1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 #include <linux/mtd/spi-nor.h>
11 #define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */
12 #define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */
13 #define SPINOR_REG_CYPRESS_CFR2V 0x00800003
14 #define SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24 0xb
15 #define SPINOR_REG_CYPRESS_CFR3V 0x00800004
16 #define SPINOR_REG_CYPRESS_CFR3V_PGSZ BIT(4) /* Page size. */
17 #define SPINOR_REG_CYPRESS_CFR5V 0x00800006
18 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN 0x3
19 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS 0
20 #define SPINOR_OP_CYPRESS_RD_FAST 0xee
23 * spi_nor_cypress_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
24 * @nor: pointer to a 'struct spi_nor'
25 * @enable: whether to enable or disable Octal DTR
27 * This also sets the memory access latency cycles to 24 to allow the flash to
28 * run at up to 200MHz.
30 * Return: 0 on success, -errno otherwise.
32 static int spi_nor_cypress_octal_dtr_enable(struct spi_nor
*nor
, bool enable
)
35 u8
*buf
= nor
->bouncebuf
;
39 /* Use 24 dummy cycles for memory array reads. */
40 ret
= spi_nor_write_enable(nor
);
44 *buf
= SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24
;
45 op
= (struct spi_mem_op
)
46 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG
, 1),
47 SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR2V
,
50 SPI_MEM_OP_DATA_OUT(1, buf
, 1));
52 ret
= spi_mem_exec_op(nor
->spimem
, &op
);
56 ret
= spi_nor_wait_till_ready(nor
);
63 /* Set/unset the octal and DTR enable bits. */
64 ret
= spi_nor_write_enable(nor
);
69 *buf
= SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN
;
71 *buf
= SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS
;
73 op
= (struct spi_mem_op
)
74 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG
, 1),
75 SPI_MEM_OP_ADDR(enable
? 3 : 4,
76 SPINOR_REG_CYPRESS_CFR5V
,
79 SPI_MEM_OP_DATA_OUT(1, buf
, 1));
82 spi_nor_spimem_setup_op(nor
, &op
, SNOR_PROTO_8_8_8_DTR
);
84 ret
= spi_mem_exec_op(nor
->spimem
, &op
);
88 /* Read flash ID to make sure the switch was successful. */
89 op
= (struct spi_mem_op
)
90 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID
, 1),
91 SPI_MEM_OP_ADDR(enable
? 4 : 0, 0, 1),
92 SPI_MEM_OP_DUMMY(enable
? 3 : 0, 1),
93 SPI_MEM_OP_DATA_IN(round_up(nor
->info
->id_len
, 2),
97 spi_nor_spimem_setup_op(nor
, &op
, SNOR_PROTO_8_8_8_DTR
);
99 ret
= spi_mem_exec_op(nor
->spimem
, &op
);
103 if (memcmp(buf
, nor
->info
->id
, nor
->info
->id_len
))
109 static void s28hs512t_default_init(struct spi_nor
*nor
)
111 nor
->params
->octal_dtr_enable
= spi_nor_cypress_octal_dtr_enable
;
112 nor
->params
->writesize
= 16;
115 static void s28hs512t_post_sfdp_fixup(struct spi_nor
*nor
)
118 * On older versions of the flash the xSPI Profile 1.0 table has the
119 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
121 if (nor
->params
->reads
[SNOR_CMD_READ_8_8_8_DTR
].opcode
== 0)
122 nor
->params
->reads
[SNOR_CMD_READ_8_8_8_DTR
].opcode
=
123 SPINOR_OP_CYPRESS_RD_FAST
;
125 /* This flash is also missing the 4-byte Page Program opcode bit. */
126 spi_nor_set_pp_settings(&nor
->params
->page_programs
[SNOR_CMD_PP
],
127 SPINOR_OP_PP_4B
, SNOR_PROTO_1_1_1
);
129 * Since xSPI Page Program opcode is backward compatible with
130 * Legacy SPI, use Legacy SPI opcode there as well.
132 spi_nor_set_pp_settings(&nor
->params
->page_programs
[SNOR_CMD_PP_8_8_8_DTR
],
133 SPINOR_OP_PP_4B
, SNOR_PROTO_8_8_8_DTR
);
136 * The xSPI Profile 1.0 table advertises the number of additional
137 * address bytes needed for Read Status Register command as 0 but the
138 * actual value for that is 4.
