1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 #include <linux/bitfield.h>
8 #include <linux/slab.h>
9 #include <linux/sort.h>
10 #include <linux/mtd/spi-nor.h>
14 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
15 #define SFDP_PARAM_HEADER_PTP(p) \
16 (((p)->parameter_table_pointer[2] << 16) | \
17 ((p)->parameter_table_pointer[1] << 8) | \
18 ((p)->parameter_table_pointer[0] << 0))
20 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
21 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
22 #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */
23 #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */
24 #define SFDP_SCCR_MAP_ID 0xff87 /*
25 * Status, Control and Configuration
29 #define SFDP_SIGNATURE 0x50444653U
32 u32 signature
; /* Ox50444653U <=> "SFDP" */
35 u8 nph
; /* 0-base number of parameter headers */
38 /* Basic Flash Parameter Table. */
39 struct sfdp_parameter_header bfpt_header
;
42 /* Fast Read settings. */
43 struct sfdp_bfpt_read
{
44 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
48 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
49 * whether the Fast Read x-y-z command is supported.
55 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
56 * encodes the op code, the number of mode clocks and the number of wait
57 * states to be used by Fast Read x-y-z command.
62 /* The SPI protocol for this Fast Read x-y-z command. */
63 enum spi_nor_protocol proto
;
66 struct sfdp_bfpt_erase
{
68 * The half-word at offset <shift> in DWORD <dword> encodes the
69 * op code and erase sector size to be used by Sector Erase commands.
75 #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22)
76 #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22)
77 #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22)
78 #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22)
79 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22)
81 #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16)
82 #define SMPT_CMD_READ_DUMMY_SHIFT 16
83 #define SMPT_CMD_READ_DUMMY(_cmd) \
84 (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
85 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL
87 #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24)
88 #define SMPT_CMD_READ_DATA_SHIFT 24
89 #define SMPT_CMD_READ_DATA(_cmd) \
90 (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
92 #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8)
93 #define SMPT_CMD_OPCODE_SHIFT 8
94 #define SMPT_CMD_OPCODE(_cmd) \
95 (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
97 #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16)
98 #define SMPT_MAP_REGION_COUNT_SHIFT 16
99 #define SMPT_MAP_REGION_COUNT(_header) \
100 ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
101 SMPT_MAP_REGION_COUNT_SHIFT) + 1)
103 #define SMPT_MAP_ID_MASK GENMASK(15, 8)
104 #define SMPT_MAP_ID_SHIFT 8
105 #define SMPT_MAP_ID(_header) \
106 (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
108 #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8)
109 #define SMPT_MAP_REGION_SIZE_SHIFT 8
110 #define SMPT_MAP_REGION_SIZE(_region) \
111 (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
112 SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
114 #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0)
115 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
116 ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
118 #define SMPT_DESC_TYPE_MAP BIT(1)
119 #define SMPT_DESC_END BIT(0)
121 #define SFDP_4BAIT_DWORD_MAX 2
124 /* The hardware capability. */
128 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
129 * the associated 4-byte address op code is supported.
135 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
136 * addr_width and read_dummy members of the struct spi_nor
137 * should be previously
139 * @nor: pointer to a 'struct spi_nor'
140 * @addr: offset in the serial flash memory
141 * @len: number of bytes to read
142 * @buf: buffer where the data is copied into (dma-safe memory)
144 * Return: 0 on success, -errno otherwise.
146 static int spi_nor_read_raw(struct spi_nor
*nor
, u32 addr
, size_t len
, u8
*buf
)
151 ret
= spi_nor_read_data(nor
, addr
, len
, buf
);
154 if (!ret
|| ret
> len
)
165 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
166 * @nor: pointer to a 'struct spi_nor'
167 * @addr: offset in the SFDP area to start reading data from
168 * @len: number of bytes to read
169 * @buf: buffer where the SFDP data are copied into (dma-safe memory)
171 * Whatever the actual numbers of bytes for address and dummy cycles are
172 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
173 * followed by a 3-byte address and 8 dummy clock cycles.
175 * Return: 0 on success, -errno otherwise.
177 static int spi_nor_read_sfdp(struct spi_nor
*nor
, u32 addr
,
178 size_t len
, void *buf
)
180 u8 addr_width
, read_opcode
, read_dummy
;
183 read_opcode
= nor
->read_opcode
;
184 addr_width
= nor
->addr_width
;
185 read_dummy
= nor
->read_dummy
;
187 nor
->read_opcode
= SPINOR_OP_RDSFDP
;
191 ret
= spi_nor_read_raw(nor
, addr
, len
, buf
);
193 nor
->read_opcode
= read_opcode
;
194 nor
->addr_width
= addr_width
;
195 nor
->read_dummy
= read_dummy
;
201 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
202 * @nor: pointer to a 'struct spi_nor'
203 * @addr: offset in the SFDP area to start reading data from
204 * @len: number of bytes to read
205 * @buf: buffer where the SFDP data are copied into
207 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
208 * guaranteed to be dma-safe.
