1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (c) International Business Machines Corp., 2006
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
9 * UBI wear-leveling sub-system.
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
123 #define WL_MAX_FAILURES 32
125 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
);
126 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
127 struct ubi_wl_entry
*e
, struct rb_root
*root
);
128 static int self_check_in_pq(const struct ubi_device
*ubi
,
129 struct ubi_wl_entry
*e
);
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
139 static void wl_tree_add(struct ubi_wl_entry
*e
, struct rb_root
*root
)
141 struct rb_node
**p
, *parent
= NULL
;
145 struct ubi_wl_entry
*e1
;
148 e1
= rb_entry(parent
, struct ubi_wl_entry
, u
.rb
);
152 else if (e
->ec
> e1
->ec
)
155 ubi_assert(e
->pnum
!= e1
->pnum
);
156 if (e
->pnum
< e1
->pnum
)
163 rb_link_node(&e
->u
.rb
, parent
, p
);
164 rb_insert_color(&e
->u
.rb
, root
);
168 * wl_tree_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
175 static void wl_entry_destroy(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
177 ubi
->lookuptbl
[e
->pnum
] = NULL
;
178 kmem_cache_free(ubi_wl_entry_slab
, e
);
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
185 * This function returns zero in case of success and a negative error code in
188 static int do_work(struct ubi_device
*ubi
)
191 struct ubi_work
*wrk
;
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
201 down_read(&ubi
->work_sem
);
202 spin_lock(&ubi
->wl_lock
);
203 if (list_empty(&ubi
->works
)) {
204 spin_unlock(&ubi
->wl_lock
);
205 up_read(&ubi
->work_sem
);
209 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
210 list_del(&wrk
->list
);
211 ubi
->works_count
-= 1;
212 ubi_assert(ubi
->works_count
>= 0);
213 spin_unlock(&ubi
->wl_lock
);
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
220 err
= wrk
->func(ubi
, wrk
, 0);
222 ubi_err(ubi
, "work failed with error code %d", err
);
223 up_read(&ubi
->work_sem
);
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
236 static int in_wl_tree(struct ubi_wl_entry
*e
, struct rb_root
*root
)
242 struct ubi_wl_entry
*e1
;
244 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
246 if (e
->pnum
== e1
->pnum
) {
253 else if (e
->ec
> e1
->ec
)
256 ubi_assert(e
->pnum
!= e1
->pnum
);
257 if (e
->pnum
< e1
->pnum
)
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
272 * This function returns non-zero if @e is in the protection queue and zero
275 static inline int in_pq(const struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
277 struct ubi_wl_entry
*p
;
280 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
)
281 list_for_each_entry(p
, &ubi
->pq
[i
], u
.list
)
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
298 static void prot_queue_add(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
300 int pq_tail
= ubi
->pq_head
- 1;
303 pq_tail
= UBI_PROT_QUEUE_LEN
- 1;
304 ubi_assert(pq_tail
>= 0 && pq_tail
< UBI_PROT_QUEUE_LEN
);
305 list_add_tail(&e
->u
.list
, &ubi
->pq
[pq_tail
]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e
->pnum
, e
->ec
);
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
318 static struct ubi_wl_entry
*find_wl_entry(struct ubi_device
*ubi
,
319 struct rb_root
*root
, int diff
)
322 struct ubi_wl_entry
*e
;
325 e
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
330 struct ubi_wl_entry
*e1
;
332 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
353 static struct ubi_wl_entry
*find_mean_wl_entry(struct ubi_device
*ubi
,
354 struct rb_root
*root
)
356 struct ubi_wl_entry
*e
, *first
, *last
;
358 first
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
359 last
= rb_entry(rb_last(root
), struct ubi_wl_entry
, u
.rb
);
361 if (last
->ec
- first
->ec
< WL_FREE_MAX_DIFF
) {
362 e
= rb_entry(root
->rb_node
, struct ubi_wl_entry
, u
.rb
);
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e
= may_reserve_for_fm(ubi
, e
, root
);
369 e
= find_wl_entry(ubi
, root
, WL_FREE_MAX_DIFF
/2);
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
382 static struct ubi_wl_entry
*wl_get_wle(struct ubi_device
*ubi
)
384 struct ubi_wl_entry
*e
;
386 e
= find_mean_wl_entry(ubi
, &ubi
->free
);
388 ubi_err(ubi
, "no free eraseblocks");
392 self_check_in_wl_tree(ubi
, e
, &ubi
->free
);
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
398 rb_erase(&e
->u
.rb
, &ubi
->free
);
400 dbg_wl("PEB %d EC %d", e
->pnum
, e
->ec
);
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
413 static int prot_queue_del(struct ubi_device
*ubi
, int pnum
)
415 struct ubi_wl_entry
*e
;
417 e
= ubi
->lookuptbl
[pnum
];
421 if (self_check_in_pq(ubi
, e
))
424 list_del(&e
->u
.list
);
425 dbg_wl("deleted PEB %d from the protection queue", e
->pnum
);
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
435 * This function returns zero in case of success and a negative error code in
438 static int sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
442 struct ubi_ec_hdr
*ec_hdr
;
443 unsigned long long ec
= e
->ec
;
445 dbg_wl("erase PEB %d, old EC %llu", e
->pnum
, ec
);
447 err
= self_check_ec(ubi
, e
->pnum
, e
->ec
);
451 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
455 err
= ubi_io_sync_erase(ubi
, e
->pnum
, torture
);
460 if (ec
> UBI_MAX_ERASECOUNTER
) {
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
465 ubi_err(ubi
, "erase counter overflow at PEB %d, EC %llu",
471 dbg_wl("erased PEB %d, new EC %llu", e
->pnum
, ec
);
473 ec_hdr
->ec
= cpu_to_be64(ec
);
475 err
= ubi_io_write_ec_hdr(ubi
, e
->pnum
, ec_hdr
);
480 spin_lock(&ubi
->wl_lock
);
481 if (e
->ec
> ubi
->max_ec
)
483 spin_unlock(&ubi
->wl_lock
);
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
498 static void serve_prot_queue(struct ubi_device
*ubi
)
500 struct ubi_wl_entry
*e
, *tmp
;
504 * There may be several protected physical eraseblock to remove,
509 spin_lock(&ubi
->wl_lock
);
510 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[ubi
->pq_head
], u
.list
) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
514 list_del(&e
->u
.list
);
515 wl_tree_add(e
, &ubi
->used
);
518 * Let's be nice and avoid holding the spinlock for
