1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/bitops.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
15 #include <linux/of_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma/qcom_bam_dma.h>
19 /* NANDc reg offsets */
20 #define NAND_FLASH_CMD 0x00
21 #define NAND_ADDR0 0x04
22 #define NAND_ADDR1 0x08
23 #define NAND_FLASH_CHIP_SELECT 0x0c
24 #define NAND_EXEC_CMD 0x10
25 #define NAND_FLASH_STATUS 0x14
26 #define NAND_BUFFER_STATUS 0x18
27 #define NAND_DEV0_CFG0 0x20
28 #define NAND_DEV0_CFG1 0x24
29 #define NAND_DEV0_ECC_CFG 0x28
30 #define NAND_DEV1_ECC_CFG 0x2c
31 #define NAND_DEV1_CFG0 0x30
32 #define NAND_DEV1_CFG1 0x34
33 #define NAND_READ_ID 0x40
34 #define NAND_READ_STATUS 0x44
35 #define NAND_DEV_CMD0 0xa0
36 #define NAND_DEV_CMD1 0xa4
37 #define NAND_DEV_CMD2 0xa8
38 #define NAND_DEV_CMD_VLD 0xac
39 #define SFLASHC_BURST_CFG 0xe0
40 #define NAND_ERASED_CW_DETECT_CFG 0xe8
41 #define NAND_ERASED_CW_DETECT_STATUS 0xec
42 #define NAND_EBI2_ECC_BUF_CFG 0xf0
43 #define FLASH_BUF_ACC 0x100
45 #define NAND_CTRL 0xf00
46 #define NAND_VERSION 0xf08
47 #define NAND_READ_LOCATION_0 0xf20
48 #define NAND_READ_LOCATION_1 0xf24
49 #define NAND_READ_LOCATION_2 0xf28
50 #define NAND_READ_LOCATION_3 0xf2c
52 /* dummy register offsets, used by write_reg_dma */
53 #define NAND_DEV_CMD1_RESTORE 0xdead
54 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef
56 /* NAND_FLASH_CMD bits */
57 #define PAGE_ACC BIT(4)
58 #define LAST_PAGE BIT(5)
60 /* NAND_FLASH_CHIP_SELECT bits */
61 #define NAND_DEV_SEL 0
64 /* NAND_FLASH_STATUS bits */
65 #define FS_OP_ERR BIT(4)
66 #define FS_READY_BSY_N BIT(5)
67 #define FS_MPU_ERR BIT(8)
68 #define FS_DEVICE_STS_ERR BIT(16)
69 #define FS_DEVICE_WP BIT(23)
71 /* NAND_BUFFER_STATUS bits */
72 #define BS_UNCORRECTABLE_BIT BIT(8)
73 #define BS_CORRECTABLE_ERR_MSK 0x1f
75 /* NAND_DEVn_CFG0 bits */
76 #define DISABLE_STATUS_AFTER_WRITE 4
78 #define UD_SIZE_BYTES 9
79 #define ECC_PARITY_SIZE_BYTES_RS 19
80 #define SPARE_SIZE_BYTES 23
81 #define NUM_ADDR_CYCLES 27
82 #define STATUS_BFR_READ 30
83 #define SET_RD_MODE_AFTER_STATUS 31
85 /* NAND_DEVn_CFG0 bits */
86 #define DEV0_CFG1_ECC_DISABLE 0
88 #define NAND_RECOVERY_CYCLES 2
89 #define CS_ACTIVE_BSY 5
90 #define BAD_BLOCK_BYTE_NUM 6
91 #define BAD_BLOCK_IN_SPARE_AREA 16
92 #define WR_RD_BSY_GAP 17
93 #define ENABLE_BCH_ECC 27
95 /* NAND_DEV0_ECC_CFG bits */
96 #define ECC_CFG_ECC_DISABLE 0
97 #define ECC_SW_RESET 1
99 #define ECC_PARITY_SIZE_BYTES_BCH 8
100 #define ECC_NUM_DATA_BYTES 16
101 #define ECC_FORCE_CLK_OPEN 30
103 /* NAND_DEV_CMD1 bits */
106 /* NAND_DEV_CMD_VLD bits */
107 #define READ_START_VLD BIT(0)
108 #define READ_STOP_VLD BIT(1)
109 #define WRITE_START_VLD BIT(2)
110 #define ERASE_START_VLD BIT(3)
111 #define SEQ_READ_START_VLD BIT(4)
113 /* NAND_EBI2_ECC_BUF_CFG bits */
116 /* NAND_ERASED_CW_DETECT_CFG bits */
117 #define ERASED_CW_ECC_MASK 1
118 #define AUTO_DETECT_RES 0
119 #define MASK_ECC (1 << ERASED_CW_ECC_MASK)
120 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
121 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
122 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
123 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
125 /* NAND_ERASED_CW_DETECT_STATUS bits */
126 #define PAGE_ALL_ERASED BIT(7)
127 #define CODEWORD_ALL_ERASED BIT(6)
128 #define PAGE_ERASED BIT(5)
129 #define CODEWORD_ERASED BIT(4)
130 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
131 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
133 /* NAND_READ_LOCATION_n bits */
134 #define READ_LOCATION_OFFSET 0
135 #define READ_LOCATION_SIZE 16
136 #define READ_LOCATION_LAST 31
139 #define NAND_VERSION_MAJOR_MASK 0xf0000000
140 #define NAND_VERSION_MAJOR_SHIFT 28
141 #define NAND_VERSION_MINOR_MASK 0x0fff0000
142 #define NAND_VERSION_MINOR_SHIFT 16
145 #define OP_PAGE_READ 0x2
146 #define OP_PAGE_READ_WITH_ECC 0x3
147 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4
148 #define OP_PAGE_READ_ONFI_READ 0x5
149 #define OP_PROGRAM_PAGE 0x6
150 #define OP_PAGE_PROGRAM_WITH_ECC 0x7
151 #define OP_PROGRAM_PAGE_SPARE 0x9
152 #define OP_BLOCK_ERASE 0xa
153 #define OP_FETCH_ID 0xb
154 #define OP_RESET_DEVICE 0xd
156 /* Default Value for NAND_DEV_CMD_VLD */
157 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
158 ERASE_START_VLD | SEQ_READ_START_VLD)
161 #define BAM_MODE_EN BIT(0)
164 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
165 * the driver calls the chunks 'step' or 'codeword' interchangeably
167 #define NANDC_STEP_SIZE 512
170 * the largest page size we support is 8K, this will have 16 steps/codewords
173 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
175 /* we read at most 3 registers per codeword scan */
176 #define MAX_REG_RD (3 * MAX_NUM_STEPS)
178 /* ECC modes supported by the controller */
179 #define ECC_NONE BIT(0)
180 #define ECC_RS_4BIT BIT(1)
181 #define ECC_BCH_4BIT BIT(2)
182 #define ECC_BCH_8BIT BIT(3)
184 #define nandc_set_read_loc(nandc, reg, offset, size, is_last) \
185 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \
186 ((offset) << READ_LOCATION_OFFSET) | \
187 ((size) << READ_LOCATION_SIZE) | \
188 ((is_last) << READ_LOCATION_LAST))
191 * Returns the actual register address for all NAND_DEV_ registers
192 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
194 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
196 /* Returns the NAND register physical address */
197 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
199 /* Returns the dma address for reg read buffer */
200 #define reg_buf_dma_addr(chip, vaddr) \
201 ((chip)->reg_read_dma + \
202 ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
204 #define QPIC_PER_CW_CMD_ELEMENTS 32
205 #define QPIC_PER_CW_CMD_SGL 32
206 #define QPIC_PER_CW_DATA_SGL 8
208 #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
211 * Flags used in DMA descriptor preparation helper functions
212 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
214 /* Don't set the EOT in current tx BAM sgl */
215 #define NAND_BAM_NO_EOT BIT(0)
216 /* Set the NWD flag in current BAM sgl */
217 #define NAND_BAM_NWD BIT(1)
218 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
219 #define NAND_BAM_NEXT_SGL BIT(2)
221 * Erased codeword status is being used two times in single transfer so this
222 * flag will determine the current value of erased codeword status register
224 #define NAND_ERASED_CW_SET BIT(4)
227 * This data type corresponds to the BAM transaction which will be used for all
229 * @bam_ce - the array of BAM command elements
230 * @cmd_sgl - sgl for NAND BAM command pipe
231 * @data_sgl - sgl for NAND BAM consumer/producer pipe
232 * @bam_ce_pos - the index in bam_ce which is available for next sgl
233 * @bam_ce_start - the index in bam_ce which marks the start position ce
234 * for current sgl. It will be used for size calculation
236 * @cmd_sgl_pos - current index in command sgl.
237 * @cmd_sgl_start - start index in command sgl.
238 * @tx_sgl_pos - current index in data sgl for tx.
239 * @tx_sgl_start - start index in data sgl for tx.
240 * @rx_sgl_pos - current index in data sgl for rx.
241 * @rx_sgl_start - start index in data sgl for rx.
242 * @wait_second_completion - wait for second DMA desc completion before making
243 * the NAND transfer completion.
244 * @txn_done - completion for NAND transfer.
245 * @last_data_desc - last DMA desc in data channel (tx/rx).
246 * @last_cmd_desc - last DMA desc in command channel.
248 struct bam_transaction
{
249 struct bam_cmd_element
*bam_ce
;
250 struct scatterlist
*cmd_sgl
;
251 struct scatterlist
*data_sgl
;
260 bool wait_second_completion
;
261 struct completion txn_done
;
262 struct dma_async_tx_descriptor
*last_data_desc
;
263 struct dma_async_tx_descriptor
*last_cmd_desc
;
267 * This data type corresponds to the nand dma descriptor
268 * @list - list for desc_info
269 * @dir - DMA transfer direction
270 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
272 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
273 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
274 * @dma_desc - low level DMA engine descriptor
277 struct list_head node
;
279 enum dma_data_direction dir
;
281 struct scatterlist adm_sgl
;
283 struct scatterlist
*bam_sgl
;
287 struct dma_async_tx_descriptor
*dma_desc
;
291 * holds the current register values that we want to write. acts as a contiguous
292 * chunk of memory which we use to write the controller registers through DMA.
305 __le32 clrflashstatus
;
306 __le32 clrreadstatus
;
315 __le32 read_location0
;
316 __le32 read_location1
;
317 __le32 read_location2
;
318 __le32 read_location3
;
320 __le32 erased_cw_detect_cfg_clr
;
321 __le32 erased_cw_detect_cfg_set
;
325 * NAND controller data struct
327 * @controller: base controller structure
328 * @host_list: list containing all the chips attached to the
330 * @dev: parent device
332 * @base_phys: physical base address of controller registers
333 * @base_dma: dma base address of controller registers
334 * @core_clk: controller clock
335 * @aon_clk: another controller clock
338 * @cmd_crci: ADM DMA CRCI for command flow control
339 * @data_crci: ADM DMA CRCI for data flow control
340 * @desc_list: DMA descriptor list (list of desc_infos)
342 * @data_buffer: our local DMA buffer for page read/writes,
343 * used when we can't use the buffer provided
344 * by upper layers directly
345 * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
347 * @reg_read_buf: local buffer for reading back registers via DMA
348 * @reg_read_dma: contains dma address for register read buffer
349 * @reg_read_pos: marker for data read in reg_read_buf
351 * @regs: a contiguous chunk of memory for DMA register
352 * writes. contains the register values to be
353 * written to controller
354 * @cmd1/vld: some fixed controller register values
355 * @props: properties of current NAND controller,
356 * initialized via DT match data
357 * @max_cwperpage: maximum QPIC codewords required. calculated
358 * from all connected NAND devices pagesize
360 struct qcom_nand_controller
{
361 struct nand_controller controller
;
362 struct list_head host_list
;
367 phys_addr_t base_phys
;
370 struct clk
*core_clk
;
374 /* will be used only by QPIC for BAM DMA */
376 struct dma_chan
*tx_chan
;
377 struct dma_chan
*rx_chan
;
378 struct dma_chan
*cmd_chan
;
381 /* will be used only by EBI2 for ADM DMA */
383 struct dma_chan
*chan
;
384 unsigned int cmd_crci
;
385 unsigned int data_crci
;
389 struct list_head desc_list
;
390 struct bam_transaction
*bam_txn
;
396 unsigned int max_cwperpage
;
398 __le32
*reg_read_buf
;
399 dma_addr_t reg_read_dma
;
402 struct nandc_regs
*regs
;
405 const struct qcom_nandc_props
*props
;
409 * NAND chip structure
411 * @chip: base NAND chip structure
412 * @node: list node to add itself to host_list in
413 * qcom_nand_controller
415 * @cs: chip select value for this chip
416 * @cw_size: the number of bytes in a single step/codeword
417 * of a page, consisting of all data, ecc, spare
419 * @cw_data: the number of bytes within a codeword protected
421 * @use_ecc: request the controller to use ECC for the
422 * upcoming read/write
423 * @bch_enabled: flag to tell whether BCH ECC mode is used
424 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
426 * @status: value to be returned if NAND_CMD_STATUS command
428 * @last_command: keeps track of last command on this chip. used
429 * for reading correct status
431 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
432 * ecc/non-ecc mode for the current nand flash
435 struct qcom_nand_host
{
436 struct nand_chip chip
;
437 struct list_head node
;
451 u32 cfg0_raw
, cfg1_raw
;
459 * This data type corresponds to the NAND controller properties which varies
460 * among different NAND controllers.
