1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NAND flash simulator.
5 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
7 * Copyright (C) 2004 Nokia Corporation
9 * Note: NS means "NAND Simulator".
10 * Note: Input means input TO flash chip, output means output FROM chip.
13 #define pr_fmt(fmt) "[nandsim]" fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/vmalloc.h>
20 #include <linux/math64.h>
21 #include <linux/slab.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/rawnand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/delay.h>
28 #include <linux/list.h>
29 #include <linux/random.h>
30 #include <linux/sched.h>
31 #include <linux/sched/mm.h>
33 #include <linux/pagemap.h>
34 #include <linux/seq_file.h>
35 #include <linux/debugfs.h>
37 /* Default simulator parameters values */
38 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
39 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
40 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
41 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
42 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
43 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
44 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
45 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
48 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
49 #define CONFIG_NANDSIM_ACCESS_DELAY 25
51 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
52 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
54 #ifndef CONFIG_NANDSIM_ERASE_DELAY
55 #define CONFIG_NANDSIM_ERASE_DELAY 2
57 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
58 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
60 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
61 #define CONFIG_NANDSIM_INPUT_CYCLE 50
63 #ifndef CONFIG_NANDSIM_BUS_WIDTH
64 #define CONFIG_NANDSIM_BUS_WIDTH 8
66 #ifndef CONFIG_NANDSIM_DO_DELAYS
67 #define CONFIG_NANDSIM_DO_DELAYS 0
69 #ifndef CONFIG_NANDSIM_LOG
70 #define CONFIG_NANDSIM_LOG 0
72 #ifndef CONFIG_NANDSIM_DBG
73 #define CONFIG_NANDSIM_DBG 0
75 #ifndef CONFIG_NANDSIM_MAX_PARTS
76 #define CONFIG_NANDSIM_MAX_PARTS 32
79 static uint access_delay
= CONFIG_NANDSIM_ACCESS_DELAY
;
80 static uint programm_delay
= CONFIG_NANDSIM_PROGRAMM_DELAY
;
81 static uint erase_delay
= CONFIG_NANDSIM_ERASE_DELAY
;
82 static uint output_cycle
= CONFIG_NANDSIM_OUTPUT_CYCLE
;
83 static uint input_cycle
= CONFIG_NANDSIM_INPUT_CYCLE
;
84 static uint bus_width
= CONFIG_NANDSIM_BUS_WIDTH
;
85 static uint do_delays
= CONFIG_NANDSIM_DO_DELAYS
;
86 static uint log
= CONFIG_NANDSIM_LOG
;
87 static uint dbg
= CONFIG_NANDSIM_DBG
;
88 static unsigned long parts
[CONFIG_NANDSIM_MAX_PARTS
];
89 static unsigned int parts_num
;
90 static char *badblocks
= NULL
;
91 static char *weakblocks
= NULL
;
92 static char *weakpages
= NULL
;
93 static unsigned int bitflips
= 0;
94 static char *gravepages
= NULL
;
95 static unsigned int overridesize
= 0;
96 static char *cache_file
= NULL
;
97 static unsigned int bbt
;
98 static unsigned int bch
;
99 static u_char id_bytes
[8] = {
100 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE
,
101 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE
,
102 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE
,
103 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE
,
107 module_param_array(id_bytes
, byte
, NULL
, 0400);
108 module_param_named(first_id_byte
, id_bytes
[0], byte
, 0400);
109 module_param_named(second_id_byte
, id_bytes
[1], byte
, 0400);
110 module_param_named(third_id_byte
, id_bytes
[2], byte
, 0400);
111 module_param_named(fourth_id_byte
, id_bytes
[3], byte
, 0400);
112 module_param(access_delay
, uint
, 0400);
113 module_param(programm_delay
, uint
, 0400);
114 module_param(erase_delay
, uint
, 0400);
115 module_param(output_cycle
, uint
, 0400);
116 module_param(input_cycle
, uint
, 0400);
117 module_param(bus_width
, uint
, 0400);
118 module_param(do_delays
, uint
, 0400);
119 module_param(log
, uint
, 0400);
120 module_param(dbg
, uint
, 0400);
121 module_param_array(parts
, ulong
, &parts_num
, 0400);
122 module_param(badblocks
, charp
, 0400);
123 module_param(weakblocks
, charp
, 0400);
124 module_param(weakpages
, charp
, 0400);
125 module_param(bitflips
, uint
, 0400);
126 module_param(gravepages
, charp
, 0400);
127 module_param(overridesize
, uint
, 0400);
128 module_param(cache_file
, charp
, 0400);
129 module_param(bbt
, uint
, 0400);
130 module_param(bch
, uint
, 0400);
132 MODULE_PARM_DESC(id_bytes
, "The ID bytes returned by NAND Flash 'read ID' command");
133 MODULE_PARM_DESC(first_id_byte
, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
134 MODULE_PARM_DESC(second_id_byte
, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
135 MODULE_PARM_DESC(third_id_byte
, "The third byte returned by NAND Flash 'read ID' command (obsolete)");
136 MODULE_PARM_DESC(fourth_id_byte
, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
137 MODULE_PARM_DESC(access_delay
, "Initial page access delay (microseconds)");
138 MODULE_PARM_DESC(programm_delay
, "Page programm delay (microseconds");
139 MODULE_PARM_DESC(erase_delay
, "Sector erase delay (milliseconds)");
140 MODULE_PARM_DESC(output_cycle
, "Word output (from flash) time (nanoseconds)");
141 MODULE_PARM_DESC(input_cycle
, "Word input (to flash) time (nanoseconds)");
142 MODULE_PARM_DESC(bus_width
, "Chip's bus width (8- or 16-bit)");
143 MODULE_PARM_DESC(do_delays
, "Simulate NAND delays using busy-waits if not zero");
144 MODULE_PARM_DESC(log
, "Perform logging if not zero");
145 MODULE_PARM_DESC(dbg
, "Output debug information if not zero");
146 MODULE_PARM_DESC(parts
, "Partition sizes (in erase blocks) separated by commas");
147 /* Page and erase block positions for the following parameters are independent of any partitions */
148 MODULE_PARM_DESC(badblocks
, "Erase blocks that are initially marked bad, separated by commas");
149 MODULE_PARM_DESC(weakblocks
, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
150 " separated by commas e.g. 113:2 means eb 113"
151 " can be erased only twice before failing");
152 MODULE_PARM_DESC(weakpages
, "Weak pages [: maximum writes (defaults to 3)]"
153 " separated by commas e.g. 1401:2 means page 1401"
154 " can be written only twice before failing");
155 MODULE_PARM_DESC(bitflips
, "Maximum number of random bit flips per page (zero by default)");
156 MODULE_PARM_DESC(gravepages
, "Pages that lose data [: maximum reads (defaults to 3)]"
157 " separated by commas e.g. 1401:2 means page 1401"
158 " can be read only twice before failing");
159 MODULE_PARM_DESC(overridesize
, "Specifies the NAND Flash size overriding the ID bytes. "
160 "The size is specified in erase blocks and as the exponent of a power of two"
161 " e.g. 5 means a size of 32 erase blocks");
162 MODULE_PARM_DESC(cache_file
, "File to use to cache nand pages instead of memory");
163 MODULE_PARM_DESC(bbt
, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
164 MODULE_PARM_DESC(bch
, "Enable BCH ecc and set how many bits should "
165 "be correctable in 512-byte blocks");
167 /* The largest possible page size */
168 #define NS_LARGEST_PAGE_SIZE 4096
170 /* Simulator's output macros (logging, debugging, warning, error) */
171 #define NS_LOG(args...) \
172 do { if (log) pr_debug(" log: " args); } while(0)
173 #define NS_DBG(args...) \
174 do { if (dbg) pr_debug(" debug: " args); } while(0)
175 #define NS_WARN(args...) \
176 do { pr_warn(" warning: " args); } while(0)
177 #define NS_ERR(args...) \
178 do { pr_err(" error: " args); } while(0)
179 #define NS_INFO(args...) \
180 do { pr_info(" " args); } while(0)
182 /* Busy-wait delay macros (microseconds, milliseconds) */
183 #define NS_UDELAY(us) \
184 do { if (do_delays) udelay(us); } while(0)
185 #define NS_MDELAY(us) \
186 do { if (do_delays) mdelay(us); } while(0)
188 /* Is the nandsim structure initialized ? */
189 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
191 /* Good operation completion status */
192 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
194 /* Operation failed completion status */
195 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
197 /* Calculate the page offset in flash RAM image by (row, column) address */
198 #define NS_RAW_OFFSET(ns) \
199 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
201 /* Calculate the OOB offset in flash RAM image by (row, column) address */
202 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
204 /* After a command is input, the simulator goes to one of the following states */
205 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
206 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
207 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
208 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
209 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
210 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
211 #define STATE_CMD_STATUS 0x00000007 /* read status */
212 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
213 #define STATE_CMD_READID 0x0000000A /* read ID */
214 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
215 #define STATE_CMD_RESET 0x0000000C /* reset */
216 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
217 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
218 #define STATE_CMD_MASK 0x0000000F /* command states mask */
220 /* After an address is input, the simulator goes to one of these states */
221 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
222 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
223 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
224 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
225 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
227 /* During data input/output the simulator is in these states */
228 #define STATE_DATAIN 0x00000100 /* waiting for data input */
229 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
231 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
232 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
233 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
234 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
236 /* Previous operation is done, ready to accept new requests */
237 #define STATE_READY 0x00000000
239 /* This state is used to mark that the next state isn't known yet */
240 #define STATE_UNKNOWN 0x10000000
242 /* Simulator's actions bit masks */
243 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
244 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
245 #define ACTION_SECERASE 0x00300000 /* erase sector */
246 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
247 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
248 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
249 #define ACTION_MASK 0x00700000 /* action mask */
251 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
252 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
254 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
255 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
256 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
257 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
258 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
259 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
260 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */
262 /* Remove action bits from state */
263 #define NS_STATE(x) ((x) & ~ACTION_MASK)
266 * Maximum previous states which need to be saved. Currently saving is
267 * only needed for page program operation with preceded read command
268 * (which is only valid for 512-byte pages).