521 spin_unlock(&ubi
->wl_lock
);
528 if (ubi
->pq_head
== UBI_PROT_QUEUE_LEN
)
530 ubi_assert(ubi
->pq_head
>= 0 && ubi
->pq_head
< UBI_PROT_QUEUE_LEN
);
531 spin_unlock(&ubi
->wl_lock
);
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
542 static void __schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
544 spin_lock(&ubi
->wl_lock
);
545 list_add_tail(&wrk
->list
, &ubi
->works
);
546 ubi_assert(ubi
->works_count
>= 0);
547 ubi
->works_count
+= 1;
548 if (ubi
->thread_enabled
&& !ubi_dbg_is_bgt_disabled(ubi
))
549 wake_up_process(ubi
->bgt_thread
);
550 spin_unlock(&ubi
->wl_lock
);
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
558 * This function adds a work defined by @wrk to the tail of the pending works
561 static void schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
563 down_read(&ubi
->work_sem
);
564 __schedule_ubi_work(ubi
, wrk
);
565 up_read(&ubi
->work_sem
);
568 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 * @nested: denotes whether the work_sem is already held in read mode
580 * This function returns zero in case of success and a %-ENOMEM in case of
583 static int schedule_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
584 int vol_id
, int lnum
, int torture
, bool nested
)
586 struct ubi_work
*wl_wrk
;
590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 e
->pnum
, e
->ec
, torture
);
593 wl_wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
597 wl_wrk
->func
= &erase_worker
;
599 wl_wrk
->vol_id
= vol_id
;
601 wl_wrk
->torture
= torture
;
604 __schedule_ubi_work(ubi
, wl_wrk
);
606 schedule_ubi_work(ubi
, wl_wrk
);
610 static int __erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
);
612 * do_sync_erase - run the erase worker synchronously.
613 * @ubi: UBI device description object
614 * @e: the WL entry of the physical eraseblock to erase
615 * @vol_id: the volume ID that last used this PEB
616 * @lnum: the last used logical eraseblock number for the PEB
617 * @torture: if the physical eraseblock has to be tortured
620 static int do_sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
621 int vol_id
, int lnum
, int torture
)
623 struct ubi_work wl_wrk
;
625 dbg_wl("sync erase of PEB %i", e
->pnum
);
628 wl_wrk
.vol_id
= vol_id
;
630 wl_wrk
.torture
= torture
;
632 return __erase_worker(ubi
, &wl_wrk
);
635 static int ensure_wear_leveling(struct ubi_device
*ubi
, int nested
);
637 * wear_leveling_worker - wear-leveling worker function.
638 * @ubi: UBI device description object
639 * @wrk: the work object
640 * @shutdown: non-zero if the worker has to free memory and exit
641 * because the WL-subsystem is shutting down
643 * This function copies a more worn out physical eraseblock to a less worn out
644 * one. Returns zero in case of success and a negative error code in case of
647 static int wear_leveling_worker(struct ubi_device
*ubi
, struct ubi_work
*wrk
,
650 int err
, scrubbing
= 0, torture
= 0, protect
= 0, erroneous
= 0;
651 int erase
= 0, keep
= 0, vol_id
= -1, lnum
= -1;
652 struct ubi_wl_entry
*e1
, *e2
;
653 struct ubi_vid_io_buf
*vidb
;
654 struct ubi_vid_hdr
*vid_hdr
;
655 int dst_leb_clean
= 0;
661 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
665 vid_hdr
= ubi_get_vid_hdr(vidb
);
667 down_read(&ubi
->fm_eba_sem
);
668 mutex_lock(&ubi
->move_mutex
);
669 spin_lock(&ubi
->wl_lock
);
670 ubi_assert(!ubi
->move_from
&& !ubi
->move_to
);
671 ubi_assert(!ubi
->move_to_put
);
673 if (!ubi
->free
.rb_node
||
674 (!ubi
->used
.rb_node
&& !ubi
->scrub
.rb_node
)) {
676 * No free physical eraseblocks? Well, they must be waiting in
677 * the queue to be erased. Cancel movement - it will be
678 * triggered again when a free physical eraseblock appears.
680 * No used physical eraseblocks? They must be temporarily
681 * protected from being moved. They will be moved to the
682 * @ubi->used tree later and the wear-leveling will be
685 dbg_wl("cancel WL, a list is empty: free %d, used %d",
686 !ubi
->free
.rb_node
, !ubi
->used
.rb_node
);
690 #ifdef CONFIG_MTD_UBI_FASTMAP
691 e1
= find_anchor_wl_entry(&ubi
->used
);
692 if (e1
&& ubi
->fm_next_anchor
&&
693 (ubi
->fm_next_anchor
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
694 ubi
->fm_do_produce_anchor
= 1;
695 /* fm_next_anchor is no longer considered a good anchor
697 * NULL assignment also prevents multiple wear level checks
700 wl_tree_add(ubi
->fm_next_anchor
, &ubi
->free
);
701 ubi
->fm_next_anchor
= NULL
;
705 if (ubi
->fm_do_produce_anchor
) {
708 e2
= get_peb_for_wl(ubi
);
712 self_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
713 rb_erase(&e1
->u
.rb
, &ubi
->used
);
714 dbg_wl("anchor-move PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
715 ubi
->fm_do_produce_anchor
= 0;
716 } else if (!ubi
->scrub
.rb_node
) {
718 if (!ubi
->scrub
.rb_node
) {
721 * Now pick the least worn-out used physical eraseblock and a
722 * highly worn-out free physical eraseblock. If the erase
723 * counters differ much enough, start wear-leveling.
725 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
726 e2
= get_peb_for_wl(ubi
);
730 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
731 dbg_wl("no WL needed: min used EC %d, max free EC %d",
734 /* Give the unused PEB back */
735 wl_tree_add(e2
, &ubi
->free
);
739 self_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
740 rb_erase(&e1
->u
.rb
, &ubi
->used
);
741 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
742 e1
->pnum
, e1
->ec
, e2
->pnum
, e2
->ec
);
744 /* Perform scrubbing */
746 e1
= rb_entry(rb_first(&ubi
->scrub
), struct ubi_wl_entry
, u
.rb
);
747 e2
= get_peb_for_wl(ubi
);
751 self_check_in_wl_tree(ubi
, e1
, &ubi
->scrub
);
752 rb_erase(&e1
->u
.rb
, &ubi
->scrub
);
753 dbg_wl("scrub PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
758 spin_unlock(&ubi
->wl_lock
);
761 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
762 * We so far do not know which logical eraseblock our physical
763 * eraseblock (@e1) belongs to. We have to read the volume identifier
766 * Note, we are protected from this PEB being unmapped and erased. The
767 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
768 * which is being moved was unmapped.
