1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * AppliedMicro X-Gene Multi-purpose PHY driver
5 * Copyright (c) 2014, Applied Micro Circuits Corporation
6 * Author: Loc Ho <lho@apm.com>
7 * Tuan Phan <tphan@apm.com>
8 * Suman Tripathi <stripathi@apm.com>
10 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
11 * The first PLL clock macro is used for internal reference clock. The second
12 * PLL clock macro is used to generate the clock for the PHY. This driver
13 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
14 * operate according to the mode of operation. The first PLL CMU is only
15 * required if internal clock is enabled.
17 * Logical Layer Out Of HW module units:
20 * | Internal | |------|
21 * | Ref PLL CMU |----| | ------------- ---------
22 * ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes|
24 * External Clock ------| | -------------
27 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
28 * indirectly from the SDS offset at 0x2000. It is only required for
29 * internal reference clock.
30 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
31 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
33 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
34 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
35 * it is located outside the PHY IP. This is the case for the PHY located
36 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
37 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
39 * Currently, this driver only supports Gen3 SATA mode with external clock.
41 #include <linux/module.h>
42 #include <linux/platform_device.h>
44 #include <linux/delay.h>
45 #include <linux/phy/phy.h>
46 #include <linux/clk.h>
48 /* Max 2 lanes per a PHY unit */
51 /* Register offset inside the PHY */
52 #define SERDES_PLL_INDIRECT_OFFSET 0x0000
53 #define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000
54 #define SERDES_INDIRECT_OFFSET 0x0400
55 #define SERDES_LANE_STRIDE 0x0200
57 /* Some default Serdes parameters */
58 #define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e }
59 #define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 }
60 #define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa }
61 #define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 }
62 #define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 }
63 #define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 }
64 #define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 }
65 #define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa }
67 #define SATA_SPD_SEL_GEN3 0x7
68 #define SATA_SPD_SEL_GEN2 0x3
69 #define SATA_SPD_SEL_GEN1 0x1
74 #define FBDIV_VAL_50M 0x77
75 #define REFDIV_VAL_50M 0x1
76 #define FBDIV_VAL_100M 0x3B
77 #define REFDIV_VAL_100M 0x0
79 /* SATA Clock/Reset CSR */
80 #define SATACLKENREG 0x00000000
81 #define SATA0_CORE_CLKEN 0x00000002
82 #define SATA1_CORE_CLKEN 0x00000004
83 #define SATASRESETREG 0x00000004
84 #define SATA_MEM_RESET_MASK 0x00000020
85 #define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5)
86 #define SATA_SDS_RESET_MASK 0x00000004
87 #define SATA_CSR_RESET_MASK 0x00000001
88 #define SATA_CORE_RESET_MASK 0x00000002
89 #define SATA_PMCLK_RESET_MASK 0x00000010
90 #define SATA_PCLK_RESET_MASK 0x00000008
92 /* SDS CSR used for PHY Indirect access */
93 #define SATA_ENET_SDS_PCS_CTL0 0x00000000
94 #define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
95 (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
96 #define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
97 (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
98 #define SATA_ENET_SDS_CTL0 0x0000000c
99 #define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
100 (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
101 #define SATA_ENET_SDS_CTL1 0x00000010
102 #define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
103 (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
104 #define SATA_ENET_SDS_RST_CTL 0x00000024
105 #define SATA_ENET_SDS_IND_CMD_REG 0x0000003c
106 #define CFG_IND_WR_CMD_MASK 0x00000001
107 #define CFG_IND_RD_CMD_MASK 0x00000002
108 #define CFG_IND_CMD_DONE_MASK 0x00000004
109 #define CFG_IND_ADDR_SET(dst, src) \
110 (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
111 #define SATA_ENET_SDS_IND_RDATA_REG 0x00000040
112 #define SATA_ENET_SDS_IND_WDATA_REG 0x00000044
113 #define SATA_ENET_CLK_MACRO_REG 0x0000004c
114 #define I_RESET_B_SET(dst, src) \
115 (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
116 #define I_PLL_FBDIV_SET(dst, src) \
117 (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
118 #define I_CUSTOMEROV_SET(dst, src) \
119 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
120 #define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30)
121 #define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31)
123 /* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
124 #define CMU_REG0 0x00000
125 #define CMU_REG0_PLL_REF_SEL_MASK 0x00002000
126 #define CMU_REG0_PLL_REF_SEL_SET(dst, src) \
127 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
128 #define CMU_REG0_PDOWN_MASK 0x00004000
129 #define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
130 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
131 #define CMU_REG1 0x00002
132 #define CMU_REG1_PLL_CP_SET(dst, src) \
133 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
134 #define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
135 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
136 #define CMU_REG1_PLL_CP_SEL_SET(dst, src) \
137 (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
138 #define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001
139 #define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \
140 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
141 #define CMU_REG2 0x00004
142 #define CMU_REG2_PLL_REFDIV_SET(dst, src) \
143 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
144 #define CMU_REG2_PLL_LFRES_SET(dst, src) \
145 (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
146 #define CMU_REG2_PLL_FBDIV_SET(dst, src) \
147 (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
148 #define CMU_REG3 0x00006
149 #define CMU_REG3_VCOVARSEL_SET(dst, src) \
150 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
151 #define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
152 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
153 #define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
154 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
155 #define CMU_REG4 0x00008
156 #define CMU_REG5 0x0000a
157 #define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
158 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
159 #define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
160 (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
161 #define CMU_REG5_PLL_LFCAP_SET(dst, src) \
162 (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
163 #define CMU_REG5_PLL_RESETB_MASK 0x00000001
164 #define CMU_REG6 0x0000c
165 #define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
166 (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
167 #define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
168 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
169 #define CMU_REG7 0x0000e
170 #define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
171 #define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10)
172 #define CMU_REG8 0x00010
173 #define CMU_REG9 0x00012
174 #define CMU_REG9_WORD_LEN_8BIT 0x000
175 #define CMU_REG9_WORD_LEN_10BIT 0x001
176 #define CMU_REG9_WORD_LEN_16BIT 0x002
177 #define CMU_REG9_WORD_LEN_20BIT 0x003
178 #define CMU_REG9_WORD_LEN_32BIT 0x004
179 #define CMU_REG9_WORD_LEN_40BIT 0x005
180 #define CMU_REG9_WORD_LEN_64BIT 0x006
181 #define CMU_REG9_WORD_LEN_66BIT 0x007
182 #define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
183 (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
184 #define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
185 (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
186 #define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
187 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
188 #define CMU_REG9_VBG_BYPASSB_SET(dst, src) \
189 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
190 #define CMU_REG9_IGEN_BYPASS_SET(dst, src) \
191 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
192 #define CMU_REG10 0x00014
193 #define CMU_REG10_VREG_REFSEL_SET(dst, src) \
194 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
195 #define CMU_REG11 0x00016
196 #define CMU_REG12 0x00018
197 #define CMU_REG12_STATE_DELAY9_SET(dst, src) \
198 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
199 #define CMU_REG13 0x0001a
200 #define CMU_REG14 0x0001c
201 #define CMU_REG15 0x0001e
202 #define CMU_REG16 0x00020
203 #define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001
204 #define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002
205 #define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
206 (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
207 #define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
208 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
209 #define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
210 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
211 #define CMU_REG17 0x00022
212 #define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
213 (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
214 #define CMU_REG17_RESERVED_7_SET(dst, src) \
215 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
216 #define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000
217 #define CMU_REG18 0x00024
218 #define CMU_REG19 0x00026
219 #define CMU_REG20 0x00028
220 #define CMU_REG21 0x0002a
221 #define CMU_REG22 0x0002c
222 #define CMU_REG23 0x0002e
223 #define CMU_REG24 0x00030
224 #define CMU_REG25 0x00032
225 #define CMU_REG26 0x00034
226 #define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
227 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
228 #define CMU_REG27 0x00036
229 #define CMU_REG28 0x00038
230 #define CMU_REG29 0x0003a
231 #define CMU_REG30 0x0003c
232 #define CMU_REG30_LOCK_COUNT_SET(dst, src) \
233 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
234 #define CMU_REG30_PCIE_MODE_SET(dst, src) \
235 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
236 #define CMU_REG31 0x0003e
237 #define CMU_REG32 0x00040
238 #define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000
239 #define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
240 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
241 #define CMU_REG32_IREF_ADJ_SET(dst, src) \
242 (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
243 #define CMU_REG33 0x00042
244 #define CMU_REG34 0x00044
245 #define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
246 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
247 #define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
248 (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
249 #define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
250 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
251 #define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
252 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
253 #define CMU_REG35 0x00046
254 #define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
255 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
256 #define CMU_REG36 0x00048
257 #define CMU_REG36_PLL_SSC_EN_SET(dst, src) \
258 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
259 #define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
260 (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
261 #define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
262 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
263 #define CMU_REG37 0x0004a
264 #define CMU_REG38 0x0004c
265 #define CMU_REG39 0x0004e
267 /* PHY lane CSR accessing from SDS indirectly */
268 #define RXTX_REG0 0x000
269 #define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
270 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
271 #define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
272 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
273 #define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
274 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
275 #define RXTX_REG1 0x002
276 #define RXTX_REG1_RXACVCM_SET(dst, src) \
277 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