461 * @ecc_modes - ecc mode for NAND
462 * @is_bam - whether NAND controller is using BAM
463 * @is_qpic - whether NAND CTRL is part of qpic IP
464 * @qpic_v2 - flag to indicate QPIC IP version 2
465 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
467 struct qcom_nandc_props
{
472 u32 dev_cmd_reg_start
;
475 /* Frees the BAM transaction memory */
476 static void free_bam_transaction(struct qcom_nand_controller
*nandc
)
478 struct bam_transaction
*bam_txn
= nandc
->bam_txn
;
480 devm_kfree(nandc
->dev
, bam_txn
);
483 /* Allocates and Initializes the BAM transaction */
484 static struct bam_transaction
*
485 alloc_bam_transaction(struct qcom_nand_controller
*nandc
)
487 struct bam_transaction
*bam_txn
;
489 unsigned int num_cw
= nandc
->max_cwperpage
;
493 sizeof(*bam_txn
) + num_cw
*
494 ((sizeof(*bam_txn
->bam_ce
) * QPIC_PER_CW_CMD_ELEMENTS
) +
495 (sizeof(*bam_txn
->cmd_sgl
) * QPIC_PER_CW_CMD_SGL
) +
496 (sizeof(*bam_txn
->data_sgl
) * QPIC_PER_CW_DATA_SGL
));
498 bam_txn_buf
= devm_kzalloc(nandc
->dev
, bam_txn_size
, GFP_KERNEL
);
502 bam_txn
= bam_txn_buf
;
503 bam_txn_buf
+= sizeof(*bam_txn
);
505 bam_txn
->bam_ce
= bam_txn_buf
;
507 sizeof(*bam_txn
->bam_ce
) * QPIC_PER_CW_CMD_ELEMENTS
* num_cw
;
509 bam_txn
->cmd_sgl
= bam_txn_buf
;
511 sizeof(*bam_txn
->cmd_sgl
) * QPIC_PER_CW_CMD_SGL
* num_cw
;
513 bam_txn
->data_sgl
= bam_txn_buf
;
515 init_completion(&bam_txn
->txn_done
);
520 /* Clears the BAM transaction indexes */
521 static void clear_bam_transaction(struct qcom_nand_controller
*nandc
)
523 struct bam_transaction
*bam_txn
= nandc
->bam_txn
;
525 if (!nandc
->props
->is_bam
)
528 bam_txn
->bam_ce_pos
= 0;
529 bam_txn
->bam_ce_start
= 0;
530 bam_txn
->cmd_sgl_pos
= 0;
531 bam_txn
->cmd_sgl_start
= 0;
532 bam_txn
->tx_sgl_pos
= 0;
533 bam_txn
->tx_sgl_start
= 0;
534 bam_txn
->rx_sgl_pos
= 0;
535 bam_txn
->rx_sgl_start
= 0;
536 bam_txn
->last_data_desc
= NULL
;
537 bam_txn
->wait_second_completion
= false;
539 sg_init_table(bam_txn
->cmd_sgl
, nandc
->max_cwperpage
*
540 QPIC_PER_CW_CMD_SGL
);
541 sg_init_table(bam_txn
->data_sgl
, nandc
->max_cwperpage
*
542 QPIC_PER_CW_DATA_SGL
);
544 reinit_completion(&bam_txn
->txn_done
);
547 /* Callback for DMA descriptor completion */
548 static void qpic_bam_dma_done(void *data
)
550 struct bam_transaction
*bam_txn
= data
;
553 * In case of data transfer with NAND, 2 callbacks will be generated.
554 * One for command channel and another one for data channel.
555 * If current transaction has data descriptors
556 * (i.e. wait_second_completion is true), then set this to false
557 * and wait for second DMA descriptor completion.
559 if (bam_txn
->wait_second_completion
)
560 bam_txn
->wait_second_completion
= false;
562 complete(&bam_txn
->txn_done
);
565 static inline struct qcom_nand_host
*to_qcom_nand_host(struct nand_chip
*chip
)
567 return container_of(chip
, struct qcom_nand_host
, chip
);
570 static inline struct qcom_nand_controller
*
571 get_qcom_nand_controller(struct nand_chip
*chip
)
573 return container_of(chip
->controller
, struct qcom_nand_controller
,
577 static inline u32
nandc_read(struct qcom_nand_controller
*nandc
, int offset
)
579 return ioread32(nandc
->base
+ offset
);
582 static inline void nandc_write(struct qcom_nand_controller
*nandc
, int offset
,
585 iowrite32(val
, nandc
->base
+ offset
);
588 static inline void nandc_read_buffer_sync(struct qcom_nand_controller
*nandc
,
591 if (!nandc
->props
->is_bam
)
595 dma_sync_single_for_cpu(nandc
->dev
, nandc
->reg_read_dma
,
597 sizeof(*nandc
->reg_read_buf
),
600 dma_sync_single_for_device(nandc
->dev
, nandc
->reg_read_dma
,
602 sizeof(*nandc
->reg_read_buf
),
606 static __le32
*offset_to_nandc_reg(struct nandc_regs
*regs
, int offset
)
615 case NAND_FLASH_CHIP_SELECT
:
616 return ®s
->chip_sel
;
619 case NAND_FLASH_STATUS
:
620 return ®s
->clrflashstatus
;
625 case NAND_DEV0_ECC_CFG
:
626 return ®s
->ecc_bch_cfg
;
627 case NAND_READ_STATUS
:
628 return ®s
->clrreadstatus
;
631 case NAND_DEV_CMD1_RESTORE
:
632 return ®s
->orig_cmd1
;
633 case NAND_DEV_CMD_VLD
:
635 case NAND_DEV_CMD_VLD_RESTORE
:
636 return ®s
->orig_vld
;
637 case NAND_EBI2_ECC_BUF_CFG
:
638 return ®s
->ecc_buf_cfg
;
639 case NAND_READ_LOCATION_0
:
640 return ®s
->read_location0
;
641 case NAND_READ_LOCATION_1
:
642 return ®s
->read_location1
;
643 case NAND_READ_LOCATION_2
:
644 return ®s
->read_location2
;
645 case NAND_READ_LOCATION_3
:
646 return ®s
->read_location3
;
652 static void nandc_set_reg(struct qcom_nand_controller
*nandc
, int offset
,
655 struct nandc_regs
*regs
= nandc
->regs
;
658 reg
= offset_to_nandc_reg(regs
, offset
);
661 *reg
= cpu_to_le32(val
);
664 /* helper to configure address register values */
665 static void set_address(struct qcom_nand_host
*host
, u16 column
, int page
)
667 struct nand_chip
*chip
= &host
->chip
;
668 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
670 if (chip
->options
& NAND_BUSWIDTH_16
)
673 nandc_set_reg(nandc
, NAND_ADDR0
, page
<< 16 | column
);
674 nandc_set_reg(nandc
, NAND_ADDR1
, page
>> 16 & 0xff);
678 * update_rw_regs: set up read/write register values, these will be
679 * written to the NAND controller registers via DMA
681 * @num_cw: number of steps for the read/write operation
682 * @read: read or write operation
684 static void update_rw_regs(struct qcom_nand_host
*host
, int num_cw
, bool read
)
686 struct nand_chip
*chip
= &host
->chip
;
687 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
688 u32 cmd
, cfg0
, cfg1
, ecc_bch_cfg
;
692 cmd
= OP_PAGE_READ_WITH_ECC
| PAGE_ACC
| LAST_PAGE
;
694 cmd
= OP_PAGE_READ
| PAGE_ACC
| LAST_PAGE
;
696 cmd
= OP_PROGRAM_PAGE
| PAGE_ACC
| LAST_PAGE
;
700 cfg0
= (host
->cfg0
& ~(7U << CW_PER_PAGE
)) |
701 (num_cw
- 1) << CW_PER_PAGE
;
704 ecc_bch_cfg
= host
->ecc_bch_cfg
;
706 cfg0
= (host
->cfg0_raw
& ~(7U << CW_PER_PAGE
)) |
707 (num_cw
- 1) << CW_PER_PAGE
;
709 cfg1
= host
->cfg1_raw
;
710 ecc_bch_cfg
= 1 << ECC_CFG_ECC_DISABLE
;
713 nandc_set_reg(nandc
, NAND_FLASH_CMD
, cmd
);
714 nandc_set_reg(nandc
, NAND_DEV0_CFG0
, cfg0
);
715 nandc_set_reg(nandc
, NAND_DEV0_CFG1
, cfg1
);
716 nandc_set_reg(nandc
, NAND_DEV0_ECC_CFG
, ecc_bch_cfg
);
717 nandc_set_reg(nandc
, NAND_EBI2_ECC_BUF_CFG
, host
->ecc_buf_cfg
);
718 nandc_set_reg(nandc
, NAND_FLASH_STATUS
, host
->clrflashstatus
);
719 nandc_set_reg(nandc
, NAND_READ_STATUS
, host
->clrreadstatus
);
720 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
723 nandc_set_read_loc(nandc
, 0, 0, host
->use_ecc
?
724 host
->cw_data
: host
->cw_size
, 1);
728 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
729 * for BAM. This descriptor will be added in the NAND DMA descriptor queue
730 * which will be submitted to DMA engine.
732 static int prepare_bam_async_desc(struct qcom_nand_controller
*nandc
,
733 struct dma_chan
*chan
,
736 struct desc_info
*desc
;
737 struct scatterlist
*sgl
;
738 unsigned int sgl_cnt
;
740 struct bam_transaction
*bam_txn
= nandc
->bam_txn
;
741 enum dma_transfer_direction dir_eng
;
742 struct dma_async_tx_descriptor
*dma_desc
;
744 desc
= kzalloc(sizeof(*desc
), GFP_KERNEL
);
748 if (chan
== nandc
->cmd_chan
) {
749 sgl
= &bam_txn
->cmd_sgl
[bam_txn
->cmd_sgl_start
];
750 sgl_cnt
= bam_txn
->cmd_sgl_pos
- bam_txn
->cmd_sgl_start
;
751 bam_txn
->cmd_sgl_start
= bam_txn
->cmd_sgl_pos
;
752 dir_eng
= DMA_MEM_TO_DEV
;
753 desc
->dir
= DMA_TO_DEVICE
;
754 } else if (chan
== nandc
->tx_chan
) {
755 sgl
= &bam_txn
->data_sgl
[bam_txn
->tx_sgl_start
];
756 sgl_cnt
= bam_txn
->tx_sgl_pos
- bam_txn
->tx_sgl_start
;
757 bam_txn
->tx_sgl_start
= bam_txn
->tx_sgl_pos
;
758 dir_eng
= DMA_MEM_TO_DEV
;
759 desc
->dir
= DMA_TO_DEVICE
;
761 sgl
= &bam_txn
->data_sgl
[bam_txn
->rx_sgl_start
];
762 sgl_cnt
= bam_txn
->rx_sgl_pos
- bam_txn
->rx_sgl_start
;
763 bam_txn
->rx_sgl_start
= bam_txn
->rx_sgl_pos
;
764 dir_eng
= DMA_DEV_TO_MEM
;
765 desc
->dir
= DMA_FROM_DEVICE
;
768 sg_mark_end(sgl
+ sgl_cnt
- 1);
769 ret
= dma_map_sg(nandc
->dev
, sgl
, sgl_cnt
, desc
->dir
);
771 dev_err(nandc
->dev
, "failure in mapping desc\n");
776 desc
->sgl_cnt
= sgl_cnt
;
779 dma_desc
= dmaengine_prep_slave_sg(chan
, sgl
, sgl_cnt
, dir_eng
,
783 dev_err(nandc
->dev
, "failure in prep desc\n");
784 dma_unmap_sg(nandc
->dev
, sgl
, sgl_cnt
, desc
->dir
);
789 desc
->dma_desc
= dma_desc
;
791 /* update last data/command descriptor */
792 if (chan
== nandc
->cmd_chan
)
793 bam_txn
->last_cmd_desc
= dma_desc
;
795 bam_txn
->last_data_desc
= dma_desc
;
797 list_add_tail(&desc
->node
, &nandc
->desc_list
);
803 * Prepares the command descriptor for BAM DMA which will be used for NAND
804 * register reads and writes. The command descriptor requires the command
805 * to be formed in command element type so this function uses the command
806 * element from bam transaction ce array and fills the same with required
807 * data. A single SGL can contain multiple command elements so
808 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
809 * after the current command element.