771 err
= ubi_io_read_vid_hdr(ubi
, e1
->pnum
, vidb
, 0);
772 if (err
&& err
!= UBI_IO_BITFLIPS
) {
774 if (err
== UBI_IO_FF
) {
776 * We are trying to move PEB without a VID header. UBI
777 * always write VID headers shortly after the PEB was
778 * given, so we have a situation when it has not yet
779 * had a chance to write it, because it was preempted.
780 * So add this PEB to the protection queue so far,
781 * because presumably more data will be written there
782 * (including the missing VID header), and then we'll
785 dbg_wl("PEB %d has no VID header", e1
->pnum
);
788 } else if (err
== UBI_IO_FF_BITFLIPS
) {
790 * The same situation as %UBI_IO_FF, but bit-flips were
791 * detected. It is better to schedule this PEB for
794 dbg_wl("PEB %d has no VID header but has bit-flips",
798 } else if (ubi
->fast_attach
&& err
== UBI_IO_BAD_HDR_EBADMSG
) {
800 * While a full scan would detect interrupted erasures
801 * at attach time we can face them here when attached from
804 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
810 ubi_err(ubi
, "error %d while reading VID header from PEB %d",
815 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
816 lnum
= be32_to_cpu(vid_hdr
->lnum
);
818 err
= ubi_eba_copy_leb(ubi
, e1
->pnum
, e2
->pnum
, vidb
);
820 if (err
== MOVE_CANCEL_RACE
) {
822 * The LEB has not been moved because the volume is
823 * being deleted or the PEB has been put meanwhile. We
824 * should prevent this PEB from being selected for
825 * wear-leveling movement again, so put it to the
832 if (err
== MOVE_RETRY
) {
837 if (err
== MOVE_TARGET_BITFLIPS
|| err
== MOVE_TARGET_WR_ERR
||
838 err
== MOVE_TARGET_RD_ERR
) {
840 * Target PEB had bit-flips or write error - torture it.
847 if (err
== MOVE_SOURCE_RD_ERR
) {
849 * An error happened while reading the source PEB. Do
850 * not switch to R/O mode in this case, and give the
851 * upper layers a possibility to recover from this,
852 * e.g. by unmapping corresponding LEB. Instead, just
853 * put this PEB to the @ubi->erroneous list to prevent
854 * UBI from trying to move it over and over again.
856 if (ubi
->erroneous_peb_count
> ubi
->max_erroneous
) {
857 ubi_err(ubi
, "too many erroneous eraseblocks (%d)",
858 ubi
->erroneous_peb_count
);
872 /* The PEB has been successfully moved */
874 ubi_msg(ubi
, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
875 e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
876 ubi_free_vid_buf(vidb
);
878 spin_lock(&ubi
->wl_lock
);
879 if (!ubi
->move_to_put
) {
880 wl_tree_add(e2
, &ubi
->used
);
883 ubi
->move_from
= ubi
->move_to
= NULL
;
884 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
885 spin_unlock(&ubi
->wl_lock
);
887 err
= do_sync_erase(ubi
, e1
, vol_id
, lnum
, 0);
890 wl_entry_destroy(ubi
, e2
);
896 * Well, the target PEB was put meanwhile, schedule it for
899 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
900 e2
->pnum
, vol_id
, lnum
);
901 err
= do_sync_erase(ubi
, e2
, vol_id
, lnum
, 0);
907 mutex_unlock(&ubi
->move_mutex
);
908 up_read(&ubi
->fm_eba_sem
);
912 * For some reasons the LEB was not moved, might be an error, might be
913 * something else. @e1 was not changed, so return it back. @e2 might
914 * have been changed, schedule it for erasure.
918 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
919 e1
->pnum
, vol_id
, lnum
, e2
->pnum
, err
);
921 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
922 e1
->pnum
, e2
->pnum
, err
);
923 spin_lock(&ubi
->wl_lock
);
925 prot_queue_add(ubi
, e1
);
926 else if (erroneous
) {
927 wl_tree_add(e1
, &ubi
->erroneous
);
928 ubi
->erroneous_peb_count
+= 1;
929 } else if (scrubbing
)
930 wl_tree_add(e1
, &ubi
->scrub
);
932 wl_tree_add(e1
, &ubi
->used
);
934 wl_tree_add(e2
, &ubi
->free
);
938 ubi_assert(!ubi
->move_to_put
);
939 ubi
->move_from
= ubi
->move_to
= NULL
;
940 ubi
->wl_scheduled
= 0;
941 spin_unlock(&ubi
->wl_lock
);
943 ubi_free_vid_buf(vidb
);
945 ensure_wear_leveling(ubi
, 1);
947 err
= do_sync_erase(ubi
, e2
, vol_id
, lnum
, torture
);
953 err
= do_sync_erase(ubi
, e1
, vol_id
, lnum
, 1);
958 mutex_unlock(&ubi
->move_mutex
);
959 up_read(&ubi
->fm_eba_sem
);
964 ubi_err(ubi
, "error %d while moving PEB %d to PEB %d",
965 err
, e1
->pnum
, e2
->pnum
);
967 ubi_err(ubi
, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
968 err
, e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
969 spin_lock(&ubi
->wl_lock
);
970 ubi
->move_from
= ubi
->move_to
= NULL
;
971 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
972 spin_unlock(&ubi
->wl_lock
);
974 ubi_free_vid_buf(vidb
);
975 wl_entry_destroy(ubi
, e1
);
976 wl_entry_destroy(ubi
, e2
);
980 mutex_unlock(&ubi
->move_mutex
);
981 up_read(&ubi
->fm_eba_sem
);
982 ubi_assert(err
!= 0);
983 return err
< 0 ? err
: -EIO
;
986 ubi
->wl_scheduled
= 0;
987 spin_unlock(&ubi
->wl_lock
);
988 mutex_unlock(&ubi
->move_mutex
);
989 up_read(&ubi
->fm_eba_sem
);
990 ubi_free_vid_buf(vidb
);
995 * ensure_wear_leveling - schedule wear-leveling if it is needed.