278 #define RXTX_REG1_CTLE_EQ_SET(dst, src) \
279 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
280 #define RXTX_REG1_RXVREG1_SET(dst, src) \
281 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
282 #define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
283 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
284 #define RXTX_REG2 0x004
285 #define RXTX_REG2_VTT_ENA_SET(dst, src) \
286 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
287 #define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
288 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
289 #define RXTX_REG2_VTT_SEL_SET(dst, src) \
290 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
291 #define RXTX_REG4 0x008
292 #define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040
293 #define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
294 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
295 #define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
296 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
297 #define RXTX_REG5 0x00a
298 #define RXTX_REG5_TX_CN1_SET(dst, src) \
299 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
300 #define RXTX_REG5_TX_CP1_SET(dst, src) \
301 (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
302 #define RXTX_REG5_TX_CN2_SET(dst, src) \
303 (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
304 #define RXTX_REG6 0x00c
305 #define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
306 (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
307 #define RXTX_REG6_TXAMP_ENA_SET(dst, src) \
308 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
309 #define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
310 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
311 #define RXTX_REG6_TX_IDLE_SET(dst, src) \
312 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
313 #define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
314 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
315 #define RXTX_REG7 0x00e
316 #define RXTX_REG7_RESETB_RXD_MASK 0x00000100
317 #define RXTX_REG7_RESETB_RXA_MASK 0x00000080
318 #define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
319 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
320 #define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
321 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
322 #define RXTX_REG8 0x010
323 #define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
324 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
325 #define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
326 (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
327 #define RXTX_REG8_SSC_ENABLE_SET(dst, src) \
328 (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
329 #define RXTX_REG8_SD_VREF_SET(dst, src) \
330 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
331 #define RXTX_REG8_SD_DISABLE_SET(dst, src) \
332 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
333 #define RXTX_REG7 0x00e
334 #define RXTX_REG7_RESETB_RXD_SET(dst, src) \
335 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
336 #define RXTX_REG7_RESETB_RXA_SET(dst, src) \
337 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
338 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000
339 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
340 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
341 #define RXTX_REG11 0x016
342 #define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
343 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
344 #define RXTX_REG12 0x018
345 #define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
346 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
347 #define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
348 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
349 #define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002
350 #define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
351 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
352 #define RXTX_REG13 0x01a
353 #define RXTX_REG14 0x01c
354 #define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
355 (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
356 #define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
357 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
358 #define RXTX_REG26 0x034
359 #define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
360 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
361 #define RXTX_REG26_BLWC_ENA_SET(dst, src) \
362 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
363 #define RXTX_REG21 0x02a
364 #define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
365 #define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
366 #define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src)))
367 #define RXTX_REG22 0x02c
368 #define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
369 #define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
370 #define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src)))
371 #define RXTX_REG23 0x02e
372 #define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
373 #define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
374 #define RXTX_REG24 0x030
375 #define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
376 #define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
377 #define RXTX_REG27 0x036
378 #define RXTX_REG28 0x038
379 #define RXTX_REG31 0x03e
380 #define RXTX_REG38 0x04c
381 #define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
382 (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
383 #define RXTX_REG39 0x04e
384 #define RXTX_REG40 0x050
385 #define RXTX_REG41 0x052
386 #define RXTX_REG42 0x054
387 #define RXTX_REG43 0x056
388 #define RXTX_REG44 0x058
389 #define RXTX_REG45 0x05a
390 #define RXTX_REG46 0x05c
391 #define RXTX_REG47 0x05e
392 #define RXTX_REG48 0x060
393 #define RXTX_REG49 0x062
394 #define RXTX_REG50 0x064
395 #define RXTX_REG51 0x066
396 #define RXTX_REG52 0x068
397 #define RXTX_REG53 0x06a
398 #define RXTX_REG54 0x06c
399 #define RXTX_REG55 0x06e
400 #define RXTX_REG61 0x07a
401 #define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
402 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
403 #define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
404 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
405 #define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
406 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
407 #define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
408 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
409 #define RXTX_REG62 0x07c
410 #define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
411 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
412 #define RXTX_REG81 0x0a2
413 #define RXTX_REG89_MU_TH7_SET(dst, src) \
414 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
415 #define RXTX_REG89_MU_TH8_SET(dst, src) \
416 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
417 #define RXTX_REG89_MU_TH9_SET(dst, src) \
418 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
419 #define RXTX_REG96 0x0c0
420 #define RXTX_REG96_MU_FREQ1_SET(dst, src) \
421 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
422 #define RXTX_REG96_MU_FREQ2_SET(dst, src) \
423 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
424 #define RXTX_REG96_MU_FREQ3_SET(dst, src) \
425 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
426 #define RXTX_REG99 0x0c6
427 #define RXTX_REG99_MU_PHASE1_SET(dst, src) \
428 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
429 #define RXTX_REG99_MU_PHASE2_SET(dst, src) \
430 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
431 #define RXTX_REG99_MU_PHASE3_SET(dst, src) \
432 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
433 #define RXTX_REG102 0x0cc
434 #define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
435 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
436 #define RXTX_REG114 0x0e4
437 #define RXTX_REG121 0x0f2
438 #define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
439 #define RXTX_REG125 0x0fa
440 #define RXTX_REG125_PQ_REG_SET(dst, src) \
441 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
442 #define RXTX_REG125_SIGN_PQ_SET(dst, src) \
443 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
444 #define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
445 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
446 #define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
447 (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
448 #define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
449 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
450 #define RXTX_REG127 0x0fe
451 #define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002
452 #define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004
453 #define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
454 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
455 #define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
456 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
457 #define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
458 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
459 #define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
460 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
461 #define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
462 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
463 #define RXTX_REG128 0x100
464 #define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
465 (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
466 #define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
467 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
468 #define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
469 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
470 #define RXTX_REG129 0x102
471 #define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
472 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
473 #define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
474 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
475 #define RXTX_REG130 0x104
476 #define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
477 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
478 #define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
479 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
480 #define RXTX_REG145 0x122
481 #define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
482 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
483 #define RXTX_REG145_RXES_ENA_SET(dst, src) \
484 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
485 #define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
486 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
487 #define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
488 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
489 #define RXTX_REG147 0x126
490 #define RXTX_REG148 0x128
492 /* Clock macro type */
494 REF_CMU
= 0, /* Clock macro is the internal reference clock */
495 PHY_CMU
= 1, /* Clock macro is the PLL for the Serdes */
499 MUX_SELECT_ATA
= 0, /* Switch the MUX to ATA */
500 MUX_SELECT_SGMMII
= 0, /* Switch the MUX to SGMII */
504 CLK_EXT_DIFF
= 0, /* External differential */
505 CLK_INT_DIFF
= 1, /* Internal differential */
506 CLK_INT_SING
= 2, /* Internal single ended */
509 enum xgene_phy_mode
{
510 MODE_SATA
= 0, /* List them for simple reference */
518 struct xgene_sata_override_param
{
519 u32 speed
[MAX_LANE
]; /* Index for override parameter per lane */
520 u32 txspeed
[3]; /* Tx speed */
521 u32 txboostgain
[MAX_LANE
*3]; /* Tx freq boost and gain control */
522 u32 txeyetuning
[MAX_LANE
*3]; /* Tx eye tuning */
523 u32 txeyedirection
[MAX_LANE
*3]; /* Tx eye tuning direction */
524 u32 txamplitude
[MAX_LANE
*3]; /* Tx amplitude control */
525 u32 txprecursor_cn1
[MAX_LANE
*3]; /* Tx emphasis taps 1st pre-cursor */
526 u32 txprecursor_cn2
[MAX_LANE
*3]; /* Tx emphasis taps 2nd pre-cursor */
527 u32 txpostcursor_cp1
[MAX_LANE
*3]; /* Tx emphasis taps post-cursor */
530 struct xgene_phy_ctx
{
533 enum xgene_phy_mode mode
; /* Mode of operation */
534 enum clk_type_t clk_type
; /* Input clock selection */
535 void __iomem
*sds_base
; /* PHY CSR base addr */
536 struct clk
*clk
; /* Optional clock */
538 /* Override Serdes parameters */
539 struct xgene_sata_override_param sata_param
;
543 * For chip earlier than A3 version, enable this flag.