270 #define NS_MAX_PREVSTATES 1
272 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
273 #define NS_MAX_HELD_PAGES 16
276 * A union to represent flash memory contents and flash buffer.
279 u_char
*byte
; /* for byte access */
280 uint16_t *word
; /* for 16-bit word access */
284 * The structure which describes all the internal simulator data.
287 struct nand_chip chip
;
288 struct nand_controller base
;
289 struct mtd_partition partitions
[CONFIG_NANDSIM_MAX_PARTS
];
290 unsigned int nbparts
;
292 uint busw
; /* flash chip bus width (8 or 16) */
293 u_char ids
[8]; /* chip's ID bytes */
294 uint32_t options
; /* chip's characteristic bits */
295 uint32_t state
; /* current chip state */
296 uint32_t nxstate
; /* next expected state */
298 uint32_t *op
; /* current operation, NULL operations isn't known yet */
299 uint32_t pstates
[NS_MAX_PREVSTATES
]; /* previous states */
300 uint16_t npstates
; /* number of previous states saved */
301 uint16_t stateidx
; /* current state index */
303 /* The simulated NAND flash pages array */
306 /* Slab allocator for nand pages */
307 struct kmem_cache
*nand_pages_slab
;
309 /* Internal buffer of page + OOB size bytes */
312 /* NAND flash "geometry" */
314 uint64_t totsz
; /* total flash size, bytes */
315 uint32_t secsz
; /* flash sector (erase block) size, bytes */
316 uint pgsz
; /* NAND flash page size, bytes */
317 uint oobsz
; /* page OOB area size, bytes */
318 uint64_t totszoob
; /* total flash size including OOB, bytes */
319 uint pgszoob
; /* page size including OOB , bytes*/
320 uint secszoob
; /* sector size including OOB, bytes */
321 uint pgnum
; /* total number of pages */
322 uint pgsec
; /* number of pages per sector */
323 uint secshift
; /* bits number in sector size */
324 uint pgshift
; /* bits number in page size */
325 uint pgaddrbytes
; /* bytes per page address */
326 uint secaddrbytes
; /* bytes per sector address */
327 uint idbytes
; /* the number ID bytes that this chip outputs */
330 /* NAND flash internal registers */
332 unsigned command
; /* the command register */
333 u_char status
; /* the status register */
334 uint row
; /* the page number */
335 uint column
; /* the offset within page */
336 uint count
; /* internal counter */
337 uint num
; /* number of bytes which must be processed */
338 uint off
; /* fixed page offset */
341 /* NAND flash lines state */
343 int ce
; /* chip Enable */
344 int cle
; /* command Latch Enable */
345 int ale
; /* address Latch Enable */
346 int wp
; /* write Protect */
349 /* Fields needed when using a cache file */
350 struct file
*cfile
; /* Open file */
351 unsigned long *pages_written
; /* Which pages have been written */
353 struct page
*held_pages
[NS_MAX_HELD_PAGES
];
361 * Operations array. To perform any operation the simulator must pass
362 * through the correspondent states chain.
364 static struct nandsim_operations
{
365 uint32_t reqopts
; /* options which are required to perform the operation */
366 uint32_t states
[NS_OPER_STATES
]; /* operation's states */
367 } ops
[NS_OPER_NUM
] = {
368 /* Read page + OOB from the beginning */
369 {OPT_SMALLPAGE
, {STATE_CMD_READ0
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
370 STATE_DATAOUT
, STATE_READY
}},
371 /* Read page + OOB from the second half */
372 {OPT_PAGE512_8BIT
, {STATE_CMD_READ1
| ACTION_HALFOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
373 STATE_DATAOUT
, STATE_READY
}},
375 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
| ACTION_OOBOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
376 STATE_DATAOUT
, STATE_READY
}},
377 /* Program page starting from the beginning */
378 {OPT_ANY
, {STATE_CMD_SEQIN
, STATE_ADDR_PAGE
, STATE_DATAIN
,
379 STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
380 /* Program page starting from the beginning */
381 {OPT_SMALLPAGE
, {STATE_CMD_READ0
, STATE_CMD_SEQIN
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
,
382 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
383 /* Program page starting from the second half */
384 {OPT_PAGE512
, {STATE_CMD_READ1
, STATE_CMD_SEQIN
| ACTION_HALFOFF
, STATE_ADDR_PAGE
,
385 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
387 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
, STATE_CMD_SEQIN
| ACTION_OOBOFF
, STATE_ADDR_PAGE
,
388 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
390 {OPT_ANY
, {STATE_CMD_ERASE1
, STATE_ADDR_SEC
, STATE_CMD_ERASE2
| ACTION_SECERASE
, STATE_READY
}},
392 {OPT_ANY
, {STATE_CMD_STATUS
, STATE_DATAOUT_STATUS
, STATE_READY
}},
394 {OPT_ANY
, {STATE_CMD_READID
, STATE_ADDR_ZERO
, STATE_DATAOUT_ID
, STATE_READY
}},
395 /* Large page devices read page */
396 {OPT_LARGEPAGE
, {STATE_CMD_READ0
, STATE_ADDR_PAGE
, STATE_CMD_READSTART
| ACTION_CPY
,
397 STATE_DATAOUT
, STATE_READY
}},
398 /* Large page devices random page read */
399 {OPT_LARGEPAGE
, {STATE_CMD_RNDOUT
, STATE_ADDR_COLUMN
, STATE_CMD_RNDOUTSTART
| ACTION_CPY
,
400 STATE_DATAOUT
, STATE_READY
}},
404 struct list_head list
;
405 unsigned int erase_block_no
;
406 unsigned int max_erases
;
407 unsigned int erases_done
;
410 static LIST_HEAD(weak_blocks
);
413 struct list_head list
;
414 unsigned int page_no
;
415 unsigned int max_writes
;
416 unsigned int writes_done
;
419 static LIST_HEAD(weak_pages
);
422 struct list_head list
;
423 unsigned int page_no
;
424 unsigned int max_reads
;
425 unsigned int reads_done
;
428 static LIST_HEAD(grave_pages
);
430 static unsigned long *erase_block_wear
= NULL
;
431 static unsigned int wear_eb_count
= 0;
432 static unsigned long total_wear
= 0;
434 /* MTD structure for NAND controller */
435 static struct mtd_info
*nsmtd
;
437 static int ns_show(struct seq_file
*m
, void *private)
439 unsigned long wmin
= -1, wmax
= 0, avg
;
440 unsigned long deciles
[10], decile_max
[10], tot
= 0;
443 /* Calc wear stats */
444 for (i
= 0; i
< wear_eb_count
; ++i
) {
445 unsigned long wear
= erase_block_wear
[i
];
453 for (i
= 0; i
< 9; ++i
) {
455 decile_max
[i
] = (wmax
* (i
+ 1) + 5) / 10;
458 decile_max
[9] = wmax
;
459 for (i
= 0; i
< wear_eb_count
; ++i
) {
461 unsigned long wear
= erase_block_wear
[i
];
462 for (d
= 0; d
< 10; ++d
)
463 if (wear
<= decile_max
[d
]) {
468 avg
= tot
/ wear_eb_count
;
470 /* Output wear report */
471 seq_printf(m
, "Total numbers of erases: %lu\n", tot
);
472 seq_printf(m
, "Number of erase blocks: %u\n", wear_eb_count
);
473 seq_printf(m
, "Average number of erases: %lu\n", avg
);
474 seq_printf(m
, "Maximum number of erases: %lu\n", wmax
);
475 seq_printf(m
, "Minimum number of erases: %lu\n", wmin
);
476 for (i
= 0; i
< 10; ++i
) {
477 unsigned long from
= (i
? decile_max
[i
- 1] + 1 : 0);
478 if (from
> decile_max
[i
])
480 seq_printf(m
, "Number of ebs with erase counts from %lu to %lu : %lu\n",
488 DEFINE_SHOW_ATTRIBUTE(ns
);
491 * ns_debugfs_create - initialize debugfs
492 * @ns: nandsim device description object
494 * This function creates all debugfs files for UBI device @ubi. Returns zero in
495 * case of success and a negative error code in case of failure.
