M : the metasize of per page.
325 * C : the ecc chunk size, aka the "data" above.
326 * P': the nand chip's page size.
327 * O : the nand chip's oob size.
328 * O': the free oob.
330 * The formula for P is :
332 * E * G * N
333 * P = ------------ + P' + M
336 * The position of block mark moves forward in the ECC-based view
337 * of page, and the delta is:
339 * E * G * (N - 1)
340 * D = (---------------- + M)
343 * Please see the comment in legacy_set_geometry().
344 * With the condition C >= O , we still can get same result.
345 * So the bit position of the physical block mark within the ECC-based
346 * view of the page is :
347 * (P' - D) * 8
349 geo->page_size = mtd->writesize + geo->metadata_size +
350 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
352 geo->payload_size = mtd->writesize;
354 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
355 geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
356 + ALIGN(geo->ecc_chunk_count, 4);
358 if (!this->swap_block_mark)
359 return 0;
361 /* For bit swap. */
362 block_mark_bit_offset = mtd->writesize * 8 -
363 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
364 + geo->metadata_size * 8);
366 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
367 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
368 return 0;
372 * Calculate the ECC strength by hand:
373 * E : The ECC strength.
374 * G : the length of Galois Field.
375 * N : The chunk count of per page.
376 * O : the oobsize of the NAND chip.
377 * M : the metasize of per page.
379 * The formula is :
380 * E * G * N
381 * ------------ <= (O - M)
384 * So, we get E by:
385 * (O - M) * 8
386 * E <= -------------
387 * G * N
389 static inline int get_ecc_strength(struct gpmi_nand_data *this)
391 struct bch_geometry *geo = &this->bch_geometry;
392 struct mtd_info *mtd = nand_to_mtd(&this->nand);
393 int ecc_strength;
395 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
396 / (geo->gf_len * geo->ecc_chunk_count);
398 /* We need the minor even number. */
399 return round_down(ecc_strength, 2);
402 static int legacy_set_geometry(struct gpmi_nand_data *this)
404 struct bch_geometry *geo = &this->bch_geometry;
405 struct mtd_info *mtd = nand_to_mtd(&this->nand);
406 unsigned int metadata_size;
407 unsigned int status_size;
408 unsigned int block_mark_bit_offset;
411 * The size of the metadata can be changed, though we set it to 10
412 * bytes now. But it can't be too large, because we have to save
413 * enough space for BCH.
415 geo->metadata_size = 10;
417 /* The default for the length of Galois Field. */
418 geo->gf_len = 13;
420 /* The default for chunk size. */
421 geo->ecc_chunk_size = 512;
422 while (geo->ecc_chunk_size < mtd->oobsize) {
423 geo->ecc_chunk_size *= 2; /* keep C >= O */
424 geo->gf_len = 14;
427 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
429 /* We use the same ECC strength for all chunks. */
430 geo->ecc_strength = get_ecc_strength(this);
431 if (!gpmi_check_ecc(this)) {
432 dev_err(this->dev,
433 "ecc strength: %d cannot be supported by the controller (%d)\n"
434 "try to use minimum ecc strength that NAND chip required\n",
435 geo->ecc_strength,
436 this->devdata->bch_max_ecc_strength);
437 return -EINVAL;
440 geo->page_size = mtd->writesize + geo->metadata_size +
441 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
442 geo->payload_size = mtd->writesize;
445 * The auxiliary buffer contains the metadata and the ECC status. The
446 * metadata is padded to the nearest 32-bit boundary. The ECC status
447 * contains one byte for every ECC chunk, and is also padded to the
448 * nearest 32-bit boundary.
450 metadata_size = ALIGN(geo->metadata_size, 4);
451 status_size = ALIGN(geo->ecc_chunk_count, 4);
453 geo->auxiliary_size = metadata_size + status_size;
454 geo->auxiliary_status_offset = metadata_size;
456 if (!this->swap_block_mark)
457 return 0;
460 * We need to compute the byte and bit offsets of
461 * the physical block mark within the ECC-based view of the page.
463 * NAND chip with 2K page shows below:
464 * (Block Mark)
465 * | |
466 * | D |
467 * |<---->|
468 * V V
469 * +---+----------+-+----------+-+----------+-+----------+-+
470 * | M | data |E| data |E| data |E| data |E|
471 * +---+----------+-+----------+-+----------+-+----------+-+
473 * The position of block mark moves forward in the ECC-based view
474 * of page, and the delta is:
476 * E * G * (N - 1)
477 * D = (---------------- + M)
480 * With the formula to compute the ECC strength, and the condition
481 * : C >= O (C is the ecc chunk size)
483 * It's easy to deduce to the following result:
485 * E * G (O - M) C - M C - M
486 * ----------- <= ------- <= -------- < ---------
487 * 8 N N (N - 1)
489 * So, we get:
491 * E * G * (N - 1)
492 * D = (---------------- + M) < C
495 * The above inequality means the position of block mark
496 * within the ECC-based view of the page is still in the data chunk,
497 * and it's NOT in the ECC bits of the chunk.
499 * Use the following to compute the bit position of the
500 * physical block mark within the ECC-based view of the page:
501 * (page_size - D) * 8
503 * --Huang Shijie
505 block_mark_bit_offset = mtd->writesize * 8 -
506 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
507 + geo->metadata_size * 8);
509 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
510 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
511 return 0;
514 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
516 struct nand_chip *chip = &this->nand;
517 const struct nand_ecc_props *requirements =
518 nanddev_get_ecc_requirements(&chip->base);
520 if (chip->ecc.strength > 0 && chip->ecc.size > 0)
521 return set_geometry_by_ecc_info(this, chip->ecc.strength,
522 chip->ecc.size);
524 if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
525 || legacy_set_geometry(this)) {
526 if (!(requirements->strength > 0 && requirements->step_size > 0))
527 return -EINVAL;
529 return set_geometry_by_ecc_info(this,
530 requirements->strength,
531 requirements->step_size);
534 return 0;
537 /* Configures the geometry for BCH. */
538 static int bch_set_geometry(struct gpmi_nand_data *this)
540 struct resources *r = &this->resources;
541 int ret;
543 ret = common_nfc_set_geometry(this);
544 if (ret)
545 return ret;
547 ret = pm_runtime_get_sync(this->dev);
548 if (ret < 0) {
549 pm_runtime_put_autosuspend(this->dev);
550 return ret;
554 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
555 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
556 * and MX28.
558 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
559 if (ret)
560 goto err_out;
562 /* Set *all* chip selects to use layout 0. */
563 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
565 ret = 0;
566 err_out:
567 pm_runtime_mark_last_busy(this->dev);
568 pm_runtime_put_autosuspend(this->dev);
570 return ret;
574 * <1> Firstly, we should know what's the GPMI-clock means.
575 * The GPMI-clock is the internal clock in the gpmi nand controller.
576 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
577 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
579 * <2> Secondly, we should know what's the frequency on the nand chip pins.
580 * The frequency on the nand chip pins is derived from the GPMI-clock.
581 * We can get it from the following equation:
583 * F = G / (DS + DH)
585 * F : the frequency on the nand chip pins.
586 * G : the GPMI clock, such as 100MHz.
587 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
588 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
590 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
591 * the nand EDO(extended Data Out) timing could be applied.
592 * The GPMI implements a feedback read strobe to sample the read data.
593 * The feedback read strobe can be delayed to support the nand EDO timing
594 * where the read strobe may deasserts before the read data is valid, and
595 * read data is valid for some time after read strobe.
597 * The following figure illustrates some aspects of a NAND Flash read:
599 * |<---tREA---->|
600 * | |
601 * | | |
602 * |<--tRP-->| |
603 * | | |
604 * __ ___|__________________________________
605 * RDN \________/ |
607 * /---------\
608 * Read Data --------------< >---------
609 * \---------/
610 * | |
611 * |<-D->|
612 * FeedbackRDN ________ ____________
613 * \___________/
615 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
618 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
620 * 4.1) From the aspect of the nand chip pins:
621 * Delay = (tREA + C - tRP) {1}
623 * tREA : the maximum read access time.