210 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
213 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor
*nor
, u32 addr
,
214 size_t len
, void *buf
)
219 dma_safe_buf
= kmalloc(len
, GFP_KERNEL
);
223 ret
= spi_nor_read_sfdp(nor
, addr
, len
, dma_safe_buf
);
224 memcpy(buf
, dma_safe_buf
, len
);
231 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command
*read
,
233 enum spi_nor_protocol proto
)
235 read
->num_mode_clocks
= (half
>> 5) & 0x07;
236 read
->num_wait_states
= (half
>> 0) & 0x1f;
237 read
->opcode
= (half
>> 8) & 0xff;
241 static const struct sfdp_bfpt_read sfdp_bfpt_reads
[] = {
242 /* Fast Read 1-1-2 */
244 SNOR_HWCAPS_READ_1_1_2
,
245 BFPT_DWORD(1), BIT(16), /* Supported bit */
246 BFPT_DWORD(4), 0, /* Settings */
250 /* Fast Read 1-2-2 */
252 SNOR_HWCAPS_READ_1_2_2
,
253 BFPT_DWORD(1), BIT(20), /* Supported bit */
254 BFPT_DWORD(4), 16, /* Settings */
258 /* Fast Read 2-2-2 */
260 SNOR_HWCAPS_READ_2_2_2
,
261 BFPT_DWORD(5), BIT(0), /* Supported bit */
262 BFPT_DWORD(6), 16, /* Settings */
266 /* Fast Read 1-1-4 */
268 SNOR_HWCAPS_READ_1_1_4
,
269 BFPT_DWORD(1), BIT(22), /* Supported bit */
270 BFPT_DWORD(3), 16, /* Settings */
274 /* Fast Read 1-4-4 */
276 SNOR_HWCAPS_READ_1_4_4
,
277 BFPT_DWORD(1), BIT(21), /* Supported bit */
278 BFPT_DWORD(3), 0, /* Settings */
282 /* Fast Read 4-4-4 */
284 SNOR_HWCAPS_READ_4_4_4
,
285 BFPT_DWORD(5), BIT(4), /* Supported bit */
286 BFPT_DWORD(7), 16, /* Settings */
291 static const struct sfdp_bfpt_erase sfdp_bfpt_erases
[] = {
292 /* Erase Type 1 in DWORD8 bits[15:0] */
295 /* Erase Type 2 in DWORD8 bits[31:16] */
298 /* Erase Type 3 in DWORD9 bits[15:0] */
301 /* Erase Type 4 in DWORD9 bits[31:16] */
306 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
307 * @erase: pointer to a structure that describes a SPI NOR erase type
308 * @size: the size of the sector/block erased by the erase type
309 * @opcode: the SPI command op code to erase the sector/block
310 * @i: erase type index as sorted in the Basic Flash Parameter Table
312 * The supported Erase Types will be sorted at init in ascending order, with
313 * the smallest Erase Type size being the first member in the erase_type array
314 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
315 * the Basic Flash Parameter Table since it will be used later on to
316 * synchronize with the supported Erase Types defined in SFDP optional tables.
319 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type
*erase
,
320 u32 size
, u8 opcode
, u8 i
)
323 spi_nor_set_erase_type(erase
, size
, opcode
);
327 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
328 * @l: member in the left half of the map's erase_type array
329 * @r: member in the right half of the map's erase_type array
331 * Comparison function used in the sort() call to sort in ascending order the
332 * map's erase types, the smallest erase type size being the first member in the
333 * sorted erase_type array.
335 * Return: the result of @l->size - @r->size
337 static int spi_nor_map_cmp_erase_type(const void *l
, const void *r
)
339 const struct spi_nor_erase_type
*left
= l
, *right
= r
;
341 return left
->size
- right
->size
;
345 * spi_nor_sort_erase_mask() - sort erase mask
346 * @map: the erase map of the SPI NOR
347 * @erase_mask: the erase type mask to be sorted
349 * Replicate the sort done for the map's erase types in BFPT: sort the erase
350 * mask in ascending order with the smallest erase type size starting from
351 * BIT(0) in the sorted erase mask.
353 * Return: sorted erase mask.
355 static u8
spi_nor_sort_erase_mask(struct spi_nor_erase_map
*map
, u8 erase_mask
)
357 struct spi_nor_erase_type
*erase_type
= map
->erase_type
;
359 u8 sorted_erase_mask
= 0;
364 /* Replicate the sort done for the map's erase types. */
365 for (i
= 0; i
< SNOR_ERASE_TYPE_MAX
; i
++)
366 if (erase_type
[i
].size
&& erase_mask
& BIT(erase_type
[i
].idx
))
367 sorted_erase_mask
|= BIT(i
);
369 return sorted_erase_mask
;
373 * spi_nor_regions_sort_erase_types() - sort erase types in each region
374 * @map: the erase map of the SPI NOR
376 * Function assumes that the erase types defined in the erase map are already
377 * sorted in ascending order, with the smallest erase type size being the first
378 * member in the erase_type array. It replicates the sort done for the map's
379 * erase types. Each region's erase bitmask will indicate which erase types are
380 * supported from the sorted erase types defined in the erase map.
381 * Sort the all region's erase type at init in order to speed up the process of
382 * finding the best erase command at runtime.
384 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map
*map
)
386 struct spi_nor_erase_region
*region
= map
->regions
;
387 u8 region_erase_mask
, sorted_erase_mask
;
390 region_erase_mask
= region
->offset
& SNOR_ERASE_TYPE_MASK
;
392 sorted_erase_mask
= spi_nor_sort_erase_mask(map
,
395 /* Overwrite erase mask. */
396 region
->offset
= (region
->offset
& ~SNOR_ERASE_TYPE_MASK
) |
399 region
= spi_nor_region_next(region
);
404 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
405 * @nor: pointer to a 'struct spi_nor'
406 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
407 * the Basic Flash Parameter Table length and version
408 * @params: pointer to the 'struct spi_nor_flash_parameter' to be
411 * The Basic Flash Parameter Table is the main and only mandatory table as
412 * defined by the SFDP (JESD216) specification.
