Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / mtd / nand / raw / lpc32xx_slc.c
blob6b7269cfb7d8390ef3372ef755102454fe76624c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NXP LPC32XX NAND SLC driver
5 * Authors:
6 * Kevin Wells <kevin.wells@nxp.com>
7 * Roland Stigge <stigge@antcom.de>
9 * Copyright © 2011 NXP Semiconductors
10 * Copyright © 2012 Roland Stigge
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/clk.h>
20 #include <linux/err.h>
21 #include <linux/delay.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/of_gpio.h>
29 #include <linux/mtd/lpc32xx_slc.h>
31 #define LPC32XX_MODNAME "lpc32xx-nand"
33 /**********************************************************************
34 * SLC NAND controller register offsets
35 **********************************************************************/
37 #define SLC_DATA(x) (x + 0x000)
38 #define SLC_ADDR(x) (x + 0x004)
39 #define SLC_CMD(x) (x + 0x008)
40 #define SLC_STOP(x) (x + 0x00C)
41 #define SLC_CTRL(x) (x + 0x010)
42 #define SLC_CFG(x) (x + 0x014)
43 #define SLC_STAT(x) (x + 0x018)
44 #define SLC_INT_STAT(x) (x + 0x01C)
45 #define SLC_IEN(x) (x + 0x020)
46 #define SLC_ISR(x) (x + 0x024)
47 #define SLC_ICR(x) (x + 0x028)
48 #define SLC_TAC(x) (x + 0x02C)
49 #define SLC_TC(x) (x + 0x030)
50 #define SLC_ECC(x) (x + 0x034)
51 #define SLC_DMA_DATA(x) (x + 0x038)
53 /**********************************************************************
54 * slc_ctrl register definitions
55 **********************************************************************/
56 #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
57 #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
58 #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
60 /**********************************************************************
61 * slc_cfg register definitions
62 **********************************************************************/
63 #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
64 #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
65 #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
66 #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
67 #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
68 #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
70 /**********************************************************************
71 * slc_stat register definitions
72 **********************************************************************/
73 #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
74 #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
75 #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
77 /**********************************************************************
78 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
79 **********************************************************************/
80 #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
81 #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
83 /**********************************************************************
84 * slc_tac register definitions
85 **********************************************************************/
86 /* Computation of clock cycles on basis of controller and device clock rates */
87 #define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
89 /* Clock setting for RDY write sample wait time in 2*n clocks */
90 #define SLCTAC_WDR(n) (((n) & 0xF) << 28)
91 /* Write pulse width in clock cycles, 1 to 16 clocks */
92 #define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24))
93 /* Write hold time of control and data signals, 1 to 16 clocks */
94 #define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20))
95 /* Write setup time of control and data signals, 1 to 16 clocks */
96 #define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16))
97 /* Clock setting for RDY read sample wait time in 2*n clocks */
98 #define SLCTAC_RDR(n) (((n) & 0xF) << 12)
99 /* Read pulse width in clock cycles, 1 to 16 clocks */
100 #define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8))
101 /* Read hold time of control and data signals, 1 to 16 clocks */
102 #define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4))
103 /* Read setup time of control and data signals, 1 to 16 clocks */
104 #define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0))
106 /**********************************************************************
107 * slc_ecc register definitions
108 **********************************************************************/
109 /* ECC line party fetch macro */
110 #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
111 #define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
114 * DMA requires storage space for the DMA local buffer and the hardware ECC
115 * storage area. The DMA local buffer is only used if DMA mapping fails
116 * during runtime.
118 #define LPC32XX_DMA_DATA_SIZE 4096
119 #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
121 /* Number of bytes used for ECC stored in NAND per 256 bytes */
122 #define LPC32XX_SLC_DEV_ECC_BYTES 3
125 * If the NAND base clock frequency can't be fetched, this frequency will be
126 * used instead as the base. This rate is used to setup the timing registers
127 * used for NAND accesses.