544 * To enable, pass boot argument phy_xgene.preA3Chip=1
546 static int preA3Chip
;
547 MODULE_PARM_DESC(preA3Chip
, "Enable pre-A3 chip support (1=enable 0=disable)");
548 module_param_named(preA3Chip
, preA3Chip
, int, 0444);
550 static void sds_wr(void __iomem
*csr_base
, u32 indirect_cmd_reg
,
551 u32 indirect_data_reg
, u32 addr
, u32 data
)
553 unsigned long deadline
= jiffies
+ HZ
;
557 cmd
= CFG_IND_WR_CMD_MASK
| CFG_IND_CMD_DONE_MASK
;
558 cmd
= CFG_IND_ADDR_SET(cmd
, addr
);
559 writel(data
, csr_base
+ indirect_data_reg
);
560 readl(csr_base
+ indirect_data_reg
); /* Force a barrier */
561 writel(cmd
, csr_base
+ indirect_cmd_reg
);
562 readl(csr_base
+ indirect_cmd_reg
); /* Force a barrier */
564 val
= readl(csr_base
+ indirect_cmd_reg
);
565 } while (!(val
& CFG_IND_CMD_DONE_MASK
) &&
566 time_before(jiffies
, deadline
));
567 if (!(val
& CFG_IND_CMD_DONE_MASK
))
568 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
569 csr_base
+ indirect_cmd_reg
, addr
, data
);
572 static void sds_rd(void __iomem
*csr_base
, u32 indirect_cmd_reg
,
573 u32 indirect_data_reg
, u32 addr
, u32
*data
)
575 unsigned long deadline
= jiffies
+ HZ
;
579 cmd
= CFG_IND_RD_CMD_MASK
| CFG_IND_CMD_DONE_MASK
;
580 cmd
= CFG_IND_ADDR_SET(cmd
, addr
);
581 writel(cmd
, csr_base
+ indirect_cmd_reg
);
582 readl(csr_base
+ indirect_cmd_reg
); /* Force a barrier */
584 val
= readl(csr_base
+ indirect_cmd_reg
);
585 } while (!(val
& CFG_IND_CMD_DONE_MASK
) &&
586 time_before(jiffies
, deadline
));
587 *data
= readl(csr_base
+ indirect_data_reg
);
588 if (!(val
& CFG_IND_CMD_DONE_MASK
))
589 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
590 csr_base
+ indirect_cmd_reg
, addr
, *data
);
593 static void cmu_wr(struct xgene_phy_ctx
*ctx
, enum cmu_type_t cmu_type
,
596 void __iomem
*sds_base
= ctx
->sds_base
;
599 if (cmu_type
== REF_CMU
)
600 reg
+= SERDES_PLL_REF_INDIRECT_OFFSET
;
602 reg
+= SERDES_PLL_INDIRECT_OFFSET
;
603 sds_wr(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
604 SATA_ENET_SDS_IND_WDATA_REG
, reg
, data
);
605 sds_rd(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
606 SATA_ENET_SDS_IND_RDATA_REG
, reg
, &val
);
607 pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg
, data
, val
);
610 static void cmu_rd(struct xgene_phy_ctx
*ctx
, enum cmu_type_t cmu_type
,
613 void __iomem
*sds_base
= ctx
->sds_base
;
615 if (cmu_type
== REF_CMU
)
616 reg
+= SERDES_PLL_REF_INDIRECT_OFFSET
;
618 reg
+= SERDES_PLL_INDIRECT_OFFSET
;
619 sds_rd(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
620 SATA_ENET_SDS_IND_RDATA_REG
, reg
, data
);
621 pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg
, *data
);
624 static void cmu_toggle1to0(struct xgene_phy_ctx
*ctx
, enum cmu_type_t cmu_type
,
629 cmu_rd(ctx
, cmu_type
, reg
, &val
);
631 cmu_wr(ctx
, cmu_type
, reg
, val
);
632 cmu_rd(ctx
, cmu_type
, reg
, &val
);
634 cmu_wr(ctx
, cmu_type
, reg
, val
);
637 static void cmu_clrbits(struct xgene_phy_ctx
*ctx
, enum cmu_type_t cmu_type
,
642 cmu_rd(ctx
, cmu_type
, reg
, &val
);
644 cmu_wr(ctx
, cmu_type
, reg
, val
);
647 static void cmu_setbits(struct xgene_phy_ctx
*ctx
, enum cmu_type_t cmu_type
,
652 cmu_rd(ctx
, cmu_type
, reg
, &val
);
654 cmu_wr(ctx
, cmu_type
, reg
, val
);
657 static void serdes_wr(struct xgene_phy_ctx
*ctx
, int lane
, u32 reg
, u32 data
)
659 void __iomem
*sds_base
= ctx
->sds_base
;
662 reg
+= SERDES_INDIRECT_OFFSET
;
663 reg
+= lane
* SERDES_LANE_STRIDE
;
664 sds_wr(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
665 SATA_ENET_SDS_IND_WDATA_REG
, reg
, data
);
666 sds_rd(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
667 SATA_ENET_SDS_IND_RDATA_REG
, reg
, &val
);
668 pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg
, data
,
672 static void serdes_rd(struct xgene_phy_ctx
*ctx
, int lane
, u32 reg
, u32
*data
)
674 void __iomem
*sds_base
= ctx
->sds_base
;
676 reg
+= SERDES_INDIRECT_OFFSET
;
677 reg
+= lane
* SERDES_LANE_STRIDE
;
678 sds_rd(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
679 SATA_ENET_SDS_IND_RDATA_REG
, reg
, data
);
680 pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg
, *data
);
683 static void serdes_clrbits(struct xgene_phy_ctx
*ctx
, int lane
, u32 reg
,
688 serdes_rd(ctx
, lane
, reg
, &val
);
690 serdes_wr(ctx
, lane
, reg
, val
);
693 static void serdes_setbits(struct xgene_phy_ctx
*ctx
, int lane
, u32 reg
,
698 serdes_rd(ctx
, lane
, reg
, &val
);
700 serdes_wr(ctx
, lane
, reg
, val
);
703 static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx
*ctx
,
704 enum cmu_type_t cmu_type
,
705 enum clk_type_t clk_type
)
709 /* Set the reset sequence delay for TX ready assertion */
710 cmu_rd(ctx
, cmu_type
, CMU_REG12
, &val
);
711 val
= CMU_REG12_STATE_DELAY9_SET(val
, 0x1);
712 cmu_wr(ctx
, cmu_type
, CMU_REG12
, val
);
713 /* Set the programmable stage delays between various enable stages */
714 cmu_wr(ctx
, cmu_type
, CMU_REG13
, 0x0222);
715 cmu_wr(ctx
, cmu_type
, CMU_REG14
, 0x2225);
717 /* Configure clock type */
718 if (clk_type
== CLK_EXT_DIFF
) {
719 /* Select external clock mux */
720 cmu_rd(ctx
, cmu_type
, CMU_REG0
, &val
);
721 val
= CMU_REG0_PLL_REF_SEL_SET(val
, 0x0);
722 cmu_wr(ctx
, cmu_type
, CMU_REG0
, val
);
723 /* Select CMOS as reference clock */
724 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
725 val
= CMU_REG1_REFCLK_CMOS_SEL_SET(val
, 0x0);
726 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
727 dev_dbg(ctx
->dev
, "Set external reference clock\n");
728 } else if (clk_type
== CLK_INT_DIFF
) {
729 /* Select internal clock mux */
730 cmu_rd(ctx
, cmu_type
, CMU_REG0
, &val
);
731 val
= CMU_REG0_PLL_REF_SEL_SET(val
, 0x1);
732 cmu_wr(ctx
, cmu_type
, CMU_REG0
, val
);
733 /* Select CMOS as reference clock */
734 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
735 val
= CMU_REG1_REFCLK_CMOS_SEL_SET(val
, 0x1);
736 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
737 dev_dbg(ctx
->dev
, "Set internal reference clock\n");
738 } else if (clk_type
== CLK_INT_SING
) {
740 * NOTE: This clock type is NOT support for controller
741 * whose internal clock shared in the PCIe controller
743 * Select internal clock mux
745 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
746 val
= CMU_REG1_REFCLK_CMOS_SEL_SET(val
, 0x1);
747 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
748 /* Select CML as reference clock */
749 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
750 val
= CMU_REG1_REFCLK_CMOS_SEL_SET(val
, 0x0);
751 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
753 "Set internal single ended reference clock\n");
757 static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx
*ctx
,
758 enum cmu_type_t cmu_type
,
759 enum clk_type_t clk_type
)
764 if (cmu_type
== REF_CMU
) {
765 /* Set VCO calibration voltage threshold */
766 cmu_rd(ctx