996 * @ubi: UBI device description object
997 * @nested: set to non-zero if this function is called from UBI worker
999 * This function checks if it is time to start wear-leveling and schedules it
1000 * if yes. This function returns zero in case of success and a negative error
1001 * code in case of failure.
1003 static int ensure_wear_leveling(struct ubi_device
*ubi
, int nested
)
1006 struct ubi_wl_entry
*e1
;
1007 struct ubi_wl_entry
*e2
;
1008 struct ubi_work
*wrk
;
1010 spin_lock(&ubi
->wl_lock
);
1011 if (ubi
->wl_scheduled
)
1012 /* Wear-leveling is already in the work queue */
1016 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1017 * the WL worker has to be scheduled anyway.
1019 if (!ubi
->scrub
.rb_node
) {
1020 if (!ubi
->used
.rb_node
|| !ubi
->free
.rb_node
)
1021 /* No physical eraseblocks - no deal */
1025 * We schedule wear-leveling only if the difference between the
1026 * lowest erase counter of used physical eraseblocks and a high
1027 * erase counter of free physical eraseblocks is greater than
1028 * %UBI_WL_THRESHOLD.
1030 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
1031 e2
= find_wl_entry(ubi
, &ubi
->free
, WL_FREE_MAX_DIFF
);
1033 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
))
1035 dbg_wl("schedule wear-leveling");
1037 dbg_wl("schedule scrubbing");
1039 ubi
->wl_scheduled
= 1;
1040 spin_unlock(&ubi
->wl_lock
);
1042 wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
1048 wrk
->func
= &wear_leveling_worker
;
1050 __schedule_ubi_work(ubi
, wrk
);
1052 schedule_ubi_work(ubi
, wrk
);
1056 spin_lock(&ubi
->wl_lock
);
1057 ubi
->wl_scheduled
= 0;
1059 spin_unlock(&ubi
->wl_lock
);
1064 * __erase_worker - physical eraseblock erase worker function.
1065 * @ubi: UBI device description object
1066 * @wl_wrk: the work object
1068 * This function erases a physical eraseblock and perform torture testing if
1069 * needed. It also takes care about marking the physical eraseblock bad if
1070 * needed. Returns zero in case of success and a negative error code in case of
1073 static int __erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
)
1075 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1077 int vol_id
= wl_wrk
->vol_id
;
1078 int lnum
= wl_wrk
->lnum
;
1079 int err
, available_consumed
= 0;
1081 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1082 pnum
, e
->ec
, wl_wrk
->vol_id
, wl_wrk
->lnum
);
1084 err
= sync_erase(ubi
, e
, wl_wrk
->torture
);
1086 spin_lock(&ubi
->wl_lock
);
1088 if (!ubi
->fm_disabled
&& !ubi
->fm_next_anchor
&&
1089 e
->pnum
< UBI_FM_MAX_START
) {
1090 /* Abort anchor production, if needed it will be
1091 * enabled again in the wear leveling started below.
1093 ubi
->fm_next_anchor
= e
;
1094 ubi
->fm_do_produce_anchor
= 0;
1096 wl_tree_add(e
, &ubi
->free
);
1100 spin_unlock(&ubi
->wl_lock
);
1103 * One more erase operation has happened, take care about
1104 * protected physical eraseblocks.
1106 serve_prot_queue(ubi
);
1108 /* And take care about wear-leveling */
1109 err
= ensure_wear_leveling(ubi
, 1);
1113 ubi_err(ubi
, "failed to erase PEB %d, error %d", pnum
, err
);
1115 if (err
== -EINTR
|| err
== -ENOMEM
|| err
== -EAGAIN
||
1119 /* Re-schedule the LEB for erasure */
1120 err1
= schedule_erase(ubi
, e
, vol_id
, lnum
, 0, false);
1122 wl_entry_destroy(ubi
, e
);
1129 wl_entry_destroy(ubi
, e
);
1132 * If this is not %-EIO, we have no idea what to do. Scheduling
1133 * this physical eraseblock for erasure again would cause
1134 * errors again and again. Well, lets switch to R/O mode.
1138 /* It is %-EIO, the PEB went bad */
1140 if (!ubi
->bad_allowed
) {
1141 ubi_err(ubi
, "bad physical eraseblock %d detected", pnum
);
1145 spin_lock(&ubi
->volumes_lock
);
1146 if (ubi
->beb_rsvd_pebs
== 0) {
1147 if (ubi
->avail_pebs
== 0) {
1148 spin_unlock(&ubi
->volumes_lock
);
1149 ubi_err(ubi
, "no reserved/available physical eraseblocks");
1152 ubi
->avail_pebs
-= 1;
1153 available_consumed
= 1;
1155 spin_unlock(&ubi
->volumes_lock
);
1157 ubi_msg(ubi
, "mark PEB %d as bad", pnum
);
1158 err
= ubi_io_mark_bad(ubi
, pnum
);
1162 spin_lock(&ubi
->volumes_lock
);
1163 if (ubi
->beb_rsvd_pebs
> 0) {
1164 if (available_consumed
) {
1166 * The amount of reserved PEBs increased since we last
1169 ubi
->avail_pebs
+= 1;
1170 available_consumed
= 0;
1172 ubi
->beb_rsvd_pebs
-= 1;
1174 ubi
->bad_peb_count
+= 1;
1175 ubi
->good_peb_count
-= 1;
1176 ubi_calculate_reserved(ubi
);
1177 if (available_consumed
)
1178 ubi_warn(ubi
, "no PEBs in the reserved pool, used an available PEB");
1179 else if (ubi
->beb_rsvd_pebs
)
1180 ubi_msg(ubi
, "%d PEBs left in the reserve",
1181 ubi
->beb_rsvd_pebs
);
1183 ubi_warn(ubi
, "last PEB from the reserve was used");
1184 spin_unlock(&ubi
->volumes_lock
);
1189 if (available_consumed
) {
1190 spin_lock(&ubi
->volumes_lock
);
1191 ubi
->avail_pebs
+= 1;
1192 spin_unlock(&ubi
->volumes_lock
);
1198 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
1204 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1206 dbg_wl("cancel erasure of PEB %d EC %d", e
->pnum
, e
->ec
);
1208 wl_entry_destroy(ubi
, e
);
1212 ret
= __erase_worker(ubi
, wl_wrk
);
1218 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1219 * @ubi: UBI device description object
1220 * @vol_id: the volume ID that last used this PEB
1221 * @lnum: the last used logical eraseblock number for the PEB
1222 * @pnum: physical eraseblock to return
1223 * @torture: if this physical eraseblock has to be tortured
1225 * This function is called to return physical eraseblock @pnum to the pool of
1226 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1227 * occurred to this @pnum and it has to be tested. This function returns zero
1228 * in case of success, and a negative error code in case of failure.