497 static int ns_debugfs_create(struct nandsim
*ns
)
499 struct dentry
*root
= nsmtd
->dbg
.dfs_dir
;
502 * Just skip debugfs initialization when the debugfs directory is
505 if (IS_ERR_OR_NULL(root
)) {
506 if (IS_ENABLED(CONFIG_DEBUG_FS
) &&
507 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER
))
508 NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
512 ns
->dent
= debugfs_create_file("nandsim_wear_report", 0400, root
, ns
,
514 if (IS_ERR_OR_NULL(ns
->dent
)) {
515 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
522 static void ns_debugfs_remove(struct nandsim
*ns
)
524 debugfs_remove_recursive(ns
->dent
);
528 * Allocate array of page pointers, create slab allocation for an array
529 * and initialize the array by NULL pointers.
531 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
533 static int __init
ns_alloc_device(struct nandsim
*ns
)
539 cfile
= filp_open(cache_file
, O_CREAT
| O_RDWR
| O_LARGEFILE
, 0600);
541 return PTR_ERR(cfile
);
542 if (!(cfile
->f_mode
& FMODE_CAN_READ
)) {
543 NS_ERR("alloc_device: cache file not readable\n");
547 if (!(cfile
->f_mode
& FMODE_CAN_WRITE
)) {
548 NS_ERR("alloc_device: cache file not writeable\n");
553 vzalloc(array_size(sizeof(unsigned long),
554 BITS_TO_LONGS(ns
->geom
.pgnum
)));
555 if (!ns
->pages_written
) {
556 NS_ERR("alloc_device: unable to allocate pages written array\n");
560 ns
->file_buf
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
562 NS_ERR("alloc_device: unable to allocate file buf\n");
571 vfree(ns
->pages_written
);
573 filp_close(cfile
, NULL
);
578 ns
->pages
= vmalloc(array_size(sizeof(union ns_mem
), ns
->geom
.pgnum
));
580 NS_ERR("alloc_device: unable to allocate page array\n");
583 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
584 ns
->pages
[i
].byte
= NULL
;
586 ns
->nand_pages_slab
= kmem_cache_create("nandsim",
587 ns
->geom
.pgszoob
, 0, 0, NULL
);
588 if (!ns
->nand_pages_slab
) {
589 NS_ERR("cache_create: unable to create kmem_cache\n");
603 * Free any allocated pages, and free the array of page pointers.
605 static void ns_free_device(struct nandsim
*ns
)
611 vfree(ns
->pages_written
);
612 filp_close(ns
->cfile
, NULL
);
617 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
618 if (ns
->pages
[i
].byte
)
619 kmem_cache_free(ns
->nand_pages_slab
,
622 kmem_cache_destroy(ns
->nand_pages_slab
);
627 static char __init
*ns_get_partition_name(int i
)
629 return kasprintf(GFP_KERNEL
, "NAND simulator partition %d", i
);
633 * Initialize the nandsim structure.
635 * RETURNS: 0 if success, -ERRNO if failure.
637 static int __init
ns_init(struct mtd_info
*mtd
)
639 struct nand_chip
*chip
= mtd_to_nand(mtd
);
640 struct nandsim
*ns
= nand_get_controller_data(chip
);
643 uint64_t next_offset
;
645 if (NS_IS_INITIALIZED(ns
)) {
646 NS_ERR("init_nandsim: nandsim is already initialized\n");
650 /* Initialize the NAND flash parameters */
651 ns
->busw
= chip
->options
& NAND_BUSWIDTH_16
? 16 : 8;
652 ns
->geom
.totsz
= mtd
->size
;
653 ns
->geom
.pgsz
= mtd
->writesize
;
654 ns
->geom
.oobsz
= mtd
->oobsize
;
655 ns
->geom
.secsz
= mtd
->erasesize
;
656 ns
->geom
.pgszoob
= ns
->geom
.pgsz
+ ns
->geom
.oobsz
;
657 ns
->geom
.pgnum
= div_u64(ns
->geom
.totsz
, ns
->geom
.pgsz
);
658 ns
->geom
.totszoob
= ns
->geom
.totsz
+ (uint64_t)ns
->geom
.pgnum
* ns
->geom
.oobsz
;
659 ns
->geom
.secshift
= ffs(ns
->geom
.secsz
) - 1;
660 ns
->geom
.pgshift
= chip
->page_shift
;
661 ns
->geom
.pgsec
= ns
->geom
.secsz
/ ns
->geom
.pgsz
;
662 ns
->geom
.secszoob
= ns
->geom
.secsz
+ ns
->geom
.oobsz
* ns
->geom
.pgsec
;
665 if (ns
->geom
.pgsz
== 512) {
666 ns
->options
|= OPT_PAGE512
;
668 ns
->options
|= OPT_PAGE512_8BIT
;
669 } else if (ns
->geom
.pgsz
== 2048) {
670 ns
->options
|= OPT_PAGE2048
;
671 } else if (ns
->geom
.pgsz
== 4096) {
672 ns
->options
|= OPT_PAGE4096
;
674 NS_ERR("init_nandsim: unknown page size %u\n", ns
->geom
.pgsz
);
678 if (ns
->options
& OPT_SMALLPAGE
) {
679 if (ns
->geom
.totsz
<= (32 << 20)) {
680 ns
->geom
.pgaddrbytes
= 3;
681 ns
->geom
.secaddrbytes
= 2;
683 ns
->geom
.pgaddrbytes
= 4;
684 ns
->geom
.secaddrbytes
= 3;
687 if (ns
->geom
.totsz
<= (128 << 20)) {
688 ns
->geom
.pgaddrbytes
= 4;
689 ns
->geom
.secaddrbytes
= 2;
691 ns
->geom
.pgaddrbytes
= 5;
692 ns
->geom
.secaddrbytes
= 3;
696 /* Fill the partition_info structure */
697 if (parts_num
> ARRAY_SIZE(ns
->partitions
)) {
698 NS_ERR("too many partitions.\n");
701 remains
= ns
->geom
.totsz
;
703 for (i
= 0; i
< parts_num
; ++i
) {
704 uint64_t part_sz
= (uint64_t)parts
[i
] * ns
->geom
.secsz
;
706 if (!part_sz
|| part_sz
> remains
) {
707 NS_ERR("bad partition size.\n");
710 ns
->partitions
[i
].name
= ns_get_partition_name(i
);
711 if (!ns
->partitions
[i
].name
) {
712 NS_ERR("unable to allocate memory.\n");
715 ns
->partitions
[i
].offset
= next_offset
;
716 ns
->partitions
[i
].size
= part_sz
;
717 next_offset
+= ns
->partitions
[i
].size
;
718 remains
-= ns
->partitions
[i
].size
;
720 ns
->nbparts
= parts_num
;
722 if (parts_num
+ 1 > ARRAY_SIZE(ns
->partitions
)) {
723 NS_ERR("too many partitions.\n");
725 goto free_partition_names
;
727 ns
->partitions
[i
].name
= ns_get_partition_name(i
);
728 if (!ns
->partitions
[i
].name
) {
729 NS_ERR("unable to allocate memory.\n");
731 goto free_partition_names
;
733 ns
->partitions
[i
].offset
= next_offset
;
734 ns
->partitions
[i
].size
= remains
;
739 NS_WARN("16-bit flashes support wasn't tested\n");
741 printk("flash size: %llu MiB\n",
742 (unsigned long long)ns
->geom
.totsz
>> 20);
743 printk("page size: %u bytes\n", ns
->geom
.pgsz
);
744 printk("OOB area size: %u bytes\n", ns
->geom
.oobsz
);
745 printk("sector size: %u KiB\n", ns
->geom
.secsz
>> 10);
746 printk("pages number: %u\n", ns
->geom
.pgnum
);
747 printk("pages per sector: %u\n", ns
->geom
.pgsec
);
748 printk("bus width: %u\n", ns
->busw
);
749 printk("bits in sector size: %u\n", ns
->geom
.secshift
);
750 printk("bits in page size: %u\n", ns
->geom
.pgshift
);
751 printk("bits in OOB size: %u\n", ffs(ns
->geom
.oobsz
) - 1);
752 printk("flash size with OOB: %llu KiB\n",
753 (unsigned long long)ns
->geom
.totszoob
>> 10);
754 printk("page address bytes: %u\n", ns
->geom
.pgaddrbytes
);
755 printk("sector address bytes: %u\n", ns
->geom
.secaddrbytes
);
756 printk("options: %#x\n", ns
->options
);
758 ret
= ns_alloc_device(ns
);
760 goto free_partition_names
;
762 /* Allocate / initialize the internal buffer */
763 ns
->buf
.byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
765 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
770 memset(ns
->buf
.byte
, 0xFF, ns
->geom
.pgszoob
);
776 free_partition_names
:
777 for (i
= 0; i
< ARRAY_SIZE(ns
->partitions
); ++i
)
778 kfree(ns
->partitions
[i
].name
);
784 * Free the nandsim structure.