129 #define LPC32XX_DEF_BUS_RATE 133250000
131 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
132 #define LPC32XX_DMA_TIMEOUT 100
135 * NAND ECC Layout for small page NAND devices
136 * Note: For large and huge page devices, the default layouts are used
138 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
139 struct mtd_oob_region *oobregion)
141 if (section)
142 return -ERANGE;
144 oobregion->length = 6;
145 oobregion->offset = 10;
147 return 0;
150 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
151 struct mtd_oob_region *oobregion)
153 if (section > 1)
154 return -ERANGE;
156 if (!section) {
157 oobregion->offset = 0;
158 oobregion->length = 4;
159 } else {
160 oobregion->offset = 6;
161 oobregion->length = 4;
164 return 0;
167 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
168 .ecc = lpc32xx_ooblayout_ecc,
169 .free = lpc32xx_ooblayout_free,
172 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
173 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
176 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
177 * Note: Large page devices used the default layout
179 static struct nand_bbt_descr bbt_smallpage_main_descr = {
180 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
181 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
182 .offs = 0,
183 .len = 4,
184 .veroffs = 6,
185 .maxblocks = 4,
186 .pattern = bbt_pattern
189 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
190 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
191 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
192 .offs = 0,
193 .len = 4,
194 .veroffs = 6,
195 .maxblocks = 4,
196 .pattern = mirror_pattern
200 * NAND platform configuration structure
202 struct lpc32xx_nand_cfg_slc {
203 uint32_t wdr_clks;
204 uint32_t wwidth;
205 uint32_t whold;
206 uint32_t wsetup;
207 uint32_t rdr_clks;
208 uint32_t rwidth;
209 uint32_t rhold;
210 uint32_t rsetup;
211 int wp_gpio;
212 struct mtd_partition *parts;
213 unsigned num_parts;
216 struct lpc32xx_nand_host {
217 struct nand_chip nand_chip;
218 struct lpc32xx_slc_platform_data *pdata;
219 struct clk *clk;
220 void __iomem *io_base;
221 struct lpc32xx_nand_cfg_slc *ncfg;
223 struct completion comp;
224 struct dma_chan *dma_chan;
225 uint32_t dma_buf_len;
226 struct dma_slave_config dma_slave_config;
227 struct scatterlist sgl;
230 * DMA and CPU addresses of ECC work area and data buffer
232 uint32_t *ecc_buf;
233 uint8_t *data_buf;
234 dma_addr_t io_base_dma;
237 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
239 uint32_t clkrate, tmp;
241 /* Reset SLC controller */
242 writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
243 udelay(1000);
245 /* Basic setup */
246 writel(0, SLC_CFG(host->io_base));
247 writel(0, SLC_IEN(host->io_base));
248 writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
249 SLC_ICR(host->io_base));
251 /* Get base clock for SLC block */
252 clkrate = clk_get_rate(host->clk);
253 if (clkrate == 0)
254 clkrate = LPC32XX_DEF_BUS_RATE;
256 /* Compute clock setup values */
257 tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
258 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
259 SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
260 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
261 SLCTAC_RDR(host->ncfg->rdr_clks) |
262 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
263 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
264 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
265 writel(tmp, SLC_TAC(host->io_base));
269 * Hardware specific access to control lines
271 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
272 unsigned int ctrl)
274 uint32_t tmp;
275 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
277 /* Does CE state need to be changed? */
278 tmp = readl(SLC_CFG(host->io_base));
279 if (ctrl & NAND_NCE)
280 tmp |= SLCCFG_CE_LOW;
281 else
282 tmp &= ~SLCCFG_CE_LOW;
283 writel(tmp, SLC_CFG(host->io_base));
285 if (cmd != NAND_CMD_NONE) {
286 if (ctrl & NAND_CLE)
287 writel(cmd, SLC_CMD(host->io_base));
288 else
289 writel(cmd, SLC_ADDR(host->io_base));
294 * Read the Device Ready pin
296 static int lpc32xx_nand_device_ready(struct nand_chip *chip)
298 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
299 int rdy = 0;
301 if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
302 rdy = 1;
304 return rdy;
308 * Enable NAND write protect
310 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
312 if (gpio_is_valid(host->ncfg->wp_gpio))
313 gpio_set_value(host->ncfg->wp_gpio, 0);
317 * Disable NAND write protect
319 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
321 if (gpio_is_valid(host->ncfg->wp_gpio))
322 gpio_set_value(host->ncfg->wp_gpio, 1);
326 * Prepares SLC for transfers with H/W ECC enabled
328 static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode)
330 /* Hardware ECC is enabled automatically in hardware as needed */
334 * Calculates the ECC for the data
336 static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip,
337 const unsigned char *buf,
338 unsigned char *code)
341 * ECC is calculated automatically in hardware during syndrome read
342 * and write operations, so it doesn't need to be calculated here.