811 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller
*nandc
, bool read
,
812 int reg_off
, const void *vaddr
,
813 int size
, unsigned int flags
)
817 struct bam_cmd_element
*bam_ce_buffer
;
818 struct bam_transaction
*bam_txn
= nandc
->bam_txn
;
820 bam_ce_buffer
= &bam_txn
->bam_ce
[bam_txn
->bam_ce_pos
];
822 /* fill the command desc */
823 for (i
= 0; i
< size
; i
++) {
825 bam_prep_ce(&bam_ce_buffer
[i
],
826 nandc_reg_phys(nandc
, reg_off
+ 4 * i
),
828 reg_buf_dma_addr(nandc
,
829 (__le32
*)vaddr
+ i
));
831 bam_prep_ce_le32(&bam_ce_buffer
[i
],
832 nandc_reg_phys(nandc
, reg_off
+ 4 * i
),
834 *((__le32
*)vaddr
+ i
));
837 bam_txn
->bam_ce_pos
+= size
;
839 /* use the separate sgl after this command */
840 if (flags
& NAND_BAM_NEXT_SGL
) {
841 bam_ce_buffer
= &bam_txn
->bam_ce
[bam_txn
->bam_ce_start
];
842 bam_ce_size
= (bam_txn
->bam_ce_pos
-
843 bam_txn
->bam_ce_start
) *
844 sizeof(struct bam_cmd_element
);
845 sg_set_buf(&bam_txn
->cmd_sgl
[bam_txn
->cmd_sgl_pos
],
846 bam_ce_buffer
, bam_ce_size
);
847 bam_txn
->cmd_sgl_pos
++;
848 bam_txn
->bam_ce_start
= bam_txn
->bam_ce_pos
;
850 if (flags
& NAND_BAM_NWD
) {
851 ret
= prepare_bam_async_desc(nandc
, nandc
->cmd_chan
,
863 * Prepares the data descriptor for BAM DMA which will be used for NAND
864 * data reads and writes.
866 static int prep_bam_dma_desc_data(struct qcom_nand_controller
*nandc
, bool read
,
868 int size
, unsigned int flags
)
871 struct bam_transaction
*bam_txn
= nandc
->bam_txn
;
874 sg_set_buf(&bam_txn
->data_sgl
[bam_txn
->rx_sgl_pos
],
876 bam_txn
->rx_sgl_pos
++;
878 sg_set_buf(&bam_txn
->data_sgl
[bam_txn
->tx_sgl_pos
],
880 bam_txn
->tx_sgl_pos
++;
883 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
884 * is not set, form the DMA descriptor
886 if (!(flags
& NAND_BAM_NO_EOT
)) {
887 ret
= prepare_bam_async_desc(nandc
, nandc
->tx_chan
,
897 static int prep_adm_dma_desc(struct qcom_nand_controller
*nandc
, bool read
,
898 int reg_off
, const void *vaddr
, int size
,
901 struct desc_info
*desc
;
902 struct dma_async_tx_descriptor
*dma_desc
;
903 struct scatterlist
*sgl
;
904 struct dma_slave_config slave_conf
;
905 enum dma_transfer_direction dir_eng
;
908 desc
= kzalloc(sizeof(*desc
), GFP_KERNEL
);
912 sgl
= &desc
->adm_sgl
;
914 sg_init_one(sgl
, vaddr
, size
);
917 dir_eng
= DMA_DEV_TO_MEM
;
918 desc
->dir
= DMA_FROM_DEVICE
;
920 dir_eng
= DMA_MEM_TO_DEV
;
921 desc
->dir
= DMA_TO_DEVICE
;
924 ret
= dma_map_sg(nandc
->dev
, sgl
, 1, desc
->dir
);
930 memset(&slave_conf
, 0x00, sizeof(slave_conf
));
932 slave_conf
.device_fc
= flow_control
;
934 slave_conf
.src_maxburst
= 16;
935 slave_conf
.src_addr
= nandc
->base_dma
+ reg_off
;
936 slave_conf
.slave_id
= nandc
->data_crci
;
938 slave_conf
.dst_maxburst
= 16;
939 slave_conf
.dst_addr
= nandc
->base_dma
+ reg_off
;
940 slave_conf
.slave_id
= nandc
->cmd_crci
;
943 ret
= dmaengine_slave_config(nandc
->chan
, &slave_conf
);
945 dev_err(nandc
->dev
, "failed to configure dma channel\n");
949 dma_desc
= dmaengine_prep_slave_sg(nandc
->chan
, sgl
, 1, dir_eng
, 0);
951 dev_err(nandc
->dev
, "failed to prepare desc\n");
956 desc
->dma_desc
= dma_desc
;
958 list_add_tail(&desc
->node
, &nandc
->desc_list
);
968 * read_reg_dma: prepares a descriptor to read a given number of
969 * contiguous registers to the reg_read_buf pointer
971 * @first: offset of the first register in the contiguous block
972 * @num_regs: number of registers to read
973 * @flags: flags to control DMA descriptor preparation
975 static int read_reg_dma(struct qcom_nand_controller
*nandc
, int first
,
976 int num_regs
, unsigned int flags
)
978 bool flow_control
= false;
981 vaddr
= nandc
->reg_read_buf
+ nandc
->reg_read_pos
;
982 nandc
->reg_read_pos
+= num_regs
;
984 if (first
== NAND_DEV_CMD_VLD
|| first
== NAND_DEV_CMD1
)
985 first
= dev_cmd_reg_addr(nandc
, first
);
987 if (nandc
->props
->is_bam
)
988 return prep_bam_dma_desc_cmd(nandc
, true, first
, vaddr
,
991 if (first
== NAND_READ_ID
|| first
== NAND_FLASH_STATUS
)
994 return prep_adm_dma_desc(nandc
, true, first
, vaddr
,
995 num_regs
* sizeof(u32
), flow_control
);
999 * write_reg_dma: prepares a descriptor to write a given number of
1000 * contiguous registers
1002 * @first: offset of the first register in the contiguous block
1003 * @num_regs: number of registers to write
1004 * @flags: flags to control DMA descriptor preparation
1006 static int write_reg_dma(struct qcom_nand_controller
*nandc
, int first
,
1007 int num_regs
, unsigned int flags
)
1009 bool flow_control
= false;
1010 struct nandc_regs
*regs
= nandc
->regs
;
1013 vaddr
= offset_to_nandc_reg(regs
, first
);
1015 if (first
== NAND_ERASED_CW_DETECT_CFG
) {
1016 if (flags
& NAND_ERASED_CW_SET
)
1017 vaddr
= ®s
->erased_cw_detect_cfg_set
;
1019 vaddr
= ®s
->erased_cw_detect_cfg_clr
;
1022 if (first
== NAND_EXEC_CMD
)
1023 flags
|= NAND_BAM_NWD
;
1025 if (first
== NAND_DEV_CMD1_RESTORE
|| first
== NAND_DEV_CMD1
)
1026 first
= dev_cmd_reg_addr(nandc
, NAND_DEV_CMD1
);
1028 if (first
== NAND_DEV_CMD_VLD_RESTORE
|| first
== NAND_DEV_CMD_VLD
)
1029 first
= dev_cmd_reg_addr(nandc
, NAND_DEV_CMD_VLD
);
1031 if (nandc
->props
->is_bam
)
1032 return prep_bam_dma_desc_cmd(nandc
, false, first
, vaddr
,
1035 if (first
== NAND_FLASH_CMD
)
1036 flow_control
= true;
1038 return prep_adm_dma_desc(nandc
, false, first
, vaddr
,
1039 num_regs
* sizeof(u32
), flow_control
);
1043 * read_data_dma: prepares a DMA descriptor to transfer data from the
1044 * controller's internal buffer to the buffer 'vaddr'
1046 * @reg_off: offset within the controller's data buffer
1047 * @vaddr: virtual address of the buffer we want to write to
1048 * @size: DMA transaction size in bytes
1049 * @flags: flags to control DMA descriptor preparation
1051 static int read_data_dma(struct qcom_nand_controller
*nandc
, int reg_off
,
1052 const u8
*vaddr
, int size
, unsigned int flags
)
1054 if (nandc
->props
->is_bam
)
1055 return prep_bam_dma_desc_data(nandc
, true, vaddr
, size
, flags
);
1057 return prep_adm_dma_desc(nandc
, true, reg_off
, vaddr
, size
, false);
1061 * write_data_dma: prepares a DMA descriptor to transfer data from
1062 * 'vaddr' to the controller's internal buffer
1064 * @reg_off: offset within the controller's data buffer
1065 * @vaddr: virtual address of the buffer we want to read from
1066 * @size: DMA transaction size in bytes
1067 * @flags: flags to control DMA descriptor preparation
1069 static int write_data_dma(struct qcom_nand_controller
*nandc
, int reg_off
,
1070 const u8
*vaddr
, int size
, unsigned int flags
)
1072 if (nandc
->props
->is_bam
)
1073 return prep_bam_dma_desc_data(nandc
, false, vaddr
, size
, flags
);
1075 return prep_adm_dma_desc(nandc
, false, reg_off
, vaddr
, size
, false);
1079 * Helper to prepare DMA descriptors for configuring registers
1080 * before reading a NAND page.
1082 static void config_nand_page_read(struct qcom_nand_controller
*nandc
)
1084 write_reg_dma(nandc
, NAND_ADDR0
, 2, 0);
1085 write_reg_dma(nandc
, NAND_DEV0_CFG0
, 3, 0);
1086 write_reg_dma(nandc
, NAND_EBI2_ECC_BUF_CFG
, 1, 0);
1087 write_reg_dma(nandc
, NAND_ERASED_CW_DETECT_CFG
, 1, 0);
1088 write_reg_dma(nandc
, NAND_ERASED_CW_DETECT_CFG
, 1,
1089 NAND_ERASED_CW_SET
| NAND_BAM_NEXT_SGL
);
1093 * Helper to prepare DMA descriptors for configuring registers
1094 * before reading each codeword in NAND page.
1097 config_nand_cw_read(struct qcom_nand_controller
*nandc
, bool use_ecc
)
1099 if (nandc
->props
->is_bam
)
1100 write_reg_dma(nandc
, NAND_READ_LOCATION_0
, 4,
1103 write_reg_dma(nandc
, NAND_FLASH_CMD
, 1, NAND_BAM_NEXT_SGL
);
1104 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1, NAND_BAM_NEXT_SGL
);
1107 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 2, 0);
1108 read_reg_dma(nandc
, NAND_ERASED_CW_DETECT_STATUS
, 1,
1111 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 1, NAND_BAM_NEXT_SGL
);
1116 * Helper to prepare dma descriptors to configure registers needed for reading a
1117 * single codeword in page
1120 config_nand_single_cw_page_read(struct qcom_nand_controller
*nandc
,
1123 config_nand_page_read(nandc
);
1124 config_nand_cw_read(nandc
, use_ecc
);
1128 * Helper to prepare DMA descriptors used to configure registers needed for
1129 * before writing a NAND page.
1131 static void config_nand_page_write(struct qcom_nand_controller
*nandc
)
1133 write_reg_dma(nandc
, NAND_ADDR0
, 2, 0);
1134 write_reg_dma(nandc
, NAND_DEV0_CFG0
, 3, 0);
1135 write_reg_dma(nandc
, NAND_EBI2_ECC_BUF_CFG
, 1,
1140 * Helper to prepare DMA descriptors for configuring registers
1141 * before writing each codeword in NAND page.