1230 int ubi_wl_put_peb(struct ubi_device
*ubi
, int vol_id
, int lnum
,
1231 int pnum
, int torture
)
1234 struct ubi_wl_entry
*e
;
1236 dbg_wl("PEB %d", pnum
);
1237 ubi_assert(pnum
>= 0);
1238 ubi_assert(pnum
< ubi
->peb_count
);
1240 down_read(&ubi
->fm_protect
);
1243 spin_lock(&ubi
->wl_lock
);
1244 e
= ubi
->lookuptbl
[pnum
];
1245 if (e
== ubi
->move_from
) {
1247 * User is putting the physical eraseblock which was selected to
1248 * be moved. It will be scheduled for erasure in the
1249 * wear-leveling worker.
1251 dbg_wl("PEB %d is being moved, wait", pnum
);
1252 spin_unlock(&ubi
->wl_lock
);
1254 /* Wait for the WL worker by taking the @ubi->move_mutex */
1255 mutex_lock(&ubi
->move_mutex
);
1256 mutex_unlock(&ubi
->move_mutex
);
1258 } else if (e
== ubi
->move_to
) {
1260 * User is putting the physical eraseblock which was selected
1261 * as the target the data is moved to. It may happen if the EBA
1262 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1263 * but the WL sub-system has not put the PEB to the "used" tree
1264 * yet, but it is about to do this. So we just set a flag which
1265 * will tell the WL worker that the PEB is not needed anymore
1266 * and should be scheduled for erasure.
1268 dbg_wl("PEB %d is the target of data moving", pnum
);
1269 ubi_assert(!ubi
->move_to_put
);
1270 ubi
->move_to_put
= 1;
1271 spin_unlock(&ubi
->wl_lock
);
1272 up_read(&ubi
->fm_protect
);
1275 if (in_wl_tree(e
, &ubi
->used
)) {
1276 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1277 rb_erase(&e
->u
.rb
, &ubi
->used
);
1278 } else if (in_wl_tree(e
, &ubi
->scrub
)) {
1279 self_check_in_wl_tree(ubi
, e
, &ubi
->scrub
);
1280 rb_erase(&e
->u
.rb
, &ubi
->scrub
);
1281 } else if (in_wl_tree(e
, &ubi
->erroneous
)) {
1282 self_check_in_wl_tree(ubi
, e
, &ubi
->erroneous
);
1283 rb_erase(&e
->u
.rb
, &ubi
->erroneous
);
1284 ubi
->erroneous_peb_count
-= 1;
1285 ubi_assert(ubi
->erroneous_peb_count
>= 0);
1286 /* Erroneous PEBs should be tortured */
1289 err
= prot_queue_del(ubi
, e
->pnum
);
1291 ubi_err(ubi
, "PEB %d not found", pnum
);
1293 spin_unlock(&ubi
->wl_lock
);
1294 up_read(&ubi
->fm_protect
);
1299 spin_unlock(&ubi
->wl_lock
);
1301 err
= schedule_erase(ubi
, e
, vol_id
, lnum
, torture
, false);
1303 spin_lock(&ubi
->wl_lock
);
1304 wl_tree_add(e
, &ubi
->used
);
1305 spin_unlock(&ubi
->wl_lock
);
1308 up_read(&ubi
->fm_protect
);
1313 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1314 * @ubi: UBI device description object
1315 * @pnum: the physical eraseblock to schedule
1317 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1318 * needs scrubbing. This function schedules a physical eraseblock for
1319 * scrubbing which is done in background. This function returns zero in case of
1320 * success and a negative error code in case of failure.
1322 int ubi_wl_scrub_peb(struct ubi_device
*ubi
, int pnum
)
1324 struct ubi_wl_entry
*e
;
1326 ubi_msg(ubi
, "schedule PEB %d for scrubbing", pnum
);
1329 spin_lock(&ubi
->wl_lock
);
1330 e
= ubi
->lookuptbl
[pnum
];
1331 if (e
== ubi
->move_from
|| in_wl_tree(e
, &ubi
->scrub
) ||
1332 in_wl_tree(e
, &ubi
->erroneous
)) {
1333 spin_unlock(&ubi
->wl_lock
);
1337 if (e
== ubi
->move_to
) {
1339 * This physical eraseblock was used to move data to. The data
1340 * was moved but the PEB was not yet inserted to the proper
1341 * tree. We should just wait a little and let the WL worker
1344 spin_unlock(&ubi
->wl_lock
);
1345 dbg_wl("the PEB %d is not in proper tree, retry", pnum
);
1350 if (in_wl_tree(e
, &ubi
->used
)) {
1351 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1352 rb_erase(&e
->u
.rb
, &ubi
->used
);
1356 err
= prot_queue_del(ubi
, e
->pnum
);
1358 ubi_err(ubi
, "PEB %d not found", pnum
);
1360 spin_unlock(&ubi
->wl_lock
);
1365 wl_tree_add(e
, &ubi
->scrub
);
1366 spin_unlock(&ubi
->wl_lock
);
1369 * Technically scrubbing is the same as wear-leveling, so it is done
1372 return ensure_wear_leveling(ubi
, 0);
1376 * ubi_wl_flush - flush all pending works.
1377 * @ubi: UBI device description object
1378 * @vol_id: the volume id to flush for
1379 * @lnum: the logical eraseblock number to flush for
1381 * This function executes all pending works for a particular volume id /
1382 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1383 * acts as a wildcard for all of the corresponding volume numbers or logical
1384 * eraseblock numbers. It returns zero in case of success and a negative error
1385 * code in case of failure.