344 return 0;
348 * Read a single byte from NAND device
350 static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip)
352 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
354 return (uint8_t)readl(SLC_DATA(host->io_base));
358 * Simple device read without ECC
360 static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
362 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
364 /* Direct device read with no ECC */
365 while (len-- > 0)
366 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
370 * Simple device write without ECC
372 static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf,
373 int len)
375 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
377 /* Direct device write with no ECC */
378 while (len-- > 0)
379 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
383 * Read the OOB data from the device without ECC using FIFO method
385 static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page)
387 struct mtd_info *mtd = nand_to_mtd(chip);
389 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
393 * Write the OOB data to the device without ECC using FIFO method
395 static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page)
397 struct mtd_info *mtd = nand_to_mtd(chip);
399 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
400 mtd->oobsize);
404 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
406 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
408 int i;
410 for (i = 0; i < (count * 3); i += 3) {
411 uint32_t ce = ecc[i / 3];
412 ce = ~(ce << 2) & 0xFFFFFF;
413 spare[i + 2] = (uint8_t)(ce & 0xFF);
414 ce >>= 8;
415 spare[i + 1] = (uint8_t)(ce & 0xFF);
416 ce >>= 8;
417 spare[i] = (uint8_t)(ce & 0xFF);
421 static void lpc32xx_dma_complete_func(void *completion)
423 complete(completion);
426 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
427 void *mem, int len, enum dma_transfer_direction dir)
429 struct nand_chip *chip = mtd_to_nand(mtd);
430 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
431 struct dma_async_tx_descriptor *desc;
432 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
433 int res;
435 host->dma_slave_config.direction = dir;
436 host->dma_slave_config.src_addr = dma;
437 host->dma_slave_config.dst_addr = dma;
438 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
439 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
440 host->dma_slave_config.src_maxburst = 4;
441 host->dma_slave_config.dst_maxburst = 4;
442 /* DMA controller does flow control: */
443 host->dma_slave_config.device_fc = false;
444 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
445 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
446 return -ENXIO;
449 sg_init_one(&host->sgl, mem, len);
451 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
452 DMA_BIDIRECTIONAL);
453 if (res != 1) {
454 dev_err(mtd->dev.parent, "Failed to map sg list\n");
455 return -ENXIO;
457 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
458 flags);
459 if (!desc) {
460 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
461 goto out1;
464 init_completion(&host->comp);
465 desc->callback = lpc32xx_dma_complete_func;
466 desc->callback_param = &host->comp;
468 dmaengine_submit(desc);
469 dma_async_issue_pending(host->dma_chan);
471 wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
473 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
474 DMA_BIDIRECTIONAL);
476 return 0;
477 out1:
478 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
479 DMA_BIDIRECTIONAL);
480 return -ENXIO;
484 * DMA read/write transfers with ECC support
486 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
487 int read)
489 struct nand_chip *chip = mtd_to_nand(mtd);
490 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
491 int i, status = 0;
492 unsigned long timeout;
493 int res;
494 enum dma_transfer_direction dir =
495 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
496 uint8_t *dma_buf;
497 bool dma_mapped;
499 if ((void *)buf <= high_memory) {
500 dma_buf = buf;
501 dma_mapped = true;
502 } else {
503 dma_buf = host->data_buf;
504 dma_mapped = false;
505 if (!read)
506 memcpy(host->data_buf, buf, mtd->writesize);
509 if (read) {
510 writel(readl(SLC_CFG(host->io_base)) |
511 SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
512 SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
513 } else {
514 writel((readl(SLC_CFG(host->io_base)) |
515 SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
516 ~SLCCFG_DMA_DIR,
517 SLC_CFG(host->io_base));
520 /* Clear initial ECC */
521 writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
523 /* Transfer size is data area only */
524 writel(mtd->writesize, SLC_TC(host->io_base));
526 /* Start transfer in the NAND controller */
527 writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
528 SLC_CTRL(host->io_base));
530 for (i = 0; i < chip->ecc.steps; i++) {
531 /* Data */
532 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
533 dma_buf + i * chip->ecc.size,
534 mtd->writesize / chip->ecc.steps, dir);
535 if (res)
536 return res;
538 /* Always _read_ ECC */
539 if (i == chip->ecc.steps - 1)
540 break;
541 if (!read) /* ECC availability delayed on write */
542 udelay(10);
543 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
544 &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
545 if (res)
546 return res;
550 * According to NXP, the DMA can be finished here, but the NAND
551 * controller may still have buffered data. After porting to using the
552 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
553 * appears to be always true, according to tests. Keeping the check for
554 * safety reasons for now.