624 * C : a constant to adjust the delay. default is 4000ps.
625 * tRP : the read pulse width, which is exactly:
626 * tRP = (GPMI-clock-period) * DATA_SETUP
628 * 4.2) From the aspect of the GPMI nand controller:
629 * Delay = RDN_DELAY * 0.125 * RP {2}
631 * RP : the DLL reference period.
632 * if (GPMI-clock-period > DLL_THRETHOLD)
633 * RP = GPMI-clock-period / 2;
634 * else
635 * RP = GPMI-clock-period;
637 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
638 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
639 * is 16000ps, but in mx6q, we use 12000ps.
641 * 4.3) since {1} equals {2}, we get:
643 * (tREA + 4000 - tRP) * 8
644 * RDN_DELAY = ----------------------- {3}
645 * RP
647 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
648 const struct nand_sdr_timings *sdr)
650 struct gpmi_nfc_hardware_timing *hw = &this->hw;
651 unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
652 unsigned int period_ps, reference_period_ps;
653 unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
654 unsigned int tRP_ps;
655 bool use_half_period;
656 int sample_delay_ps, sample_delay_factor;
657 u16 busy_timeout_cycles;
658 u8 wrn_dly_sel;
660 if (sdr->tRC_min >= 30000) {
661 /* ONFI non-EDO modes [0-3] */
662 hw->clk_rate = 22000000;
663 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
664 } else if (sdr->tRC_min >= 25000) {
665 /* ONFI EDO mode 4 */
666 hw->clk_rate = 80000000;
667 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
668 } else {
669 /* ONFI EDO mode 5 */
670 hw->clk_rate = 100000000;
671 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
674 /* SDR core timings are given in picoseconds */
675 period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
677 addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
678 data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
679 data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
680 busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
682 hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
683 BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
684 BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
685 hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
688 * Derive NFC ideal delay from {3}:
690 * (tREA + 4000 - tRP) * 8
691 * RDN_DELAY = -----------------------
692 * RP
694 if (period_ps > dll_threshold_ps) {
695 use_half_period = true;
696 reference_period_ps = period_ps / 2;
697 } else {
698 use_half_period = false;
699 reference_period_ps = period_ps;
702 tRP_ps = data_setup_cycles * period_ps;
703 sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
704 if (sample_delay_ps > 0)
705 sample_delay_factor = sample_delay_ps / reference_period_ps;
706 else
707 sample_delay_factor = 0;
709 hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
710 if (sample_delay_factor)
711 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
712 BM_GPMI_CTRL1_DLL_ENABLE |
713 (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
716 static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
718 struct gpmi_nfc_hardware_timing *hw = &this->hw;
719 struct resources *r = &this->resources;
720 void __iomem *gpmi_regs = r->gpmi_regs;
721 unsigned int dll_wait_time_us;
723 clk_set_rate(r->clock[0], hw->clk_rate);
725 writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
726 writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
729 * Clear several CTRL1 fields, DLL must be disabled when setting
730 * RDN_DELAY or HALF_PERIOD.
732 writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
733 writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
735 /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
736 dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
737 if (!dll_wait_time_us)
738 dll_wait_time_us = 1;
740 /* Wait for the DLL to settle. */
741 udelay(dll_wait_time_us);
744 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
745 const struct nand_interface_config *conf)
747 struct gpmi_nand_data *this = nand_get_controller_data(chip);
748 const struct nand_sdr_timings *sdr;
750 /* Retrieve required NAND timings */
751 sdr = nand_get_sdr_timings(conf);
752 if (IS_ERR(sdr))
753 return PTR_ERR(sdr);
755 /* Only MX6 GPMI controller can reach EDO timings */
756 if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
757 return -ENOTSUPP;
759 /* Stop here if this call was just a check */
760 if (chipnr < 0)
761 return 0;
763 /* Do the actual derivation of the controller timings */
764 gpmi_nfc_compute_timings(this, sdr);
766 this->hw.must_apply_timings = true;
768 return 0;
771 /* Clears a BCH interrupt. */
772 static void gpmi_clear_bch(struct gpmi_nand_data *this)
774 struct resources *r = &this->resources;
775 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
778 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
780 /* We use the DMA channel 0 to access all the nand chips. */
781 return this->dma_chans[0];
784 /* This will be called after the DMA operation is finished. */
785 static void dma_irq_callback(void *param)
787 struct gpmi_nand_data *this = param;
788 struct completion *dma_c = &this->dma_done;
790 complete(dma_c);
793 static irqreturn_t bch_irq(int irq, void *cookie)
795 struct gpmi_nand_data *this = cookie;
797 gpmi_clear_bch(this);
798 complete(&this->bch_done);
799 return IRQ_HANDLED;
802 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
805 * raw_len is the length to read/write including bch data which
806 * we are passed in exec_op. Calculate the data length from it.
808 if (this->bch)
809 return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
810 else
811 return raw_len;
814 /* Can we use the upper's buffer directly for DMA? */
815 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
816 int raw_len, struct scatterlist *sgl,
817 enum dma_data_direction dr)
819 int ret;
820 int len = gpmi_raw_len_to_len(this, raw_len);
822 /* first try to map the upper buffer directly */
823 if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
824 sg_init_one(sgl, buf, len);
825 ret = dma_map_sg(this->dev, sgl, 1, dr);
826 if (ret == 0)
827 goto map_fail;
829 return true;
832 map_fail:
833 /* We have to use our own DMA buffer. */
834 sg_init_one(sgl, this->data_buffer_dma, len);
836 if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
837 memcpy(this->data_buffer_dma, buf, len);
839 dma_map_sg(this->dev, sgl, 1, dr);
841 return false;
844 /* add our owner bbt descriptor */
845 static uint8_t scan_ff_pattern[] = { 0xff };
846 static struct nand_bbt_descr gpmi_bbt_descr = {
847 .options = 0,
848 .offs = 0,
849 .len = 1,
850 .pattern = scan_ff_pattern
854 * We may change the layout if we can get the ECC info from the datasheet,
855 * else we will use all the (page + OOB).