1387 int ubi_wl_flush(struct ubi_device
*ubi
, int vol_id
, int lnum
)
1393 * Erase while the pending works queue is not empty, but not more than
1394 * the number of currently pending works.
1396 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1397 vol_id
, lnum
, ubi
->works_count
);
1400 struct ubi_work
*wrk
, *tmp
;
1403 down_read(&ubi
->work_sem
);
1404 spin_lock(&ubi
->wl_lock
);
1405 list_for_each_entry_safe(wrk
, tmp
, &ubi
->works
, list
) {
1406 if ((vol_id
== UBI_ALL
|| wrk
->vol_id
== vol_id
) &&
1407 (lnum
== UBI_ALL
|| wrk
->lnum
== lnum
)) {
1408 list_del(&wrk
->list
);
1409 ubi
->works_count
-= 1;
1410 ubi_assert(ubi
->works_count
>= 0);
1411 spin_unlock(&ubi
->wl_lock
);
1413 err
= wrk
->func(ubi
, wrk
, 0);
1415 up_read(&ubi
->work_sem
);
1419 spin_lock(&ubi
->wl_lock
);
1424 spin_unlock(&ubi
->wl_lock
);
1425 up_read(&ubi
->work_sem
);
1429 * Make sure all the works which have been done in parallel are
1432 down_write(&ubi
->work_sem
);
1433 up_write(&ubi
->work_sem
);
1438 static bool scrub_possible(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
1440 if (in_wl_tree(e
, &ubi
->scrub
))
1442 else if (in_wl_tree(e
, &ubi
->erroneous
))
1444 else if (ubi
->move_from
== e
)
1446 else if (ubi
->move_to
== e
)
1453 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1454 * @ubi: UBI device description object
1455 * @pnum: the physical eraseblock to schedule
1456 * @force: dont't read the block, assume bitflips happened and take action.
1458 * This function reads the given eraseblock and checks if bitflips occured.
1459 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1460 * If scrubbing is forced with @force, the eraseblock is not read,
1461 * but scheduled for scrubbing right away.
1464 * %EINVAL, PEB is out of range
1465 * %ENOENT, PEB is no longer used by UBI
1466 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1467 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1468 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1469 * %0, no bit flips detected
1471 int ubi_bitflip_check(struct ubi_device
*ubi
, int pnum
, int force
)
1474 struct ubi_wl_entry
*e
;
1476 if (pnum
< 0 || pnum
>= ubi
->peb_count
) {
1482 * Pause all parallel work, otherwise it can happen that the
1483 * erase worker frees a wl entry under us.
1485 down_write(&ubi
->work_sem
);
1488 * Make sure that the wl entry does not change state while
1491 spin_lock(&ubi
->wl_lock
);
1492 e
= ubi
->lookuptbl
[pnum
];
1494 spin_unlock(&ubi
->wl_lock
);
1500 * Does it make sense to check this PEB?
1502 if (!scrub_possible(ubi
, e
)) {
1503 spin_unlock(&ubi
->wl_lock
);
1507 spin_unlock(&ubi
->wl_lock
);
1510 mutex_lock(&ubi
->buf_mutex
);
1511 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
1512 mutex_unlock(&ubi
->buf_mutex
);
1515 if (force
|| err
== UBI_IO_BITFLIPS
) {
1517 * Okay, bit flip happened, let's figure out what we can do.
1519 spin_lock(&ubi
->wl_lock
);
1522 * Recheck. We released wl_lock, UBI might have killed the
1523 * wl entry under us.
1525 e
= ubi
->lookuptbl
[pnum
];
1527 spin_unlock(&ubi
->wl_lock
);
1533 * Need to re-check state
1535 if (!scrub_possible(ubi
, e
)) {
1536 spin_unlock(&ubi
->wl_lock
);
1541 if (in_pq(ubi
, e
)) {
1542 prot_queue_del(ubi
, e
->pnum
);
1543 wl_tree_add(e
, &ubi
->scrub
);
1544 spin_unlock(&ubi
->wl_lock
);
1546 err
= ensure_wear_leveling(ubi
, 1);
1547 } else if (in_wl_tree(e
, &ubi
->used
)) {
1548 rb_erase(&e
->u
.rb
, &ubi
->used
);
1549 wl_tree_add(e
, &ubi
->scrub
);
1550 spin_unlock(&ubi
->wl_lock
);
1552 err
= ensure_wear_leveling(ubi
, 1);
1553 } else if (in_wl_tree(e
, &ubi
->free
)) {
1554 rb_erase(&e
->u
.rb
, &ubi
->free
);
1556 spin_unlock(&ubi
->wl_lock
);
1559 * This PEB is empty we can schedule it for
1560 * erasure right away. No wear leveling needed.
1562 err
= schedule_erase(ubi
, e
, UBI_UNKNOWN
, UBI_UNKNOWN
,
1563 force
? 0 : 1, true);
1565 spin_unlock(&ubi
->wl_lock
);
1576 up_write(&ubi
->work_sem
);
1583 * tree_destroy - destroy an RB-tree.
1584 * @ubi: UBI device description object
1585 * @root: the root of the tree to destroy
1587 static void tree_destroy(struct ubi_device
*ubi
, struct rb_root
*root
)
1590 struct ubi_wl_entry
*e
;
1596 else if (rb
->rb_right
)
1599 e
= rb_entry(rb
, struct ubi_wl_entry
, u
.rb
);
1603 if (rb
->rb_left
== &e
->u
.rb
)
1606 rb
->rb_right
= NULL
;
1609 wl_entry_destroy(ubi
, e
);
1615 * ubi_thread - UBI background thread.
1616 * @u: the UBI device description object pointer
1618 int ubi_thread(void *u
)
1621 struct ubi_device
*ubi
= u
;
1623 ubi_msg(ubi
, "background thread \"%s\" started, PID %d",
1624 ubi
->bgt_name
, task_pid_nr(current
));
1630 if (kthread_should_stop())
1633 if (try_to_freeze())
1636 spin_lock(&ubi
->wl_lock
);
1637 if (list_empty(&ubi
->works
) || ubi
->ro_mode
||
1638 !ubi
->thread_enabled
|| ubi_dbg_is_bgt_disabled(ubi
)) {
1639 set_current_state(TASK_INTERRUPTIBLE
);
1640 spin_unlock(&ubi
->wl_lock
);
1643 * Check kthread_should_stop() after we set the task
1644 * state to guarantee that we either see the stop bit
1645 * and exit or the task state is reset to runnable such
1646 * that it's not scheduled out indefinitely and detects
1647 * the stop bit at kthread_should_stop().