556 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
557 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
558 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
559 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
560 time_before(jiffies, timeout))
561 cpu_relax();
562 if (!time_before(jiffies, timeout)) {
563 dev_err(mtd->dev.parent, "FIFO held data too long\n");
564 status = -EIO;
568 /* Read last calculated ECC value */
569 if (!read)
570 udelay(10);
571 host->ecc_buf[chip->ecc.steps - 1] =
572 readl(SLC_ECC(host->io_base));
574 /* Flush DMA */
575 dmaengine_terminate_all(host->dma_chan);
577 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
578 readl(SLC_TC(host->io_base))) {
579 /* Something is left in the FIFO, something is wrong */
580 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
581 status = -EIO;
584 /* Stop DMA & HW ECC */
585 writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
586 SLC_CTRL(host->io_base));
587 writel(readl(SLC_CFG(host->io_base)) &
588 ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
589 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
591 if (!dma_mapped && read)
592 memcpy(buf, host->data_buf, mtd->writesize);
594 return status;
598 * Read the data and OOB data from the device, use ECC correction with the
599 * data, disable ECC for the OOB data
601 static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
602 int oob_required, int page)
604 struct mtd_info *mtd = nand_to_mtd(chip);
605 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
606 struct mtd_oob_region oobregion = { };
607 int stat, i, status, error;
608 uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
610 /* Issue read command */
611 nand_read_page_op(chip, page, 0, NULL, 0);
613 /* Read data and oob, calculate ECC */
614 status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
616 /* Get OOB data */
617 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
619 /* Convert to stored ECC format */
620 lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
622 /* Pointer to ECC data retrieved from NAND spare area */
623 error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
624 if (error)
625 return error;
627 oobecc = chip->oob_poi + oobregion.offset;
629 for (i = 0; i < chip->ecc.steps; i++) {
630 stat = chip->ecc.correct(chip, buf, oobecc,
631 &tmpecc[i * chip->ecc.bytes]);
632 if (stat < 0)
633 mtd->ecc_stats.failed++;
634 else
635 mtd->ecc_stats.corrected += stat;
637 buf += chip->ecc.size;
638 oobecc += chip->ecc.bytes;
641 return status;
645 * Read the data and OOB data from the device, no ECC correction with the
646 * data or OOB data
648 static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip,
649 uint8_t *buf, int oob_required,
650 int page)
652 struct mtd_info *mtd = nand_to_mtd(chip);
654 /* Issue read command */
655 nand_read_page_op(chip, page, 0, NULL, 0);
657 /* Raw reads can just use the FIFO interface */
658 chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps);
659 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
661 return 0;
665 * Write the data and OOB data to the device, use ECC with the data,
666 * disable ECC for the OOB data
668 static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip,
669 const uint8_t *buf,
670 int oob_required, int page)
672 struct mtd_info *mtd = nand_to_mtd(chip);
673 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
674 struct mtd_oob_region oobregion = { };
675 uint8_t *pb;
676 int error;
678 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
680 /* Write data, calculate ECC on outbound data */
681 error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
682 if (error)
683 return error;
686 * The calculated ECC needs some manual work done to it before
687 * committing it to NAND. Process the calculated ECC and place
688 * the resultant values directly into the OOB buffer. */
689 error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
690 if (error)
691 return error;
693 pb = chip->oob_poi + oobregion.offset;
694 lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
696 /* Write ECC data to device */
697 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
699 return nand_prog_page_end_op(chip);
703 * Write the data and OOB data to the device, no ECC correction with the
704 * data or OOB data
706 static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip,
707 const uint8_t *buf,
708 int oob_required, int page)
710 struct mtd_info *mtd = nand_to_mtd(chip);
712 /* Raw writes can just use the FIFO interface */