, cmu_type
, CMU_REG34
, &val
);
767 val
= CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val
, 0x7);
768 val
= CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val
, 0xc);
769 val
= CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val
, 0x3);
770 val
= CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val
, 0x8);
771 cmu_wr(ctx
, cmu_type
, CMU_REG34
, val
);
774 /* Set the VCO calibration counter */
775 cmu_rd(ctx
, cmu_type
, CMU_REG0
, &val
);
776 if (cmu_type
== REF_CMU
|| preA3Chip
)
777 val
= CMU_REG0_CAL_COUNT_RESOL_SET(val
, 0x4);
779 val
= CMU_REG0_CAL_COUNT_RESOL_SET(val
, 0x7);
780 cmu_wr(ctx
, cmu_type
, CMU_REG0
, val
);
782 /* Configure PLL for calibration */
783 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
784 val
= CMU_REG1_PLL_CP_SET(val
, 0x1);
785 if (cmu_type
== REF_CMU
|| preA3Chip
)
786 val
= CMU_REG1_PLL_CP_SEL_SET(val
, 0x5);
788 val
= CMU_REG1_PLL_CP_SEL_SET(val
, 0x3);
789 if (cmu_type
== REF_CMU
)
790 val
= CMU_REG1_PLL_MANUALCAL_SET(val
, 0x0);
792 val
= CMU_REG1_PLL_MANUALCAL_SET(val
, 0x1);
793 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
795 if (cmu_type
!= REF_CMU
)
796 cmu_clrbits(ctx
, cmu_type
, CMU_REG5
, CMU_REG5_PLL_RESETB_MASK
);
798 /* Configure the PLL for either 100MHz or 50MHz */
799 cmu_rd(ctx
, cmu_type
, CMU_REG2
, &val
);
800 if (cmu_type
== REF_CMU
) {
801 val
= CMU_REG2_PLL_LFRES_SET(val
, 0xa);
804 val
= CMU_REG2_PLL_LFRES_SET(val
, 0x3);
805 if (clk_type
== CLK_EXT_DIFF
)
811 val
= CMU_REG2_PLL_FBDIV_SET(val
, FBDIV_VAL_100M
);
812 val
= CMU_REG2_PLL_REFDIV_SET(val
, REFDIV_VAL_100M
);
814 val
= CMU_REG2_PLL_FBDIV_SET(val
, FBDIV_VAL_50M
);
815 val
= CMU_REG2_PLL_REFDIV_SET(val
, REFDIV_VAL_50M
);
817 cmu_wr(ctx
, cmu_type
, CMU_REG2
, val
);
819 /* Configure the VCO */
820 cmu_rd(ctx
, cmu_type
, CMU_REG3
, &val
);
821 if (cmu_type
== REF_CMU
) {
822 val
= CMU_REG3_VCOVARSEL_SET(val
, 0x3);
823 val
= CMU_REG3_VCO_MOMSEL_INIT_SET(val
, 0x10);
825 val
= CMU_REG3_VCOVARSEL_SET(val
, 0xF);
827 val
= CMU_REG3_VCO_MOMSEL_INIT_SET(val
, 0x15);
829 val
= CMU_REG3_VCO_MOMSEL_INIT_SET(val
, 0x1a);
830 val
= CMU_REG3_VCO_MANMOMSEL_SET(val
, 0x15);
832 cmu_wr(ctx
, cmu_type
, CMU_REG3
, val
);
834 /* Disable force PLL lock */
835 cmu_rd(ctx
, cmu_type
, CMU_REG26
, &val
);
836 val
= CMU_REG26_FORCE_PLL_LOCK_SET(val
, 0x0);
837 cmu_wr(ctx
, cmu_type
, CMU_REG26
, val
);
839 /* Setup PLL loop filter */
840 cmu_rd(ctx
, cmu_type
, CMU_REG5
, &val
);
841 val
= CMU_REG5_PLL_LFSMCAP_SET(val
, 0x3);
842 val
= CMU_REG5_PLL_LFCAP_SET(val
, 0x3);
843 if (cmu_type
== REF_CMU
|| !preA3Chip
)
844 val
= CMU_REG5_PLL_LOCK_RESOLUTION_SET(val
, 0x7);
846 val
= CMU_REG5_PLL_LOCK_RESOLUTION_SET(val
, 0x4);
847 cmu_wr(ctx
, cmu_type
, CMU_REG5
, val
);
849 /* Enable or disable manual calibration */
850 cmu_rd(ctx
, cmu_type
, CMU_REG6
, &val
);
851 val
= CMU_REG6_PLL_VREGTRIM_SET(val
, preA3Chip
? 0x0 : 0x2);
852 val
= CMU_REG6_MAN_PVT_CAL_SET(val
, preA3Chip
? 0x1 : 0x0);
853 cmu_wr(ctx
, cmu_type
, CMU_REG6
, val
);
855 /* Configure lane for 20-bits */
856 if (cmu_type
== PHY_CMU
) {
857 cmu_rd(ctx
, cmu_type
, CMU_REG9
, &val
);
858 val
= CMU_REG9_TX_WORD_MODE_CH1_SET(val
,
859 CMU_REG9_WORD_LEN_20BIT
);
860 val
= CMU_REG9_TX_WORD_MODE_CH0_SET(val
,
861 CMU_REG9_WORD_LEN_20BIT
);
862 val
= CMU_REG9_PLL_POST_DIVBY2_SET(val
, 0x1);
864 val
= CMU_REG9_VBG_BYPASSB_SET(val
, 0x0);
865 val
= CMU_REG9_IGEN_BYPASS_SET(val
, 0x0);
867 cmu_wr(ctx
, cmu_type
, CMU_REG9
, val
);
870 cmu_rd(ctx
, cmu_type
, CMU_REG10
, &val
);
871 val
= CMU_REG10_VREG_REFSEL_SET(val
, 0x1);
872 cmu_wr(ctx
, cmu_type
, CMU_REG10
, val
);
876 cmu_rd(ctx
, cmu_type
, CMU_REG16
, &val
);
877 val
= CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val
, 0x1);
878 val
= CMU_REG16_BYPASS_PLL_LOCK_SET(val
, 0x1);
879 if (cmu_type
== REF_CMU
|| preA3Chip
)
880 val
= CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val
, 0x4);
882 val
= CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val
, 0x7);
883 cmu_wr(ctx
, cmu_type
, CMU_REG16
, val
);
885 /* Configure for SATA */
886 cmu_rd(ctx
, cmu_type
, CMU_REG30
, &val
);
887 val
= CMU_REG30_PCIE_MODE_SET(val
, 0x0);
888 val
= CMU_REG30_LOCK_COUNT_SET(val
, 0x3);
889 cmu_wr(ctx
, cmu_type
, CMU_REG30
, val
);
891 /* Disable state machine bypass */
892 cmu_wr(ctx
, cmu_type
, CMU_REG31
, 0xF);
894 cmu_rd(ctx
, cmu_type
, CMU_REG32
, &val
);
895 val
= CMU_REG32_PVT_CAL_WAIT_SEL_SET(val
, 0x3);
896 if (cmu_type
== REF_CMU
|| preA3Chip
)
897 val
= CMU_REG32_IREF_ADJ_SET(val
, 0x3);
899 val
= CMU_REG32_IREF_ADJ_SET(val
, 0x1);
900 cmu_wr(ctx
, cmu_type
, CMU_REG32
, val
);
902 /* Set VCO calibration threshold */
903 if (cmu_type
!= REF_CMU
&& preA3Chip
)
904 cmu_wr(ctx
, cmu_type
, CMU_REG34
, 0x8d27);
906 cmu_wr(ctx
, cmu_type
, CMU_REG34
, 0x873c);
908 /* Set CTLE Override and override waiting from state machine */
909 cmu_wr(ctx
, cmu_type
, CMU_REG37
, 0xF00F);
912 static void xgene_phy_ssc_enable(struct xgene_phy_ctx
*ctx
,
913 enum cmu_type_t cmu_type
)
917 /* Set SSC modulation value */
918 cmu_rd(ctx
, cmu_type
, CMU_REG35
, &val
);
919 val
= CMU_REG35_PLL_SSC_MOD_SET(val
, 98);
920 cmu_wr(ctx
, cmu_type
, CMU_REG35
, val
);
922 /* Enable SSC, set vertical step and DSM value */
923 cmu_rd(ctx
, cmu_type
, CMU_REG36
, &val
);
924 val
= CMU_REG36_PLL_SSC_VSTEP_SET(val
, 30);
925 val
= CMU_REG36_PLL_SSC_EN_SET(val
, 1);
926 val
= CMU_REG36_PLL_SSC_DSMSEL_SET(val
, 1);
927 cmu_wr(ctx
, cmu_type
, CMU_REG36
, val
);
930 cmu_clrbits(ctx
, cmu_type
, CMU_REG5
, CMU_REG5_PLL_RESETB_MASK
);
931 cmu_setbits(ctx
, cmu_type
, CMU_REG5
, CMU_REG5_PLL_RESETB_MASK
);
933 /* Force VCO calibration to restart */
934 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG32
,
935 CMU_REG32_FORCE_VCOCAL_START_MASK
);
938 static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx
*ctx
)
945 for (lane
= 0; lane
< MAX_LANE
; lane
++) {
946 serdes_wr(ctx
, lane
, RXTX_REG147
, 0x6);
948 /* Set boost control for quarter, half, and full rate */
949 serdes_rd(ctx
, lane
, RXTX_REG0
, &val
);
950 val
= RXTX_REG0_CTLE_EQ_HR_SET(val
, 0x10);
951 val
= RXTX_REG0_CTLE_EQ_QR_SET(val
, 0x10);
952 val
= RXTX_REG0_CTLE_EQ_FR_SET(val
, 0x10);
953 serdes_wr(ctx
, lane
, RXTX_REG0
, val
);
955 /* Set boost control value */
956 serdes_rd(ctx
, lane
, RXTX_REG1
, &val
);
957 val
= RXTX_REG1_RXACVCM_SET(val
, 0x7);
958 val
= RXTX_REG1_CTLE_EQ_SET(val
,
959 ctx
->sata_param
.txboostgain
[lane
* 3 +
960 ctx
->sata_param
.speed
[lane
]]);
961 serdes_wr(ctx
, lane
, RXTX_REG1
, val
);
963 /* Latch VTT value based on the termination to ground and
965 serdes_rd(ctx
, lane
, RXTX_REG2
, &val
);
966 val
= RXTX_REG2_VTT_ENA_SET(val
, 0x1);
967 val
= RXTX_REG2_VTT_SEL_SET(val
, 0x1);
968 val
= RXTX_REG2_TX_FIFO_ENA_SET(val
, 0x1);
969 serdes_wr(ctx
, lane
, RXTX_REG2