1649 if (kthread_should_stop()) {
1650 set_current_state(TASK_RUNNING
);
1657 spin_unlock(&ubi
->wl_lock
);
1661 ubi_err(ubi
, "%s: work failed with error code %d",
1662 ubi
->bgt_name
, err
);
1663 if (failures
++ > WL_MAX_FAILURES
) {
1665 * Too many failures, disable the thread and
1666 * switch to read-only mode.
1668 ubi_msg(ubi
, "%s: %d consecutive failures",
1669 ubi
->bgt_name
, WL_MAX_FAILURES
);
1671 ubi
->thread_enabled
= 0;
1680 dbg_wl("background thread \"%s\" is killed", ubi
->bgt_name
);
1681 ubi
->thread_enabled
= 0;
1686 * shutdown_work - shutdown all pending works.
1687 * @ubi: UBI device description object
1689 static void shutdown_work(struct ubi_device
*ubi
)
1691 while (!list_empty(&ubi
->works
)) {
1692 struct ubi_work
*wrk
;
1694 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
1695 list_del(&wrk
->list
);
1696 wrk
->func(ubi
, wrk
, 1);
1697 ubi
->works_count
-= 1;
1698 ubi_assert(ubi
->works_count
>= 0);
1703 * erase_aeb - erase a PEB given in UBI attach info PEB
1704 * @ubi: UBI device description object
1705 * @aeb: UBI attach info PEB
1706 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1708 static int erase_aeb(struct ubi_device
*ubi
, struct ubi_ainf_peb
*aeb
, bool sync
)
1710 struct ubi_wl_entry
*e
;
1713 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1717 e
->pnum
= aeb
->pnum
;
1719 ubi
->lookuptbl
[e
->pnum
] = e
;
1722 err
= sync_erase(ubi
, e
, false);
1726 wl_tree_add(e
, &ubi
->free
);
1729 err
= schedule_erase(ubi
, e
, aeb
->vol_id
, aeb
->lnum
, 0, false);
1737 wl_entry_destroy(ubi
, e
);
1743 * ubi_wl_init - initialize the WL sub-system using attaching information.
1744 * @ubi: UBI device description object
1745 * @ai: attaching information
1747 * This function returns zero in case of success, and a negative error code in
1750 int ubi_wl_init(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1752 int err
, i
, reserved_pebs
, found_pebs
= 0;
1753 struct rb_node
*rb1
, *rb2
;
1754 struct ubi_ainf_volume
*av
;
1755 struct ubi_ainf_peb
*aeb
, *tmp
;
1756 struct ubi_wl_entry
*e
;
1758 ubi
->used
= ubi
->erroneous
= ubi
->free
= ubi
->scrub
= RB_ROOT
;
1759 spin_lock_init(&ubi
->wl_lock
);
1760 mutex_init(&ubi
->move_mutex
);
1761 init_rwsem(&ubi
->work_sem
);
1762 ubi
->max_ec
= ai
->max_ec
;
1763 INIT_LIST_HEAD(&ubi
->works
);
1765 sprintf(ubi
->bgt_name
, UBI_BGT_NAME_PATTERN
, ubi
->ubi_num
);
1768 ubi
->lookuptbl
= kcalloc(ubi
->peb_count
, sizeof(void *), GFP_KERNEL
);
1769 if (!ubi
->lookuptbl
)
1772 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; i
++)
1773 INIT_LIST_HEAD(&ubi
->pq
[i
]);
1776 ubi
->free_count
= 0;
1777 list_for_each_entry_safe(aeb
, tmp
, &ai
->erase
, u
.list
) {
1780 err
= erase_aeb(ubi
, aeb
, false);
1787 list_for_each_entry(aeb
, &ai
->free
, u
.list
) {
1790 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1796 e
->pnum
= aeb
->pnum
;
1798 ubi_assert(e
->ec
>= 0);
1800 wl_tree_add(e
, &ubi
->free
);
1803 ubi
->lookuptbl
[e
->pnum
] = e
;
1808 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1809 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
) {
1812 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1818 e
->pnum
= aeb
->pnum
;
1820 ubi
->lookuptbl
[e
->pnum
] = e
;
1823 dbg_wl("add PEB %d EC %d to the used tree",
1825 wl_tree_add(e
, &ubi
->used
);
1827 dbg_wl("add PEB %d EC %d to the scrub tree",
1829 wl_tree_add(e
, &ubi
->scrub
);
1836 list_for_each_entry(aeb
, &ai
->fastmap
, u
.list
) {
1839 e
= ubi_find_fm_block(ubi
, aeb
->pnum
);
1842 ubi_assert(!ubi
->lookuptbl
[e
->pnum
]);
1843 ubi
->lookuptbl
[e
->pnum
] = e
;
1848 * Usually old Fastmap PEBs are scheduled for erasure
1849 * and we don't have to care about them but if we face
1850 * an power cut before scheduling them we need to
1851 * take care of them here.
1853 if (ubi
->lookuptbl
[aeb
->pnum
])
1857 * The fastmap update code might not find a free PEB for
1858 * writing the fastmap anchor to and then reuses the
1859 * current fastmap anchor PEB. When this PEB gets erased
1860 * and a power cut happens before it is written again we
1861 * must make sure that the fastmap attach code doesn't
1862 * find any outdated fastmap anchors, hence we erase the
1863 * outdated fastmap anchor PEBs synchronously here.