857 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
858 struct mtd_oob_region *oobregion)
860 struct nand_chip *chip = mtd_to_nand(mtd);
861 struct gpmi_nand_data *this = nand_get_controller_data(chip);
862 struct bch_geometry *geo = &this->bch_geometry;
864 if (section)
865 return -ERANGE;
867 oobregion->offset = 0;
868 oobregion->length = geo->page_size - mtd->writesize;
870 return 0;
873 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
874 struct mtd_oob_region *oobregion)
876 struct nand_chip *chip = mtd_to_nand(mtd);
877 struct gpmi_nand_data *this = nand_get_controller_data(chip);
878 struct bch_geometry *geo = &this->bch_geometry;
880 if (section)
881 return -ERANGE;
883 /* The available oob size we have. */
884 if (geo->page_size < mtd->writesize + mtd->oobsize) {
885 oobregion->offset = geo->page_size - mtd->writesize;
886 oobregion->length = mtd->oobsize - oobregion->offset;
889 return 0;
892 static const char * const gpmi_clks_for_mx2x[] = {
893 "gpmi_io",
896 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
897 .ecc = gpmi_ooblayout_ecc,
898 .free = gpmi_ooblayout_free,
901 static const struct gpmi_devdata gpmi_devdata_imx23 = {
902 .type = IS_MX23,
903 .bch_max_ecc_strength = 20,
904 .max_chain_delay = 16000,
905 .clks = gpmi_clks_for_mx2x,
906 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
909 static const struct gpmi_devdata gpmi_devdata_imx28 = {
910 .type = IS_MX28,
911 .bch_max_ecc_strength = 20,
912 .max_chain_delay = 16000,
913 .clks = gpmi_clks_for_mx2x,
914 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
917 static const char * const gpmi_clks_for_mx6[] = {
918 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
921 static const struct gpmi_devdata gpmi_devdata_imx6q = {
922 .type = IS_MX6Q,
923 .bch_max_ecc_strength = 40,
924 .max_chain_delay = 12000,
925 .clks = gpmi_clks_for_mx6,
926 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
929 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
930 .type = IS_MX6SX,
931 .bch_max_ecc_strength = 62,
932 .max_chain_delay = 12000,
933 .clks = gpmi_clks_for_mx6,
934 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
937 static const char * const gpmi_clks_for_mx7d[] = {
938 "gpmi_io", "gpmi_bch_apb",
941 static const struct gpmi_devdata gpmi_devdata_imx7d = {
942 .type = IS_MX7D,
943 .bch_max_ecc_strength = 62,
944 .max_chain_delay = 12000,
945 .clks = gpmi_clks_for_mx7d,
946 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
949 static int acquire_register_block(struct gpmi_nand_data *this,
950 const char *res_name)
952 struct platform_device *pdev = this->pdev;
953 struct resources *res = &this->resources;
954 struct resource *r;
955 void __iomem *p;
957 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
958 p = devm_ioremap_resource(&pdev->dev, r);
959 if (IS_ERR(p))
960 return PTR_ERR(p);
962 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
963 res->gpmi_regs = p;
964 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
965 res->bch_regs = p;
966 else
967 dev_err(this->dev, "unknown resource name : %s\n", res_name);
969 return 0;
972 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
974 struct platform_device *pdev = this->pdev;
975 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
976 struct resource *r;
977 int err;
979 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
980 if (!r) {
981 dev_err(this->dev, "Can't get resource for %s\n", res_name);
982 return -ENODEV;
985 err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
986 if (err)
987 dev_err(this->dev, "error requesting BCH IRQ\n");
989 return err;
992 static void release_dma_channels(struct gpmi_nand_data *this)
994 unsigned int i;
995 for (i = 0; i < DMA_CHANS; i++)
996 if (this->dma_chans[i]) {
997 dma_release_channel(this->dma_chans[i]);
998 this->dma_chans[i] = NULL;
1002 static int acquire_dma_channels(struct gpmi_nand_data *this)
1004 struct platform_device *pdev = this->pdev;
1005 struct dma_chan *dma_chan;
1006 int ret = 0;
1008 /* request dma channel */
1009 dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1010 if (IS_ERR(dma_chan)) {
1011 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
1012 "DMA channel request failed\n");
1013 release_dma_channels(this);
1014 } else {
1015 this->dma_chans[0] = dma_chan;
1018 return ret;
1021 static int gpmi_get_clks(struct gpmi_nand_data *this)
1023 struct resources *r = &this->resources;
1024 struct clk *clk;
1025 int err, i;
1027 for (i = 0; i < this->devdata->clks_count; i++) {
1028 clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1029 if (IS_ERR(clk)) {
1030 err = PTR_ERR(clk);
1031 goto err_clock;
1034 r->clock[i] = clk;
1037 if (GPMI_IS_MX6(this))
1039 * Set the default value for the gpmi clock.
1041 * If you want to use the ONFI nand which is in the
1042 * Synchronous Mode, you should change the clock as you need.
1044 clk_set_rate(r->clock[0], 22000000);
1046 return 0;
1048 err_clock:
1049 dev_dbg(this->dev, "failed in finding the clocks.\n");
1050 return err;
1053 static int acquire_resources(struct gpmi_nand_data *this)
1055 int ret;
1057 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1058 if (ret)
1059 goto exit_regs;
1061 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1062 if (ret)
1063 goto exit_regs;
1065 ret = acquire_bch_irq(this, bch_irq);
1066 if (ret)
1067 goto exit_regs;
1069 ret = acquire_dma_channels(this);
1070 if (ret)
1071 goto exit_regs;
1073 ret = gpmi_get_clks(this);
1074 if (ret)
1075 goto exit_clock;
1076 return 0;
1078 exit_clock:
1079 release_dma_channels(this);
1080 exit_regs:
1081 return ret;
1084 static void release_resources(struct gpmi_nand_data *this)
1086 release_dma_channels(this);
1089 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1091 struct device *dev = this->dev;
1092 struct bch_geometry *geo = &this->bch_geometry;
1094 if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1095 dma_free_coherent(dev, geo->auxiliary_size,
1096 this->auxiliary_virt,
1097 this->auxiliary_phys);
1098 kfree(this->data_buffer_dma);
1099 kfree(this->raw_buffer);
1101 this->data_buffer_dma = NULL;
1102 this->raw_buffer = NULL;
1105 /* Allocate the DMA buffers */
1106 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1108 struct bch_geometry *geo = &this->bch_geometry;
1109 struct device *dev = this->dev;
1110 struct mtd_info *mtd = nand_to_mtd(&this->nand);
1113 * [2] Allocate a read/write data buffer.
1114 * The gpmi_alloc_dma_buffer can be called twice.
1115 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1116 * is called before the NAND identification; and we allocate a
1117 * buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1118 * is called after.
1120 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1121 GFP_DMA | GFP_KERNEL);
1122 if (this->data_buffer_dma == NULL)
1123 goto error_alloc;
1125 this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1126 &this->auxiliary_phys, GFP_DMA);
1127 if (!this->auxiliary_virt)
1128 goto error_alloc;
1130 this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1131 if (!this->raw_buffer)
1132 goto error_alloc;
1134 return 0;
1136 error_alloc:
1137 gpmi_free_dma_buffer(this);
1138 return -ENOMEM;
1142 * Handles block mark swapping.
1143 * It can be called in swapping the block mark, or swapping it back,
1144 * because the the operations are the same.
1146 static void block_mark_swapping(struct gpmi_nand_data *this,
1147 void *payload, void *auxiliary)
1149 struct bch_geometry *nfc_geo = &this->bch_geometry;
1150 unsigned char *p;
1151 unsigned char *a;
1152 unsigned int bit;
1153 unsigned char mask;
1154 unsigned char from_data;
1155 unsigned char from_oob;
1157 if (!this->swap_block_mark)
1158 return;
1161 * If control arrives here, we're swapping. Make some convenience
1162 * variables.
1164 bit = nfc_geo->block_mark_bit_offset;
1165 p = payload + nfc_geo->block_mark_byte_offset;
1166 a = auxiliary;
1169 * Get the byte from the data area that overlays the block mark. Since
1170 * the ECC engine applies its own view to the bits in the page, the
1171 * physical block mark won't (in general) appear on a byte boundary in
1172 * the data.
1174 from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1176 /* Get the byte from the OOB. */
1177 from_oob = a[0];
1179 /* Swap them. */
1180 a[0] = from_data;
1182 mask = (0x1 << bit) - 1;
1183 p[0] = (p[0] & mask) | (from_oob << bit);
1185 mask = ~0 << bit;
1186 p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1189 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1190 int last, int meta)
1192 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1193 struct bch_geometry *nfc_geo = &this->bch_geometry;
1194 struct mtd_info *mtd = nand_to_mtd(chip);
1195 int i;
1196 unsigned char *status;
1197 unsigned int max_bitflips = 0;
1199 /* Loop over status bytes, accumulating ECC status. */
1200 status = this->auxiliary_virt + ALIGN(meta, 4);
1202 for (i = first; i < last; i++, status++) {
1203 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1204 continue;
1206 if (*status == STATUS_UNCORRECTABLE) {
1207 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1208 u8 *eccbuf = this->raw_buffer;
1209 int offset, bitoffset;
1210 int eccbytes;
1211 int flips;
1213 /* Read ECC bytes into our internal raw_buffer */
1214 offset = nfc_geo->metadata_size * 8;
1215 offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
1216 offset -= eccbits;
1217 bitoffset = offset % 8;
1218 eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1219 offset /= 8;
1220 eccbytes -= offset;
1221 nand_change_read_column_op(chip, offset, eccbuf,
1222 eccbytes, false);
1225 * ECC data are not byte aligned and we may have
1226 * in-band data in the first and last byte of
1227 * eccbuf. Set non-eccbits to one so that
1228 * nand_check_erased_ecc_chunk() does not count them
1229 * as bitflips.