1143 static void config_nand_cw_write(struct qcom_nand_controller
*nandc
)
1145 write_reg_dma(nandc
, NAND_FLASH_CMD
, 1, NAND_BAM_NEXT_SGL
);
1146 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1, NAND_BAM_NEXT_SGL
);
1148 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 1, NAND_BAM_NEXT_SGL
);
1150 write_reg_dma(nandc
, NAND_FLASH_STATUS
, 1, 0);
1151 write_reg_dma(nandc
, NAND_READ_STATUS
, 1, NAND_BAM_NEXT_SGL
);
1155 * the following functions are used within chip->legacy.cmdfunc() to
1156 * perform different NAND_CMD_* commands
1159 /* sets up descriptors for NAND_CMD_PARAM */
1160 static int nandc_param(struct qcom_nand_host
*host
)
1162 struct nand_chip
*chip
= &host
->chip
;
1163 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1166 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1167 * in use. we configure the controller to perform a raw read of 512
1168 * bytes to read onfi params
1170 if (nandc
->props
->qpic_v2
)
1171 nandc_set_reg(nandc
, NAND_FLASH_CMD
, OP_PAGE_READ_ONFI_READ
|
1172 PAGE_ACC
| LAST_PAGE
);
1174 nandc_set_reg(nandc
, NAND_FLASH_CMD
, OP_PAGE_READ
|
1175 PAGE_ACC
| LAST_PAGE
);
1177 nandc_set_reg(nandc
, NAND_ADDR0
, 0);
1178 nandc_set_reg(nandc
, NAND_ADDR1
, 0);
1179 nandc_set_reg(nandc
, NAND_DEV0_CFG0
, 0 << CW_PER_PAGE
1180 | 512 << UD_SIZE_BYTES
1181 | 5 << NUM_ADDR_CYCLES
1182 | 0 << SPARE_SIZE_BYTES
);
1183 nandc_set_reg(nandc
, NAND_DEV0_CFG1
, 7 << NAND_RECOVERY_CYCLES
1184 | 0 << CS_ACTIVE_BSY
1185 | 17 << BAD_BLOCK_BYTE_NUM
1186 | 1 << BAD_BLOCK_IN_SPARE_AREA
1187 | 2 << WR_RD_BSY_GAP
1189 | 1 << DEV0_CFG1_ECC_DISABLE
);
1190 nandc_set_reg(nandc
, NAND_EBI2_ECC_BUF_CFG
, 1 << ECC_CFG_ECC_DISABLE
);
1192 /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
1193 if (!nandc
->props
->qpic_v2
) {
1194 nandc_set_reg(nandc
, NAND_DEV_CMD_VLD
,
1195 (nandc
->vld
& ~READ_START_VLD
));
1196 nandc_set_reg(nandc
, NAND_DEV_CMD1
,
1197 (nandc
->cmd1
& ~(0xFF << READ_ADDR
))
1198 | NAND_CMD_PARAM
<< READ_ADDR
);
1201 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
1203 if (!nandc
->props
->qpic_v2
) {
1204 nandc_set_reg(nandc
, NAND_DEV_CMD1_RESTORE
, nandc
->cmd1
);
1205 nandc_set_reg(nandc
, NAND_DEV_CMD_VLD_RESTORE
, nandc
->vld
);
1208 nandc_set_read_loc(nandc
, 0, 0, 512, 1);
1210 if (!nandc
->props
->qpic_v2
) {
1211 write_reg_dma(nandc
, NAND_DEV_CMD_VLD
, 1, 0);
1212 write_reg_dma(nandc
, NAND_DEV_CMD1
, 1, NAND_BAM_NEXT_SGL
);
1215 nandc
->buf_count
= 512;
1216 memset(nandc
->data_buffer
, 0xff, nandc
->buf_count
);
1218 config_nand_single_cw_page_read(nandc
, false);
1220 read_data_dma(nandc
, FLASH_BUF_ACC
, nandc
->data_buffer
,
1221 nandc
->buf_count
, 0);
1223 /* restore CMD1 and VLD regs */
1224 if (!nandc
->props
->qpic_v2
) {
1225 write_reg_dma(nandc
, NAND_DEV_CMD1_RESTORE
, 1, 0);
1226 write_reg_dma(nandc
, NAND_DEV_CMD_VLD_RESTORE
, 1, NAND_BAM_NEXT_SGL
);
1232 /* sets up descriptors for NAND_CMD_ERASE1 */
1233 static int erase_block(struct qcom_nand_host
*host
, int page_addr
)
1235 struct nand_chip
*chip
= &host
->chip
;
1236 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1238 nandc_set_reg(nandc
, NAND_FLASH_CMD
,
1239 OP_BLOCK_ERASE
| PAGE_ACC
| LAST_PAGE
);
1240 nandc_set_reg(nandc
, NAND_ADDR0
, page_addr
);
1241 nandc_set_reg(nandc
, NAND_ADDR1
, 0);
1242 nandc_set_reg(nandc
, NAND_DEV0_CFG0
,
1243 host
->cfg0_raw
& ~(7 << CW_PER_PAGE
));
1244 nandc_set_reg(nandc
, NAND_DEV0_CFG1
, host
->cfg1_raw
);
1245 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
1246 nandc_set_reg(nandc
, NAND_FLASH_STATUS
, host
->clrflashstatus
);
1247 nandc_set_reg(nandc
, NAND_READ_STATUS
, host
->clrreadstatus
);
1249 write_reg_dma(nandc
, NAND_FLASH_CMD
, 3, NAND_BAM_NEXT_SGL
);
1250 write_reg_dma(nandc
, NAND_DEV0_CFG0
, 2, NAND_BAM_NEXT_SGL
);
1251 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1, NAND_BAM_NEXT_SGL
);
1253 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 1, NAND_BAM_NEXT_SGL
);
1255 write_reg_dma(nandc
, NAND_FLASH_STATUS
, 1, 0);
1256 write_reg_dma(nandc
, NAND_READ_STATUS
, 1, NAND_BAM_NEXT_SGL
);
1261 /* sets up descriptors for NAND_CMD_READID */
1262 static int read_id(struct qcom_nand_host
*host
, int column
)
1264 struct nand_chip
*chip
= &host
->chip
;
1265 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1270 nandc_set_reg(nandc
, NAND_FLASH_CMD
, OP_FETCH_ID
);
1271 nandc_set_reg(nandc
, NAND_ADDR0
, column
);
1272 nandc_set_reg(nandc
, NAND_ADDR1
, 0);
1273 nandc_set_reg(nandc
, NAND_FLASH_CHIP_SELECT
,
1274 nandc
->props
->is_bam
? 0 : DM_EN
);
1275 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
1277 write_reg_dma(nandc
, NAND_FLASH_CMD
, 4, NAND_BAM_NEXT_SGL
);
1278 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1, NAND_BAM_NEXT_SGL
);
1280 read_reg_dma(nandc
, NAND_READ_ID
, 1, NAND_BAM_NEXT_SGL
);
1285 /* sets up descriptors for NAND_CMD_RESET */
1286 static int reset(struct qcom_nand_host
*host
)
1288 struct nand_chip
*chip
= &host
->chip
;
1289 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1291 nandc_set_reg(nandc
, NAND_FLASH_CMD
, OP_RESET_DEVICE
);
1292 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
1294 write_reg_dma(nandc
, NAND_FLASH_CMD
, 1, NAND_BAM_NEXT_SGL
);
1295 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1, NAND_BAM_NEXT_SGL
);
1297 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 1, NAND_BAM_NEXT_SGL
);
1302 /* helpers to submit/free our list of dma descriptors */
1303 static int submit_descs(struct qcom_nand_controller
*nandc
)
1305 struct desc_info
*desc
;
1306 dma_cookie_t cookie
= 0;
1307 struct bam_transaction
*bam_txn
= nandc
->bam_txn
;
1310 if (nandc
->props
->is_bam
) {
1311 if (bam_txn
->rx_sgl_pos
> bam_txn
->rx_sgl_start
) {
1312 r
= prepare_bam_async_desc(nandc
, nandc
->rx_chan
, 0);
1317 if (bam_txn
->tx_sgl_pos
> bam_txn
->tx_sgl_start
) {
1318 r
= prepare_bam_async_desc(nandc
, nandc
->tx_chan
,
1319 DMA_PREP_INTERRUPT
);
1324 if (bam_txn
->cmd_sgl_pos
> bam_txn
->cmd_sgl_start
) {
1325 r
= prepare_bam_async_desc(nandc
, nandc
->cmd_chan
,
1332 list_for_each_entry(desc
, &nandc
->desc_list
, node
)
1333 cookie
= dmaengine_submit(desc
->dma_desc
);
1335 if (nandc
->props
->is_bam
) {
1336 bam_txn
->last_cmd_desc
->callback
= qpic_bam_dma_done
;
1337 bam_txn
->last_cmd_desc
->callback_param
= bam_txn
;
1338 if (bam_txn
->last_data_desc
) {
1339 bam_txn
->last_data_desc
->callback
= qpic_bam_dma_done
;
1340 bam_txn
->last_data_desc
->callback_param
= bam_txn
;
1341 bam_txn
->wait_second_completion
= true;
1344 dma_async_issue_pending(nandc
->tx_chan
);
1345 dma_async_issue_pending(nandc
->rx_chan
);
1346 dma_async_issue_pending(nandc
->cmd_chan
);
1348 if (!wait_for_completion_timeout(&bam_txn
->txn_done
,
1349 QPIC_NAND_COMPLETION_TIMEOUT
))
1352 if (dma_sync_wait(nandc
->chan
, cookie
) != DMA_COMPLETE
)
1359 static void free_descs(struct qcom_nand_controller
*nandc
)
1361 struct desc_info
*desc
, *n
;
1363 list_for_each_entry_safe(desc
, n
, &nandc
->desc_list
, node
) {
1364 list_del(&desc
->node
);
1366 if (nandc
->props
->is_bam
)
1367 dma_unmap_sg(nandc
->dev
, desc
->bam_sgl
,
1368 desc
->sgl_cnt
, desc
->dir
);
1370 dma_unmap_sg(nandc
->dev
, &desc
->adm_sgl
, 1,
1377 /* reset the register read buffer for next NAND operation */
1378 static void clear_read_regs(struct qcom_nand_controller
*nandc
)
1380 nandc
->reg_read_pos
= 0;
1381 nandc_read_buffer_sync(nandc
, false);
1384 static void pre_command(struct qcom_nand_host
*host
, int command
)
1386 struct nand_chip
*chip
= &host
->chip
;
1387 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1389 nandc
->buf_count
= 0;
1390 nandc
->buf_start
= 0;
1391 host
->use_ecc
= false;
1392 host
->last_command
= command
;
1394 clear_read_regs(nandc
);
1396 if (command
== NAND_CMD_RESET
|| command
== NAND_CMD_READID
||
1397 command
== NAND_CMD_PARAM
|| command
== NAND_CMD_ERASE1
)
1398 clear_bam_transaction(nandc
);
1402 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1403 * privately maintained status byte, this status byte can be read after
1404 * NAND_CMD_STATUS is called
1406 static void parse_erase_write_errors(struct qcom_nand_host
*host
, int command
)
1408 struct nand_chip
*chip
= &host
->chip
;
1409 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1410 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1414 num_cw
= command
== NAND_CMD_PAGEPROG
? ecc
->steps
: 1;
1415 nandc_read_buffer_sync(nandc
, true);
1417 for (i
= 0; i
< num_cw
; i
++) {
1418 u32 flash_status
= le32_to_cpu(nandc
->reg_read_buf
[i
]);
1420 if (flash_status
& FS_MPU_ERR
)
1421 host
->status
&= ~NAND_STATUS_WP
;
1423 if (flash_status
& FS_OP_ERR
|| (i
== (num_cw
- 1) &&
1425 FS_DEVICE_STS_ERR
)))
1426 host
->status
|= NAND_STATUS_FAIL
;
1430 static void post_command(struct qcom_nand_host
*host
, int command
)
1432 struct nand_chip
*chip
= &host
->chip
;
1433 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1436 case NAND_CMD_READID
:
1437 nandc_read_buffer_sync(nandc
, true);
1438 memcpy(nandc
->data_buffer
, nandc
->reg_read_buf
,
1441 case NAND_CMD_PAGEPROG
:
1442 case NAND_CMD_ERASE1
:
1443 parse_erase_write_errors(host
, command
);
1451 * Implements chip->legacy.cmdfunc. It's only used for a limited set of
1452 * commands. The rest of the commands wouldn't be called by upper layers.
1453 * For example, NAND_CMD_READOOB would never be called because we have our own
1454 * versions of read_oob ops for nand_ecc_ctrl.