786 static void ns_free(struct nandsim
*ns
)
790 for (i
= 0; i
< ARRAY_SIZE(ns
->partitions
); ++i
)
791 kfree(ns
->partitions
[i
].name
);
799 static int ns_parse_badblocks(struct nandsim
*ns
, struct mtd_info
*mtd
)
803 unsigned int erase_block_no
;
810 zero_ok
= (*w
== '0' ? 1 : 0);
811 erase_block_no
= simple_strtoul(w
, &w
, 0);
812 if (!zero_ok
&& !erase_block_no
) {
813 NS_ERR("invalid badblocks.\n");
816 offset
= (loff_t
)erase_block_no
* ns
->geom
.secsz
;
817 if (mtd_block_markbad(mtd
, offset
)) {
818 NS_ERR("invalid badblocks.\n");
827 static int ns_parse_weakblocks(void)
831 unsigned int erase_block_no
;
832 unsigned int max_erases
;
833 struct weak_block
*wb
;
839 zero_ok
= (*w
== '0' ? 1 : 0);
840 erase_block_no
= simple_strtoul(w
, &w
, 0);
841 if (!zero_ok
&& !erase_block_no
) {
842 NS_ERR("invalid weakblocks.\n");
848 max_erases
= simple_strtoul(w
, &w
, 0);
852 wb
= kzalloc(sizeof(*wb
), GFP_KERNEL
);
854 NS_ERR("unable to allocate memory.\n");
857 wb
->erase_block_no
= erase_block_no
;
858 wb
->max_erases
= max_erases
;
859 list_add(&wb
->list
, &weak_blocks
);
864 static int ns_erase_error(unsigned int erase_block_no
)
866 struct weak_block
*wb
;
868 list_for_each_entry(wb
, &weak_blocks
, list
)
869 if (wb
->erase_block_no
== erase_block_no
) {
870 if (wb
->erases_done
>= wb
->max_erases
)
872 wb
->erases_done
+= 1;
878 static int ns_parse_weakpages(void)
882 unsigned int page_no
;
883 unsigned int max_writes
;
884 struct weak_page
*wp
;
890 zero_ok
= (*w
== '0' ? 1 : 0);
891 page_no
= simple_strtoul(w
, &w
, 0);
892 if (!zero_ok
&& !page_no
) {
893 NS_ERR("invalid weakpages.\n");
899 max_writes
= simple_strtoul(w
, &w
, 0);
903 wp
= kzalloc(sizeof(*wp
), GFP_KERNEL
);
905 NS_ERR("unable to allocate memory.\n");
908 wp
->page_no
= page_no
;
909 wp
->max_writes
= max_writes
;
910 list_add(&wp
->list
, &weak_pages
);
915 static int ns_write_error(unsigned int page_no
)
917 struct weak_page
*wp
;
919 list_for_each_entry(wp
, &weak_pages
, list
)
920 if (wp
->page_no
== page_no
) {
921 if (wp
->writes_done
>= wp
->max_writes
)
923 wp
->writes_done
+= 1;
929 static int ns_parse_gravepages(void)
933 unsigned int page_no
;
934 unsigned int max_reads
;
935 struct grave_page
*gp
;
941 zero_ok
= (*g
== '0' ? 1 : 0);
942 page_no
= simple_strtoul(g
, &g
, 0);
943 if (!zero_ok
&& !page_no
) {
944 NS_ERR("invalid gravepagess.\n");
950 max_reads
= simple_strtoul(g
, &g
, 0);
954 gp
= kzalloc(sizeof(*gp
), GFP_KERNEL
);
956 NS_ERR("unable to allocate memory.\n");
959 gp
->page_no
= page_no
;
960 gp
->max_reads
= max_reads
;
961 list_add(&gp
->list
, &grave_pages
);
966 static int ns_read_error(unsigned int page_no
)
968 struct grave_page
*gp
;
970 list_for_each_entry(gp
, &grave_pages
, list
)
971 if (gp
->page_no
== page_no
) {
972 if (gp
->reads_done
>= gp
->max_reads
)
980 static int ns_setup_wear_reporting(struct mtd_info
*mtd
)
984 wear_eb_count
= div_u64(mtd
->size
, mtd
->erasesize
);
985 mem
= wear_eb_count
* sizeof(unsigned long);
986 if (mem
/ sizeof(unsigned long) != wear_eb_count
) {
987 NS_ERR("Too many erase blocks for wear reporting\n");
990 erase_block_wear
= kzalloc(mem
, GFP_KERNEL
);
991 if (!erase_block_wear
) {
992 NS_ERR("Too many erase blocks for wear reporting\n");
998 static void ns_update_wear(unsigned int erase_block_no
)
1000 if (!erase_block_wear
)
1004 * TODO: Notify this through a debugfs entry,
1005 * instead of showing an error message.
1007 if (total_wear
== 0)
1008 NS_ERR("Erase counter total overflow\n");
1009 erase_block_wear
[erase_block_no
] += 1;
1010 if (erase_block_wear
[erase_block_no
] == 0)
1011 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no
);
1015 * Returns the string representation of 'state' state.
1017 static char *ns_get_state_name(uint32_t state
)
1019 switch (NS_STATE(state
)) {
1020 case STATE_CMD_READ0
:
1021 return "STATE_CMD_READ0";
1022 case STATE_CMD_READ1
:
1023 return "STATE_CMD_READ1";
1024 case STATE_CMD_PAGEPROG
:
1025 return "STATE_CMD_PAGEPROG";
1026 case STATE_CMD_READOOB
:
1027 return "STATE_CMD_READOOB";
1028 case STATE_CMD_READSTART
:
1029 return "STATE_CMD_READSTART";
1030 case STATE_CMD_ERASE1
:
1031 return "STATE_CMD_ERASE1";
1032 case STATE_CMD_STATUS
:
1033 return "STATE_CMD_STATUS";
1034 case STATE_CMD_SEQIN
:
1035 return "STATE_CMD_SEQIN";
1036 case STATE_CMD_READID
:
1037 return "STATE_CMD_READID";
1038 case STATE_CMD_ERASE2
:
1039 return "STATE_CMD_ERASE2";
1040 case STATE_CMD_RESET
:
1041 return "STATE_CMD_RESET";
1042 case STATE_CMD_RNDOUT
:
1043 return "STATE_CMD_RNDOUT";
1044 case STATE_CMD_RNDOUTSTART
:
1045 return "STATE_CMD_RNDOUTSTART";
1046 case STATE_ADDR_PAGE
:
1047 return "STATE_ADDR_PAGE";
1048 case STATE_ADDR_SEC
:
1049 return "STATE_ADDR_SEC";
1050 case STATE_ADDR_ZERO
:
1051 return "STATE_ADDR_ZERO";
1052 case STATE_ADDR_COLUMN
:
1053 return "STATE_ADDR_COLUMN";
1055 return "STATE_DATAIN";
1057 return "STATE_DATAOUT";
1058 case STATE_DATAOUT_ID
:
1059 return "STATE_DATAOUT_ID";
1060 case STATE_DATAOUT_STATUS
:
1061 return "STATE_DATAOUT_STATUS";
1063 return "STATE_READY";
1065 return "STATE_UNKNOWN";
1068 NS_ERR("get_state_name: unknown state, BUG\n");
1073 * Check if command is valid.
1075 * RETURNS: 1 if wrong command, 0 if right.
1077 static int ns_check_command(int cmd
)
1081 case NAND_CMD_READ0
:
1082 case NAND_CMD_READ1
:
1083 case NAND_CMD_READSTART
:
1084 case NAND_CMD_PAGEPROG
:
1085 case NAND_CMD_READOOB
:
1086 case NAND_CMD_ERASE1
:
1087 case NAND_CMD_STATUS
:
1088 case NAND_CMD_SEQIN
:
1089 case NAND_CMD_READID
:
1090 case NAND_CMD_ERASE2
:
1091 case NAND_CMD_RESET
:
1092 case NAND_CMD_RNDOUT
:
1093 case NAND_CMD_RNDOUTSTART
:
1102 * Returns state after command is accepted by command number.
1104 static uint32_t ns_get_state_by_command(unsigned command
)
1107 case NAND_CMD_READ0
:
1108 return STATE_CMD_READ0
;
1109 case NAND_CMD_READ1
:
1110 return STATE_CMD_READ1
;
1111 case NAND_CMD_PAGEPROG
:
1112 return STATE_CMD_PAGEPROG
;
1113 case NAND_CMD_READSTART
:
1114 return STATE_CMD_READSTART
;
1115 case NAND_CMD_READOOB
:
1116 return STATE_CMD_READOOB
;
1117 case NAND_CMD_ERASE1
:
1118 return STATE_CMD_ERASE1
;
1119 case NAND_CMD_STATUS
:
1120 return STATE_CMD_STATUS
;
1121 case NAND_CMD_SEQIN
:
1122 return STATE_CMD_SEQIN
;
1123 case NAND_CMD_READID
:
1124 return STATE_CMD_READID
;
1125 case NAND_CMD_ERASE2
:
1126 return STATE_CMD_ERASE2
;
1127 case NAND_CMD_RESET
:
1128 return STATE_CMD_RESET
;
1129 case NAND_CMD_RNDOUT
:
1130 return STATE_CMD_RNDOUT
;
1131 case NAND_CMD_RNDOUTSTART
:
1132 return STATE_CMD_RNDOUTSTART
;
1135 NS_ERR("get_state_by_command: unknown command, BUG\n");
1140 * Move an address byte to the correspondent internal register.