140 nor
->params
->rdsr_addr_nbytes
= 4;
143 static int s28hs512t_post_bfpt_fixup(struct spi_nor
*nor
,
144 const struct sfdp_parameter_header
*bfpt_header
,
145 const struct sfdp_bfpt
*bfpt
,
146 struct spi_nor_flash_parameter
*params
)
149 * The BFPT table advertises a 512B page size but the page size is
150 * actually configurable (with the default being 256B). Read from
151 * CFR3V[4] and set the correct size.
153 struct spi_mem_op op
=
154 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG
, 1),
155 SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR3V
, 1),
157 SPI_MEM_OP_DATA_IN(1, nor
->bouncebuf
, 1));
160 ret
= spi_mem_exec_op(nor
->spimem
, &op
);
164 if (nor
->bouncebuf
[0] & SPINOR_REG_CYPRESS_CFR3V_PGSZ
)
165 params
->page_size
= 512;
167 params
->page_size
= 256;
172 static struct spi_nor_fixups s28hs512t_fixups
= {
173 .default_init
= s28hs512t_default_init
,
174 .post_sfdp
= s28hs512t_post_sfdp_fixup
,
175 .post_bfpt
= s28hs512t_post_bfpt_fixup
,
179 s25fs_s_post_bfpt_fixups(struct spi_nor
*nor
,
180 const struct sfdp_parameter_header
*bfpt_header
,
181 const struct sfdp_bfpt
*bfpt
,
182 struct spi_nor_flash_parameter
*params
)
185 * The S25FS-S chip family reports 512-byte pages in BFPT but
186 * in reality the write buffer still wraps at the safe default
187 * of 256 bytes. Overwrite the page size advertised by BFPT
188 * to get the writes working.
190 params
->page_size
= 256;
195 static struct spi_nor_fixups s25fs_s_fixups
= {
196 .post_bfpt
= s25fs_s_post_bfpt_fixups
,
199 static const struct flash_info spansion_parts
[] = {
200 /* Spansion/Cypress -- single (large) sector size only, at least
201 * for the chips listed here (without boot sectors).
203 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64,
204 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
205 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128,
206 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
207 { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
208 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
210 { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
211 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
213 { "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128,
214 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
216 { "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512,
217 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
219 { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
220 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
221 SPI_NOR_HAS_LOCK
| USE_CLSR
) },
222 { "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256,
223 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
)
224 .fixups
= &s25fs_s_fixups
, },
225 { "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128,
226 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
228 { "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512,
229 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
231 { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256,
232 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
)
233 .fixups
= &s25fs_s_fixups
, },
234 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
235 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
236 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64,
237 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
239 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256,
240 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
242 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
243 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
244 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
245 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
246 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
247 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8,
248 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
249 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16,
250 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
251 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32,
252 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
253 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128,
254 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
255 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32,
256 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
257 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K
) },
258 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K
) },
259 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8,
260 SECT_4K
| SPI_NOR_DUAL_READ
) },
261 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16,
262 SECT_4K
| SPI_NOR_DUAL_READ
) },
263 { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128,
264 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
265 SPI_NOR_4B_OPCODES
) },
266 { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256,
267 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
268 SPI_NOR_4B_OPCODES
) },
269 { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512,
270 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
271 SPI_NOR_4B_OPCODES
) },
272 { "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1,
274 { "s28hs512t", INFO(0x345b1a, 0, 256 * 1024, 256,
275 SECT_4K
| SPI_NOR_OCTAL_DTR_READ
|
276 SPI_NOR_OCTAL_DTR_PP
)
277 .fixups
= &s28hs512t_fixups
,
281 static void spansion_post_sfdp_fixups(struct spi_nor
*nor
)
283 if (nor
->params
->size
<= SZ_16M
)
286 nor
->flags
|= SNOR_F_4B_OPCODES
;
287 /* No small sector erase for 4-byte command set */
288 nor
->erase_opcode
= SPINOR_OP_SE
;
289 nor
->mtd
.erasesize
= nor
->info
->sector_size
;
292 static const struct spi_nor_fixups spansion_fixups
= {
293 .post_sfdp
= spansion_post_sfdp_fixups
,
296 const struct spi_nor_manufacturer spi_nor_spansion
= {
298 .parts
= spansion_parts
,
299 .nparts
= ARRAY_SIZE(spansion_parts
),
300 .fixups
= &spansion_fixups
,