1231 if (bitoffset)
1232 eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1234 bitoffset = (bitoffset + eccbits) % 8;
1235 if (bitoffset)
1236 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1239 * The ECC hardware has an uncorrectable ECC status
1240 * code in case we have bitflips in an erased page. As
1241 * nothing was written into this subpage the ECC is
1242 * obviously wrong and we can not trust it. We assume
1243 * at this point that we are reading an erased page and
1244 * try to correct the bitflips in buffer up to
1245 * ecc_strength bitflips. If this is a page with random
1246 * data, we exceed this number of bitflips and have a
1247 * ECC failure. Otherwise we use the corrected buffer.
1249 if (i == 0) {
1250 /* The first block includes metadata */
1251 flips = nand_check_erased_ecc_chunk(
1252 buf + i * nfc_geo->ecc_chunk_size,
1253 nfc_geo->ecc_chunk_size,
1254 eccbuf, eccbytes,
1255 this->auxiliary_virt,
1256 nfc_geo->metadata_size,
1257 nfc_geo->ecc_strength);
1258 } else {
1259 flips = nand_check_erased_ecc_chunk(
1260 buf + i * nfc_geo->ecc_chunk_size,
1261 nfc_geo->ecc_chunk_size,
1262 eccbuf, eccbytes,
1263 NULL, 0,
1264 nfc_geo->ecc_strength);
1267 if (flips > 0) {
1268 max_bitflips = max_t(unsigned int, max_bitflips,
1269 flips);
1270 mtd->ecc_stats.corrected += flips;
1271 continue;
1274 mtd->ecc_stats.failed++;
1275 continue;
1278 mtd->ecc_stats.corrected += *status;
1279 max_bitflips = max_t(unsigned int, max_bitflips, *status);
1282 return max_bitflips;
1285 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1287 struct bch_geometry *geo = &this->bch_geometry;
1288 unsigned int ecc_strength = geo->ecc_strength >> 1;
1289 unsigned int gf_len = geo->gf_len;
1290 unsigned int block_size = geo->ecc_chunk_size;
1292 this->bch_flashlayout0 =
1293 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1294 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1295 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1296 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1297 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
1299 this->bch_flashlayout1 =
1300 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1301 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1302 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1303 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
1306 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1307 int oob_required, int page)
1309 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1310 struct mtd_info *mtd = nand_to_mtd(chip);
1311 struct bch_geometry *geo = &this->bch_geometry;
1312 unsigned int max_bitflips;
1313 int ret;
1315 gpmi_bch_layout_std(this);
1316 this->bch = true;
1318 ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1319 if (ret)
1320 return ret;
1322 max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1323 geo->ecc_chunk_count,
1324 geo->auxiliary_status_offset);
1326 /* handle the block mark swapping */
1327 block_mark_swapping(this, buf, this->auxiliary_virt);
1329 if (oob_required) {
1331 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1332 * for details about our policy for delivering the OOB.
1334 * We fill the caller's buffer with set bits, and then copy the
1335 * block mark to th caller's buffer. Note that, if block mark
1336 * swapping was necessary, it has already been done, so we can
1337 * rely on the first byte of the auxiliary buffer to contain
1338 * the block mark.
1340 memset(chip->oob_poi, ~0, mtd->oobsize);
1341 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1344 return max_bitflips;
1347 /* Fake a virtual small page for the subpage read */
1348 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1349 uint32_t len, uint8_t *buf, int page)
1351 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1352 struct bch_geometry *geo = &this->bch_geometry;
1353 int size = chip->ecc.size; /* ECC chunk size */
1354 int meta, n, page_size;
1355 unsigned int max_bitflips;
1356 unsigned int ecc_strength;
1357 int first, last, marker_pos;
1358 int ecc_parity_size;
1359 int col = 0;
1360 int ret;
1362 /* The size of ECC parity */
1363 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1365 /* Align it with the chunk size */
1366 first = offs / size;
1367 last = (offs + len - 1) / size;
1369 if (this->swap_block_mark) {
1371 * Find the chunk which contains the Block Marker.
1372 * If this chunk is in the range of [first, last],
1373 * we have to read out the whole page.
1374 * Why? since we had swapped the data at the position of Block
1375 * Marker to the metadata which is bound with the chunk 0.
1377 marker_pos = geo->block_mark_byte_offset / size;
1378 if (last >= marker_pos && first <= marker_pos) {
1379 dev_dbg(this->dev,
1380 "page:%d, first:%d, last:%d, marker at:%d\n",
1381 page, first, last, marker_pos);
1382 return gpmi_ecc_read_page(chip, buf, 0, page);
1386 meta = geo->metadata_size;
1387 if (first) {
1388 col = meta + (size + ecc_parity_size) * first;
1389 meta = 0;
1390 buf = buf + first * size;
1393 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1395 n = last - first + 1;
1396 page_size = meta + (size + ecc_parity_size) * n;
1397 ecc_strength = geo->ecc_strength >> 1;
1399 this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
1400 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1401 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1402 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1403 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
1405 this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1406 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1407 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1408 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
1410 this->bch = true;
1412 ret = nand_read_page_op(chip, page, col, buf, page_size);
1413 if (ret)
1414 return ret;
1416 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1417 page, offs, len, col, first, n, page_size);
1419 max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1421 return max_bitflips;
1424 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1425 int oob_required, int page)
1427 struct mtd_info *mtd = nand_to_mtd(chip);
1428 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1429 struct bch_geometry *nfc_geo = &this->bch_geometry;
1430 int ret;
1432 dev_dbg(this->dev, "ecc write page.\n");
1434 gpmi_bch_layout_std(this);
1435 this->bch = true;
1437 memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1439 if (this->swap_block_mark) {
1441 * When doing bad block marker swapping we must always copy the
1442 * input buffer as we can't modify the const buffer.
1444 memcpy(this->data_buffer_dma, buf, mtd->writesize);
1445 buf = this->data_buffer_dma;
1446 block_mark_swapping(this, this->data_buffer_dma,
1447 this->auxiliary_virt);
1450 ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1452 return ret;
1456 * There are several places in this driver where we have to handle the OOB and
1457 * block marks. This is the function where things are the most complicated, so
1458 * this is where we try to explain it all. All the other places refer back to
1459 * here.
1461 * These are the rules, in order of decreasing importance:
1463 * 1) Nothing the caller does can be allowed to imperil the block mark.
1465 * 2) In read operations, the first byte of the OOB we return must reflect the
1466 * true state of the block mark, no matter where that block mark appears in
1467 * the physical page.
1469 * 3) ECC-based read operations return an OOB full of set bits (since we never
1470 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1471 * return).
1473 * 4) "Raw" read operations return a direct view of the physical bytes in the
1474 * page, using the conventional definition of which bytes are data and which
1475 * are OOB. This gives the caller a way to see the actual, physical bytes
1476 * in the page, without the distortions applied by our ECC engine.
1479 * What we do for this specific read operation depends on two questions:
1481 * 1) Are we doing a "raw" read, or an ECC-based read?
1483 * 2) Are we using block mark swapping or transcription?
1485 * There are four cases, illustrated by the following Karnaugh map:
1487 * | Raw | ECC-based |
1488 * -------------+-------------------------+-------------------------+
1489 * | Read the conventional | |
1490 * | OOB at the end of the | |
1491 * Swapping | page and return it. It | |
1492 * | contains exactly what | |
1493 * | we want. | Read the block mark and |
1494 * -------------+-------------------------+ return it in a buffer |
1495 * | Read the conventional | full of set bits. |
1496 * | OOB at the end of the | |
1497 * | page and also the block | |
1498 * Transcribing | mark in the metadata. | |
1499 * | Copy the block mark | |
1500 * | into the first byte of | |
1501 * | the OOB. | |
1502 * -------------+-------------------------+-------------------------+
1504 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1505 * giving an accurate view of the actual, physical bytes in the page (we're
1506 * overwriting the block mark). That's OK because it's more important to follow
1507 * rule #2.