413 * It provides us with the total size (memory density) of the data array and
414 * the number of address bytes for Fast Read, Page Program and Sector Erase
416 * For Fast READ commands, it also gives the number of mode clock cycles and
417 * wait states (regrouped in the number of dummy clock cycles) for each
418 * supported instruction op code.
419 * For Page Program, the page size is now available since JESD216 rev A, however
420 * the supported instruction op codes are still not provided.
421 * For Sector Erase commands, this table stores the supported instruction op
422 * codes and the associated sector sizes.
423 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
424 * rev A. The QER bits encode the manufacturer dependent procedure to be
425 * executed to set the Quad Enable (QE) bit in some internal register of the
426 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
427 * sending any Quad SPI command to the memory. Actually, setting the QE bit
428 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
429 * and IO3 hence enabling 4 (Quad) I/O lines.
431 * Return: 0 on success, -errno otherwise.
433 static int spi_nor_parse_bfpt(struct spi_nor
*nor
,
434 const struct sfdp_parameter_header
*bfpt_header
,
435 struct spi_nor_flash_parameter
*params
)
437 struct spi_nor_erase_map
*map
= ¶ms
->erase_map
;
438 struct spi_nor_erase_type
*erase_type
= map
->erase_type
;
439 struct sfdp_bfpt bfpt
;
446 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
447 if (bfpt_header
->length
< BFPT_DWORD_MAX_JESD216
)
450 /* Read the Basic Flash Parameter Table. */
451 len
= min_t(size_t, sizeof(bfpt
),
452 bfpt_header
->length
* sizeof(u32
));
453 addr
= SFDP_PARAM_HEADER_PTP(bfpt_header
);
454 memset(&bfpt
, 0, sizeof(bfpt
));
455 err
= spi_nor_read_sfdp_dma_unsafe(nor
, addr
, len
, &bfpt
);
459 /* Fix endianness of the BFPT DWORDs. */
460 le32_to_cpu_array(bfpt
.dwords
, BFPT_DWORD_MAX
);
462 /* Number of address bytes. */
463 switch (bfpt
.dwords
[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK
) {
464 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY
:
465 case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4
:
469 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY
:
477 /* Flash Memory Density (in bits). */
478 val
= bfpt
.dwords
[BFPT_DWORD(2)];
483 * Prevent overflows on params->size. Anyway, a NOR of 2^64
484 * bits is unlikely to exist so this error probably means
485 * the BFPT we are reading is corrupted/wrong.
490 params
->size
= 1ULL << val
;
492 params
->size
= val
+ 1;
494 params
->size
>>= 3; /* Convert to bytes. */
496 /* Fast Read settings. */
497 for (i
= 0; i
< ARRAY_SIZE(sfdp_bfpt_reads
); i
++) {
498 const struct sfdp_bfpt_read
*rd
= &sfdp_bfpt_reads
[i
];
499 struct spi_nor_read_command
*read
;
501 if (!(bfpt
.dwords
[rd
->supported_dword
] & rd
->supported_bit
)) {
502 params
->hwcaps
.mask
&= ~rd
->hwcaps
;
506 params
->hwcaps
.mask
|= rd
->hwcaps
;
507 cmd
= spi_nor_hwcaps_read2cmd(rd
->hwcaps
);
508 read
= ¶ms
->reads
[cmd
];
509 half
= bfpt
.dwords
[rd
->settings_dword
] >> rd
->settings_shift
;
510 spi_nor_set_read_settings_from_bfpt(read
, half
, rd
->proto
);
514 * Sector Erase settings. Reinitialize the uniform erase map using the
515 * Erase Types defined in the bfpt table.
518 memset(¶ms
->erase_map
, 0, sizeof(params
->erase_map
));
519 for (i
= 0; i
< ARRAY_SIZE(sfdp_bfpt_erases
); i
++) {
520 const struct sfdp_bfpt_erase
*er
= &sfdp_bfpt_erases
[i
];
524 half
= bfpt
.dwords
[er
->dword
] >> er
->shift
;
525 erasesize
= half
& 0xff;
527 /* erasesize == 0 means this Erase Type is not supported. */
531 erasesize
= 1U << erasesize
;
532 opcode
= (half
>> 8) & 0xff;
533 erase_mask
|= BIT(i
);
534 spi_nor_set_erase_settings_from_bfpt(&erase_type
[i
], erasesize
,
537 spi_nor_init_uniform_erase_map(map
, erase_mask
, params
->size
);
539 * Sort all the map's Erase Types in ascending order with the smallest
540 * erase size being the first member in the erase_type array.
542 sort(erase_type
, SNOR_ERASE_TYPE_MAX
, sizeof(erase_type
[0]),
543 spi_nor_map_cmp_erase_type
, NULL
);
545 * Sort the erase types in the uniform region in order to update the
546 * uniform_erase_type bitmask. The bitmask will be used later on when
547 * selecting the uniform erase.