1142 static inline void ns_accept_addr_byte(struct nandsim
*ns
, u_char bt
)
1144 uint byte
= (uint
)bt
;
1146 if (ns
->regs
.count
< (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
))
1147 ns
->regs
.column
|= (byte
<< 8 * ns
->regs
.count
);
1149 ns
->regs
.row
|= (byte
<< 8 * (ns
->regs
.count
-
1150 ns
->geom
.pgaddrbytes
+
1151 ns
->geom
.secaddrbytes
));
1158 * Switch to STATE_READY state.
1160 static inline void ns_switch_to_ready_state(struct nandsim
*ns
, u_char status
)
1162 NS_DBG("switch_to_ready_state: switch to %s state\n",
1163 ns_get_state_name(STATE_READY
));
1165 ns
->state
= STATE_READY
;
1166 ns
->nxstate
= STATE_UNKNOWN
;
1174 ns
->regs
.column
= 0;
1175 ns
->regs
.status
= status
;
1179 * If the operation isn't known yet, try to find it in the global array
1180 * of supported operations.
1182 * Operation can be unknown because of the following.
1183 * 1. New command was accepted and this is the first call to find the
1184 * correspondent states chain. In this case ns->npstates = 0;
1185 * 2. There are several operations which begin with the same command(s)
1186 * (for example program from the second half and read from the
1187 * second half operations both begin with the READ1 command). In this
1188 * case the ns->pstates[] array contains previous states.
1190 * Thus, the function tries to find operation containing the following
1191 * states (if the 'flag' parameter is 0):
1192 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1194 * If (one and only one) matching operation is found, it is accepted (
1195 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1198 * If there are several matches, the current state is pushed to the
1201 * The operation can be unknown only while commands are input to the chip.
1202 * As soon as address command is accepted, the operation must be known.
1203 * In such situation the function is called with 'flag' != 0, and the
1204 * operation is searched using the following pattern:
1205 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1207 * It is supposed that this pattern must either match one operation or
1208 * none. There can't be ambiguity in that case.
1210 * If no matches found, the function does the following:
1211 * 1. if there are saved states present, try to ignore them and search
1212 * again only using the last command. If nothing was found, switch
1213 * to the STATE_READY state.
1214 * 2. if there are no saved states, switch to the STATE_READY state.
1216 * RETURNS: -2 - no matched operations found.
1217 * -1 - several matches.
1218 * 0 - operation is found.
1220 static int ns_find_operation(struct nandsim
*ns
, uint32_t flag
)
1225 for (i
= 0; i
< NS_OPER_NUM
; i
++) {
1229 if (!(ns
->options
& ops
[i
].reqopts
))
1230 /* Ignore operations we can't perform */
1234 if (!(ops
[i
].states
[ns
->npstates
] & STATE_ADDR_MASK
))
1237 if (NS_STATE(ns
->state
) != NS_STATE(ops
[i
].states
[ns
->npstates
]))
1241 for (j
= 0; j
< ns
->npstates
; j
++)
1242 if (NS_STATE(ops
[i
].states
[j
]) != NS_STATE(ns
->pstates
[j
])
1243 && (ns
->options
& ops
[idx
].reqopts
)) {
1254 if (opsfound
== 1) {
1256 ns
->op
= &ops
[idx
].states
[0];
1259 * In this case the find_operation function was
1260 * called when address has just began input. But it isn't
1261 * yet fully input and the current state must
1262 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1263 * state must be the next state (ns->nxstate).
1265 ns
->stateidx
= ns
->npstates
- 1;
1267 ns
->stateidx
= ns
->npstates
;
1270 ns
->state
= ns
->op
[ns
->stateidx
];
1271 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1272 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1273 idx
, ns_get_state_name(ns
->state
),
1274 ns_get_state_name(ns
->nxstate
));
1278 if (opsfound
== 0) {
1279 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1280 if (ns
->npstates
!= 0) {
1281 NS_DBG("find_operation: no operation found, try again with state %s\n",
1282 ns_get_state_name(ns
->state
));
1284 return ns_find_operation(ns
, 0);
1287 NS_DBG("find_operation: no operations found\n");
1288 ns_switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1293 /* This shouldn't happen */
1294 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1298 NS_DBG("find_operation: there is still ambiguity\n");
1300 ns
->pstates
[ns
->npstates
++] = ns
->state
;
1305 static void ns_put_pages(struct nandsim
*ns
)
1309 for (i
= 0; i
< ns
->held_cnt
; i
++)
1310 put_page(ns
->held_pages
[i
]);
1313 /* Get page cache pages in advance to provide NOFS memory allocation */
1314 static int ns_get_pages(struct nandsim
*ns
, struct file
*file
, size_t count
,
1317 pgoff_t index
, start_index
, end_index
;
1319 struct address_space
*mapping
= file
->f_mapping
;
1321 start_index
= pos
>> PAGE_SHIFT
;
1322 end_index
= (pos
+ count
- 1) >> PAGE_SHIFT
;
1323 if (end_index
- start_index
+ 1 > NS_MAX_HELD_PAGES
)
1326 for (index
= start_index
; index
<= end_index
; index
++) {
1327 page
= find_get_page(mapping
, index
);
1329 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1331 write_inode_now(mapping
->host
, 1);
1332 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1340 ns
->held_pages
[ns
->held_cnt
++] = page
;
1345 static ssize_t
ns_read_file(struct nandsim
*ns
, struct file
*file
, void *buf
,
1346 size_t count
, loff_t pos
)
1350 unsigned int noreclaim_flag
;
1352 err
= ns_get_pages(ns
, file
, count
, pos
);
1355 noreclaim_flag
= memalloc_noreclaim_save();
1356 tx
= kernel_read(file
, buf
, count
, &pos
);
1357 memalloc_noreclaim_restore(noreclaim_flag
);
1362 static ssize_t
ns_write_file(struct nandsim
*ns
, struct file
*file
, void *buf
,
1363 size_t count
, loff_t pos
)
1367 unsigned int noreclaim_flag
;
1369 err
= ns_get_pages(ns
, file
, count
, pos
);
1372 noreclaim_flag
= memalloc_noreclaim_save();
1373 tx
= kernel_write(file
, buf
, count
, &pos
);
1374 memalloc_noreclaim_restore(noreclaim_flag
);
1380 * Returns a pointer to the current page.
1382 static inline union ns_mem
*NS_GET_PAGE(struct nandsim
*ns
)
1384 return &(ns
->pages
[ns
->regs
.row
]);
1388 * Retuns a pointer to the current byte, within the current page.
1390 static inline u_char
*NS_PAGE_BYTE_OFF(struct nandsim
*ns
)
1392 return NS_GET_PAGE(ns
)->byte
+ ns
->regs
.column
+ ns
->regs
.off
;
1395 static int ns_do_read_error(struct nandsim
*ns
, int num
)
1397 unsigned int page_no
= ns
->regs
.row
;
1399 if (ns_read_error(page_no
)) {
1400 prandom_bytes(ns
->buf
.byte
, num
);
1401 NS_WARN("simulating read error in page %u\n", page_no
);
1407 static void ns_do_bit_flips(struct nandsim
*ns
, int num
)
1409 if (bitflips
&& prandom_u32() < (1 << 22)) {
1412 flips
= (prandom_u32() % (int) bitflips
) + 1;
1414 int pos
= prandom_u32() % (num
* 8);
1415 ns
->buf
.byte
[pos
/ 8] ^= (1 << (pos
% 8));
1416 NS_WARN("read_page: flipping bit %d in page %d "
1417 "reading from %d ecc: corrected=%u failed=%u\n",
1418 pos
, ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
,
1419 nsmtd
->ecc_stats
.corrected
, nsmtd
->ecc_stats
.failed
);
1425 * Fill the NAND buffer with data read from the specified page.
1427 static void ns_read_page(struct nandsim
*ns
, int num
)
1429 union ns_mem
*mypage
;
1432 if (!test_bit(ns
->regs
.row
, ns
->pages_written
)) {
1433 NS_DBG("read_page: page %d not written\n", ns
->regs
.row
);
1434 memset(ns
->buf
.byte
, 0xFF, num
);
1439 NS_DBG("read_page: page %d written, reading from %d\n",
1440 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1441 if (ns_do_read_error(ns
, num
))
1443 pos
= (loff_t
)NS_RAW_OFFSET(ns
) + ns
->regs
.off
;
1444 tx
= ns_read_file(ns
, ns
->cfile
, ns
->buf
.byte
, num
,
1447 NS_ERR("read_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1450 ns_do_bit_flips(ns
, num
);
1455 mypage
= NS_GET_PAGE(ns
);
1456 if (mypage
->byte
== NULL
) {
1457 NS_DBG("read_page: page %d not allocated\n", ns
->regs
.row
);
1458 memset(ns
->buf
.byte
, 0xFF, num
);
1460 NS_DBG("read_page: page %d allocated, reading from %d\n",
1461 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1462 if (ns_do_read_error(ns
, num
))
1464 memcpy(ns
->buf
.byte
, NS_PAGE_BYTE_OFF(ns
), num
);
1465 ns_do_bit_flips(ns
, num
);
1470 * Erase all pages in the specified sector.