1509 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1510 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1511 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1512 * ECC-based or raw view of the page is implicit in which function it calls
1513 * (there is a similar pair of ECC-based/raw functions for writing).
1515 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1517 struct mtd_info *mtd = nand_to_mtd(chip);
1518 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1519 int ret;
1521 /* clear the OOB buffer */
1522 memset(chip->oob_poi, ~0, mtd->oobsize);
1524 /* Read out the conventional OOB. */
1525 ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1526 mtd->oobsize);
1527 if (ret)
1528 return ret;
1531 * Now, we want to make sure the block mark is correct. In the
1532 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1533 * Otherwise, we need to explicitly read it.
1535 if (GPMI_IS_MX23(this)) {
1536 /* Read the block mark into the first byte of the OOB buffer. */
1537 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1538 if (ret)
1539 return ret;
1542 return 0;
1545 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1547 struct mtd_info *mtd = nand_to_mtd(chip);
1548 struct mtd_oob_region of = { };
1550 /* Do we have available oob area? */
1551 mtd_ooblayout_free(mtd, 0, &of);
1552 if (!of.length)
1553 return -EPERM;
1555 if (!nand_is_slc(chip))
1556 return -EPERM;
1558 return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1559 chip->oob_poi + of.offset, of.length);
1563 * This function reads a NAND page without involving the ECC engine (no HW
1564 * ECC correction).
1565 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1566 * inline (interleaved with payload DATA), and do not align data chunk on
1567 * byte boundaries.
1568 * We thus need to take care moving the payload data and ECC bits stored in the
1569 * page into the provided buffers, which is why we're using nand_extract_bits().
1571 * See set_geometry_by_ecc_info inline comments to have a full description
1572 * of the layout used by the GPMI controller.
1574 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1575 int oob_required, int page)
1577 struct mtd_info *mtd = nand_to_mtd(chip);
1578 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1579 struct bch_geometry *nfc_geo = &this->bch_geometry;
1580 int eccsize = nfc_geo->ecc_chunk_size;
1581 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1582 u8 *tmp_buf = this->raw_buffer;
1583 size_t src_bit_off;
1584 size_t oob_bit_off;
1585 size_t oob_byte_off;
1586 uint8_t *oob = chip->oob_poi;
1587 int step;
1588 int ret;
1590 ret = nand_read_page_op(chip, page, 0, tmp_buf,
1591 mtd->writesize + mtd->oobsize);
1592 if (ret)
1593 return ret;
1596 * If required, swap the bad block marker and the data stored in the
1597 * metadata section, so that we don't wrongly consider a block as bad.
1599 * See the layout description for a detailed explanation on why this
1600 * is needed.
1602 if (this->swap_block_mark)
1603 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1606 * Copy the metadata section into the oob buffer (this section is
1607 * guaranteed to be aligned on a byte boundary).
1609 if (oob_required)
1610 memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1612 oob_bit_off = nfc_geo->metadata_size * 8;
1613 src_bit_off = oob_bit_off;
1615 /* Extract interleaved payload data and ECC bits */
1616 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1617 if (buf)
1618 nand_extract_bits(buf, step * eccsize, tmp_buf,
1619 src_bit_off, eccsize * 8);
1620 src_bit_off += eccsize * 8;
1622 /* Align last ECC block to align a byte boundary */
1623 if (step == nfc_geo->ecc_chunk_count - 1 &&
1624 (oob_bit_off + eccbits) % 8)
1625 eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1627 if (oob_required)
1628 nand_extract_bits(oob, oob_bit_off, tmp_buf,
1629 src_bit_off, eccbits);
1631 src_bit_off += eccbits;
1632 oob_bit_off += eccbits;
1635 if (oob_required) {
1636 oob_byte_off = oob_bit_off / 8;
1638 if (oob_byte_off < mtd->oobsize)
1639 memcpy(oob + oob_byte_off,
1640 tmp_buf + mtd->writesize + oob_byte_off,
1641 mtd->oobsize - oob_byte_off);
1644 return 0;
1648 * This function writes a NAND page without involving the ECC engine (no HW
1649 * ECC generation).
1650 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1651 * inline (interleaved with payload DATA), and do not align data chunk on
1652 * byte boundaries.
1653 * We thus need to take care moving the OOB area at the right place in the
1654 * final page, which is why we're using nand_extract_bits().
1656 * See set_geometry_by_ecc_info inline comments to have a full description
1657 * of the layout used by the GPMI controller.
1659 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1660 int oob_required, int page)
1662 struct mtd_info *mtd = nand_to_mtd(chip);
1663 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1664 struct bch_geometry *nfc_geo = &this->bch_geometry;
1665 int eccsize = nfc_geo->ecc_chunk_size;
1666 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1667 u8 *tmp_buf = this->raw_buffer;
1668 uint8_t *oob = chip->oob_poi;
1669 size_t dst_bit_off;
1670 size_t oob_bit_off;
1671 size_t oob_byte_off;
1672 int step;
1675 * Initialize all bits to 1 in case we don't have a buffer for the
1676 * payload or oob data in order to leave unspecified bits of data
1677 * to their initial state.
1679 if (!buf || !oob_required)
1680 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1683 * First copy the metadata section (stored in oob buffer) at the
1684 * beginning of the page, as imposed by the GPMI layout.
1686 memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1687 oob_bit_off = nfc_geo->metadata_size * 8;
1688 dst_bit_off = oob_bit_off;
1690 /* Interleave payload data and ECC bits */
1691 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1692 if (buf)
1693 nand_extract_bits(tmp_buf, dst_bit_off, buf,
1694 step * eccsize * 8, eccsize * 8);
1695 dst_bit_off += eccsize * 8;
1697 /* Align last ECC block to align a byte boundary */
1698 if (step == nfc_geo->ecc_chunk_count - 1 &&
1699 (oob_bit_off + eccbits) % 8)
1700 eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1702 if (oob_required)
1703 nand_extract_bits(tmp_buf, dst_bit_off, oob,
1704 oob_bit_off, eccbits);
1706 dst_bit_off += eccbits;
1707 oob_bit_off += eccbits;
1710 oob_byte_off = oob_bit_off / 8;
1712 if (oob_required && oob_byte_off < mtd->oobsize)
1713 memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1714 oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1717 * If required, swap the bad block marker and the first byte of the
1718 * metadata section, so that we don't modify the bad block marker.
1720 * See the layout description for a detailed explanation on why this
1721 * is needed.
1723 if (this->swap_block_mark)
1724 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1726 return nand_prog_page_op(chip, page, 0, tmp_buf,
1727 mtd->writesize + mtd->oobsize);
1730 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1732 return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1735 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1737 return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1740 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1742 struct mtd_info *mtd = nand_to_mtd(chip);
1743 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1744 int ret = 0;
1745 uint8_t *block_mark;
1746 int column, page, chipnr;
1748 chipnr = (int)(ofs >> chip->chip_shift);
1749 nand_select_target(chip, chipnr);
1751 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1753 /* Write the block mark. */
1754 block_mark = this->data_buffer_dma;
1755 block_mark[0] = 0; /* bad block marker */
1757 /* Shift to get page */
1758 page = (int)(ofs >> chip->page_shift);
1760 ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1762 nand_deselect_target(chip);
1764 return ret;
1767 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1769 struct boot_rom_geometry *geometry = &this->rom_geometry;
1772 * Set the boot block stride size.