, val
);
971 /* Configure Tx for 20-bits */
972 serdes_rd(ctx
, lane
, RXTX_REG4
, &val
);
973 val
= RXTX_REG4_TX_WORD_MODE_SET(val
, CMU_REG9_WORD_LEN_20BIT
);
974 serdes_wr(ctx
, lane
, RXTX_REG4
, val
);
977 serdes_rd(ctx
, lane
, RXTX_REG1
, &val
);
978 val
= RXTX_REG1_RXVREG1_SET(val
, 0x2);
979 val
= RXTX_REG1_RXIREF_ADJ_SET(val
, 0x2);
980 serdes_wr(ctx
, lane
, RXTX_REG1
, val
);
983 /* Set pre-emphasis first 1 and 2, and post-emphasis values */
984 serdes_rd(ctx
, lane
, RXTX_REG5
, &val
);
985 val
= RXTX_REG5_TX_CN1_SET(val
,
986 ctx
->sata_param
.txprecursor_cn1
[lane
* 3 +
987 ctx
->sata_param
.speed
[lane
]]);
988 val
= RXTX_REG5_TX_CP1_SET(val
,
989 ctx
->sata_param
.txpostcursor_cp1
[lane
* 3 +
990 ctx
->sata_param
.speed
[lane
]]);
991 val
= RXTX_REG5_TX_CN2_SET(val
,
992 ctx
->sata_param
.txprecursor_cn2
[lane
* 3 +
993 ctx
->sata_param
.speed
[lane
]]);
994 serdes_wr(ctx
, lane
, RXTX_REG5
, val
);
996 /* Set TX amplitude value */
997 serdes_rd(ctx
, lane
, RXTX_REG6
, &val
);
998 val
= RXTX_REG6_TXAMP_CNTL_SET(val
,
999 ctx
->sata_param
.txamplitude
[lane
* 3 +
1000 ctx
->sata_param
.speed
[lane
]]);
1001 val
= RXTX_REG6_TXAMP_ENA_SET(val
, 0x1);
1002 val
= RXTX_REG6_TX_IDLE_SET(val
, 0x0);
1003 val
= RXTX_REG6_RX_BIST_RESYNC_SET(val
, 0x0);
1004 val
= RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val
, 0x0);
1005 serdes_wr(ctx
, lane
, RXTX_REG6
, val
);
1007 /* Configure Rx for 20-bits */
1008 serdes_rd(ctx
, lane
, RXTX_REG7
, &val
);
1009 val
= RXTX_REG7_BIST_ENA_RX_SET(val
, 0x0);
1010 val
= RXTX_REG7_RX_WORD_MODE_SET(val
, CMU_REG9_WORD_LEN_20BIT
);
1011 serdes_wr(ctx
, lane
, RXTX_REG7
, val
);
1013 /* Set CDR and LOS values and enable Rx SSC */
1014 serdes_rd(ctx
, lane
, RXTX_REG8
, &val
);
1015 val
= RXTX_REG8_CDR_LOOP_ENA_SET(val
, 0x1);
1016 val
= RXTX_REG8_CDR_BYPASS_RXLOS_SET(val
, 0x0);
1017 val
= RXTX_REG8_SSC_ENABLE_SET(val
, 0x1);
1018 val
= RXTX_REG8_SD_DISABLE_SET(val
, 0x0);
1019 val
= RXTX_REG8_SD_VREF_SET(val
, 0x4);
1020 serdes_wr(ctx
, lane
, RXTX_REG8
, val
);
1022 /* Set phase adjust upper/lower limits */
1023 serdes_rd(ctx
, lane
, RXTX_REG11
, &val
);
1024 val
= RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val
, 0x0);
1025 serdes_wr(ctx
, lane
, RXTX_REG11
, val
);
1027 /* Enable Latch Off; disable SUMOS and Tx termination */
1028 serdes_rd(ctx
, lane
, RXTX_REG12
, &val
);
1029 val
= RXTX_REG12_LATCH_OFF_ENA_SET(val
, 0x1);
1030 val
= RXTX_REG12_SUMOS_ENABLE_SET(val
, 0x0);
1031 val
= RXTX_REG12_RX_DET_TERM_ENABLE_SET(val
, 0x0);
1032 serdes_wr(ctx
, lane
, RXTX_REG12
, val
);
1034 /* Set period error latch to 512T and enable BWL */
1035 serdes_rd(ctx
, lane
, RXTX_REG26
, &val
);
1036 val
= RXTX_REG26_PERIOD_ERROR_LATCH_SET(val
, 0x0);
1037 val
= RXTX_REG26_BLWC_ENA_SET(val
, 0x1);
1038 serdes_wr(ctx
, lane
, RXTX_REG26
, val
);
1040 serdes_wr(ctx
, lane
, RXTX_REG28
, 0x0);
1042 /* Set DFE loop preset value */
1043 serdes_wr(ctx
, lane
, RXTX_REG31
, 0x0);
1045 /* Set Eye Monitor counter width to 12-bit */
1046 serdes_rd(ctx
, lane
, RXTX_REG61
, &val
);
1047 val
= RXTX_REG61_ISCAN_INBERT_SET(val
, 0x1);
1048 val
= RXTX_REG61_LOADFREQ_SHIFT_SET(val
, 0x0);
1049 val
= RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val
, 0x0);
1050 serdes_wr(ctx
, lane
, RXTX_REG61
, val
);
1052 serdes_rd(ctx
, lane
, RXTX_REG62
, &val
);
1053 val
= RXTX_REG62_PERIOD_H1_QLATCH_SET(val
, 0x0);
1054 serdes_wr(ctx
, lane
, RXTX_REG62
, val
);
1056 /* Set BW select tap X for DFE loop */
1057 for (i
= 0; i
< 9; i
++) {
1058 reg
= RXTX_REG81
+ i
* 2;
1059 serdes_rd(ctx
, lane
, reg
, &val
);
1060 val
= RXTX_REG89_MU_TH7_SET(val
, 0xe);
1061 val
= RXTX_REG89_MU_TH8_SET(val
, 0xe);
1062 val
= RXTX_REG89_MU_TH9_SET(val
, 0xe);
1063 serdes_wr(ctx
, lane
, reg
, val
);
1066 /* Set BW select tap X for frequency adjust loop */
1067 for (i
= 0; i
< 3; i
++) {
1068 reg
= RXTX_REG96
+ i
* 2;
1069 serdes_rd(ctx
, lane
, reg
, &val
);
1070 val
= RXTX_REG96_MU_FREQ1_SET(val
, 0x10);
1071 val
= RXTX_REG96_MU_FREQ2_SET(val
, 0x10);
1072 val
= RXTX_REG96_MU_FREQ3_SET(val
, 0x10);
1073 serdes_wr(ctx
, lane
, reg
, val
);
1076 /* Set BW select tap X for phase adjust loop */
1077 for (i
= 0; i
< 3; i
++) {
1078 reg
= RXTX_REG99
+ i
* 2;
1079 serdes_rd(ctx
, lane
, reg
, &val
);
1080 val
= RXTX_REG99_MU_PHASE1_SET(val
, 0x7);
1081 val
= RXTX_REG99_MU_PHASE2_SET(val
, 0x7);
1082 val
= RXTX_REG99_MU_PHASE3_SET(val
, 0x7);
1083 serdes_wr(ctx
, lane
, reg
, val
);
1086 serdes_rd(ctx
, lane
, RXTX_REG102
, &val
);
1087 val
= RXTX_REG102_FREQLOOP_LIMIT_SET(val
, 0x0);
1088 serdes_wr(ctx
, lane
, RXTX_REG102
, val
);
1090 serdes_wr(ctx
, lane
, RXTX_REG114
, 0xffe0);
1092 serdes_rd(ctx
, lane
, RXTX_REG125
, &val
);
1093 val
= RXTX_REG125_SIGN_PQ_SET(val
,
1094 ctx
->sata_param
.txeyedirection
[lane
* 3 +
1095 ctx
->sata_param
.speed
[lane
]]);
1096 val
= RXTX_REG125_PQ_REG_SET(val
,
1097 ctx
->sata_param
.txeyetuning
[lane
* 3 +
1098 ctx
->sata_param
.speed
[lane
]]);
1099 val
= RXTX_REG125_PHZ_MANUAL_SET(val
, 0x1);
1100 serdes_wr(ctx
, lane
, RXTX_REG125
, val
);
1102 serdes_rd(ctx
, lane
, RXTX_REG127
, &val
);
1103 val
= RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val
, 0x0);
1104 serdes_wr(ctx
, lane
, RXTX_REG127
, val
);
1106 serdes_rd(ctx
, lane
, RXTX_REG128
, &val
);
1107 val
= RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val
, 0x3);
1108 serdes_wr(ctx
, lane
, RXTX_REG128
, val
);
1110 serdes_rd(ctx
, lane
, RXTX_REG145
, &val
);
1111 val
= RXTX_REG145_RXDFE_CONFIG_SET(val
, 0x3);
1112 val
= RXTX_REG145_TX_IDLE_SATA_SET(val
, 0x0);
1114 val
= RXTX_REG145_RXES_ENA_SET(val
, 0x1);
1115 val
= RXTX_REG145_RXVWES_LATENA_SET(val
, 0x1);
1117 val
= RXTX_REG145_RXES_ENA_SET(val
, 0x0);
1118 val
= RXTX_REG145_RXVWES_LATENA_SET(val
, 0x0);
1120 serdes_wr(ctx
, lane
, RXTX_REG145
, val
);
1123 * Set Rx LOS filter clock rate, sample rate, and threshold
1126 for (i
= 0; i
< 4; i
++) {
1127 reg
= RXTX_REG148
+ i
* 2;
1128 serdes_wr(ctx
, lane
, reg
, 0xFFFF);
1133 static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx
*ctx
,
1134 enum cmu_type_t cmu_type
,
1135 enum clk_type_t clk_type
)
1137 void __iomem
*csr_serdes
= ctx
->sds_base
;
1141 /* Release PHY main reset */
1142 writel(0xdf, csr_serdes
+ SATA_ENET_SDS_RST_CTL
);
1143 readl(csr_serdes
+ SATA_ENET_SDS_RST_CTL
); /* Force a barrier */
1145 if (cmu_type
!= REF_CMU
) {
1146 cmu_setbits(ctx
, cmu_type
, CMU_REG5
, CMU_REG5_PLL_RESETB_MASK
);
1148 * As per PHY design spec, the PLL reset requires a minimum
1151 usleep_range(800, 1000);
1153 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
1154 val
= CMU_REG1_PLL_MANUALCAL_SET(val
, 0x0);
1155 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
1157 * As per PHY design spec, the PLL auto calibration requires
1158 * a minimum of 800us.