1472 static void ns_erase_sector(struct nandsim
*ns
)
1474 union ns_mem
*mypage
;
1478 for (i
= 0; i
< ns
->geom
.pgsec
; i
++)
1479 if (__test_and_clear_bit(ns
->regs
.row
+ i
,
1480 ns
->pages_written
)) {
1481 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+ i
);
1486 mypage
= NS_GET_PAGE(ns
);
1487 for (i
= 0; i
< ns
->geom
.pgsec
; i
++) {
1488 if (mypage
->byte
!= NULL
) {
1489 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+i
);
1490 kmem_cache_free(ns
->nand_pages_slab
, mypage
->byte
);
1491 mypage
->byte
= NULL
;
1498 * Program the specified page with the contents from the NAND buffer.
1500 static int ns_prog_page(struct nandsim
*ns
, int num
)
1503 union ns_mem
*mypage
;
1511 NS_DBG("prog_page: writing page %d\n", ns
->regs
.row
);
1512 pg_off
= ns
->file_buf
+ ns
->regs
.column
+ ns
->regs
.off
;
1513 off
= (loff_t
)NS_RAW_OFFSET(ns
) + ns
->regs
.off
;
1514 if (!test_bit(ns
->regs
.row
, ns
->pages_written
)) {
1516 memset(ns
->file_buf
, 0xff, ns
->geom
.pgszoob
);
1519 tx
= ns_read_file(ns
, ns
->cfile
, pg_off
, num
, off
);
1521 NS_ERR("prog_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1525 for (i
= 0; i
< num
; i
++)
1526 pg_off
[i
] &= ns
->buf
.byte
[i
];
1528 loff_t pos
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
;
1529 tx
= ns_write_file(ns
, ns
->cfile
, ns
->file_buf
,
1530 ns
->geom
.pgszoob
, pos
);
1531 if (tx
!= ns
->geom
.pgszoob
) {
1532 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1535 __set_bit(ns
->regs
.row
, ns
->pages_written
);
1537 tx
= ns_write_file(ns
, ns
->cfile
, pg_off
, num
, off
);
1539 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1546 mypage
= NS_GET_PAGE(ns
);
1547 if (mypage
->byte
== NULL
) {
1548 NS_DBG("prog_page: allocating page %d\n", ns
->regs
.row
);
1550 * We allocate memory with GFP_NOFS because a flash FS may
1551 * utilize this. If it is holding an FS lock, then gets here,
1552 * then kernel memory alloc runs writeback which goes to the FS
1553 * again and deadlocks. This was seen in practice.
1555 mypage
->byte
= kmem_cache_alloc(ns
->nand_pages_slab
, GFP_NOFS
);
1556 if (mypage
->byte
== NULL
) {
1557 NS_ERR("prog_page: error allocating memory for page %d\n", ns
->regs
.row
);
1560 memset(mypage
->byte
, 0xFF, ns
->geom
.pgszoob
);
1563 pg_off
= NS_PAGE_BYTE_OFF(ns
);
1564 for (i
= 0; i
< num
; i
++)
1565 pg_off
[i
] &= ns
->buf
.byte
[i
];
1571 * If state has any action bit, perform this action.
1573 * RETURNS: 0 if success, -1 if error.
1575 static int ns_do_state_action(struct nandsim
*ns
, uint32_t action
)
1578 int busdiv
= ns
->busw
== 8 ? 1 : 2;
1579 unsigned int erase_block_no
, page_no
;
1581 action
&= ACTION_MASK
;
1583 /* Check that page address input is correct */
1584 if (action
!= ACTION_SECERASE
&& ns
->regs
.row
>= ns
->geom
.pgnum
) {
1585 NS_WARN("do_state_action: wrong page number (%#x)\n", ns
->regs
.row
);
1593 * Copy page data to the internal buffer.
1596 /* Column shouldn't be very large */
1597 if (ns
->regs
.column
>= (ns
->geom
.pgszoob
- ns
->regs
.off
)) {
1598 NS_ERR("do_state_action: column number is too large\n");
1601 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1602 ns_read_page(ns
, num
);
1604 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1605 num
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1607 if (ns
->regs
.off
== 0)
1608 NS_LOG("read page %d\n", ns
->regs
.row
);
1609 else if (ns
->regs
.off
< ns
->geom
.pgsz
)
1610 NS_LOG("read page %d (second half)\n", ns
->regs
.row
);
1612 NS_LOG("read OOB of page %d\n", ns
->regs
.row
);
1614 NS_UDELAY(access_delay
);
1615 NS_UDELAY(input_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1619 case ACTION_SECERASE
:
1625 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1629 if (ns
->regs
.row
>= ns
->geom
.pgnum
- ns
->geom
.pgsec
1630 || (ns
->regs
.row
& ~(ns
->geom
.secsz
- 1))) {
1631 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns
->regs
.row
);
1635 ns
->regs
.row
= (ns
->regs
.row
<<
1636 8 * (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
)) | ns
->regs
.column
;
1637 ns
->regs
.column
= 0;
1639 erase_block_no
= ns
->regs
.row
>> (ns
->geom
.secshift
- ns
->geom
.pgshift
);
1641 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1642 ns
->regs
.row
, NS_RAW_OFFSET(ns
));
1643 NS_LOG("erase sector %u\n", erase_block_no
);
1645 ns_erase_sector(ns
);
1647 NS_MDELAY(erase_delay
);
1649 if (erase_block_wear
)
1650 ns_update_wear(erase_block_no
);
1652 if (ns_erase_error(erase_block_no
)) {
1653 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no
);
1659 case ACTION_PRGPAGE
:
1661 * Program page - move internal buffer data to the page.
1665 NS_WARN("do_state_action: device is write-protected, programm\n");
1669 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1670 if (num
!= ns
->regs
.count
) {
1671 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1672 ns
->regs
.count
, num
);
1676 if (ns_prog_page(ns
, num
) == -1)
1679 page_no
= ns
->regs
.row
;
1681 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1682 num
, ns
->regs
.row
, ns
->regs
.column
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1683 NS_LOG("programm page %d\n", ns
->regs
.row
);
1685 NS_UDELAY(programm_delay
);
1686 NS_UDELAY(output_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1688 if (ns_write_error(page_no
)) {
1689 NS_WARN("simulating write failure in page %u\n", page_no
);
1695 case ACTION_ZEROOFF
:
1696 NS_DBG("do_state_action: set internal offset to 0\n");
1700 case ACTION_HALFOFF
:
1701 if (!(ns
->options
& OPT_PAGE512_8BIT
)) {
1702 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1703 "byte page size 8x chips\n");
1706 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
/2);
1707 ns
->regs
.off
= ns
->geom
.pgsz
/2;
1711 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
);
1712 ns
->regs
.off
= ns
->geom
.pgsz
;
1716 NS_DBG("do_state_action: BUG! unknown action\n");
1723 * Switch simulator's state.
1725 static void ns_switch_state(struct nandsim
*ns
)
1729 * The current operation have already been identified.
1730 * Just follow the states chain.
1734 ns
->state
= ns
->nxstate
;
1735 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1737 NS_DBG("switch_state: operation is known, switch to the next state, "
1738 "state: %s, nxstate: %s\n",
1739 ns_get_state_name(ns
->state
),
1740 ns_get_state_name(ns
->nxstate
));
1742 /* See, whether we need to do some action */
1743 if ((ns
->state
& ACTION_MASK
) &&
1744 ns_do_state_action(ns
, ns
->state
) < 0) {
1745 ns_switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1751 * We don't yet know which operation we perform.
1752 * Try to identify it.
1756 * The only event causing the switch_state function to
1757 * be called with yet unknown operation is new command.