1456 static void qcom_nandc_command(struct nand_chip
*chip
, unsigned int command
,
1457 int column
, int page_addr
)
1459 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1460 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1461 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1465 pre_command(host
, command
);
1468 case NAND_CMD_RESET
:
1473 case NAND_CMD_READID
:
1474 nandc
->buf_count
= 4;
1475 ret
= read_id(host
, column
);
1479 case NAND_CMD_PARAM
:
1480 ret
= nandc_param(host
);
1484 case NAND_CMD_ERASE1
:
1485 ret
= erase_block(host
, page_addr
);
1489 case NAND_CMD_READ0
:
1490 /* we read the entire page for now */
1491 WARN_ON(column
!= 0);
1493 host
->use_ecc
= true;
1494 set_address(host
, 0, page_addr
);
1495 update_rw_regs(host
, ecc
->steps
, true);
1498 case NAND_CMD_SEQIN
:
1499 WARN_ON(column
!= 0);
1500 set_address(host
, 0, page_addr
);
1503 case NAND_CMD_PAGEPROG
:
1504 case NAND_CMD_STATUS
:
1511 dev_err(nandc
->dev
, "failure executing command %d\n",
1518 ret
= submit_descs(nandc
);
1521 "failure submitting descs for command %d\n",
1527 post_command(host
, command
);
1531 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1532 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1534 * when using RS ECC, the HW reports the same erros when reading an erased CW,
1535 * but it notifies that it is an erased CW by placing special characters at
1536 * certain offsets in the buffer.
1538 * verify if the page is erased or not, and fix up the page for RS ECC by
1539 * replacing the special characters with 0xff.
1541 static bool erased_chunk_check_and_fixup(u8
*data_buf
, int data_len
)
1546 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1547 * is erased by looking for 0x54s at offsets 3 and 175 from the
1548 * beginning of each codeword
1551 empty1
= data_buf
[3];
1552 empty2
= data_buf
[175];
1555 * if the erased codework markers, if they exist override them with
1558 if ((empty1
== 0x54 && empty2
== 0xff) ||
1559 (empty1
== 0xff && empty2
== 0x54)) {
1561 data_buf
[175] = 0xff;
1565 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1566 * restore the original values at the special offsets
1568 if (memchr_inv(data_buf
, 0xff, data_len
)) {
1569 data_buf
[3] = empty1
;
1570 data_buf
[175] = empty2
;
1584 /* reads back FLASH_STATUS register set by the controller */
1585 static int check_flash_errors(struct qcom_nand_host
*host
, int cw_cnt
)
1587 struct nand_chip
*chip
= &host
->chip
;
1588 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1591 nandc_read_buffer_sync(nandc
, true);
1593 for (i
= 0; i
< cw_cnt
; i
++) {
1594 u32 flash
= le32_to_cpu(nandc
->reg_read_buf
[i
]);
1596 if (flash
& (FS_OP_ERR
| FS_MPU_ERR
))
1603 /* performs raw read for one codeword */
1605 qcom_nandc_read_cw_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1606 u8
*data_buf
, u8
*oob_buf
, int page
, int cw
)
1608 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1609 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1610 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1611 int data_size1
, data_size2
, oob_size1
, oob_size2
;
1612 int ret
, reg_off
= FLASH_BUF_ACC
, read_loc
= 0;
1614 nand_read_page_op(chip
, page
, 0, NULL
, 0);
1615 host
->use_ecc
= false;
1617 clear_bam_transaction(nandc
);
1618 set_address(host
, host
->cw_size
* cw
, page
);
1619 update_rw_regs(host
, 1, true);
1620 config_nand_page_read(nandc
);
1622 data_size1
= mtd
->writesize
- host
->cw_size
* (ecc
->steps
- 1);
1623 oob_size1
= host
->bbm_size
;
1625 if (cw
== (ecc
->steps
- 1)) {
1626 data_size2
= ecc
->size
- data_size1
-
1627 ((ecc
->steps
- 1) * 4);
1628 oob_size2
= (ecc
->steps
* 4) + host
->ecc_bytes_hw
+
1631 data_size2
= host
->cw_data
- data_size1
;
1632 oob_size2
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
1635 if (nandc
->props
->is_bam
) {
1636 nandc_set_read_loc(nandc
, 0, read_loc
, data_size1
, 0);
1637 read_loc
+= data_size1
;
1639 nandc_set_read_loc(nandc
, 1, read_loc
, oob_size1
, 0);
1640 read_loc
+= oob_size1
;
1642 nandc_set_read_loc(nandc
, 2, read_loc
, data_size2
, 0);
1643 read_loc
+= data_size2
;
1645 nandc_set_read_loc(nandc
, 3, read_loc
, oob_size2
, 1);
1648 config_nand_cw_read(nandc
, false);
1650 read_data_dma(nandc
, reg_off
, data_buf
, data_size1
, 0);
1651 reg_off
+= data_size1
;
1653 read_data_dma(nandc
, reg_off
, oob_buf
, oob_size1
, 0);
1654 reg_off
+= oob_size1
;
1656 read_data_dma(nandc
, reg_off
, data_buf
+ data_size1
, data_size2
, 0);
1657 reg_off
+= data_size2
;
1659 read_data_dma(nandc
, reg_off
, oob_buf
+ oob_size1
, oob_size2
, 0);
1661 ret
= submit_descs(nandc
);
1664 dev_err(nandc
->dev
, "failure to read raw cw %d\n", cw
);
1668 return check_flash_errors(host
, 1);
1672 * Bitflips can happen in erased codewords also so this function counts the
1673 * number of 0 in each CW for which ECC engine returns the uncorrectable
1674 * error. The page will be assumed as erased if this count is less than or
1675 * equal to the ecc->strength for each CW.
1677 * 1. Both DATA and OOB need to be checked for number of 0. The
1678 * top-level API can be called with only data buf or OOB buf so use
1679 * chip->data_buf if data buf is null and chip->oob_poi if oob buf
1680 * is null for copying the raw bytes.
1681 * 2. Perform raw read for all the CW which has uncorrectable errors.
1682 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1683 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1684 * the number of bitflips in this area.
1687 check_for_erased_page(struct qcom_nand_host
*host
, u8
*data_buf
,
1688 u8
*oob_buf
, unsigned long uncorrectable_cws
,
1689 int page
, unsigned int max_bitflips
)
1691 struct nand_chip
*chip
= &host
->chip
;
1692 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1693 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1694 u8
*cw_data_buf
, *cw_oob_buf
;
1695 int cw
, data_size
, oob_size
, ret
= 0;
1698 data_buf
= nand_get_data_buf(chip
);
1701 nand_get_data_buf(chip
);
1702 oob_buf
= chip
->oob_poi
;
1705 for_each_set_bit(cw
, &uncorrectable_cws
, ecc
->steps
) {
1706 if (cw
== (ecc
->steps
- 1)) {
1707 data_size
= ecc
->size
- ((ecc
->steps
- 1) * 4);
1708 oob_size
= (ecc
->steps
* 4) + host
->ecc_bytes_hw
;
1710 data_size
= host
->cw_data
;
1711 oob_size
= host
->ecc_bytes_hw
;
1714 /* determine starting buffer address for current CW */
1715 cw_data_buf
= data_buf
+ (cw
* host
->cw_data
);
1716 cw_oob_buf
= oob_buf
+ (cw
* ecc
->bytes
);
1718 ret
= qcom_nandc_read_cw_raw(mtd
, chip
, cw_data_buf
,
1719 cw_oob_buf
, page
, cw
);
1724 * make sure it isn't an erased page reported
1725 * as not-erased by HW because of a few bitflips
1727 ret
= nand_check_erased_ecc_chunk(cw_data_buf
, data_size
,
1728 cw_oob_buf
+ host
->bbm_size
,
1732 mtd
->ecc_stats
.failed
++;
1734 mtd
->ecc_stats
.corrected
+= ret
;
1735 max_bitflips
= max_t(unsigned int, max_bitflips
, ret
);
1739 return max_bitflips
;
1743 * reads back status registers set by the controller to notify page read
1744 * errors. this is equivalent to what 'ecc->correct()' would do.
1746 static int parse_read_errors(struct qcom_nand_host
*host
, u8
*data_buf
,
1747 u8
*oob_buf
, int page
)
1749 struct nand_chip
*chip
= &host
->chip
;
1750 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1751 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1752 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1753 unsigned int max_bitflips
= 0, uncorrectable_cws
= 0;
1754 struct read_stats
*buf
;
1755 bool flash_op_err
= false, erased
;
1757 u8
*data_buf_start
= data_buf
, *oob_buf_start
= oob_buf
;
1759 buf
= (struct read_stats
*)nandc
->reg_read_buf
;
1760 nandc_read_buffer_sync(nandc
, true);
1762 for (i
= 0; i
< ecc
->steps
; i
++, buf
++) {
1763 u32 flash
, buffer
, erased_cw
;
1764 int data_len
, oob_len
;
1766 if (i
== (ecc
->steps
- 1)) {
1767 data_len
= ecc
->size
- ((ecc
->steps
- 1) << 2);
1768 oob_len
= ecc
->steps
<< 2;
1770 data_len
= host
->cw_data
;
1774 flash
= le32_to_cpu(buf
->flash
);
1775 buffer
= le32_to_cpu(buf
->buffer
);
1776 erased_cw
= le32_to_cpu(buf
->erased_cw
);
1779 * Check ECC failure for each codeword. ECC failure can
1780 * happen in either of the following conditions
1781 * 1. If number of bitflips are greater than ECC engine
1783 * 2. If this codeword contains all 0xff for which erased
1784 * codeword detection check will be done.
1786 if ((flash
& FS_OP_ERR
) && (buffer
& BS_UNCORRECTABLE_BIT
)) {
1788 * For BCH ECC, ignore erased codeword errors, if
1789 * ERASED_CW bits are set.
1791 if (host
->bch_enabled
) {
1792 erased
= (erased_cw
& ERASED_CW
) == ERASED_CW
?
1795 * For RS ECC, HW reports the erased CW by placing
1796 * special characters at certain offsets in the buffer.
1797 * These special characters will be valid only if
1798 * complete page is read i.e. data_buf is not NULL.
1800 } else if (data_buf
) {
1801 erased
= erased_chunk_check_and_fixup(data_buf
,
1808 uncorrectable_cws
|= BIT(i
);
1810 * Check if MPU or any other operational error (timeout,
1811 * device failure, etc.) happened for this codeword and
1812 * make flash_op_err true. If flash_op_err is set, then
1813 * EIO will be returned for page read.
1815 } else if (flash
& (FS_OP_ERR
| FS_MPU_ERR
)) {
1816 flash_op_err
= true;
1818 * No ECC or operational errors happened. Check the number of
1819 * bits corrected and update the ecc_stats.corrected.