1160 usleep_range(800, 1000);
1162 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG32
,
1163 CMU_REG32_FORCE_VCOCAL_START_MASK
);
1165 * As per PHY design spec, the PLL requires a minimum of
1168 usleep_range(800, 1000);
1172 goto skip_manual_cal
;
1175 * Configure the termination resister calibration
1176 * The serial receive pins, RXP/RXN, have TERMination resistor
1177 * that is required to be calibrated.
1179 cmu_rd(ctx
, cmu_type
, CMU_REG17
, &val
);
1180 val
= CMU_REG17_PVT_CODE_R2A_SET(val
, 0x12);
1181 val
= CMU_REG17_RESERVED_7_SET(val
, 0x0);
1182 cmu_wr(ctx
, cmu_type
, CMU_REG17
, val
);
1183 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG17
,
1184 CMU_REG17_PVT_TERM_MAN_ENA_MASK
);
1186 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1187 * resistors that are required to the calibrated.
1188 * Configure the pull DOWN calibration
1190 cmu_rd(ctx
, cmu_type
, CMU_REG17
, &val
);
1191 val
= CMU_REG17_PVT_CODE_R2A_SET(val
, 0x29);
1192 val
= CMU_REG17_RESERVED_7_SET(val
, 0x0);
1193 cmu_wr(ctx
, cmu_type
, CMU_REG17
, val
);
1194 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG16
,
1195 CMU_REG16_PVT_DN_MAN_ENA_MASK
);
1196 /* Configure the pull UP calibration */
1197 cmu_rd(ctx
, cmu_type
, CMU_REG17
, &val
);
1198 val
= CMU_REG17_PVT_CODE_R2A_SET(val
, 0x28);
1199 val
= CMU_REG17_RESERVED_7_SET(val
, 0x0);
1200 cmu_wr(ctx
, cmu_type
, CMU_REG17
, val
);
1201 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG16
,
1202 CMU_REG16_PVT_UP_MAN_ENA_MASK
);
1205 /* Poll the PLL calibration completion status for at least 1 ms */
1208 cmu_rd(ctx
, cmu_type
, CMU_REG7
, &val
);
1209 if (CMU_REG7_PLL_CALIB_DONE_RD(val
))
1212 * As per PHY design spec, PLL calibration status requires
1213 * a minimum of 10us to be updated.
1215 usleep_range(10, 100);
1216 } while (--loop
> 0);
1218 cmu_rd(ctx
, cmu_type
, CMU_REG7
, &val
);
1219 dev_dbg(ctx
->dev
, "PLL calibration %s\n",
1220 CMU_REG7_PLL_CALIB_DONE_RD(val
) ? "done" : "failed");
1221 if (CMU_REG7_VCO_CAL_FAIL_RD(val
)) {
1223 "PLL calibration failed due to VCO failure\n");
1226 dev_dbg(ctx
->dev
, "PLL calibration successful\n");
1228 cmu_rd(ctx
, cmu_type
, CMU_REG15
, &val
);
1229 dev_dbg(ctx
->dev
, "PHY Tx is %sready\n", val
& 0x300 ? "" : "not ");
1233 static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx
*ctx
,
1234 enum cmu_type_t cmu_type
,
1235 enum clk_type_t clk_type
)
1239 dev_dbg(ctx
->dev
, "Reset VCO and re-start again\n");
1240 if (cmu_type
== PHY_CMU
) {
1241 cmu_rd(ctx
, cmu_type
, CMU_REG16
, &val
);
1242 val
= CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val
, 0x7);
1243 cmu_wr(ctx
, cmu_type
, CMU_REG16
, val
);
1246 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG0
, CMU_REG0_PDOWN_MASK
);
1247 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG32
,
1248 CMU_REG32_FORCE_VCOCAL_START_MASK
);
1251 static int xgene_phy_hw_init_sata(struct xgene_phy_ctx
*ctx
,
1252 enum clk_type_t clk_type
, int ssc_enable
)
1254 void __iomem
*sds_base
= ctx
->sds_base
;
1258 /* Configure the PHY for operation */
1259 dev_dbg(ctx
->dev
, "Reset PHY\n");
1260 /* Place PHY into reset */
1261 writel(0x0, sds_base
+ SATA_ENET_SDS_RST_CTL
);
1262 val
= readl(sds_base
+ SATA_ENET_SDS_RST_CTL
); /* Force a barrier */
1263 /* Release PHY lane from reset (active high) */
1264 writel(0x20, sds_base
+ SATA_ENET_SDS_RST_CTL
);
1265 readl(sds_base
+ SATA_ENET_SDS_RST_CTL
); /* Force a barrier */
1266 /* Release all PHY module out of reset except PHY main reset */
1267 writel(0xde, sds_base
+ SATA_ENET_SDS_RST_CTL
);
1268 readl(sds_base
+ SATA_ENET_SDS_RST_CTL
); /* Force a barrier */
1270 /* Set the operation speed */
1271 val
= readl(sds_base
+ SATA_ENET_SDS_CTL1
);
1272 val
= CFG_I_SPD_SEL_CDR_OVR1_SET(val
,
1273 ctx
->sata_param
.txspeed
[ctx
->sata_param
.speed
[0]]);
1274 writel(val
, sds_base
+ SATA_ENET_SDS_CTL1
);
1276 dev_dbg(ctx
->dev
, "Set the customer pin mode to SATA\n");
1277 val
= readl(sds_base
+ SATA_ENET_SDS_CTL0
);
1278 val
= REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val
, 0x4421);
1279 writel(val
, sds_base
+ SATA_ENET_SDS_CTL0
);
1281 /* Configure the clock macro unit (CMU) clock type */
1282 xgene_phy_cfg_cmu_clk_type(ctx
, PHY_CMU
, clk_type
);
1284 /* Configure the clock macro */
1285 xgene_phy_sata_cfg_cmu_core(ctx
, PHY_CMU
, clk_type
);
1287 /* Enable SSC if enabled */
1289 xgene_phy_ssc_enable(ctx
, PHY_CMU
);
1291 /* Configure PHY lanes */
1292 xgene_phy_sata_cfg_lanes(ctx
);
1294 /* Set Rx/Tx 20-bit */
1295 val
= readl(sds_base
+ SATA_ENET_SDS_PCS_CTL0
);
1296 val
= REGSPEC_CFG_I_RX_WORDMODE0_SET(val
, 0x3);
1297 val
= REGSPEC_CFG_I_TX_WORDMODE0_SET(val
, 0x3);
1298 writel(val
, sds_base
+ SATA_ENET_SDS_PCS_CTL0
);
1300 /* Start PLL calibration and try for three times */
1303 if (!xgene_phy_cal_rdy_chk(ctx
, PHY_CMU
, clk_type
))
1305 /* If failed, toggle the VCO power signal and start again */
1306 xgene_phy_pdwn_force_vco(ctx
, PHY_CMU
, clk_type
);
1308 /* Even on failure, allow to continue any way */
1310 dev_err(ctx
->dev
, "PLL calibration failed\n");
1315 static int xgene_phy_hw_initialize(struct xgene_phy_ctx
*ctx
,
1316 enum clk_type_t clk_type
,
1321 dev_dbg(ctx
->dev
, "PHY init clk type %d\n", clk_type
);
1323 if (ctx
->mode
== MODE_SATA
) {
1324 rc
= xgene_phy_hw_init_sata(ctx
, clk_type
, ssc_enable
);
1328 dev_err(ctx
->dev
, "Un-supported customer pin mode %d\n",
1337 * Receiver Offset Calibration:
1339 * Calibrate the receiver signal path offset in two steps - summar and
1340 * latch calibrations
1342 static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx
*ctx
, int lane
)
1345 static const struct {
1350 {RXTX_REG39
, 0xff00},
1351 {RXTX_REG40
, 0xffff},
1352 {RXTX_REG41
, 0xffff},
1353 {RXTX_REG42
, 0xffff},
1354 {RXTX_REG43
, 0xffff},
1355 {RXTX_REG44
, 0xffff},
1356 {RXTX_REG45
, 0xffff},
1357 {RXTX_REG46
, 0xffff},
1358 {RXTX_REG47
, 0xfffc},
1369 /* Start SUMMER calibration */
1370 serdes_setbits(ctx
, lane
, RXTX_REG127
,
1371 RXTX_REG127_FORCE_SUM_CAL_START_MASK
);
1373 * As per PHY design spec, the Summer calibration requires a minimum
1374 * of 100us to complete.