549 spi_nor_regions_sort_erase_types(map
);
550 map
->uniform_erase_type
= map
->uniform_region
.offset
&
551 SNOR_ERASE_TYPE_MASK
;
553 /* Stop here if not JESD216 rev A or later. */
554 if (bfpt_header
->length
== BFPT_DWORD_MAX_JESD216
)
555 return spi_nor_post_bfpt_fixups(nor
, bfpt_header
, &bfpt
,
558 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */
559 val
= bfpt
.dwords
[BFPT_DWORD(11)];
560 val
&= BFPT_DWORD11_PAGE_SIZE_MASK
;
561 val
>>= BFPT_DWORD11_PAGE_SIZE_SHIFT
;
562 params
->page_size
= 1U << val
;
564 /* Quad Enable Requirements. */
565 switch (bfpt
.dwords
[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK
) {
566 case BFPT_DWORD15_QER_NONE
:
567 params
->quad_enable
= NULL
;
570 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY
:
572 * Writing only one byte to the Status Register has the
573 * side-effect of clearing Status Register 2.
575 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD
:
577 * Read Configuration Register (35h) instruction is not
580 nor
->flags
|= SNOR_F_HAS_16BIT_SR
| SNOR_F_NO_READ_CR
;
581 params
->quad_enable
= spi_nor_sr2_bit1_quad_enable
;
584 case BFPT_DWORD15_QER_SR1_BIT6
:
585 nor
->flags
&= ~SNOR_F_HAS_16BIT_SR
;
586 params
->quad_enable
= spi_nor_sr1_bit6_quad_enable
;
589 case BFPT_DWORD15_QER_SR2_BIT7
:
590 nor
->flags
&= ~SNOR_F_HAS_16BIT_SR
;
591 params
->quad_enable
= spi_nor_sr2_bit7_quad_enable
;
594 case BFPT_DWORD15_QER_SR2_BIT1
:
596 * JESD216 rev B or later does not specify if writing only one
597 * byte to the Status Register clears or not the Status
598 * Register 2, so let's be cautious and keep the default
599 * assumption of a 16-bit Write Status (01h) command.
601 nor
->flags
|= SNOR_F_HAS_16BIT_SR
;
603 params
->quad_enable
= spi_nor_sr2_bit1_quad_enable
;
607 dev_dbg(nor
->dev
, "BFPT QER reserved value used\n");
611 /* Soft Reset support. */
612 if (bfpt
.dwords
[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST
)
613 nor
->flags
|= SNOR_F_SOFT_RESET
;
615 /* Stop here if not JESD216 rev C or later. */
616 if (bfpt_header
->length
== BFPT_DWORD_MAX_JESD216B
)
617 return spi_nor_post_bfpt_fixups(nor
, bfpt_header
, &bfpt
,
619 /* 8D-8D-8D command extension. */
620 switch (bfpt
.dwords
[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK
) {
621 case BFPT_DWORD18_CMD_EXT_REP
:
622 nor
->cmd_ext_type
= SPI_NOR_EXT_REPEAT
;
625 case BFPT_DWORD18_CMD_EXT_INV
:
626 nor
->cmd_ext_type
= SPI_NOR_EXT_INVERT
;
629 case BFPT_DWORD18_CMD_EXT_RES
:
630 dev_dbg(nor
->dev
, "Reserved command extension used\n");
633 case BFPT_DWORD18_CMD_EXT_16B
:
634 dev_dbg(nor
->dev
, "16-bit opcodes not supported\n");
638 return spi_nor_post_bfpt_fixups(nor
, bfpt_header
, &bfpt
, params
);
642 * spi_nor_smpt_addr_width() - return the address width used in the
643 * configuration detection command.
644 * @nor: pointer to a 'struct spi_nor'
645 * @settings: configuration detection command descriptor, dword1
647 static u8
spi_nor_smpt_addr_width(const struct spi_nor
*nor
, const u32 settings
)
649 switch (settings
& SMPT_CMD_ADDRESS_LEN_MASK
) {
650 case SMPT_CMD_ADDRESS_LEN_0
:
652 case SMPT_CMD_ADDRESS_LEN_3
:
654 case SMPT_CMD_ADDRESS_LEN_4
:
656 case SMPT_CMD_ADDRESS_LEN_USE_CURRENT
:
658 return nor
->addr_width
;
663 * spi_nor_smpt_read_dummy() - return the configuration detection command read
664 * latency, in clock cycles.
665 * @nor: pointer to a 'struct spi_nor'
666 * @settings: configuration detection command descriptor, dword1
668 * Return: the number of dummy cycles for an SMPT read
670 static u8
spi_nor_smpt_read_dummy(const struct spi_nor
*nor
, const u32 settings
)
672 u8 read_dummy
= SMPT_CMD_READ_DUMMY(settings
);
674 if (read_dummy
== SMPT_CMD_READ_DUMMY_IS_VARIABLE
)
675 return nor
->read_dummy
;
680 * spi_nor_get_map_in_use() - get the configuration map in use
681 * @nor: pointer to a 'struct spi_nor'
682 * @smpt: pointer to the sector map parameter table
683 * @smpt_len: sector map parameter table length
685 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
687 static const u32
*spi_nor_get_map_in_use(struct spi_nor
*nor
, const u32
*smpt
,
695 u8 addr_width
, read_opcode
, read_dummy
;
696 u8 read_data_mask
, map_id
;
698 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
699 buf
= kmalloc(sizeof(*buf
), GFP_KERNEL
);
701 return ERR_PTR(-ENOMEM
);
703 addr_width
= nor
->addr_width
;
704 read_dummy
= nor
->read_dummy
;
705 read_opcode
= nor
->read_opcode
;
708 /* Determine if there are any optional Detection Command Descriptors */
709 for (i
= 0; i
< smpt_len
; i
+= 2) {
710 if (smpt
[i
] & SMPT_DESC_TYPE_MAP
)
713 read_data_mask
= SMPT_CMD_READ_DATA(smpt
[i
]);
714 nor
->addr_width
= spi_nor_smpt_addr_width(nor
, smpt
[i
]);
715 nor
->read_dummy
= spi_nor_smpt_read_dummy(nor
, smpt
[i
]);
716 nor
->read_opcode
= SMPT_CMD_OPCODE(smpt
[i
]);
719 err
= spi_nor_read_raw(nor
, addr
, 1, buf
);
726 * Build an index value that is used to select the Sector Map
727 * Configuration that is currently in use.