1759 ns
->state
= ns_get_state_by_command(ns
->regs
.command
);
1761 NS_DBG("switch_state: operation is unknown, try to find it\n");
1763 if (ns_find_operation(ns
, 0))
1766 if ((ns
->state
& ACTION_MASK
) &&
1767 ns_do_state_action(ns
, ns
->state
) < 0) {
1768 ns_switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1773 /* For 16x devices column means the page offset in words */
1774 if ((ns
->nxstate
& STATE_ADDR_MASK
) && ns
->busw
== 16) {
1775 NS_DBG("switch_state: double the column number for 16x device\n");
1776 ns
->regs
.column
<<= 1;
1779 if (NS_STATE(ns
->nxstate
) == STATE_READY
) {
1781 * The current state is the last. Return to STATE_READY
1784 u_char status
= NS_STATUS_OK(ns
);
1786 /* In case of data states, see if all bytes were input/output */
1787 if ((ns
->state
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
))
1788 && ns
->regs
.count
!= ns
->regs
.num
) {
1789 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1790 ns
->regs
.num
- ns
->regs
.count
);
1791 status
= NS_STATUS_FAILED(ns
);
1794 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1796 ns_switch_to_ready_state(ns
, status
);
1799 } else if (ns
->nxstate
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
)) {
1801 * If the next state is data input/output, switch to it now
1804 ns
->state
= ns
->nxstate
;
1805 ns
->nxstate
= ns
->op
[++ns
->stateidx
+ 1];
1806 ns
->regs
.num
= ns
->regs
.count
= 0;
1808 NS_DBG("switch_state: the next state is data I/O, switch, "
1809 "state: %s, nxstate: %s\n",
1810 ns_get_state_name(ns
->state
),
1811 ns_get_state_name(ns
->nxstate
));
1814 * Set the internal register to the count of bytes which
1815 * are expected to be input or output
1817 switch (NS_STATE(ns
->state
)) {
1820 ns
->regs
.num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1823 case STATE_DATAOUT_ID
:
1824 ns
->regs
.num
= ns
->geom
.idbytes
;
1827 case STATE_DATAOUT_STATUS
:
1828 ns
->regs
.count
= ns
->regs
.num
= 0;
1832 NS_ERR("switch_state: BUG! unknown data state\n");
1835 } else if (ns
->nxstate
& STATE_ADDR_MASK
) {
1837 * If the next state is address input, set the internal
1838 * register to the number of expected address bytes
1843 switch (NS_STATE(ns
->nxstate
)) {
1844 case STATE_ADDR_PAGE
:
1845 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1848 case STATE_ADDR_SEC
:
1849 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1852 case STATE_ADDR_ZERO
:
1856 case STATE_ADDR_COLUMN
:
1857 /* Column address is always 2 bytes */
1858 ns
->regs
.num
= ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
;
1862 NS_ERR("switch_state: BUG! unknown address state\n");
1866 * Just reset internal counters.
1874 static u_char
ns_nand_read_byte(struct nand_chip
*chip
)
1876 struct nandsim
*ns
= nand_get_controller_data(chip
);
1879 /* Sanity and correctness checks */
1880 if (!ns
->lines
.ce
) {
1881 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint
)outb
);
1884 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1885 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint
)outb
);
1888 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1889 NS_WARN("read_byte: unexpected data output cycle, state is %s return %#x\n",
1890 ns_get_state_name(ns
->state
), (uint
)outb
);
1894 /* Status register may be read as many times as it is wanted */
1895 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
) {
1896 NS_DBG("read_byte: return %#x status\n", ns
->regs
.status
);
1897 return ns
->regs
.status
;
1900 /* Check if there is any data in the internal buffer which may be read */
1901 if (ns
->regs
.count
== ns
->regs
.num
) {
1902 NS_WARN("read_byte: no more data to output, return %#x\n", (uint
)outb
);
1906 switch (NS_STATE(ns
->state
)) {
1908 if (ns
->busw
== 8) {
1909 outb
= ns
->buf
.byte
[ns
->regs
.count
];
1910 ns
->regs
.count
+= 1;
1912 outb
= (u_char
)cpu_to_le16(ns
->buf
.word
[ns
->regs
.count
>> 1]);
1913 ns
->regs
.count
+= 2;
1916 case STATE_DATAOUT_ID
:
1917 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns
->regs
.count
, ns
->regs
.num
);
1918 outb
= ns
->ids
[ns
->regs
.count
];
1919 ns
->regs
.count
+= 1;
1925 if (ns
->regs
.count
== ns
->regs
.num
) {
1926 NS_DBG("read_byte: all bytes were read\n");
1928 if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1929 ns_switch_state(ns
);
1935 static void ns_nand_write_byte(struct nand_chip
*chip
, u_char byte
)
1937 struct nandsim
*ns
= nand_get_controller_data(chip
);
1939 /* Sanity and correctness checks */
1940 if (!ns
->lines
.ce
) {
1941 NS_ERR("write_byte: chip is disabled, ignore write\n");
1944 if (ns
->lines
.ale
&& ns
->lines
.cle
) {
1945 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1949 if (ns
->lines
.cle
== 1) {
1951 * The byte written is a command.
1954 if (byte
== NAND_CMD_RESET
) {
1955 NS_LOG("reset chip\n");
1956 ns_switch_to_ready_state(ns
, NS_STATUS_OK(ns
));
1960 /* Check that the command byte is correct */
1961 if (ns_check_command(byte
)) {
1962 NS_ERR("write_byte: unknown command %#x\n", (uint
)byte
);
1966 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
1967 || NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1968 int row
= ns
->regs
.row
;
1970 ns_switch_state(ns
);
1971 if (byte
== NAND_CMD_RNDOUT
)
1975 /* Check if chip is expecting command */
1976 if (NS_STATE(ns
->nxstate
) != STATE_UNKNOWN
&& !(ns
->nxstate
& STATE_CMD_MASK
)) {
1977 /* Do not warn if only 2 id bytes are read */
1978 if (!(ns
->regs
.command
== NAND_CMD_READID
&&
1979 NS_STATE(ns
->state
) == STATE_DATAOUT_ID
&& ns
->regs
.count
== 2)) {
1981 * We are in situation when something else (not command)
1982 * was expected but command was input. In this case ignore
1983 * previous command(s)/state(s) and accept the last one.
1985 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, ignore previous states\n",
1987 ns_get_state_name(ns
->nxstate
));
1989 ns_switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1992 NS_DBG("command byte corresponding to %s state accepted\n",
1993 ns_get_state_name(ns_get_state_by_command(byte
)));
1994 ns
->regs
.command
= byte
;
1995 ns_switch_state(ns
);
1997 } else if (ns
->lines
.ale
== 1) {
1999 * The byte written is an address.
2002 if (NS_STATE(ns
->nxstate
) == STATE_UNKNOWN
) {
2004 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2006 if (ns_find_operation(ns
, 1) < 0)
2009 if ((ns
->state
& ACTION_MASK
) &&
2010 ns_do_state_action(ns
, ns
->state
) < 0) {
2011 ns_switch_to_ready_state(ns
,
2012 NS_STATUS_FAILED(ns
));
2017 switch (NS_STATE(ns
->nxstate
)) {
2018 case STATE_ADDR_PAGE
:
2019 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
2021 case STATE_ADDR_SEC
:
2022 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
2024 case STATE_ADDR_ZERO
:
2032 /* Check that chip is expecting address */
2033 if (!(ns
->nxstate
& STATE_ADDR_MASK
)) {
2034 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, switch to STATE_READY\n",
2035 (uint
)byte
, ns_get_state_name(ns
->nxstate
));
2036 ns_switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2040 /* Check if this is expected byte */
2041 if (ns
->regs
.count
== ns
->regs
.num
) {
2042 NS_ERR("write_byte: no more address bytes expected\n");
2043 ns_switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2047 ns_accept_addr_byte(ns
, byte
);
2049 ns
->regs
.count
+= 1;
2051 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2052 (uint
)byte
, ns
->regs
.count
, ns
->regs
.num
);
2054 if (ns
->regs
.count
== ns
->regs
.num
) {
2055 NS_DBG("address (%#x, %#x) is accepted\n", ns
->regs
.row
, ns
->regs
.column
);
2056 ns_switch_state(ns
);
2061 * The byte written is an input data.