1376 usleep_range(100, 500);
1377 serdes_clrbits(ctx
, lane
, RXTX_REG127
,
1378 RXTX_REG127_FORCE_SUM_CAL_START_MASK
);
1380 * As per PHY design spec, the auto calibration requires a minimum
1381 * of 100us to complete.
1383 usleep_range(100, 500);
1385 /* Start latch calibration */
1386 serdes_setbits(ctx
, lane
, RXTX_REG127
,
1387 RXTX_REG127_FORCE_LAT_CAL_START_MASK
);
1389 * As per PHY design spec, the latch calibration requires a minimum
1390 * of 100us to complete.
1392 usleep_range(100, 500);
1393 serdes_clrbits(ctx
, lane
, RXTX_REG127
,
1394 RXTX_REG127_FORCE_LAT_CAL_START_MASK
);
1396 /* Configure the PHY lane for calibration */
1397 serdes_wr(ctx
, lane
, RXTX_REG28
, 0x7);
1398 serdes_wr(ctx
, lane
, RXTX_REG31
, 0x7e00);
1399 serdes_clrbits(ctx
, lane
, RXTX_REG4
,
1400 RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK
);
1401 serdes_clrbits(ctx
, lane
, RXTX_REG7
,
1402 RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK
);
1403 for (i
= 0; i
< ARRAY_SIZE(serdes_reg
); i
++)
1404 serdes_wr(ctx
, lane
, serdes_reg
[i
].reg
,
1408 static void xgene_phy_reset_rxd(struct xgene_phy_ctx
*ctx
, int lane
)
1410 /* Reset digital Rx */
1411 serdes_clrbits(ctx
, lane
, RXTX_REG7
, RXTX_REG7_RESETB_RXD_MASK
);
1412 /* As per PHY design spec, the reset requires a minimum of 100us. */
1413 usleep_range(100, 150);
1414 serdes_setbits(ctx
, lane
, RXTX_REG7
, RXTX_REG7_RESETB_RXD_MASK
);
1417 static int xgene_phy_get_avg(int accum
, int samples
)
1419 return (accum
+ (samples
/ 2)) / samples
;
1422 static void xgene_phy_gen_avg_val(struct xgene_phy_ctx
*ctx
, int lane
)
1426 int lat_do
= 0, lat_xo
= 0, lat_eo
= 0, lat_so
= 0;
1427 int lat_de
= 0, lat_xe
= 0, lat_ee
= 0, lat_se
= 0;
1429 int lat_do_itr
, lat_xo_itr
, lat_eo_itr
, lat_so_itr
;
1430 int lat_de_itr
, lat_xe_itr
, lat_ee_itr
, lat_se_itr
;
1436 dev_dbg(ctx
->dev
, "Generating avg calibration value for lane %d\n",
1439 /* Enable RX Hi-Z termination */
1440 serdes_setbits(ctx
, lane
, RXTX_REG12
,
1441 RXTX_REG12_RX_DET_TERM_ENABLE_MASK
);
1443 serdes_wr(ctx
, lane
, RXTX_REG28
, 0x0000);
1444 /* DFE Presets to zero */
1445 serdes_wr(ctx
, lane
, RXTX_REG31
, 0x0000);
1448 * Receiver Offset Calibration:
1449 * Calibrate the receiver signal path offset in two steps - summar
1450 * and latch calibration.
1451 * Runs the "Receiver Offset Calibration multiple times to determine
1452 * the average value to use.
1454 while (avg_loop
< max_loop
) {
1455 /* Start the calibration */
1456 xgene_phy_force_lat_summer_cal(ctx
, lane
);
1458 serdes_rd(ctx
, lane
, RXTX_REG21
, &val
);
1459 lat_do_itr
= RXTX_REG21_DO_LATCH_CALOUT_RD(val
);
1460 lat_xo_itr
= RXTX_REG21_XO_LATCH_CALOUT_RD(val
);
1461 fail_odd
= RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val
);
1463 serdes_rd(ctx
, lane
, RXTX_REG22
, &val
);
1464 lat_eo_itr
= RXTX_REG22_EO_LATCH_CALOUT_RD(val
);
1465 lat_so_itr
= RXTX_REG22_SO_LATCH_CALOUT_RD(val
);
1466 fail_even
= RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val
);
1468 serdes_rd(ctx
, lane
, RXTX_REG23
, &val
);
1469 lat_de_itr
= RXTX_REG23_DE_LATCH_CALOUT_RD(val
);
1470 lat_xe_itr
= RXTX_REG23_XE_LATCH_CALOUT_RD(val
);
1472 serdes_rd(ctx
, lane
, RXTX_REG24
, &val
);
1473 lat_ee_itr
= RXTX_REG24_EE_LATCH_CALOUT_RD(val
);
1474 lat_se_itr
= RXTX_REG24_SE_LATCH_CALOUT_RD(val
);
1476 serdes_rd(ctx
, lane
, RXTX_REG121
, &val
);
1477 sum_cal_itr
= RXTX_REG121_SUMOS_CAL_CODE_RD(val
);
1479 /* Check for failure. If passed, sum them for averaging */
1480 if ((fail_even
== 0 || fail_even
== 1) &&
1481 (fail_odd
== 0 || fail_odd
== 1)) {
1482 lat_do
+= lat_do_itr
;
1483 lat_xo
+= lat_xo_itr
;
1484 lat_eo
+= lat_eo_itr
;
1485 lat_so
+= lat_so_itr
;
1486 lat_de
+= lat_de_itr
;
1487 lat_xe
+= lat_xe_itr
;
1488 lat_ee
+= lat_ee_itr
;
1489 lat_se
+= lat_se_itr
;
1490 sum_cal
+= sum_cal_itr
;
1492 dev_dbg(ctx
->dev
, "Iteration %d:\n", avg_loop
);
1493 dev_dbg(ctx
->dev
, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1494 lat_do_itr
, lat_xo_itr
, lat_eo_itr
,
1496 dev_dbg(ctx
->dev
, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1497 lat_de_itr
, lat_xe_itr
, lat_ee_itr
,
1499 dev_dbg(ctx
->dev
, "SUM 0x%x\n", sum_cal_itr
);
1503 "Receiver calibration failed at %d loop\n",
1506 xgene_phy_reset_rxd(ctx
, lane
);
1509 /* Update latch manual calibration with average value */
1510 serdes_rd(ctx
, lane
, RXTX_REG127
, &val
);
1511 val
= RXTX_REG127_DO_LATCH_MANCAL_SET(val
,
1512 xgene_phy_get_avg(lat_do
, max_loop
));
1513 val
= RXTX_REG127_XO_LATCH_MANCAL_SET(val
,
1514 xgene_phy_get_avg(lat_xo
, max_loop
));
1515 serdes_wr(ctx
, lane
, RXTX_REG127
, val
);
1517 serdes_rd(ctx
, lane
, RXTX_REG128
, &val
);
1518 val
= RXTX_REG128_EO_LATCH_MANCAL_SET(val
,
1519 xgene_phy_get_avg(lat_eo
, max_loop
));
1520 val
= RXTX_REG128_SO_LATCH_MANCAL_SET(val
,
1521 xgene_phy_get_avg(lat_so
, max_loop
));
1522 serdes_wr(ctx
, lane
, RXTX_REG128
, val
);
1524 serdes_rd(ctx
, lane
, RXTX_REG129
, &val
);
1525 val
= RXTX_REG129_DE_LATCH_MANCAL_SET(val
,
1526 xgene_phy_get_avg(lat_de
, max_loop
));
1527 val
= RXTX_REG129_XE_LATCH_MANCAL_SET(val
,
1528 xgene_phy_get_avg(lat_xe
, max_loop
));
1529 serdes_wr(ctx
, lane
, RXTX_REG129
, val
);
1531 serdes_rd(ctx
, lane
, RXTX_REG130
, &val
);
1532 val
= RXTX_REG130_EE_LATCH_MANCAL_SET(val
,
1533 xgene_phy_get_avg(lat_ee
, max_loop
));
1534 val
= RXTX_REG130_SE_LATCH_MANCAL_SET(val
,
1535 xgene_phy_get_avg(lat_se
, max_loop
));
1536 serdes_wr(ctx
, lane
, RXTX_REG130
, val
);
1538 /* Update SUMMER calibration with average value */
1539 serdes_rd(ctx
, lane
, RXTX_REG14
, &val
);
1540 val
= RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val
,
1541 xgene_phy_get_avg(sum_cal
, max_loop
));
1542 serdes_wr(ctx
, lane
, RXTX_REG14
, val
);
1544 dev_dbg(ctx
->dev