729 map_id
= map_id
<< 1 | !!(*buf
& read_data_mask
);
733 * If command descriptors are provided, they always precede map
734 * descriptors in the table. There is no need to start the iteration
735 * over smpt array all over again.
737 * Find the matching configuration map.
739 ret
= ERR_PTR(-EINVAL
);
740 while (i
< smpt_len
) {
741 if (SMPT_MAP_ID(smpt
[i
]) == map_id
) {
747 * If there are no more configuration map descriptors and no
748 * configuration ID matched the configuration identifier, the
749 * sector address map is unknown.
751 if (smpt
[i
] & SMPT_DESC_END
)
754 /* increment the table index to the next map */
755 i
+= SMPT_MAP_REGION_COUNT(smpt
[i
]) + 1;
761 nor
->addr_width
= addr_width
;
762 nor
->read_dummy
= read_dummy
;
763 nor
->read_opcode
= read_opcode
;
767 static void spi_nor_region_mark_end(struct spi_nor_erase_region
*region
)
769 region
->offset
|= SNOR_LAST_REGION
;
772 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region
*region
)
774 region
->offset
|= SNOR_OVERLAID_REGION
;
778 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
779 * @region: pointer to a structure that describes a SPI NOR erase region
780 * @erase: pointer to a structure that describes a SPI NOR erase type
781 * @erase_type: erase type bitmask
784 spi_nor_region_check_overlay(struct spi_nor_erase_region
*region
,
785 const struct spi_nor_erase_type
*erase
,
790 for (i
= 0; i
< SNOR_ERASE_TYPE_MAX
; i
++) {
791 if (!(erase_type
& BIT(i
)))
793 if (region
->size
& erase
[i
].size_mask
) {
794 spi_nor_region_mark_overlay(region
);
801 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
802 * @nor: pointer to a 'struct spi_nor'
803 * @params: pointer to a duplicate 'struct spi_nor_flash_parameter' that is
804 * used for storing SFDP parsed data
805 * @smpt: pointer to the sector map parameter table
807 * Return: 0 on success, -errno otherwise.
810 spi_nor_init_non_uniform_erase_map(struct spi_nor
*nor
,
811 struct spi_nor_flash_parameter
*params
,
814 struct spi_nor_erase_map
*map
= ¶ms
->erase_map
;
815 struct spi_nor_erase_type
*erase
= map
->erase_type
;
816 struct spi_nor_erase_region
*region
;
820 u8 uniform_erase_type
, save_uniform_erase_type
;
821 u8 erase_type
, regions_erase_type
;
823 region_count
= SMPT_MAP_REGION_COUNT(*smpt
);
825 * The regions will be freed when the driver detaches from the
828 region
= devm_kcalloc(nor
->dev
, region_count
, sizeof(*region
),
832 map
->regions
= region
;
834 uniform_erase_type
= 0xff;
835 regions_erase_type
= 0;
837 /* Populate regions. */
838 for (i
= 0; i
< region_count
; i
++) {
839 j
= i
+ 1; /* index for the region dword */
840 region
[i
].size
= SMPT_MAP_REGION_SIZE(smpt
[j
]);
841 erase_type
= SMPT_MAP_REGION_ERASE_TYPE(smpt
[j
]);
842 region
[i
].offset
= offset
| erase_type
;
844 spi_nor_region_check_overlay(®ion
[i
], erase
, erase_type
);
847 * Save the erase types that are supported in all regions and
848 * can erase the entire flash memory.
850 uniform_erase_type
&= erase_type
;
853 * regions_erase_type mask will indicate all the erase types
854 * supported in this configuration map.
856 regions_erase_type
|= erase_type
;
858 offset
= (region
[i
].offset
& ~SNOR_ERASE_FLAGS_MASK
) +
862 save_uniform_erase_type
= map
->uniform_erase_type
;
863 map
->uniform_erase_type
= spi_nor_sort_erase_mask(map
,
866 if (!regions_erase_type
) {
868 * Roll back to the previous uniform_erase_type mask, SMPT is
871 map
->uniform_erase_type
= save_uniform_erase_type
;
876 * BFPT advertises all the erase types supported by all the possible
877 * map configurations. Mask out the erase types that are not supported
878 * by the current map configuration.
880 for (i
= 0; i
< SNOR_ERASE_TYPE_MAX
; i
++)
881 if (!(regions_erase_type
& BIT(erase
[i
].idx
)))
882 spi_nor_set_erase_type(&erase
[i
], 0, 0xFF);
884 spi_nor_region_mark_end(®ion
[i
- 1]);
890 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
891 * @nor: pointer to a 'struct spi_nor'
892 * @smpt_header: sector map parameter table header
893 * @params: pointer to a duplicate 'struct spi_nor_flash_parameter'
894 * that is used for storing SFDP parsed data
896 * This table is optional, but when available, we parse it to identify the
897 * location and size of sectors within the main data array of the flash memory
898 * device and to identify which Erase Types are supported by each sector.