713 nand_prog_page_begin_op(chip, page, 0, buf,
714 chip->ecc.size * chip->ecc.steps);
715 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
717 return nand_prog_page_end_op(chip);
720 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
722 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
723 dma_cap_mask_t mask;
725 if (!host->pdata || !host->pdata->dma_filter) {
726 dev_err(mtd->dev.parent, "no DMA platform data\n");
727 return -ENOENT;
730 dma_cap_zero(mask);
731 dma_cap_set(DMA_SLAVE, mask);
732 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
733 "nand-slc");
734 if (!host->dma_chan) {
735 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
736 return -EBUSY;
739 return 0;
742 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
744 struct lpc32xx_nand_cfg_slc *ncfg;
745 struct device_node *np = dev->of_node;
747 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
748 if (!ncfg)
749 return NULL;
751 of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
752 of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
753 of_property_read_u32(np, "nxp,whold", &ncfg->whold);
754 of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
755 of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
756 of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
757 of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
758 of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
760 if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
761 !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
762 !ncfg->rhold || !ncfg->rsetup) {
763 dev_err(dev, "chip parameters not specified correctly\n");
764 return NULL;
767 ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
769 return ncfg;
772 static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
774 struct mtd_info *mtd = nand_to_mtd(chip);
775 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
777 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
778 return 0;
780 /* OOB and ECC CPU and DMA work areas */
781 host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
784 * Small page FLASH has a unique OOB layout, but large and huge
785 * page FLASH use the standard layout. Small page FLASH uses a
786 * custom BBT marker layout.
788 if (mtd->writesize <= 512)
789 mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
791 chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
792 /* These sizes remain the same regardless of page size */
793 chip->ecc.size = 256;
794 chip->ecc.strength = 1;
795 chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
796 chip->ecc.prepad = 0;
797 chip->ecc.postpad = 0;
798 chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
799 chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
800 chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
801 chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
802 chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
803 chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
804 chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
805 chip->ecc.correct = rawnand_sw_hamming_correct;
806 chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
809 * Use a custom BBT marker setup for small page FLASH that
810 * won't interfere with the ECC layout. Large and huge page
811 * FLASH use the standard layout.
813 if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
814 mtd->writesize <= 512) {
815 chip->bbt_td = &bbt_smallpage_main_descr;
816 chip->bbt_md = &bbt_smallpage_mirror_descr;
819 return 0;
822 static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
823 .attach_chip = lpc32xx_nand_attach_chip,
827 * Probe for NAND controller
829 static int lpc32xx_nand_probe(struct platform_device *pdev)
831 struct lpc32xx_nand_host *host;
832 struct mtd_info *mtd;
833 struct nand_chip *chip;
834 struct resource *rc;
835 int res;
837 /* Allocate memory for the device structure (and zero it) */
838 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
839 if (!host)
840 return -ENOMEM;
842 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
843 host->io_base = devm_ioremap_resource(&pdev->dev, rc);
844 if (IS_ERR(host->io_base))
845 return PTR_ERR(host->io_base);
847 host->io_base_dma = rc->start;
848 if (pdev->dev.of_node)
849 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
850 if (!host->ncfg) {
851 dev_err(&pdev->dev,
852 "Missing or bad NAND config from device tree\n");
853 return -ENOENT;
855 if (host->ncfg->wp_gpio == -EPROBE_DEFER)
856 return -EPROBE_DEFER;
857 if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