1824 stat
= buffer
& BS_CORRECTABLE_ERR_MSK
;
1825 mtd
->ecc_stats
.corrected
+= stat
;
1826 max_bitflips
= max(max_bitflips
, stat
);
1830 data_buf
+= data_len
;
1832 oob_buf
+= oob_len
+ ecc
->bytes
;
1838 if (!uncorrectable_cws
)
1839 return max_bitflips
;
1841 return check_for_erased_page(host
, data_buf_start
, oob_buf_start
,
1842 uncorrectable_cws
, page
,
1847 * helper to perform the actual page read operation, used by ecc->read_page(),
1850 static int read_page_ecc(struct qcom_nand_host
*host
, u8
*data_buf
,
1851 u8
*oob_buf
, int page
)
1853 struct nand_chip
*chip
= &host
->chip
;
1854 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1855 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1856 u8
*data_buf_start
= data_buf
, *oob_buf_start
= oob_buf
;
1859 config_nand_page_read(nandc
);
1861 /* queue cmd descs for each codeword */
1862 for (i
= 0; i
< ecc
->steps
; i
++) {
1863 int data_size
, oob_size
;
1865 if (i
== (ecc
->steps
- 1)) {
1866 data_size
= ecc
->size
- ((ecc
->steps
- 1) << 2);
1867 oob_size
= (ecc
->steps
<< 2) + host
->ecc_bytes_hw
+
1870 data_size
= host
->cw_data
;
1871 oob_size
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
1874 if (nandc
->props
->is_bam
) {
1875 if (data_buf
&& oob_buf
) {
1876 nandc_set_read_loc(nandc
, 0, 0, data_size
, 0);
1877 nandc_set_read_loc(nandc
, 1, data_size
,
1879 } else if (data_buf
) {
1880 nandc_set_read_loc(nandc
, 0, 0, data_size
, 1);
1882 nandc_set_read_loc(nandc
, 0, data_size
,
1887 config_nand_cw_read(nandc
, true);
1890 read_data_dma(nandc
, FLASH_BUF_ACC
, data_buf
,
1894 * when ecc is enabled, the controller doesn't read the real
1895 * or dummy bad block markers in each chunk. To maintain a
1896 * consistent layout across RAW and ECC reads, we just
1897 * leave the real/dummy BBM offsets empty (i.e, filled with
1903 for (j
= 0; j
< host
->bbm_size
; j
++)
1906 read_data_dma(nandc
, FLASH_BUF_ACC
+ data_size
,
1907 oob_buf
, oob_size
, 0);
1911 data_buf
+= data_size
;
1913 oob_buf
+= oob_size
;
1916 ret
= submit_descs(nandc
);
1920 dev_err(nandc
->dev
, "failure to read page/oob\n");
1924 return parse_read_errors(host
, data_buf_start
, oob_buf_start
, page
);
1928 * a helper that copies the last step/codeword of a page (containing free oob)
1929 * into our local buffer
1931 static int copy_last_cw(struct qcom_nand_host
*host
, int page
)
1933 struct nand_chip
*chip
= &host
->chip
;
1934 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1935 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1939 clear_read_regs(nandc
);
1941 size
= host
->use_ecc
? host
->cw_data
: host
->cw_size
;
1943 /* prepare a clean read buffer */
1944 memset(nandc
->data_buffer
, 0xff, size
);
1946 set_address(host
, host
->cw_size
* (ecc
->steps
- 1), page
);
1947 update_rw_regs(host
, 1, true);
1949 config_nand_single_cw_page_read(nandc
, host
->use_ecc
);
1951 read_data_dma(nandc
, FLASH_BUF_ACC
, nandc
->data_buffer
, size
, 0);
1953 ret
= submit_descs(nandc
);
1955 dev_err(nandc
->dev
, "failed to copy last codeword\n");
1962 /* implements ecc->read_page() */
1963 static int qcom_nandc_read_page(struct nand_chip
*chip
, uint8_t *buf
,
1964 int oob_required
, int page
)
1966 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1967 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1968 u8
*data_buf
, *oob_buf
= NULL
;
1970 nand_read_page_op(chip
, page
, 0, NULL
, 0);
1972 oob_buf
= oob_required
? chip
->oob_poi
: NULL
;
1974 clear_bam_transaction(nandc
);
1976 return read_page_ecc(host
, data_buf
, oob_buf
, page
);
1979 /* implements ecc->read_page_raw() */
1980 static int qcom_nandc_read_page_raw(struct nand_chip
*chip
, uint8_t *buf
,
1981 int oob_required
, int page
)
1983 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1984 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1985 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1987 u8
*data_buf
= buf
, *oob_buf
= chip
->oob_poi
;
1989 for (cw
= 0; cw
< ecc
->steps
; cw
++) {
1990 ret
= qcom_nandc_read_cw_raw(mtd
, chip
, data_buf
, oob_buf
,
1995 data_buf
+= host
->cw_data
;
1996 oob_buf
+= ecc
->bytes
;
2002 /* implements ecc->read_oob() */
2003 static int qcom_nandc_read_oob(struct nand_chip
*chip
, int page
)
2005 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
2006 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
2007 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
2009 clear_read_regs(nandc
);
2010 clear_bam_transaction(nandc
);
2012 host
->use_ecc
= true;
2013 set_address(host
, 0, page
);
2014 update_rw_regs(host
, ecc
->steps
, true);
2016 return read_page_ecc(host
, NULL
, chip
->oob_poi
, page
);
2019 /* implements ecc->write_page() */
2020 static int qcom_nandc_write_page(struct nand_chip
*chip
, const uint8_t *buf
,
2021 int oob_required
, int page
)
2023 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
2024 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
2025 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
2026 u8
*data_buf
, *oob_buf
;
2029 nand_prog_page_begin_op(chip
, page
, 0, NULL
, 0);
2031 clear_read_regs(nandc
);
2032 clear_bam_transaction(nandc
);
2034 data_buf
= (u8
*)buf
;
2035 oob_buf
= chip
->oob_poi
;
2037 host
->use_ecc
= true;
2038 update_rw_regs(host
, ecc
->steps
, false);
2039 config_nand_page_write(nandc
);
2041 for (i
= 0; i
< ecc
->steps
; i
++) {
2042 int data_size
, oob_size
;
2044 if (i
== (ecc
->steps
- 1)) {
2045 data_size
= ecc
->size
- ((ecc
->steps
- 1) << 2);
2046 oob_size
= (ecc
->steps
<< 2) + host
->ecc_bytes_hw
+
2049 data_size
= host
->cw_data
;
2050 oob_size
= ecc
->bytes
;
2054 write_data_dma(nandc
, FLASH_BUF_ACC
, data_buf
, data_size
,
2055 i
== (ecc
->steps
- 1) ? NAND_BAM_NO_EOT
: 0);
2058 * when ECC is enabled, we don't really need to write anything
2059 * to oob for the first n - 1 codewords since these oob regions
2060 * just contain ECC bytes that's written by the controller
2061 * itself. For the last codeword, we skip the bbm positions and
2062 * write to the free oob area.
2064 if (i
== (ecc
->steps
- 1)) {
2065 oob_buf
+= host
->bbm_size
;
2067 write_data_dma(nandc
, FLASH_BUF_ACC
+ data_size
,
2068 oob_buf
, oob_size
, 0);
2071 config_nand_cw_write(nandc
);
2073 data_buf
+= data_size
;
2074 oob_buf
+= oob_size
;
2077 ret
= submit_descs(nandc
);
2079 dev_err(nandc
->dev
, "failure to write page\n");
2084 ret
= nand_prog_page_end_op(chip
);
2089 /* implements ecc->write_page_raw() */
2090 static int qcom_nandc_write_page_raw(struct nand_chip
*chip
,
2091 const uint8_t *buf
, int oob_required
,
2094 struct mtd_info
*mtd
= nand_to_mtd(chip
);
2095 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
2096 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
2097 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
2098 u8
*data_buf
, *oob_buf
;
2101 nand_prog_page_begin_op(chip
, page
, 0, NULL
, 0);
2102 clear_read_regs(nandc
);
2103 clear_bam_transaction(nandc
);
2105 data_buf
= (u8
*)buf
;
2106 oob_buf
= chip
->oob_poi
;
2108 host
->use_ecc
= false;
2109 update_rw_regs(host
, ecc
->steps
, false);
2110 config_nand_page_write(nandc
);
2112 for (i
= 0; i
< ecc
->steps
; i
++) {
2113 int data_size1
, data_size2
, oob_size1
, oob_size2
;
2114 int reg_off
= FLASH_BUF_ACC
;
2116 data_size1
= mtd
->writesize
- host
->cw_size
* (ecc
->steps
- 1);
2117 oob_size1
= host
->bbm_size
;
2119 if (i
== (ecc
->steps
- 1)) {
2120 data_size2
= ecc
->size
- data_size1
-
2121 ((ecc
->steps
- 1) << 2);
2122 oob_size2
= (ecc
->steps
<< 2) + host
->ecc_bytes_hw
+
2125 data_size2
= host
->cw_data
- data_size1
;
2126 oob_size2
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
2129 write_data_dma(nandc
, reg_off
, data_buf
, data_size1
,
2131 reg_off
+= data_size1
;
2132 data_buf
+= data_size1
;
2134 write_data_dma(nandc
, reg_off
, oob_buf
, oob_size1
,
2136 reg_off
+= oob_size1
;
2137 oob_buf
+= oob_size1
;
2139 write_data_dma(nandc
, reg_off
, data_buf
, data_size2
,
2141 reg_off
+= data_size2
;
2142 data_buf
+= data_size2
;
2144 write_data_dma(nandc
, reg_off
, oob_buf
, oob_size2
, 0);
2145 oob_buf
+= oob_size2
;
2147 config_nand_cw_write(nandc
);
2150 ret
= submit_descs(nandc
);
2152 dev_err(nandc
->dev
, "failure to write raw page\n");
2157 ret
= nand_prog_page_end_op(chip
);
2163 * implements ecc->write_oob()
2165 * the NAND controller cannot write only data or only OOB within a codeword
2166 * since ECC is calculated for the combined codeword. So update the OOB from
2167 * chip->oob_poi, and pad the data area with OxFF before writing.
2169 static int qcom_nandc_write_oob(struct nand_chip
*chip
, int page
)
2171 struct mtd_info
*mtd
= nand_to_mtd(chip
);
2172 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
2173 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
2174 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
2175 u8
*oob
= chip
->oob_poi
;
2176 int data_size
, oob_size
;
2179 host
->use_ecc
= true;
2180 clear_bam_transaction(nandc
);
2182 /* calculate the data and oob size for the last codeword/step */
2183 data_size
= ecc
->size
- ((ecc
->steps
- 1) << 2);
2184 oob_size
= mtd
->oobavail
;
2186 memset(nandc
->data_buffer
, 0xff, host
->cw_data
);
2187 /* override new oob content to last codeword */
2188 mtd_ooblayout_get_databytes(mtd
, nandc
->data_buffer
+ data_size
, oob
,
2191 set_address(host
, host
->cw_size
* (ecc
->steps
- 1), page
);
2192 update_rw_regs(host
, 1, false);
2194 config_nand_page_write(nandc
);
2195 write_data_dma(nandc
, FLASH_BUF_ACC
,
2196 nandc
->data_buffer
, data_size
+ oob_size
, 0);
2197 config_nand_cw_write(nandc
);
2199 ret
= submit_descs(nandc
);
2204 dev_err(nandc
->dev
, "failure to write oob\n");
2208 return nand_prog_page_end_op(chip
);
2211 static int qcom_nandc_block_bad(struct nand_chip
*chip
, loff_t ofs
)
2213 struct mtd_info
*mtd
= nand_to_mtd(chip
);
2214 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
2215 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
2216 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
2217 int page
, ret
, bbpos
, bad
= 0;
2219 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
2222 * configure registers for a raw sub page read, the address is set to
2223 * the beginning of the last codeword, we don't care about reading ecc
2224 * portion of oob. we just want the first few bytes from this codeword
2225 * that contains the BBM
2227 host
->use_ecc
= false;
2229 clear_bam_transaction(nandc
);
2230 ret
= copy_last_cw(host
, page
);
2234 if (check_flash_errors(host
, 1)) {
2235 dev_warn(nandc
->dev
, "error when trying to read BBM\n");
2239 bbpos
= mtd
->writesize
- host
->cw_size
* (ecc
->steps
- 1);
2241 bad
= nandc
->data_buffer
[bbpos
] != 0xff;
2243 if (chip
->options
& NAND_BUSWIDTH_16
)
2244 bad
= bad
|| (nandc
->data_buffer
[bbpos
+ 1] != 0xff);
2249 static int qcom_nandc_block_markbad(struct nand_chip
*chip
, loff_t ofs
)
2251 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
2252 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
2253 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
2256 clear_read_regs(nandc
);
2257 clear_bam_transaction(nandc
);
2260 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2261 * we don't care about the rest of the content in the codeword since
2262 * we aren't going to use this block again
2264 memset(nandc
->data_buffer
, 0x00, host
->cw_size
);
2266 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
2269 host
->use_ecc
= false;
2270 set_address(host
, host
->cw_size
* (ecc
->steps
- 1), page
);
2271 update_rw_regs(host
, 1, false);
2273 config_nand_page_write(nandc
);
2274 write_data_dma(nandc
, FLASH_BUF_ACC
,
2275 nandc
->data_buffer
, host
->cw_size
, 0);
2276 config_nand_cw_write(nandc
);
2278 ret
= submit_descs(nandc
);
2283 dev_err(nandc
->dev
, "failure to update BBM\n");
2287 return nand_prog_page_end_op(chip
);
2291 * the three functions below implement chip->legacy.read_byte(),
2292 * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2293 * aren't used for reading/writing page data, they are used for smaller data
2294 * like reading id, status etc
2296 static uint8_t qcom_nandc_read_byte(struct nand_chip
*chip
)
2298 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
2299 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
2300 u8
*buf
= nandc
->data_buffer
;
2303 if (host
->last_command
== NAND_CMD_STATUS
) {
2306 host
->status
= NAND_STATUS_READY
| NAND_STATUS_WP
;
2311 if (nandc
->buf_start
< nandc
->buf_count
)
2312 ret
= buf
[nandc
->buf_start
++];
2317 static void qcom_nandc_read_buf(struct nand_chip
*chip
, uint8_t *buf
, int len
)
2319 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
2320 int real_len
= min_t(size_t, len
, nandc
->buf_count
- nandc
->buf_start
);
2322 memcpy(buf
, nandc
->data_buffer
+ nandc
->buf_start
, real_len
);
2323 nandc
->buf_start
+= real_len
;
2326 static void qcom_nandc_write_buf(struct nand_chip
*chip
, const uint8_t *buf
,
2329 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
2330 int real_len
= min_t(size_t, len
, nandc
->buf_count
- nandc
->buf_start
);
2332 memcpy(nandc
->data_buffer
+ nandc
->buf_start
, buf
, real_len
);
2334 nandc
->buf_start
+= real_len
;
2337 /* we support only one external chip for now */
2338 static void qcom_nandc_select_chip(struct nand_chip
*chip
, int chipnr
)
2340 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
2345 dev_warn(nandc
->dev
, "invalid chip select\n");
2349 * NAND controller page layout info
2351 * Layout with ECC enabled:
2353 * |----------------------| |---------------------------------|
2354 * | xx.......yy| | *********xx.......yy|
2355 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
2356 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
2357 * | xx.......yy| | *********xx.......yy|
2358 * |----------------------| |---------------------------------|
2359 * codeword 1,2..n-1 codeword n
2360 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
2362 * n = Number of codewords in the page
2364 * * = Spare/free bytes
2365 * x = Unused byte(s)
2366 * y = Reserved byte(s)
2368 * 2K page: n = 4, spare = 16 bytes
2369 * 4K page: n = 8, spare = 32 bytes
2370 * 8K page: n = 16, spare = 64 bytes
2372 * the qcom nand controller operates at a sub page/codeword level. each
2373 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2374 * the number of ECC bytes vary based on the ECC strength and the bus width.