1774 * In principle, we should be reading this from the OTP bits, since
1775 * that's where the ROM is going to get it. In fact, we don't have any
1776 * way to read the OTP bits, so we go with the default and hope for the
1777 * best.
1779 geometry->stride_size_in_pages = 64;
1782 * Set the search area stride exponent.
1784 * In principle, we should be reading this from the OTP bits, since
1785 * that's where the ROM is going to get it. In fact, we don't have any
1786 * way to read the OTP bits, so we go with the default and hope for the
1787 * best.
1789 geometry->search_area_stride_exponent = 2;
1790 return 0;
1793 static const char *fingerprint = "STMP";
1794 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1796 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1797 struct device *dev = this->dev;
1798 struct nand_chip *chip = &this->nand;
1799 unsigned int search_area_size_in_strides;
1800 unsigned int stride;
1801 unsigned int page;
1802 u8 *buffer = nand_get_data_buf(chip);
1803 int found_an_ncb_fingerprint = false;
1804 int ret;
1806 /* Compute the number of strides in a search area. */
1807 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1809 nand_select_target(chip, 0);
1812 * Loop through the first search area, looking for the NCB fingerprint.
1814 dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1816 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1817 /* Compute the page addresses. */
1818 page = stride * rom_geo->stride_size_in_pages;
1820 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1823 * Read the NCB fingerprint. The fingerprint is four bytes long
1824 * and starts in the 12th byte of the page.
1826 ret = nand_read_page_op(chip, page, 12, buffer,
1827 strlen(fingerprint));
1828 if (ret)
1829 continue;
1831 /* Look for the fingerprint. */
1832 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1833 found_an_ncb_fingerprint = true;
1834 break;
1839 nand_deselect_target(chip);
1841 if (found_an_ncb_fingerprint)
1842 dev_dbg(dev, "\tFound a fingerprint\n");
1843 else
1844 dev_dbg(dev, "\tNo fingerprint found\n");
1845 return found_an_ncb_fingerprint;
1848 /* Writes a transcription stamp. */
1849 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1851 struct device *dev = this->dev;
1852 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1853 struct nand_chip *chip = &this->nand;
1854 struct mtd_info *mtd = nand_to_mtd(chip);
1855 unsigned int block_size_in_pages;
1856 unsigned int search_area_size_in_strides;
1857 unsigned int search_area_size_in_pages;
1858 unsigned int search_area_size_in_blocks;
1859 unsigned int block;
1860 unsigned int stride;
1861 unsigned int page;
1862 u8 *buffer = nand_get_data_buf(chip);
1863 int status;
1865 /* Compute the search area geometry. */
1866 block_size_in_pages = mtd->erasesize / mtd->writesize;
1867 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1868 search_area_size_in_pages = search_area_size_in_strides *
1869 rom_geo->stride_size_in_pages;
1870 search_area_size_in_blocks =
1871 (search_area_size_in_pages + (block_size_in_pages - 1)) /
1872 block_size_in_pages;
1874 dev_dbg(dev, "Search Area Geometry :\n");
1875 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1876 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1877 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
1879 nand_select_target(chip, 0);
1881 /* Loop over blocks in the first search area, erasing them. */
1882 dev_dbg(dev, "Erasing the search area...\n");
1884 for (block = 0; block < search_area_size_in_blocks; block++) {
1885 /* Erase this block. */
1886 dev_dbg(dev, "\tErasing block 0x%x\n", block);
1887 status = nand_erase_op(chip, block);
1888 if (status)
1889 dev_err(dev, "[%s] Erase failed.\n", __func__);
1892 /* Write the NCB fingerprint into the page buffer. */
1893 memset(buffer, ~0, mtd->writesize);
1894 memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1896 /* Loop through the first search area, writing NCB fingerprints. */
1897 dev_dbg(dev, "Writing NCB fingerprints...\n");
1898 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1899 /* Compute the page addresses. */
1900 page = stride * rom_geo->stride_size_in_pages;
1902 /* Write the first page of the current stride. */
1903 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1905 status = chip->ecc.write_page_raw(chip, buffer, 0, page);
1906 if (status)
1907 dev_err(dev, "[%s] Write failed.\n", __func__);
1910 nand_deselect_target(chip);
1912 return 0;
1915 static int mx23_boot_init(struct gpmi_nand_data *this)
1917 struct device *dev = this->dev;
1918 struct nand_chip *chip = &this->nand;
1919 struct mtd_info *mtd = nand_to_mtd(chip);
1920 unsigned int block_count;
1921 unsigned int block;
1922 int chipnr;
1923 int page;
1924 loff_t byte;
1925 uint8_t block_mark;
1926 int ret = 0;
1929 * If control arrives here, we can't use block mark swapping, which
1930 * means we're forced to use transcription. First, scan for the
1931 * transcription stamp. If we find it, then we don't have to do
1932 * anything -- the block marks are already transcribed.
1934 if (mx23_check_transcription_stamp(this))
1935 return 0;
1938 * If control arrives here, we couldn't find a transcription stamp, so
1939 * so we presume the block marks are in the conventional location.
1941 dev_dbg(dev, "Transcribing bad block marks...\n");
1943 /* Compute the number of blocks in the entire medium. */
1944 block_count = nanddev_eraseblocks_per_target(&chip->base);
1947 * Loop over all the blocks in the medium, transcribing block marks as
1948 * we go.
1950 for (block = 0; block < block_count; block++) {
1952 * Compute the chip, page and byte addresses for this block's
1953 * conventional mark.
1955 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1956 page = block << (chip->phys_erase_shift - chip->page_shift);
1957 byte = block << chip->phys_erase_shift;
1959 /* Send the command to read the conventional block mark. */
1960 nand_select_target(chip, chipnr);
1961 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
1963 nand_deselect_target(chip);
1965 if (ret)
1966 continue;
1969 * Check if the block is marked bad. If so, we need to mark it
1970 * again, but this time the result will be a mark in the
1971 * location where we transcribe block marks.
1973 if (block_mark != 0xff) {
1974 dev_dbg(dev, "Transcribing mark in block %u\n", block);
1975 ret = chip->legacy.block_markbad(chip, byte);
1976 if (ret)
1977 dev_err(dev,
1978 "Failed to mark block bad with ret %d\n",
1979 ret);
1983 /* Write the stamp that indicates we've transcribed the block marks. */
1984 mx23_write_transcription_stamp(this);
1985 return 0;
1988 static int nand_boot_init(struct gpmi_nand_data *this)
1990 nand_boot_set_geometry(this);
1992 /* This is ROM arch-specific initilization before the BBT scanning. */
1993 if (GPMI_IS_MX23(this))
1994 return mx23_boot_init(this);
1995 return 0;
1998 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2000 int ret;
2002 /* Free the temporary DMA memory for reading ID. */
2003 gpmi_free_dma_buffer(this);
2005 /* Set up the NFC geometry which is used by BCH. */
2006 ret = bch_set_geometry(this);
2007 if (ret) {
2008 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2009 return ret;
2012 /* Alloc the new DMA buffers according to the pagesize and oobsize */
2013 return gpmi_alloc_dma_buffer(this);
2016 static int gpmi_init_last(struct gpmi_nand_data *this)
2018 struct nand_chip *chip = &this->nand;
2019 struct mtd_info *mtd = nand_to_mtd(chip);
2020 struct nand_ecc_ctrl *ecc = &chip->ecc;
2021 struct bch_geometry *bch_geo = &this->bch_geometry;
2022 int ret;
2024 /* Set up the medium geometry */
2025 ret = gpmi_set_geometry(this);
2026 if (ret)
2027 return ret;
2029 /* Init the nand_ecc_ctrl{} */
2030 ecc->read_page = gpmi_ecc_read_page;
2031 ecc->write_page = gpmi_ecc_write_page;
2032 ecc->read_oob = gpmi_ecc_read_oob;
2033 ecc->write_oob = gpmi_ecc_write_oob;
2034 ecc->read_page_raw = gpmi_ecc_read_page_raw;
2035 ecc->write_page_raw = gpmi_ecc_write_page_raw;
2036 ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2037 ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2038 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2039 ecc->size = bch_geo->ecc_chunk_size;
2040 ecc->strength = bch_geo->ecc_strength;
2041 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2044 * We only enable the subpage read when:
2045 * (1) the chip is imx6, and
2046 * (2) the size of the ECC parity is byte aligned.