858 host->ncfg->wp_gpio, "NAND WP")) {
859 dev_err(&pdev->dev, "GPIO not available\n");
860 return -EBUSY;
862 lpc32xx_wp_disable(host);
864 host->pdata = dev_get_platdata(&pdev->dev);
866 chip = &host->nand_chip;
867 mtd = nand_to_mtd(chip);
868 nand_set_controller_data(chip, host);
869 nand_set_flash_node(chip, pdev->dev.of_node);
870 mtd->owner = THIS_MODULE;
871 mtd->dev.parent = &pdev->dev;
873 /* Get NAND clock */
874 host->clk = devm_clk_get(&pdev->dev, NULL);
875 if (IS_ERR(host->clk)) {
876 dev_err(&pdev->dev, "Clock failure\n");
877 res = -ENOENT;
878 goto enable_wp;
880 res = clk_prepare_enable(host->clk);
881 if (res)
882 goto enable_wp;
884 /* Set NAND IO addresses and command/ready functions */
885 chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base);
886 chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base);
887 chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
888 chip->legacy.dev_ready = lpc32xx_nand_device_ready;
889 chip->legacy.chip_delay = 20; /* 20us command delay time */
891 /* Init NAND controller */
892 lpc32xx_nand_setup(host);
894 platform_set_drvdata(pdev, host);
896 /* NAND callbacks for LPC32xx SLC hardware */
897 chip->legacy.read_byte = lpc32xx_nand_read_byte;
898 chip->legacy.read_buf = lpc32xx_nand_read_buf;
899 chip->legacy.write_buf = lpc32xx_nand_write_buf;
902 * Allocate a large enough buffer for a single huge page plus
903 * extra space for the spare area and ECC storage area
905 host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
906 host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
907 GFP_KERNEL);
908 if (host->data_buf == NULL) {
909 res = -ENOMEM;
910 goto unprepare_clk;
913 res = lpc32xx_nand_dma_setup(host);
914 if (res) {
915 res = -EIO;
916 goto unprepare_clk;
919 /* Find NAND device */
920 chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
921 res = nand_scan(chip, 1);
922 if (res)
923 goto release_dma;
925 mtd->name = "nxp_lpc3220_slc";
926 res = mtd_device_register(mtd, host->ncfg->parts,
927 host->ncfg->num_parts);
928 if (res)
929 goto cleanup_nand;
931 return 0;
933 cleanup_nand:
934 nand_cleanup(chip);
935 release_dma:
936 dma_release_channel(host->dma_chan);
937 unprepare_clk:
938 clk_disable_unprepare(host->clk);
939 enable_wp:
940 lpc32xx_wp_enable(host);
942 return res;
946 * Remove NAND device.
948 static int lpc32xx_nand_remove(struct platform_device *pdev)
950 uint32_t tmp;
951 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
952 struct nand_chip *chip = &host->nand_chip;
953 int ret;
955 ret = mtd_device_unregister(nand_to_mtd(chip));
956 WARN_ON(ret);
957 nand_cleanup(chip);
958 dma_release_channel(host->dma_chan);
960 /* Force CE high */
961 tmp = readl(SLC_CTRL(host->io_base));
962 tmp &= ~SLCCFG_CE_LOW;
963 writel(tmp, SLC_CTRL(host->io_base));
965 clk_disable_unprepare(host->clk);
966 lpc32xx_wp_enable(host);
968 return 0;
971 #ifdef CONFIG_PM
972 static int lpc32xx_nand_resume(struct platform_device *pdev)
974 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
975 int ret;
977 /* Re-enable NAND clock */
978 ret = clk_prepare_enable(host->clk);
979 if (ret)
980 return ret;
982 /* Fresh init of NAND controller */
983 lpc32xx_nand_setup(host);
985 /* Disable write protect */
986 lpc32xx_wp_disable(host);
988 return 0;
991 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
993 uint32_t tmp;
994 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
996 /* Force CE high */
997 tmp = readl(SLC_CTRL(host->io_base));
998 tmp &= ~SLCCFG_CE_LOW;
999 writel(tmp, SLC_CTRL(host->io_base));
1001 /* Enable write protect for safety */
1002 lpc32xx_wp_enable(host);
1004 /* Disable clock */
1005 clk_disable_unprepare(host->clk);
1007 return 0;
1010 #else
1011 #define lpc32xx_nand_resume NULL
1012 #define lpc32xx_nand_suspend NULL
1013 #endif
1015 static const struct of_device_id lpc32xx_nand_match[] = {
1016 { .compatible = "nxp,lpc3220-slc" },
1017 { /* sentinel */ },
1019 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1021 static struct platform_driver lpc32xx_nand_driver = {
1022 .probe = lpc32xx_nand_probe,
1023 .remove = lpc32xx_nand_remove,
1024 .resume = lpc32xx_nand_resume,
1025 .suspend = lpc32xx_nand_suspend,
1026 .driver = {
1027 .name = LPC32XX_MODNAME,
1028 .of_match_table = lpc32xx_nand_match,
1032 module_platform_driver(lpc32xx_nand_driver);
1034 MODULE_LICENSE("GPL");
1035 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1036 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1037 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");