2376 * the first n - 1 codewords contains 516 bytes of user data, the remaining
2377 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2378 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2380 * When we access a page with ECC enabled, the reserved bytes(s) are not
2381 * accessible at all. When reading, we fill up these unreadable positions
2382 * with 0xffs. When writing, the controller skips writing the inaccessible
2385 * Layout with ECC disabled:
2387 * |------------------------------| |---------------------------------------|
2388 * | yy xx.......| | bb *********xx.......|
2389 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
2390 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
2391 * | yy xx.......| | bb *********xx.......|
2392 * |------------------------------| |---------------------------------------|
2393 * codeword 1,2..n-1 codeword n
2394 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
2396 * n = Number of codewords in the page
2398 * * = Spare/free bytes
2399 * x = Unused byte(s)
2400 * y = Dummy Bad Bock byte(s)
2401 * b = Real Bad Block byte(s)
2402 * size1/size2 = function of codeword size and 'n'
2404 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2405 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2406 * Block Markers. In the last codeword, this position contains the real BBM
2408 * In order to have a consistent layout between RAW and ECC modes, we assume
2409 * the following OOB layout arrangement:
2411 * |-----------| |--------------------|
2412 * |yyxx.......| |bb*********xx.......|
2413 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
2414 * |yyxx.......| |bb*********xx.......|
2415 * |yyxx.......| |bb*********xx.......|
2416 * |-----------| |--------------------|
2417 * first n - 1 nth OOB region
2420 * n = Number of codewords in the page
2422 * * = FREE OOB bytes
2423 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2424 * x = Unused byte(s)
2425 * b = Real bad block byte(s) (inaccessible when ECC enabled)
2427 * This layout is read as is when ECC is disabled. When ECC is enabled, the
2428 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2429 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2430 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2431 * the sum of the three).
2433 static int qcom_nand_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
2434 struct mtd_oob_region
*oobregion
)
2436 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2437 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
2438 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
2444 oobregion
->length
= (ecc
->bytes
* (ecc
->steps
- 1)) +
2446 oobregion
->offset
= 0;
2448 oobregion
->length
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
2449 oobregion
->offset
= mtd
->oobsize
- oobregion
->length
;
2455 static int qcom_nand_ooblayout_free(struct mtd_info
*mtd
, int section
,
2456 struct mtd_oob_region
*oobregion
)
2458 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2459 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
2460 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
2465 oobregion
->length
= ecc
->steps
* 4;
2466 oobregion
->offset
= ((ecc
->steps
- 1) * ecc
->bytes
) + host
->bbm_size
;
2471 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops
= {
2472 .ecc
= qcom_nand_ooblayout_ecc
,
2473 .free
= qcom_nand_ooblayout_free
,
2477 qcom_nandc_calc_ecc_bytes(int step_size
, int strength
)
2479 return strength
== 4 ? 12 : 16;
2481 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps
, qcom_nandc_calc_ecc_bytes
,
2482 NANDC_STEP_SIZE
, 4, 8);
2484 static int qcom_nand_attach_chip(struct nand_chip
*chip
)
2486 struct mtd_info
*mtd
= nand_to_mtd(chip
);
2487 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
2488 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
2489 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
2490 int cwperpage
, bad_block_byte
, ret
;
2494 /* controller only supports 512 bytes data steps */
2495 ecc
->size
= NANDC_STEP_SIZE
;
2496 wide_bus
= chip
->options
& NAND_BUSWIDTH_16
? true : false;
2497 cwperpage
= mtd
->writesize
/ NANDC_STEP_SIZE
;
2500 * Each CW has 4 available OOB bytes which will be protected with ECC
2501 * so remaining bytes can be used for ECC.
2503 ret
= nand_ecc_choose_conf(chip
, &qcom_nandc_ecc_caps
,
2504 mtd
->oobsize
- (cwperpage
* 4));
2506 dev_err(nandc
->dev
, "No valid ECC settings possible\n");
2510 if (ecc
->strength
>= 8) {
2511 /* 8 bit ECC defaults to BCH ECC on all platforms */
2512 host
->bch_enabled
= true;
2516 host
->ecc_bytes_hw
= 14;
2517 host
->spare_bytes
= 0;
2520 host
->ecc_bytes_hw
= 13;
2521 host
->spare_bytes
= 2;
2526 * if the controller supports BCH for 4 bit ECC, the controller
2527 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2530 if (nandc
->props
->ecc_modes
& ECC_BCH_4BIT
) {
2532 host
->bch_enabled
= true;
2536 host
->ecc_bytes_hw
= 8;
2537 host
->spare_bytes
= 2;
2540 host
->ecc_bytes_hw
= 7;
2541 host
->spare_bytes
= 4;
2546 host
->ecc_bytes_hw
= 10;
2549 host
->spare_bytes
= 0;
2552 host
->spare_bytes
= 1;
2559 * we consider ecc->bytes as the sum of all the non-data content in a
2560 * step. It gives us a clean representation of the oob area (even if
2561 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2562 * ECC and 12 bytes for 4 bit ECC
2564 ecc
->bytes
= host
->ecc_bytes_hw
+ host
->spare_bytes
+ host
->bbm_size
;
2566 ecc
->read_page
= qcom_nandc_read_page
;
2567 ecc
->read_page_raw
= qcom_nandc_read_page_raw
;
2568 ecc
->read_oob
= qcom_nandc_read_oob
;
2569 ecc
->write_page
= qcom_nandc_write_page
;
2570 ecc
->write_page_raw
= qcom_nandc_write_page_raw
;
2571 ecc
->write_oob
= qcom_nandc_write_oob
;
2573 ecc
->engine_type
= NAND_ECC_ENGINE_TYPE_ON_HOST
;
2575 mtd_set_ooblayout(mtd
, &qcom_nand_ooblayout_ops
);
2577 nandc
->max_cwperpage
= max_t(unsigned int, nandc
->max_cwperpage
,
2581 * DATA_UD_BYTES varies based on whether the read/write command protects
2582 * spare data with ECC too. We protect spare data by default, so we set
2583 * it to main + spare data, which are 512 and 4 bytes respectively.
2585 host
->cw_data
= 516;
2588 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2591 host
->cw_size
= host
->cw_data
+ ecc
->bytes
;
2592 bad_block_byte
= mtd
->writesize
- host
->cw_size
* (cwperpage
- 1) + 1;
2594 host
->cfg0
= (cwperpage
- 1) << CW_PER_PAGE
2595 | host
->cw_data
<< UD_SIZE_BYTES
2596 | 0 << DISABLE_STATUS_AFTER_WRITE
2597 | 5 << NUM_ADDR_CYCLES
2598 | host
->ecc_bytes_hw
<< ECC_PARITY_SIZE_BYTES_RS
2599 | 0 << STATUS_BFR_READ
2600 | 1 << SET_RD_MODE_AFTER_STATUS
2601 | host
->spare_bytes
<< SPARE_SIZE_BYTES
;
2603 host
->cfg1
= 7 << NAND_RECOVERY_CYCLES
2604 | 0 << CS_ACTIVE_BSY
2605 | bad_block_byte
<< BAD_BLOCK_BYTE_NUM
2606 | 0 << BAD_BLOCK_IN_SPARE_AREA
2607 | 2 << WR_RD_BSY_GAP
2608 | wide_bus
<< WIDE_FLASH
2609 | host
->bch_enabled
<< ENABLE_BCH_ECC
;
2611 host
->cfg0_raw
= (cwperpage
- 1) << CW_PER_PAGE
2612 | host
->cw_size
<< UD_SIZE_BYTES
2613 | 5 << NUM_ADDR_CYCLES
2614 | 0 << SPARE_SIZE_BYTES
;
2616 host
->cfg1_raw
= 7 << NAND_RECOVERY_CYCLES
2617 | 0 << CS_ACTIVE_BSY
2618 | 17 << BAD_BLOCK_BYTE_NUM
2619 | 1 << BAD_BLOCK_IN_SPARE_AREA
2620 | 2 << WR_RD_BSY_GAP
2621 | wide_bus
<< WIDE_FLASH
2622 | 1 << DEV0_CFG1_ECC_DISABLE
;
2624 host
->ecc_bch_cfg
= !host
->bch_enabled
<< ECC_CFG_ECC_DISABLE
2626 | host
->cw_data
<< ECC_NUM_DATA_BYTES
2627 | 1 << ECC_FORCE_CLK_OPEN
2628 | ecc_mode
<< ECC_MODE
2629 | host
->ecc_bytes_hw
<< ECC_PARITY_SIZE_BYTES_BCH
;
2631 host
->ecc_buf_cfg
= 0x203 << NUM_STEPS
;
2633 host
->clrflashstatus
= FS_READY_BSY_N
;
2634 host
->clrreadstatus
= 0xc0;
2635 nandc
->regs
->erased_cw_detect_cfg_clr
=
2636 cpu_to_le32(CLR_ERASED_PAGE_DET
);
2637 nandc
->regs
->erased_cw_detect_cfg_set
=
2638 cpu_to_le32(SET_ERASED_PAGE_DET
);
2641 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2642 host
->cfg0
, host
->cfg1
, host
->ecc_buf_cfg
, host
->ecc_bch_cfg
,
2643 host
->cw_size
, host
->cw_data
, ecc
->strength
, ecc
->bytes
,
2649 static const struct nand_controller_ops qcom_nandc_ops
= {
2650 .attach_chip
= qcom_nand_attach_chip
,
2653 static void qcom_nandc_unalloc(struct qcom_nand_controller
*nandc
)
2655 if (nandc
->props
->is_bam
) {
2656 if (!dma_mapping_error(nandc
->dev
, nandc
->reg_read_dma
))
2657 dma_unmap_single(nandc
->dev
, nandc
->reg_read_dma
,
2659 sizeof(*nandc
->reg_read_buf
),
2663 dma_release_channel(nandc
->tx_chan
);
2666 dma_release_channel(nandc
->rx_chan
);
2668 if (nandc
->cmd_chan
)
2669 dma_release_channel(nandc
->cmd_chan
);
2672 dma_release_channel(nandc
->chan
);
2676 static int qcom_nandc_alloc(struct qcom_nand_controller
*nandc
)
2680 ret
= dma_set_coherent_mask(nandc
->dev
, DMA_BIT_MASK(32));
2682 dev_err(nandc
->dev
, "failed to set DMA mask\n");
2687 * we use the internal buffer for reading ONFI params, reading small
2688 * data like ID and status, and preforming read-copy-write operations
2689 * when writing to a codeword partially. 532 is the maximum possible
2690 * size of a codeword for our nand controller
2692 nandc
->buf_size
= 532;
2694 nandc
->data_buffer
= devm_kzalloc(nandc
->dev
, nandc
->buf_size
,
2696 if (!nandc
->data_buffer
)
2699 nandc
->regs
= devm_kzalloc(nandc
->dev
, sizeof(*nandc
->regs
),
2704 nandc
->reg_read_buf
= devm_kcalloc(nandc
->dev
,
2705 MAX_REG_RD
, sizeof(*nandc
->reg_read_buf
),
2707 if (!nandc
->reg_read_buf
)
2710 if (nandc
->props
->is_bam
) {
2711 nandc
->reg_read_dma
=
2712 dma_map_single(nandc
->dev
, nandc
->reg_read_buf
,
2714 sizeof(*nandc
->reg_read_buf
),
2716 if (dma_mapping_error(nandc
->dev
, nandc
->reg_read_dma
)) {
2717 dev_err(nandc
->dev
, "failed to DMA MAP reg buffer\n");
2721 nandc
->tx_chan
= dma_request_chan(nandc
->dev
, "tx");
2722 if (IS_ERR(nandc
->tx_chan
)) {
2723 ret
= PTR_ERR(nandc
->tx_chan
);
2724 nandc
->tx_chan
= NULL
;
2725 dev_err_probe(nandc
->dev
, ret
,
2726 "tx DMA channel request failed\n");
2730 nandc
->rx_chan
= dma_request_chan(nandc
->dev
, "rx");
2731 if (IS_ERR(nandc
->rx_chan
)) {
2732 ret
= PTR_ERR(nandc
->rx_chan
);
2733 nandc
->rx_chan
= NULL
;
2734 dev_err_probe(nandc
->dev
, ret
,
2735 "rx DMA channel request failed\n");
2739 nandc
->cmd_chan
= dma_request_chan(nandc
->dev
, "cmd");
2740 if (IS_ERR(nandc
->cmd_chan
)) {
2741 ret
= PTR_ERR(nandc
->cmd_chan
);
2742 nandc
->cmd_chan
= NULL
;
2743 dev_err_probe(nandc
->dev
, ret
,
2744 "cmd DMA channel request failed\n");
2749 * Initially allocate BAM transaction to read ONFI param page.