2048 if (GPMI_IS_MX6(this) &&
2049 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2050 ecc->read_subpage = gpmi_ecc_read_subpage;
2051 chip->options |= NAND_SUBPAGE_READ;
2054 return 0;
2057 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2059 struct gpmi_nand_data *this = nand_get_controller_data(chip);
2060 int ret;
2062 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2063 chip->bbt_options |= NAND_BBT_NO_OOB;
2065 if (of_property_read_bool(this->dev->of_node,
2066 "fsl,no-blockmark-swap"))
2067 this->swap_block_mark = false;
2069 dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2070 this->swap_block_mark ? "en" : "dis");
2072 ret = gpmi_init_last(this);
2073 if (ret)
2074 return ret;
2076 chip->options |= NAND_SKIP_BBTSCAN;
2078 return 0;
2081 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2083 struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2085 this->ntransfers++;
2087 if (this->ntransfers == GPMI_MAX_TRANSFERS)
2088 return NULL;
2090 return transfer;
2093 static struct dma_async_tx_descriptor *gpmi_chain_command(
2094 struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2096 struct dma_chan *channel = get_dma_chan(this);
2097 struct dma_async_tx_descriptor *desc;
2098 struct gpmi_transfer *transfer;
2099 int chip = this->nand.cur_cs;
2100 u32 pio[3];
2102 /* [1] send out the PIO words */
2103 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2104 | BM_GPMI_CTRL0_WORD_LENGTH
2105 | BF_GPMI_CTRL0_CS(chip, this)
2106 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2107 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2108 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
2109 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2110 pio[1] = 0;
2111 pio[2] = 0;
2112 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2113 DMA_TRANS_NONE, 0);
2114 if (!desc)
2115 return NULL;
2117 transfer = get_next_transfer(this);
2118 if (!transfer)
2119 return NULL;
2121 transfer->cmdbuf[0] = cmd;
2122 if (naddr)
2123 memcpy(&transfer->cmdbuf[1], addr, naddr);
2125 sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2126 dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2128 transfer->direction = DMA_TO_DEVICE;
2130 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2131 MXS_DMA_CTRL_WAIT4END);
2132 return desc;
2135 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2136 struct gpmi_nand_data *this)
2138 struct dma_chan *channel = get_dma_chan(this);
2139 u32 pio[2];
2141 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2142 | BM_GPMI_CTRL0_WORD_LENGTH
2143 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2144 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2145 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2146 | BF_GPMI_CTRL0_XFER_COUNT(0);
2147 pio[1] = 0;
2149 return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2150 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2153 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2154 struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2156 struct dma_async_tx_descriptor *desc;
2157 struct dma_chan *channel = get_dma_chan(this);
2158 struct gpmi_transfer *transfer;
2159 u32 pio[6] = {};
2161 transfer = get_next_transfer(this);
2162 if (!transfer)
2163 return NULL;
2165 transfer->direction = DMA_FROM_DEVICE;
2167 *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2168 DMA_FROM_DEVICE);
2170 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2171 | BM_GPMI_CTRL0_WORD_LENGTH
2172 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2173 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2174 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2175 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2177 if (this->bch) {
2178 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2179 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2180 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2181 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2182 pio[3] = raw_len;
2183 pio[4] = transfer->sgl.dma_address;
2184 pio[5] = this->auxiliary_phys;
2187 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2188 DMA_TRANS_NONE, 0);
2189 if (!desc)
2190 return NULL;
2192 if (!this->bch)
2193 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2194 DMA_DEV_TO_MEM,
2195 MXS_DMA_CTRL_WAIT4END);
2197 return desc;
2200 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2201 struct gpmi_nand_data *this, const void *buf, int raw_len)
2203 struct dma_chan *channel = get_dma_chan(this);
2204 struct dma_async_tx_descriptor *desc;
2205 struct gpmi_transfer *transfer;
2206 u32 pio[6] = {};
2208 transfer = get_next_transfer(this);
2209 if (!transfer)
2210 return NULL;
2212 transfer->direction = DMA_TO_DEVICE;
2214 prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2216 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2217 | BM_GPMI_CTRL0_WORD_LENGTH
2218 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2219 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2220 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2221 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2223 if (this->bch) {
2224 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2225 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2226 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2227 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2228 pio[3] = raw_len;
2229 pio[4] = transfer->sgl.dma_address;
2230 pio[5] = this->auxiliary_phys;
2233 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2234 DMA_TRANS_NONE,
2235 (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2236 if (!desc)
2237 return NULL;
2239 if (!this->bch)
2240 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2241 DMA_MEM_TO_DEV,
2242 MXS_DMA_CTRL_WAIT4END);
2244 return desc;
2247 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2248 const struct nand_operation *op,
2249 bool check_only)
2251 const struct nand_op_instr *instr;
2252 struct gpmi_nand_data *this = nand_get_controller_data(chip);
2253 struct dma_async_tx_descriptor *desc = NULL;
2254 int i, ret, buf_len = 0, nbufs = 0;
2255 u8 cmd = 0;
2256 void *buf_read = NULL;
2257 const void *buf_write = NULL;
2258 bool direct = false;
2259 struct completion *dma_completion, *bch_completion;
2260 unsigned long to;
2262 if (check_only)
2263 return 0;
2265 this->ntransfers = 0;
2266 for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2267 this->transfers[i].direction = DMA_NONE;
2269 ret = pm_runtime_get_sync(this->dev);
2270 if (ret < 0) {
2271 pm_runtime_put_noidle(this->dev);
2272 return ret;
2276 * This driver currently supports only one NAND chip. Plus, dies share
2277 * the same configuration. So once timings have been applied on the
2278 * controller side, they will not change anymore. When the time will
2279 * come, the check on must_apply_timings will have to be dropped.