2064 /* Check that chip is expecting data input */
2065 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2066 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, switch to %s\n",
2067 (uint
)byte
, ns_get_state_name(ns
->state
),
2068 ns_get_state_name(STATE_READY
));
2069 ns_switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2073 /* Check if this is expected byte */
2074 if (ns
->regs
.count
== ns
->regs
.num
) {
2075 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2080 if (ns
->busw
== 8) {
2081 ns
->buf
.byte
[ns
->regs
.count
] = byte
;
2082 ns
->regs
.count
+= 1;
2084 ns
->buf
.word
[ns
->regs
.count
>> 1] = cpu_to_le16((uint16_t)byte
);
2085 ns
->regs
.count
+= 2;
2092 static void ns_nand_write_buf(struct nand_chip
*chip
, const u_char
*buf
,
2095 struct nandsim
*ns
= nand_get_controller_data(chip
);
2097 /* Check that chip is expecting data input */
2098 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2099 NS_ERR("write_buf: data input isn't expected, state is %s, switch to STATE_READY\n",
2100 ns_get_state_name(ns
->state
));
2101 ns_switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2105 /* Check if these are expected bytes */
2106 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2107 NS_ERR("write_buf: too many input bytes\n");
2108 ns_switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2112 memcpy(ns
->buf
.byte
+ ns
->regs
.count
, buf
, len
);
2113 ns
->regs
.count
+= len
;
2115 if (ns
->regs
.count
== ns
->regs
.num
) {
2116 NS_DBG("write_buf: %d bytes were written\n", ns
->regs
.count
);
2120 static void ns_nand_read_buf(struct nand_chip
*chip
, u_char
*buf
, int len
)
2122 struct nandsim
*ns
= nand_get_controller_data(chip
);
2124 /* Sanity and correctness checks */
2125 if (!ns
->lines
.ce
) {
2126 NS_ERR("read_buf: chip is disabled\n");
2129 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
2130 NS_ERR("read_buf: ALE or CLE pin is high\n");
2133 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
2134 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2135 ns_get_state_name(ns
->state
));
2139 if (NS_STATE(ns
->state
) != STATE_DATAOUT
) {
2142 for (i
= 0; i
< len
; i
++)
2143 buf
[i
] = ns_nand_read_byte(chip
);
2148 /* Check if these are expected bytes */
2149 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2150 NS_ERR("read_buf: too many bytes to read\n");
2151 ns_switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2155 memcpy(buf
, ns
->buf
.byte
+ ns
->regs
.count
, len
);
2156 ns
->regs
.count
+= len
;
2158 if (ns
->regs
.count
== ns
->regs
.num
) {
2159 if (NS_STATE(ns
->nxstate
) == STATE_READY
)
2160 ns_switch_state(ns
);
2166 static int ns_exec_op(struct nand_chip
*chip
, const struct nand_operation
*op
,
2171 const struct nand_op_instr
*instr
= NULL
;
2172 struct nandsim
*ns
= nand_get_controller_data(chip
);
2179 for (op_id
= 0; op_id
< op
->ninstrs
; op_id
++) {
2180 instr
= &op
->instrs
[op_id
];
2184 switch (instr
->type
) {
2185 case NAND_OP_CMD_INSTR
:
2187 ns_nand_write_byte(chip
, instr
->ctx
.cmd
.opcode
);
2189 case NAND_OP_ADDR_INSTR
:
2191 for (i
= 0; i
< instr
->ctx
.addr
.naddrs
; i
++)
2192 ns_nand_write_byte(chip
, instr
->ctx
.addr
.addrs
[i
]);
2194 case NAND_OP_DATA_IN_INSTR
:
2195 ns_nand_read_buf(chip
, instr
->ctx
.data
.buf
.in
, instr
->ctx
.data
.len
);
2197 case NAND_OP_DATA_OUT_INSTR
:
2198 ns_nand_write_buf(chip
, instr
->ctx
.data
.buf
.out
, instr
->ctx
.data
.len
);
2200 case NAND_OP_WAITRDY_INSTR
:
2201 /* we are always ready */
2209 static int ns_attach_chip(struct nand_chip
*chip
)
2211 unsigned int eccsteps
, eccbytes
;
2216 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH
)) {
2217 NS_ERR("BCH ECC support is disabled\n");
2221 /* Use 512-byte ecc blocks */
2222 eccsteps
= nsmtd
->writesize
/ 512;
2223 eccbytes
= ((bch
* 13) + 7) / 8;
2225 /* Do not bother supporting small page devices */
2226 if (nsmtd
->oobsize
< 64 || !eccsteps
) {
2227 NS_ERR("BCH not available on small page devices\n");
2231 if (((eccbytes
* eccsteps
) + 2) > nsmtd
->oobsize
) {
2232 NS_ERR("Invalid BCH value %u\n", bch
);
2236 chip
->ecc
.engine_type
= NAND_ECC_ENGINE_TYPE_SOFT
;
2237 chip
->ecc
.algo
= NAND_ECC_ALGO_BCH
;
2238 chip
->ecc
.size
= 512;
2239 chip
->ecc
.strength
= bch
;
2240 chip
->ecc
.bytes
= eccbytes
;
2242 NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch
, chip
->ecc
.size
);
2247 static const struct nand_controller_ops ns_controller_ops
= {
2248 .attach_chip
= ns_attach_chip
,
2249 .exec_op
= ns_exec_op
,
2253 * Module initialization function
2255 static int __init
ns_init_module(void)
2257 struct list_head
*pos
, *n
;
2258 struct nand_chip
*chip
;
2262 if (bus_width
!= 8 && bus_width
!= 16) {
2263 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width
);
2267 ns
= kzalloc(sizeof(struct nandsim
), GFP_KERNEL
);
2269 NS_ERR("unable to allocate core structures.\n");
2273 nsmtd
= nand_to_mtd(chip
);
2274 nand_set_controller_data(chip
, (void *)ns
);
2276 chip
->ecc
.engine_type
= NAND_ECC_ENGINE_TYPE_SOFT
;
2277 chip
->ecc
.algo
= NAND_ECC_ALGO_HAMMING
;
2278 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2279 /* and 'badblocks' parameters to work */
2280 chip
->options
|= NAND_SKIP_BBTSCAN
;
2284 chip
->bbt_options
|= NAND_BBT_NO_OOB
;
2287 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
2292 NS_ERR("bbt has to be 0..2\n");
2294 goto free_ns_struct
;
2297 * Perform minimum nandsim structure initialization to handle
2298 * the initial ID read command correctly
2300 if (id_bytes
[6] != 0xFF || id_bytes
[7] != 0xFF)
2301 ns
->geom
.idbytes
= 8;
2302 else if (id_bytes
[4] != 0xFF || id_bytes
[5] != 0xFF)
2303 ns
->geom
.idbytes
= 6;
2304 else if (id_bytes
[2] != 0xFF || id_bytes
[3] != 0xFF)
2305 ns
->geom
.idbytes
= 4;
2307 ns
->geom
.idbytes
= 2;
2308 ns
->regs
.status
= NS_STATUS_OK(ns
);
2309 ns
->nxstate
= STATE_UNKNOWN
;
2310 ns
->options
|= OPT_PAGE512
; /* temporary value */
2311 memcpy(ns
->ids
, id_bytes
, sizeof(ns
->ids
));
2312 if (bus_width
== 16) {
2314 chip
->options
|= NAND_BUSWIDTH_16
;
2317 nsmtd
->owner
= THIS_MODULE
;
2319 ret
= ns_parse_weakblocks();
2321 goto free_ns_struct
;
2323 ret
= ns_parse_weakpages();
2327 ret
= ns_parse_gravepages();
2331 nand_controller_init(&ns
->base
);
2332 ns
->base
.ops
= &ns_controller_ops
;
2333 chip
->controller
= &ns
->base
;
2335 ret
= nand_scan(chip
, 1);
2337 NS_ERR("Could not scan NAND Simulator device\n");
2342 uint64_t new_size
= (uint64_t)nsmtd
->erasesize
<< overridesize
;
2343 struct nand_memory_organization
*memorg
;
2346 memorg
= nanddev_get_memorg(&chip
->base
);
2348 if (new_size
>> overridesize
!= nsmtd
->erasesize
) {
2349 NS_ERR("overridesize is too big\n");
2354 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2355 nsmtd
->size
= new_size
;
2356 memorg
->eraseblocks_per_lun
= 1 << overridesize
;
2357 targetsize
= nanddev_target_size(&chip
->base
);
2358 chip
->chip_shift
= ffs(nsmtd
->erasesize
) + overridesize
- 1;
2359 chip
->pagemask
= (targetsize
>> chip
->page_shift
) - 1;
2362 ret
= ns_setup_wear_reporting(nsmtd
);
2366 ret
= ns_init(nsmtd
);
2370 ret
= nand_create_bbt(chip
);
2372 goto free_ns_object
;
2374 ret
= ns_parse_badblocks(ns
, nsmtd
);
2376 goto free_ns_object
;
2378 /* Register NAND partitions */
2379 ret
= mtd_device_register(nsmtd
, &ns
->partitions
[0], ns
->nbparts
);
2381 goto free_ns_object
;
2383 ret
= ns_debugfs_create(ns
);
2385 goto unregister_mtd
;
2390 WARN_ON(mtd_device_unregister(nsmtd
));
2394 kfree(erase_block_wear
);
2398 list_for_each_safe(pos
, n
, &grave_pages
) {
2400 kfree(list_entry(pos
, struct grave_page
, list
));
2403 list_for_each_safe(pos
, n
, &weak_pages
) {
2405 kfree(list_entry(pos
, struct weak_page
, list
));
2408 list_for_each_safe(pos
, n
, &weak_blocks
) {
2410 kfree(list_entry(pos
, struct weak_block
, list
));
2418 module_init(ns_init_module
);
2421 * Module clean-up function
2423 static void __exit
ns_cleanup_module(void)
2425 struct nand_chip
*chip
= mtd_to_nand(nsmtd
);
2426 struct nandsim
*ns
= nand_get_controller_data(chip
);
2427 struct list_head
*pos
, *n
;
2429 ns_debugfs_remove(ns
);
2430 WARN_ON(mtd_device_unregister(nsmtd
));
2432 kfree(erase_block_wear
);
2435 list_for_each_safe(pos
, n
, &grave_pages
) {
2437 kfree(list_entry(pos
, struct grave_page
, list
));
2440 list_for_each_safe(pos
, n
, &weak_pages
) {
2442 kfree(list_entry(pos
, struct weak_page
, list
));
2445 list_for_each_safe(pos
, n
, &weak_blocks
) {
2447 kfree(list_entry(pos
, struct weak_block
, list
));
2453 module_exit(ns_cleanup_module
);
2455 MODULE_LICENSE ("GPL");
2456 MODULE_AUTHOR ("Artem B. Bityuckiy");
2457 MODULE_DESCRIPTION ("The NAND flash simulator");