2750 * After detecting all the devices, this BAM transaction will
2751 * be freed and the next BAM tranasction will be allocated with
2752 * maximum codeword size
2754 nandc
->max_cwperpage
= 1;
2755 nandc
->bam_txn
= alloc_bam_transaction(nandc
);
2756 if (!nandc
->bam_txn
) {
2758 "failed to allocate bam transaction\n");
2763 nandc
->chan
= dma_request_chan(nandc
->dev
, "rxtx");
2764 if (IS_ERR(nandc
->chan
)) {
2765 ret
= PTR_ERR(nandc
->chan
);
2767 dev_err_probe(nandc
->dev
, ret
,
2768 "rxtx DMA channel request failed\n");
2773 INIT_LIST_HEAD(&nandc
->desc_list
);
2774 INIT_LIST_HEAD(&nandc
->host_list
);
2776 nand_controller_init(&nandc
->controller
);
2777 nandc
->controller
.ops
= &qcom_nandc_ops
;
2781 qcom_nandc_unalloc(nandc
);
2785 /* one time setup of a few nand controller registers */
2786 static int qcom_nandc_setup(struct qcom_nand_controller
*nandc
)
2791 if (!nandc
->props
->is_qpic
)
2792 nandc_write(nandc
, SFLASHC_BURST_CFG
, 0);
2794 if (!nandc
->props
->qpic_v2
)
2795 nandc_write(nandc
, dev_cmd_reg_addr(nandc
, NAND_DEV_CMD_VLD
),
2796 NAND_DEV_CMD_VLD_VAL
);
2798 /* enable ADM or BAM DMA */
2799 if (nandc
->props
->is_bam
) {
2800 nand_ctrl
= nandc_read(nandc
, NAND_CTRL
);
2803 *NAND_CTRL is an operational registers, and CPU
2804 * access to operational registers are read only
2805 * in BAM mode. So update the NAND_CTRL register
2806 * only if it is not in BAM mode. In most cases BAM
2807 * mode will be enabled in bootloader
2809 if (!(nand_ctrl
& BAM_MODE_EN
))
2810 nandc_write(nandc
, NAND_CTRL
, nand_ctrl
| BAM_MODE_EN
);
2812 nandc_write(nandc
, NAND_FLASH_CHIP_SELECT
, DM_EN
);
2815 /* save the original values of these registers */
2816 if (!nandc
->props
->qpic_v2
) {
2817 nandc
->cmd1
= nandc_read(nandc
, dev_cmd_reg_addr(nandc
, NAND_DEV_CMD1
));
2818 nandc
->vld
= NAND_DEV_CMD_VLD_VAL
;
2824 static int qcom_nand_host_init_and_register(struct qcom_nand_controller
*nandc
,
2825 struct qcom_nand_host
*host
,
2826 struct device_node
*dn
)
2828 struct nand_chip
*chip
= &host
->chip
;
2829 struct mtd_info
*mtd
= nand_to_mtd(chip
);
2830 struct device
*dev
= nandc
->dev
;
2833 ret
= of_property_read_u32(dn
, "reg", &host
->cs
);
2835 dev_err(dev
, "can't get chip-select\n");
2839 nand_set_flash_node(chip
, dn
);
2840 mtd
->name
= devm_kasprintf(dev
, GFP_KERNEL
, "qcom_nand.%d", host
->cs
);
2844 mtd
->owner
= THIS_MODULE
;
2845 mtd
->dev
.parent
= dev
;
2847 chip
->legacy
.cmdfunc
= qcom_nandc_command
;
2848 chip
->legacy
.select_chip
= qcom_nandc_select_chip
;
2849 chip
->legacy
.read_byte
= qcom_nandc_read_byte
;
2850 chip
->legacy
.read_buf
= qcom_nandc_read_buf
;
2851 chip
->legacy
.write_buf
= qcom_nandc_write_buf
;
2852 chip
->legacy
.set_features
= nand_get_set_features_notsupp
;
2853 chip
->legacy
.get_features
= nand_get_set_features_notsupp
;
2856 * the bad block marker is readable only when we read the last codeword
2857 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2858 * helpers don't allow us to read BB from a nand chip with ECC
2859 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2860 * and block_markbad helpers until we permanently switch to using
2861 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2863 chip
->legacy
.block_bad
= qcom_nandc_block_bad
;
2864 chip
->legacy
.block_markbad
= qcom_nandc_block_markbad
;
2866 chip
->controller
= &nandc
->controller
;
2867 chip
->options
|= NAND_NO_SUBPAGE_WRITE
| NAND_USES_DMA
|
2870 /* set up initial status value */
2871 host
->status
= NAND_STATUS_READY
| NAND_STATUS_WP
;
2873 ret
= nand_scan(chip
, 1);
2877 if (nandc
->props
->is_bam
) {
2878 free_bam_transaction(nandc
);
2879 nandc
->bam_txn
= alloc_bam_transaction(nandc
);
2880 if (!nandc
->bam_txn
) {
2882 "failed to allocate bam transaction\n");
2887 ret
= mtd_device_register(mtd
, NULL
, 0);
2894 static int qcom_probe_nand_devices(struct qcom_nand_controller
*nandc
)
2896 struct device
*dev
= nandc
->dev
;
2897 struct device_node
*dn
= dev
->of_node
, *child
;
2898 struct qcom_nand_host
*host
;
2901 for_each_available_child_of_node(dn
, child
) {
2902 host
= devm_kzalloc(dev
, sizeof(*host
), GFP_KERNEL
);
2908 ret
= qcom_nand_host_init_and_register(nandc
, host
, child
);
2910 devm_kfree(dev
, host
);
2914 list_add_tail(&host
->node
, &nandc
->host_list
);
2917 if (list_empty(&nandc
->host_list
))
2923 /* parse custom DT properties here */
2924 static int qcom_nandc_parse_dt(struct platform_device
*pdev
)
2926 struct qcom_nand_controller
*nandc
= platform_get_drvdata(pdev
);
2927 struct device_node
*np
= nandc
->dev
->of_node
;
2930 if (!nandc
->props
->is_bam
) {
2931 ret
= of_property_read_u32(np
, "qcom,cmd-crci",
2934 dev_err(nandc
->dev
, "command CRCI unspecified\n");
2938 ret
= of_property_read_u32(np
, "qcom,data-crci",
2941 dev_err(nandc
->dev
, "data CRCI unspecified\n");
2949 static int qcom_nandc_probe(struct platform_device
*pdev
)
2951 struct qcom_nand_controller
*nandc
;
2952 const void *dev_data
;
2953 struct device
*dev
= &pdev
->dev
;
2954 struct resource
*res
;
2957 nandc
= devm_kzalloc(&pdev
->dev
, sizeof(*nandc
), GFP_KERNEL
);
2961 platform_set_drvdata(pdev
, nandc
);
2964 dev_data
= of_device_get_match_data(dev
);
2966 dev_err(&pdev
->dev
, "failed to get device data\n");
2970 nandc
->props
= dev_data
;
2972 nandc
->core_clk
= devm_clk_get(dev
, "core");
2973 if (IS_ERR(nandc
->core_clk
))
2974 return PTR_ERR(nandc
->core_clk
);
2976 nandc
->aon_clk
= devm_clk_get(dev
, "aon");
2977 if (IS_ERR(nandc
->aon_clk
))
2978 return PTR_ERR(nandc
->aon_clk
);
2980 ret
= qcom_nandc_parse_dt(pdev
);
2984 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2985 nandc
->base
= devm_ioremap_resource(dev
, res
);
2986 if (IS_ERR(nandc
->base
))
2987 return PTR_ERR(nandc
->base
);
2989 nandc
->base_phys
= res
->start
;
2990 nandc
->base_dma
= dma_map_resource(dev
, res
->start
,
2992 DMA_BIDIRECTIONAL
, 0);
2993 if (!nandc
->base_dma
)
2996 ret
= qcom_nandc_alloc(nandc
);
2998 goto err_nandc_alloc
;
3000 ret
= clk_prepare_enable(nandc
->core_clk
);
3004 ret
= clk_prepare_enable(nandc
->aon_clk
);
3008 ret
= qcom_nandc_setup(nandc
);
3012 ret
= qcom_probe_nand_devices(nandc
);
3019 clk_disable_unprepare(nandc
->aon_clk
);
3021 clk_disable_unprepare(nandc
->core_clk
);
3023 qcom_nandc_unalloc(nandc
);
3025 dma_unmap_resource(dev
, res
->start
, resource_size(res
),
3026 DMA_BIDIRECTIONAL
, 0);
3031 static int qcom_nandc_remove(struct platform_device
*pdev
)
3033 struct qcom_nand_controller
*nandc
= platform_get_drvdata(pdev
);
3034 struct resource
*res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3035 struct qcom_nand_host
*host
;
3036 struct nand_chip
*chip
;
3039 list_for_each_entry(host
, &nandc
->host_list
, node
) {
3041 ret
= mtd_device_unregister(nand_to_mtd(chip
));
3046 qcom_nandc_unalloc(nandc
);
3048 clk_disable_unprepare(nandc
->aon_clk
);
3049 clk_disable_unprepare(nandc
->core_clk
);
3051 dma_unmap_resource(&pdev
->dev
, nandc
->base_dma
, resource_size(res
),
3052 DMA_BIDIRECTIONAL
, 0);
3057 static const struct qcom_nandc_props ipq806x_nandc_props
= {
3058 .ecc_modes
= (ECC_RS_4BIT
| ECC_BCH_8BIT
),
3060 .dev_cmd_reg_start
= 0x0,
3063 static const struct qcom_nandc_props ipq4019_nandc_props
= {
3064 .ecc_modes
= (ECC_BCH_4BIT
| ECC_BCH_8BIT
),
3067 .dev_cmd_reg_start
= 0x0,
3070 static const struct qcom_nandc_props ipq8074_nandc_props
= {
3071 .ecc_modes
= (ECC_BCH_4BIT
| ECC_BCH_8BIT
),
3074 .dev_cmd_reg_start
= 0x7000,
3077 static const struct qcom_nandc_props sdx55_nandc_props
= {
3078 .ecc_modes
= (ECC_BCH_4BIT
| ECC_BCH_8BIT
),
3082 .dev_cmd_reg_start
= 0x7000,
3086 * data will hold a struct pointer containing more differences once we support
3087 * more controller variants
3089 static const struct of_device_id qcom_nandc_of_match
[] = {
3091 .compatible
= "qcom,ipq806x-nand",
3092 .data
= &ipq806x_nandc_props
,
3095 .compatible
= "qcom,ipq4019-nand",
3096 .data
= &ipq4019_nandc_props
,
3099 .compatible
= "qcom,ipq6018-nand",
3100 .data
= &ipq8074_nandc_props
,
3103 .compatible
= "qcom,ipq8074-nand",
3104 .data
= &ipq8074_nandc_props
,
3107 .compatible
= "qcom,sdx55-nand",
3108 .data
= &sdx55_nandc_props
,
3112 MODULE_DEVICE_TABLE(of
, qcom_nandc_of_match
);
3114 static struct platform_driver qcom_nandc_driver
= {
3116 .name
= "qcom-nandc",
3117 .of_match_table
= qcom_nandc_of_match
,
3119 .probe
= qcom_nandc_probe
,
3120 .remove
= qcom_nandc_remove
,
3122 module_platform_driver(qcom_nandc_driver
);
3124 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3125 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3126 MODULE_LICENSE("GPL v2");