1865 if (aeb
->vol_id
== UBI_FM_SB_VOLUME_ID
)
1868 err
= erase_aeb(ubi
, aeb
, sync
);
1876 dbg_wl("found %i PEBs", found_pebs
);
1878 ubi_assert(ubi
->good_peb_count
== found_pebs
);
1880 reserved_pebs
= WL_RESERVED_PEBS
;
1881 ubi_fastmap_init(ubi
, &reserved_pebs
);
1883 if (ubi
->avail_pebs
< reserved_pebs
) {
1884 ubi_err(ubi
, "no enough physical eraseblocks (%d, need %d)",
1885 ubi
->avail_pebs
, reserved_pebs
);
1886 if (ubi
->corr_peb_count
)
1887 ubi_err(ubi
, "%d PEBs are corrupted and not used",
1888 ubi
->corr_peb_count
);
1892 ubi
->avail_pebs
-= reserved_pebs
;
1893 ubi
->rsvd_pebs
+= reserved_pebs
;
1895 /* Schedule wear-leveling if needed */
1896 err
= ensure_wear_leveling(ubi
, 0);
1900 #ifdef CONFIG_MTD_UBI_FASTMAP
1901 if (!ubi
->ro_mode
&& !ubi
->fm_disabled
)
1902 ubi_ensure_anchor_pebs(ubi
);
1908 tree_destroy(ubi
, &ubi
->used
);
1909 tree_destroy(ubi
, &ubi
->free
);
1910 tree_destroy(ubi
, &ubi
->scrub
);
1911 kfree(ubi
->lookuptbl
);
1916 * protection_queue_destroy - destroy the protection queue.
1917 * @ubi: UBI device description object
1919 static void protection_queue_destroy(struct ubi_device
*ubi
)
1922 struct ubi_wl_entry
*e
, *tmp
;
1924 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
) {
1925 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[i
], u
.list
) {
1926 list_del(&e
->u
.list
);
1927 wl_entry_destroy(ubi
, e
);
1933 * ubi_wl_close - close the wear-leveling sub-system.
1934 * @ubi: UBI device description object
1936 void ubi_wl_close(struct ubi_device
*ubi
)
1938 dbg_wl("close the WL sub-system");
1939 ubi_fastmap_close(ubi
);
1941 protection_queue_destroy(ubi
);
1942 tree_destroy(ubi
, &ubi
->used
);
1943 tree_destroy(ubi
, &ubi
->erroneous
);
1944 tree_destroy(ubi
, &ubi
->free
);
1945 tree_destroy(ubi
, &ubi
->scrub
);
1946 kfree(ubi
->lookuptbl
);
1950 * self_check_ec - make sure that the erase counter of a PEB is correct.
1951 * @ubi: UBI device description object
1952 * @pnum: the physical eraseblock number to check
1953 * @ec: the erase counter to check
1955 * This function returns zero if the erase counter of physical eraseblock @pnum
1956 * is equivalent to @ec, and a negative error code if not or if an error
1959 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
)
1963 struct ubi_ec_hdr
*ec_hdr
;
1965 if (!ubi_dbg_chk_gen(ubi
))
1968 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1972 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ec_hdr
, 0);
1973 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1974 /* The header does not have to exist */
1979 read_ec
= be64_to_cpu(ec_hdr
->ec
);
1980 if (ec
!= read_ec
&& read_ec
- ec
> 1) {
1981 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1982 ubi_err(ubi
, "read EC is %lld, should be %d", read_ec
, ec
);
1994 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1995 * @ubi: UBI device description object
1996 * @e: the wear-leveling entry to check
1997 * @root: the root of the tree
1999 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2002 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
2003 struct ubi_wl_entry
*e
, struct rb_root
*root
)
2005 if (!ubi_dbg_chk_gen(ubi
))
2008 if (in_wl_tree(e
, root
))
2011 ubi_err(ubi
, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2012 e
->pnum
, e
->ec
, root
);
2018 * self_check_in_pq - check if wear-leveling entry is in the protection
2020 * @ubi: UBI device description object
2021 * @e: the wear-leveling entry to check
2023 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2025 static int self_check_in_pq(const struct ubi_device
*ubi
,
2026 struct ubi_wl_entry
*e
)
2028 if (!ubi_dbg_chk_gen(ubi
))
2034 ubi_err(ubi
, "self-check failed for PEB %d, EC %d, Protect queue",
2039 #ifndef CONFIG_MTD_UBI_FASTMAP
2040 static struct ubi_wl_entry
*get_peb_for_wl(struct ubi_device
*ubi
)
2042 struct ubi_wl_entry
*e
;
2044 e
= find_wl_entry(ubi
, &ubi
->free
, WL_FREE_MAX_DIFF
);
2045 self_check_in_wl_tree(ubi
, e
, &ubi
->free
);
2047 ubi_assert(ubi
->free_count
>= 0);
2048 rb_erase(&e
->u
.rb
, &ubi
->free
);
2054 * produce_free_peb - produce a free physical eraseblock.
2055 * @ubi: UBI device description object
2057 * This function tries to make a free PEB by means of synchronous execution of
2058 * pending works. This may be needed if, for example the background thread is
2059 * disabled. Returns zero in case of success and a negative error code in case
2062 static int produce_free_peb(struct ubi_device
*ubi
)
2066 while (!ubi
->free
.rb_node
&& ubi
->works_count
) {
2067 spin_unlock(&ubi
->wl_lock
);
2069 dbg_wl("do one work synchronously");
2072 spin_lock(&ubi
->wl_lock
);
2081 * ubi_wl_get_peb - get a physical eraseblock.
2082 * @ubi: UBI device description object
2084 * This function returns a physical eraseblock in case of success and a
2085 * negative error code in case of failure.
2086 * Returns with ubi->fm_eba_sem held in read mode!
2088 int ubi_wl_get_peb(struct ubi_device
*ubi
)
2091 struct ubi_wl_entry
*e
;
2094 down_read(&ubi
->fm_eba_sem
);
2095 spin_lock(&ubi
->wl_lock
);
2096 if (!ubi
->free
.rb_node
) {
2097 if (ubi
->works_count
== 0) {
2098 ubi_err(ubi
, "no free eraseblocks");
2099 ubi_assert(list_empty(&ubi
->works
));
2100 spin_unlock(&ubi
->wl_lock
);
2104 err
= produce_free_peb(ubi
);
2106 spin_unlock(&ubi
->wl_lock
);
2109 spin_unlock(&ubi
->wl_lock
);
2110 up_read(&ubi
->fm_eba_sem
);
2114 e
= wl_get_wle(ubi
);
2115 prot_queue_add(ubi
, e
);
2116 spin_unlock(&ubi
->wl_lock
);
2118 err
= ubi_self_check_all_ff(ubi
, e
->pnum
, ubi
->vid_hdr_aloffset
,
2119 ubi
->peb_size
- ubi
->vid_hdr_aloffset
);
2121 ubi_err(ubi
, "new PEB %d does not contain all 0xFF bytes", e
->pnum
);
2128 #include "fastmap-wl.c"