2281 if (this->hw.must_apply_timings) {
2282 this->hw.must_apply_timings = false;
2283 gpmi_nfc_apply_timings(this);
2286 dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2288 for (i = 0; i < op->ninstrs; i++) {
2289 instr = &op->instrs[i];
2291 nand_op_trace(" ", instr);
2293 switch (instr->type) {
2294 case NAND_OP_WAITRDY_INSTR:
2295 desc = gpmi_chain_wait_ready(this);
2296 break;
2297 case NAND_OP_CMD_INSTR:
2298 cmd = instr->ctx.cmd.opcode;
2301 * When this command has an address cycle chain it
2302 * together with the address cycle
2304 if (i + 1 != op->ninstrs &&
2305 op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2306 continue;
2308 desc = gpmi_chain_command(this, cmd, NULL, 0);
2310 break;
2311 case NAND_OP_ADDR_INSTR:
2312 desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2313 instr->ctx.addr.naddrs);
2314 break;
2315 case NAND_OP_DATA_OUT_INSTR:
2316 buf_write = instr->ctx.data.buf.out;
2317 buf_len = instr->ctx.data.len;
2318 nbufs++;
2320 desc = gpmi_chain_data_write(this, buf_write, buf_len);
2322 break;
2323 case NAND_OP_DATA_IN_INSTR:
2324 if (!instr->ctx.data.len)
2325 break;
2326 buf_read = instr->ctx.data.buf.in;
2327 buf_len = instr->ctx.data.len;
2328 nbufs++;
2330 desc = gpmi_chain_data_read(this, buf_read, buf_len,
2331 &direct);
2332 break;
2335 if (!desc) {
2336 ret = -ENXIO;
2337 goto unmap;
2341 dev_dbg(this->dev, "%s setup done\n", __func__);
2343 if (nbufs > 1) {
2344 dev_err(this->dev, "Multiple data instructions not supported\n");
2345 ret = -EINVAL;
2346 goto unmap;
2349 if (this->bch) {
2350 writel(this->bch_flashlayout0,
2351 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2352 writel(this->bch_flashlayout1,
2353 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2356 desc->callback = dma_irq_callback;
2357 desc->callback_param = this;
2358 dma_completion = &this->dma_done;
2359 bch_completion = NULL;
2361 init_completion(dma_completion);
2363 if (this->bch && buf_read) {
2364 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2365 this->resources.bch_regs + HW_BCH_CTRL_SET);
2366 bch_completion = &this->bch_done;
2367 init_completion(bch_completion);
2370 dmaengine_submit(desc);
2371 dma_async_issue_pending(get_dma_chan(this));
2373 to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
2374 if (!to) {
2375 dev_err(this->dev, "DMA timeout, last DMA\n");
2376 gpmi_dump_info(this);
2377 ret = -ETIMEDOUT;
2378 goto unmap;
2381 if (this->bch && buf_read) {
2382 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
2383 if (!to) {
2384 dev_err(this->dev, "BCH timeout, last DMA\n");
2385 gpmi_dump_info(this);
2386 ret = -ETIMEDOUT;
2387 goto unmap;
2391 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2392 this->resources.bch_regs + HW_BCH_CTRL_CLR);
2393 gpmi_clear_bch(this);
2395 ret = 0;
2397 unmap:
2398 for (i = 0; i < this->ntransfers; i++) {
2399 struct gpmi_transfer *transfer = &this->transfers[i];
2401 if (transfer->direction != DMA_NONE)
2402 dma_unmap_sg(this->dev, &transfer->sgl, 1,
2403 transfer->direction);
2406 if (!ret && buf_read && !direct)
2407 memcpy(buf_read, this->data_buffer_dma,
2408 gpmi_raw_len_to_len(this, buf_len));
2410 this->bch = false;
2412 pm_runtime_mark_last_busy(this->dev);
2413 pm_runtime_put_autosuspend(this->dev);
2415 return ret;
2418 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2419 .attach_chip = gpmi_nand_attach_chip,
2420 .setup_interface = gpmi_setup_interface,
2421 .exec_op = gpmi_nfc_exec_op,
2424 static int gpmi_nand_init(struct gpmi_nand_data *this)
2426 struct nand_chip *chip = &this->nand;
2427 struct mtd_info *mtd = nand_to_mtd(chip);
2428 int ret;
2430 /* init the MTD data structures */
2431 mtd->name = "gpmi-nand";
2432 mtd->dev.parent = this->dev;
2434 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2435 nand_set_controller_data(chip, this);
2436 nand_set_flash_node(chip, this->pdev->dev.of_node);
2437 chip->legacy.block_markbad = gpmi_block_markbad;
2438 chip->badblock_pattern = &gpmi_bbt_descr;
2439 chip->options |= NAND_NO_SUBPAGE_WRITE;
2441 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2442 this->swap_block_mark = !GPMI_IS_MX23(this);
2445 * Allocate a temporary DMA buffer for reading ID in the
2446 * nand_scan_ident().
2448 this->bch_geometry.payload_size = 1024;
2449 this->bch_geometry.auxiliary_size = 128;
2450 ret = gpmi_alloc_dma_buffer(this);
2451 if (ret)
2452 goto err_out;
2454 nand_controller_init(&this->base);
2455 this->base.ops = &gpmi_nand_controller_ops;
2456 chip->controller = &this->base;
2458 ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2459 if (ret)
2460 goto err_out;
2462 ret = nand_boot_init(this);
2463 if (ret)
2464 goto err_nand_cleanup;
2465 ret = nand_create_bbt(chip);
2466 if (ret)
2467 goto err_nand_cleanup;
2469 ret = mtd_device_register(mtd, NULL, 0);
2470 if (ret)
2471 goto err_nand_cleanup;
2472 return 0;
2474 err_nand_cleanup:
2475 nand_cleanup(chip);
2476 err_out:
2477 gpmi_free_dma_buffer(this);
2478 return ret;
2481 static const struct of_device_id gpmi_nand_id_table[] = {
2482 { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
2483 { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
2484 { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
2485 { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
2486 { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
2489 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2491 static int gpmi_nand_probe(struct platform_device *pdev)
2493 struct gpmi_nand_data *this;
2494 int ret;
2496 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2497 if (!this)
2498 return -ENOMEM;
2500 this->devdata = of_device_get_match_data(&pdev->dev);
2501 platform_set_drvdata(pdev, this);
2502 this->pdev = pdev;
2503 this->dev = &pdev->dev;
2505 ret = acquire_resources(this);
2506 if (ret)
2507 goto exit_acquire_resources;
2509 ret = __gpmi_enable_clk(this, true);
2510 if (ret)
2511 goto exit_acquire_resources;
2513 pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2514 pm_runtime_use_autosuspend(&pdev->dev);
2515 pm_runtime_set_active(&pdev->dev);
2516 pm_runtime_enable(&pdev->dev);
2517 pm_runtime_get_sync(&pdev->dev);
2519 ret = gpmi_init(this);
2520 if (ret)
2521 goto exit_nfc_init;
2523 ret = gpmi_nand_init(this);
2524 if (ret)
2525 goto exit_nfc_init;
2527 pm_runtime_mark_last_busy(&pdev->dev);
2528 pm_runtime_put_autosuspend(&pdev->dev);
2530 dev_info(this->dev, "driver registered.\n");
2532 return 0;
2534 exit_nfc_init:
2535 pm_runtime_put(&pdev->dev);
2536 pm_runtime_disable(&pdev->dev);
2537 release_resources(this);
2538 exit_acquire_resources:
2540 return ret;
2543 static int gpmi_nand_remove(struct platform_device *pdev)
2545 struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2546 struct nand_chip *chip = &this->nand;
2547 int ret;
2549 pm_runtime_put_sync(&pdev->dev);
2550 pm_runtime_disable(&pdev->dev);
2552 ret = mtd_device_unregister(nand_to_mtd(chip));
2553 WARN_ON(ret);
2554 nand_cleanup(chip);
2555 gpmi_free_dma_buffer(this);
2556 release_resources(this);
2557 return 0;
2560 #ifdef CONFIG_PM_SLEEP
2561 static int gpmi_pm_suspend(struct device *dev)
2563 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2565 release_dma_channels(this);
2566 return 0;
2569 static int gpmi_pm_resume(struct device *dev)
2571 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2572 int ret;
2574 ret = acquire_dma_channels(this);
2575 if (ret < 0)
2576 return ret;
2578 /* re-init the GPMI registers */
2579 ret = gpmi_init(this);
2580 if (ret) {
2581 dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2582 return ret;
2585 /* Set flag to get timing setup restored for next exec_op */
2586 if (this->hw.clk_rate)
2587 this->hw.must_apply_timings = true;
2589 /* re-init the BCH registers */
2590 ret = bch_set_geometry(this);
2591 if (ret) {
2592 dev_err(this->dev, "Error setting BCH : %d\n", ret);
2593 return ret;
2596 return 0;
2598 #endif /* CONFIG_PM_SLEEP */
2600 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2602 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2604 return __gpmi_enable_clk(this, false);
2607 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2609 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2611 return __gpmi_enable_clk(this, true);
2614 static const struct dev_pm_ops gpmi_pm_ops = {
2615 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2616 SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2619 static struct platform_driver gpmi_nand_driver = {
2620 .driver = {
2621 .name = "gpmi-nand",
2622 .pm = &gpmi_pm_ops,
2623 .of_match_table = gpmi_nand_id_table,
2625 .probe = gpmi_nand_probe,
2626 .remove = gpmi_nand_remove,
2628 module_platform_driver(gpmi_nand_driver);
2630 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2631 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2632 MODULE_LICENSE("GPL");