900 * Return: 0 on success, -errno otherwise.
902 static int spi_nor_parse_smpt(struct spi_nor
*nor
,
903 const struct sfdp_parameter_header
*smpt_header
,
904 struct spi_nor_flash_parameter
*params
)
906 const u32
*sector_map
;
912 /* Read the Sector Map Parameter Table. */
913 len
= smpt_header
->length
* sizeof(*smpt
);
914 smpt
= kmalloc(len
, GFP_KERNEL
);
918 addr
= SFDP_PARAM_HEADER_PTP(smpt_header
);
919 ret
= spi_nor_read_sfdp(nor
, addr
, len
, smpt
);
923 /* Fix endianness of the SMPT DWORDs. */
924 le32_to_cpu_array(smpt
, smpt_header
->length
);
926 sector_map
= spi_nor_get_map_in_use(nor
, smpt
, smpt_header
->length
);
927 if (IS_ERR(sector_map
)) {
928 ret
= PTR_ERR(sector_map
);
932 ret
= spi_nor_init_non_uniform_erase_map(nor
, params
, sector_map
);
936 spi_nor_regions_sort_erase_types(¶ms
->erase_map
);
944 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
945 * @nor: pointer to a 'struct spi_nor'.
946 * @param_header: pointer to the 'struct sfdp_parameter_header' describing
947 * the 4-Byte Address Instruction Table length and version.
948 * @params: pointer to the 'struct spi_nor_flash_parameter' to be.
950 * Return: 0 on success, -errno otherwise.
952 static int spi_nor_parse_4bait(struct spi_nor
*nor
,
953 const struct sfdp_parameter_header
*param_header
,
954 struct spi_nor_flash_parameter
*params
)
956 static const struct sfdp_4bait reads
[] = {
957 { SNOR_HWCAPS_READ
, BIT(0) },
958 { SNOR_HWCAPS_READ_FAST
, BIT(1) },
959 { SNOR_HWCAPS_READ_1_1_2
, BIT(2) },
960 { SNOR_HWCAPS_READ_1_2_2
, BIT(3) },
961 { SNOR_HWCAPS_READ_1_1_4
, BIT(4) },
962 { SNOR_HWCAPS_READ_1_4_4
, BIT(5) },
963 { SNOR_HWCAPS_READ_1_1_1_DTR
, BIT(13) },
964 { SNOR_HWCAPS_READ_1_2_2_DTR
, BIT(14) },
965 { SNOR_HWCAPS_READ_1_4_4_DTR
, BIT(15) },
967 static const struct sfdp_4bait programs
[] = {
968 { SNOR_HWCAPS_PP
, BIT(6) },
969 { SNOR_HWCAPS_PP_1_1_4
, BIT(7) },
970 { SNOR_HWCAPS_PP_1_4_4
, BIT(8) },
972 static const struct sfdp_4bait erases
[SNOR_ERASE_TYPE_MAX
] = {
973 { 0u /* not used */, BIT(9) },
974 { 0u /* not used */, BIT(10) },
975 { 0u /* not used */, BIT(11) },
976 { 0u /* not used */, BIT(12) },
978 struct spi_nor_pp_command
*params_pp
= params
->page_programs
;
979 struct spi_nor_erase_map
*map
= ¶ms
->erase_map
;
980 struct spi_nor_erase_type
*erase_type
= map
->erase_type
;
983 u32 addr
, discard_hwcaps
, read_hwcaps
, pp_hwcaps
, erase_mask
;
986 if (param_header
->major
!= SFDP_JESD216_MAJOR
||
987 param_header
->length
< SFDP_4BAIT_DWORD_MAX
)
990 /* Read the 4-byte Address Instruction Table. */
991 len
= sizeof(*dwords
) * SFDP_4BAIT_DWORD_MAX
;
993 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
994 dwords
= kmalloc(len
, GFP_KERNEL
);
998 addr
= SFDP_PARAM_HEADER_PTP(param_header
);
999 ret
= spi_nor_read_sfdp(nor
, addr
, len
, dwords
);
1003 /* Fix endianness of the 4BAIT DWORDs. */
1004 le32_to_cpu_array(dwords
, SFDP_4BAIT_DWORD_MAX
);
1007 * Compute the subset of (Fast) Read commands for which the 4-byte
1008 * version is supported.
1012 for (i
= 0; i
< ARRAY_SIZE(reads
); i
++) {
1013 const struct sfdp_4bait
*read
= &reads
[i
];
1015 discard_hwcaps
|= read
->hwcaps
;
1016 if ((params
->hwcaps
.mask
& read
->hwcaps
) &&
1017 (dwords
[0] & read
->supported_bit
))
1018 read_hwcaps
|= read
->hwcaps
;
1022 * Compute the subset of Page Program commands for which the 4-byte
1023 * version is supported.
1026 for (i
= 0; i
< ARRAY_SIZE(programs
); i
++) {
1027 const struct sfdp_4bait
*program
= &programs
[i
];
1030 * The 4 Byte Address Instruction (Optional) Table is the only
1031 * SFDP table that indicates support for Page Program Commands.
1032 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1033 * authority for specifying Page Program support.
1035 discard_hwcaps
|= program
->hwcaps
;
1036 if (dwords
[0] & program
->supported_bit
)
1037 pp_hwcaps
|= program
->hwcaps
;
1041 * Compute the subset of Sector Erase commands for which the 4-byte
1042 * version is supported.