, "Average Value:\n");
1545 dev_dbg(ctx
->dev
, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1546 xgene_phy_get_avg(lat_do
, max_loop
),
1547 xgene_phy_get_avg(lat_xo
, max_loop
),
1548 xgene_phy_get_avg(lat_eo
, max_loop
),
1549 xgene_phy_get_avg(lat_so
, max_loop
));
1550 dev_dbg(ctx
->dev
, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1551 xgene_phy_get_avg(lat_de
, max_loop
),
1552 xgene_phy_get_avg(lat_xe
, max_loop
),
1553 xgene_phy_get_avg(lat_ee
, max_loop
),
1554 xgene_phy_get_avg(lat_se
, max_loop
));
1555 dev_dbg(ctx
->dev
, "SUM 0x%x\n",
1556 xgene_phy_get_avg(sum_cal
, max_loop
));
1558 serdes_rd(ctx
, lane
, RXTX_REG14
, &val
);
1559 val
= RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val
, 0x1);
1560 serdes_wr(ctx
, lane
, RXTX_REG14
, val
);
1561 dev_dbg(ctx
->dev
, "Enable Manual Summer calibration\n");
1563 serdes_rd(ctx
, lane
, RXTX_REG127
, &val
);
1564 val
= RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val
, 0x1);
1565 dev_dbg(ctx
->dev
, "Enable Manual Latch calibration\n");
1566 serdes_wr(ctx
, lane
, RXTX_REG127
, val
);
1568 /* Disable RX Hi-Z termination */
1569 serdes_rd(ctx
, lane
, RXTX_REG12
, &val
);
1570 val
= RXTX_REG12_RX_DET_TERM_ENABLE_SET(val
, 0);
1571 serdes_wr(ctx
, lane
, RXTX_REG12
, val
);
1573 serdes_wr(ctx
, lane
, RXTX_REG28
, 0x0007);
1574 /* Set DFE preset */
1575 serdes_wr(ctx
, lane
, RXTX_REG31
, 0x7e00);
1578 static int xgene_phy_hw_init(struct phy
*phy
)
1580 struct xgene_phy_ctx
*ctx
= phy_get_drvdata(phy
);
1584 rc
= xgene_phy_hw_initialize(ctx
, CLK_EXT_DIFF
, SSC_DISABLE
);
1586 dev_err(ctx
->dev
, "PHY initialize failed %d\n", rc
);
1590 /* Setup clock properly after PHY configuration */
1591 if (!IS_ERR(ctx
->clk
)) {
1592 /* HW requires an toggle of the clock */
1593 clk_prepare_enable(ctx
->clk
);
1594 clk_disable_unprepare(ctx
->clk
);
1595 clk_prepare_enable(ctx
->clk
);
1598 /* Compute average value */
1599 for (i
= 0; i
< MAX_LANE
; i
++)
1600 xgene_phy_gen_avg_val(ctx
, i
);
1602 dev_dbg(ctx
->dev
, "PHY initialized\n");
1606 static const struct phy_ops xgene_phy_ops
= {
1607 .init
= xgene_phy_hw_init
,
1608 .owner
= THIS_MODULE
,
1611 static struct phy
*xgene_phy_xlate(struct device
*dev
,
1612 struct of_phandle_args
*args
)
1614 struct xgene_phy_ctx
*ctx
= dev_get_drvdata(dev
);
1616 if (args
->args_count
<= 0)
1617 return ERR_PTR(-EINVAL
);
1618 if (args
->args
[0] >= MODE_MAX
)
1619 return ERR_PTR(-EINVAL
);
1621 ctx
->mode
= args
->args
[0];
1625 static void xgene_phy_get_param(struct platform_device
*pdev
,
1626 const char *name
, u32
*buffer
,
1627 int count
, u32
*default_val
,
1632 if (!of_property_read_u32_array(pdev
->dev
.of_node
, name
, buffer
,
1634 for (i
= 0; i
< count
; i
++)
1635 buffer
[i
] /= conv_factor
;
1638 /* Does not exist, load default */
1639 for (i
= 0; i
< count
; i
++)
1640 buffer
[i
] = default_val
[i
% 3];
1643 static int xgene_phy_probe(struct platform_device
*pdev
)
1645 struct phy_provider
*phy_provider
;
1646 struct xgene_phy_ctx
*ctx
;
1647 u32 default_spd
[] = DEFAULT_SATA_SPD_SEL
;
1648 u32 default_txboost_gain
[] = DEFAULT_SATA_TXBOOST_GAIN
;
1649 u32 default_txeye_direction
[] = DEFAULT_SATA_TXEYEDIRECTION
;
1650 u32 default_txeye_tuning
[] = DEFAULT_SATA_TXEYETUNING
;
1651 u32 default_txamp
[] = DEFAULT_SATA_TXAMP
;
1652 u32 default_txcn1
[] = DEFAULT_SATA_TXCN1
;
1653 u32 default_txcn2
[] = DEFAULT_SATA_TXCN2
;
1654 u32 default_txcp1
[] = DEFAULT_SATA_TXCP1
;
1657 ctx
= devm_kzalloc(&pdev
->dev
, sizeof(*ctx
), GFP_KERNEL
);
1661 ctx
->dev
= &pdev
->dev
;
1663 ctx
->sds_base
= devm_platform_ioremap_resource(pdev
, 0);
1664 if (IS_ERR(ctx
->sds_base
))
1665 return PTR_ERR(ctx
->sds_base
);
1667 /* Retrieve optional clock */
1668 ctx
->clk
= clk_get(&pdev
->dev
, NULL
);
1670 /* Load override paramaters */
1671 xgene_phy_get_param(pdev
, "apm,tx-eye-tuning",
1672 ctx
->sata_param
.txeyetuning
, 6, default_txeye_tuning
, 1);
1673 xgene_phy_get_param(pdev
, "apm,tx-eye-direction",
1674 ctx
->sata_param
.txeyedirection
, 6, default_txeye_direction
, 1);
1675 xgene_phy_get_param(pdev
, "apm,tx-boost-gain",
1676 ctx
->sata_param
.txboostgain
, 6, default_txboost_gain
, 1);
1677 xgene_phy_get_param(pdev
, "apm,tx-amplitude",
1678 ctx
->sata_param
.txamplitude
, 6, default_txamp
, 13300);
1679 xgene_phy_get_param(pdev
, "apm,tx-pre-cursor1",
1680 ctx
->sata_param
.txprecursor_cn1
, 6, default_txcn1
, 18200);
1681 xgene_phy_get_param(pdev
, "apm,tx-pre-cursor2",
1682 ctx
->sata_param
.txprecursor_cn2
, 6, default_txcn2
, 18200);
1683 xgene_phy_get_param(pdev
, "apm,tx-post-cursor",
1684 ctx
->sata_param
.txpostcursor_cp1
, 6, default_txcp1
, 18200);
1685 xgene_phy_get_param(pdev
, "apm,tx-speed",
1686 ctx
->sata_param
.txspeed
, 3, default_spd
, 1);
1687 for (i
= 0; i
< MAX_LANE
; i
++)
1688 ctx
->sata_param
.speed
[i
] = 2; /* Default to Gen3 */
1690 platform_set_drvdata(pdev
, ctx
);
1692 ctx
->phy
= devm_phy_create(ctx
->dev
, NULL
, &xgene_phy_ops
);
1693 if (IS_ERR(ctx
->phy
)) {
1694 dev_dbg(&pdev
->dev
, "Failed to create PHY\n");
1695 return PTR_ERR(ctx
->phy
);
1697 phy_set_drvdata(ctx
->phy
, ctx
);
1699 phy_provider
= devm_of_phy_provider_register(ctx
->dev
, xgene_phy_xlate
);
1700 return PTR_ERR_OR_ZERO(phy_provider
);
1703 static const struct of_device_id xgene_phy_of_match
[] = {
1704 {.compatible
= "apm,xgene-phy",},
1707 MODULE_DEVICE_TABLE(of
, xgene_phy_of_match
);
1709 static struct platform_driver xgene_phy_driver
= {
1710 .probe
= xgene_phy_probe
,
1712 .name
= "xgene-phy",
1713 .of_match_table
= xgene_phy_of_match
,
1716 module_platform_driver(xgene_phy_driver
);
1718 MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1719 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1720 MODULE_LICENSE("GPL v2");
1721 MODULE_VERSION("0.1");