1045 for (i
= 0; i
< SNOR_ERASE_TYPE_MAX
; i
++) {
1046 const struct sfdp_4bait
*erase
= &erases
[i
];
1048 if (dwords
[0] & erase
->supported_bit
)
1049 erase_mask
|= BIT(i
);
1052 /* Replicate the sort done for the map's erase types in BFPT. */
1053 erase_mask
= spi_nor_sort_erase_mask(map
, erase_mask
);
1056 * We need at least one 4-byte op code per read, program and erase
1057 * operation; the .read(), .write() and .erase() hooks share the
1058 * nor->addr_width value.
1060 if (!read_hwcaps
|| !pp_hwcaps
|| !erase_mask
)
1064 * Discard all operations from the 4-byte instruction set which are
1065 * not supported by this memory.
1067 params
->hwcaps
.mask
&= ~discard_hwcaps
;
1068 params
->hwcaps
.mask
|= (read_hwcaps
| pp_hwcaps
);
1070 /* Use the 4-byte address instruction set. */
1071 for (i
= 0; i
< SNOR_CMD_READ_MAX
; i
++) {
1072 struct spi_nor_read_command
*read_cmd
= ¶ms
->reads
[i
];
1074 read_cmd
->opcode
= spi_nor_convert_3to4_read(read_cmd
->opcode
);
1077 /* 4BAIT is the only SFDP table that indicates page program support. */
1078 if (pp_hwcaps
& SNOR_HWCAPS_PP
) {
1079 spi_nor_set_pp_settings(¶ms_pp
[SNOR_CMD_PP
],
1080 SPINOR_OP_PP_4B
, SNOR_PROTO_1_1_1
);
1082 * Since xSPI Page Program opcode is backward compatible with
1083 * Legacy SPI, use Legacy SPI opcode there as well.
1085 spi_nor_set_pp_settings(¶ms_pp
[SNOR_CMD_PP_8_8_8_DTR
],
1086 SPINOR_OP_PP_4B
, SNOR_PROTO_8_8_8_DTR
);
1088 if (pp_hwcaps
& SNOR_HWCAPS_PP_1_1_4
)
1089 spi_nor_set_pp_settings(¶ms_pp
[SNOR_CMD_PP_1_1_4
],
1090 SPINOR_OP_PP_1_1_4_4B
,
1092 if (pp_hwcaps
& SNOR_HWCAPS_PP_1_4_4
)
1093 spi_nor_set_pp_settings(¶ms_pp
[SNOR_CMD_PP_1_4_4
],
1094 SPINOR_OP_PP_1_4_4_4B
,
1097 for (i
= 0; i
< SNOR_ERASE_TYPE_MAX
; i
++) {
1098 if (erase_mask
& BIT(i
))
1099 erase_type
[i
].opcode
= (dwords
[1] >>
1100 erase_type
[i
].idx
* 8) & 0xFF;
1102 spi_nor_set_erase_type(&erase_type
[i
], 0u, 0xFF);
1106 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1107 * later because we already did the conversion to 4byte opcodes. Also,
1108 * this latest function implements a legacy quirk for the erase size of
1109 * Spansion memory. However this quirk is no longer needed with new
1110 * SFDP compliant memories.
1112 nor
->addr_width
= 4;
1113 nor
->flags
|= SNOR_F_4B_OPCODES
| SNOR_F_HAS_4BAIT
;
1121 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29)
1122 #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28)
1123 #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8)
1124 #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7)
1125 #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27)
1126 #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17)
1127 #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7)
1130 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1131 * @nor: pointer to a 'struct spi_nor'
1132 * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing
1133 * the Profile 1.0 Table length and version.
1134 * @params: pointer to the 'struct spi_nor_flash_parameter' to be.
1136 * Return: 0 on success, -errno otherwise.
1138 static int spi_nor_parse_profile1(struct spi_nor
*nor
,
1139 const struct sfdp_parameter_header
*profile1_header
,
1140 struct spi_nor_flash_parameter
*params
)
1147 len
= profile1_header
->length
* sizeof(*dwords
);
1148 dwords
= kmalloc(len
, GFP_KERNEL
);
1152 addr
= SFDP_PARAM_HEADER_PTP(profile1_header
);
1153 ret
= spi_nor_read_sfdp(nor
, addr
, len
, dwords
);
1157 le32_to_cpu_array(dwords
, profile1_header
->length
);
1159 /* Get 8D-8D-8D fast read opcode and dummy cycles. */
1160 opcode
= FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD
, dwords
[0]);
1162 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1163 if (dwords
[0] & PROFILE1_DWORD1_RDSR_DUMMY
)
1164 params
->rdsr_dummy
= 8;
1166 params
->rdsr_dummy
= 4;
1168 if (dwords
[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES
)
1169 params
->rdsr_addr_nbytes
= 4;
1171 params
->rdsr_addr_nbytes
= 0;
1174 * We don't know what speed the controller is running at. Find the
1175 * dummy cycles for the fastest frequency the flash can run at to be
1176 * sure we are never short of dummy cycles. A value of 0 means the
1177 * frequency is not supported.
1179 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1180 * flashes set the correct value if needed in their fixup hooks.
1182 dummy
= FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ
, dwords
[3]);
1184 dummy
= FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ
, dwords
[4]);
1186 dummy
= FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ
, dwords
[4]);
1188 dummy
= FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ
, dwords
[4]);
1191 "Can't find dummy cycles from Profile 1.0 table\n");
1193 /* Round up to an even value to avoid tripping controllers up. */
1194 dummy
= round_up(dummy
, 2);
1196 /* Update the fast read settings. */
1197 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ_8_8_8_DTR
],
1199 SNOR_PROTO_8_8_8_DTR
);
1206 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31)
1209 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1211 * @nor: pointer to a 'struct spi_nor'
1212 * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing
1213 * the SCCR Map table length and version.
1214 * @params: pointer to the 'struct spi_nor_flash_parameter' to be.
1216 * Return: 0 on success, -errno otherwise.
1218 static int spi_nor_parse_sccr(struct spi_nor
*nor
,
1219 const struct sfdp_parameter_header
*sccr_header
,
1220 struct spi_nor_flash_parameter
*params
)
1226 len
= sccr_header
->length
* sizeof(*dwords
);
1227 dwords
= kmalloc(len
, GFP_KERNEL
);
1231 addr
= SFDP_PARAM_HEADER_PTP(sccr_header
);
1232 ret
= spi_nor_read_sfdp(nor
, addr
, len
, dwords
);
1236 le32_to_cpu_array(dwords
, sccr_header
->length
);
1238 if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE
, dwords
[22]))
1239 nor
->flags
|= SNOR_F_IO_MODE_EN_VOLATILE
;
1247 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1248 * @nor: pointer to a 'struct spi_nor'
1249 * @params: pointer to the 'struct spi_nor_flash_parameter' to be
1252 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1253 * specification. This is a standard which tends to supported by almost all
1254 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1255 * runtime the main parameters needed to perform basic SPI flash operations such
1256 * as Fast Read, Page Program or Sector Erase commands.
1258 * Return: 0 on success, -errno otherwise.
1260 int spi_nor_parse_sfdp(struct spi_nor
*nor
,
1261 struct spi_nor_flash_parameter
*params
)
1263 const struct sfdp_parameter_header
*param_header
, *bfpt_header
;
1264 struct sfdp_parameter_header
*param_headers
= NULL
;
1265 struct sfdp_header header
;
1266 struct device
*dev
= nor
->dev
;
1270 /* Get the SFDP header. */
1271 err
= spi_nor_read_sfdp_dma_unsafe(nor
, 0, sizeof(header
), &header
);
1275 /* Check the SFDP header version. */
1276 if (le32_to_cpu(header
.signature
) != SFDP_SIGNATURE
||
1277 header
.major
!= SFDP_JESD216_MAJOR
)
1281 * Verify that the first and only mandatory parameter header is a
1282 * Basic Flash Parameter Table header as specified in JESD216.
1284 bfpt_header
= &header
.bfpt_header
;
1285 if (SFDP_PARAM_HEADER_ID(bfpt_header
) != SFDP_BFPT_ID
||
1286 bfpt_header
->major
!= SFDP_JESD216_MAJOR
)
1290 * Allocate memory then read all parameter headers with a single
1291 * Read SFDP command. These parameter headers will actually be parsed
1292 * twice: a first time to get the latest revision of the basic flash
1293 * parameter table, then a second time to handle the supported optional
1295 * Hence we read the parameter headers once for all to reduce the
1296 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1297 * because we don't need to keep these parameter headers: the allocated
1298 * memory is always released with kfree() before exiting this function.
1301 psize
= header
.nph
* sizeof(*param_headers
);
1303 param_headers
= kmalloc(psize
, GFP_KERNEL
);
1307 err
= spi_nor_read_sfdp(nor
, sizeof(header
),
1308 psize
, param_headers
);
1310 dev_dbg(dev
, "failed to read SFDP parameter headers\n");
1316 * Check other parameter headers to get the latest revision of
1317 * the basic flash parameter table.
1319 for (i
= 0; i
< header
.nph
; i
++) {
1320 param_header
= ¶m_headers
[i
];
1322 if (SFDP_PARAM_HEADER_ID(param_header
) == SFDP_BFPT_ID
&&
1323 param_header
->major
== SFDP_JESD216_MAJOR
&&
1324 (param_header
->minor
> bfpt_header
->minor
||
1325 (param_header
->minor
== bfpt_header
->minor
&&
1326 param_header
->length
> bfpt_header
->length
)))
1327 bfpt_header
= param_header
;
1330 err
= spi_nor_parse_bfpt(nor
, bfpt_header
, params
);
1334 /* Parse optional parameter tables. */
1335 for (i
= 0; i
< header
.nph
; i
++) {
1336 param_header
= ¶m_headers
[i
];
1338 switch (SFDP_PARAM_HEADER_ID(param_header
)) {
1339 case SFDP_SECTOR_MAP_ID
:
1340 err
= spi_nor_parse_smpt(nor
, param_header
, params
);
1344 err
= spi_nor_parse_4bait(nor
, param_header
, params
);
1347 case SFDP_PROFILE1_ID
:
1348 err
= spi_nor_parse_profile1(nor
, param_header
, params
);
1351 case SFDP_SCCR_MAP_ID
:
1352 err
= spi_nor_parse_sccr(nor
, param_header
, params
);
1360 dev_warn(dev
, "Failed to parse optional parameter table: %04x\n",
1361 SFDP_PARAM_HEADER_ID(param_header
));
1363 * Let's not drop all information we extracted so far
1364 * if optional table parsers fail. In case of failing,
1365 * each optional parser is responsible to roll back to
1366 * the previously known spi_nor data.
1373 kfree(param_headers
);