1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * PTP 1588 clock support
5 * Copyright (C) 2010 OMICRON electronics GmbH
8 #include <linux/device.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
20 #include "ptp_private.h"
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
29 static dev_t ptp_devt
;
30 static struct class *ptp_class
;
32 static DEFINE_IDA(ptp_clocks_map
);
34 /* time stamp event queue operations */
36 static inline int queue_free(struct timestamp_event_queue
*q
)
38 return PTP_MAX_TIMESTAMPS
- queue_cnt(q
) - 1;
41 static void enqueue_external_timestamp(struct timestamp_event_queue
*queue
,
42 struct ptp_clock_event
*src
)
44 struct ptp_extts_event
*dst
;
49 seconds
= div_u64_rem(src
->timestamp
, 1000000000, &remainder
);
51 spin_lock_irqsave(&queue
->lock
, flags
);
53 dst
= &queue
->buf
[queue
->tail
];
54 dst
->index
= src
->index
;
56 dst
->t
.nsec
= remainder
;
58 if (!queue_free(queue
))
59 queue
->head
= (queue
->head
+ 1) % PTP_MAX_TIMESTAMPS
;
61 queue
->tail
= (queue
->tail
+ 1) % PTP_MAX_TIMESTAMPS
;
63 spin_unlock_irqrestore(&queue
->lock
, flags
);
66 s32
scaled_ppm_to_ppb(long ppm
)
69 * The 'freq' field in the 'struct timex' is in parts per
70 * million, but with a 16 bit binary fractional field.
72 * We want to calculate
74 * ppb = scaled_ppm * 1000 / 2^16
78 * ppb = scaled_ppm * 125 / 2^13
85 EXPORT_SYMBOL(scaled_ppm_to_ppb
);
87 /* posix clock implementation */
89 static int ptp_clock_getres(struct posix_clock
*pc
, struct timespec64
*tp
)
96 static int ptp_clock_settime(struct posix_clock
*pc
, const struct timespec64
*tp
)
98 struct ptp_clock
*ptp
= container_of(pc
, struct ptp_clock
, clock
);
100 return ptp
->info
->settime64(ptp
->info
, tp
);
103 static int ptp_clock_gettime(struct posix_clock
*pc
, struct timespec64
*tp
)
105 struct ptp_clock
*ptp
= container_of(pc
, struct ptp_clock
, clock
);
108 if (ptp
->info
->gettimex64
)
109 err
= ptp
->info
->gettimex64(ptp
->info
, tp
, NULL
);
111 err
= ptp
->info
->gettime64(ptp
->info
, tp
);
115 static int ptp_clock_adjtime(struct posix_clock
*pc
, struct __kernel_timex
*tx
)
117 struct ptp_clock
*ptp
= container_of(pc
, struct ptp_clock
, clock
);
118 struct ptp_clock_info
*ops
;
119 int err
= -EOPNOTSUPP
;
123 if (tx
->modes
& ADJ_SETOFFSET
) {
124 struct timespec64 ts
;
128 ts
.tv_sec
= tx
->time
.tv_sec
;
129 ts
.tv_nsec
= tx
->time
.tv_usec
;
131 if (!(tx
->modes
& ADJ_NANO
))
134 if ((unsigned long) ts
.tv_nsec
>= NSEC_PER_SEC
)
137 kt
= timespec64_to_ktime(ts
);
138 delta
= ktime_to_ns(kt
);
139 err
= ops
->adjtime(ops
, delta
);
140 } else if (tx
->modes
& ADJ_FREQUENCY
) {
141 s32 ppb
= scaled_ppm_to_ppb(tx
->freq
);
142 if (ppb
> ops
->max_adj
|| ppb
< -ops
->max_adj
)
145 err
= ops
->adjfine(ops
, tx
->freq
);
147 err
= ops
->adjfreq(ops
, ppb
);
148 ptp
->dialed_frequency
= tx
->freq
;
149 } else if (tx
->modes
& ADJ_OFFSET
) {
151 s32 offset
= tx
->offset
;
153 if (!(tx
->modes
& ADJ_NANO
))
154 offset
*= NSEC_PER_USEC
;
156 err
= ops
->adjphase(ops
, offset
);
158 } else if (tx
->modes
== 0) {
159 tx
->freq
= ptp
->dialed_frequency
;
166 static struct posix_clock_operations ptp_clock_ops
= {
167 .owner
= THIS_MODULE
,
168 .clock_adjtime
= ptp_clock_adjtime
,
169 .clock_gettime
= ptp_clock_gettime
,
170 .clock_getres
= ptp_clock_getres
,
171 .clock_settime
= ptp_clock_settime
,
178 static void ptp_clock_release(struct device
*dev
)
180 struct ptp_clock
*ptp
= container_of(dev
, struct ptp_clock
, dev
);
182 ptp_cleanup_pin_groups(ptp
);
183 mutex_destroy(&ptp
->tsevq_mux
);
184 mutex_destroy(&ptp
->pincfg_mux
);
185 ida_simple_remove(&ptp_clocks_map
, ptp
->index
);
189 static void ptp_aux_kworker(struct kthread_work
*work
)
191 struct ptp_clock
*ptp
= container_of(work
, struct ptp_clock
,
193 struct ptp_clock_info
*info
= ptp
->info
;
196 delay
= info
->do_aux_work(info
);
199 kthread_queue_delayed_work(ptp
->kworker
, &ptp
->aux_work
, delay
);
202 /* public interface */
204 struct ptp_clock
*ptp_clock_register(struct ptp_clock_info
*info
,
205 struct device
*parent
)
207 struct ptp_clock
*ptp
;
208 int err
= 0, index
, major
= MAJOR(ptp_devt
);
210 if (info
->n_alarm
> PTP_MAX_ALARMS
)
211 return ERR_PTR(-EINVAL
);
213 /* Initialize a clock structure. */
215 ptp
= kzalloc(sizeof(struct ptp_clock
), GFP_KERNEL
);
219 index
= ida_simple_get(&ptp_clocks_map
, 0, MINORMASK
+ 1, GFP_KERNEL
);
225 ptp
->clock
.ops
= ptp_clock_ops
;
227 ptp
->devid
= MKDEV(major
, index
);
229 spin_lock_init(&ptp
->tsevq
.lock
);
230 mutex_init(&ptp
->tsevq_mux
);
231 mutex_init(&ptp
->pincfg_mux
);
232 init_waitqueue_head(&ptp
->tsev_wq
);
234 if (ptp
->info
->do_aux_work
) {
235 kthread_init_delayed_work(&ptp
->aux_work
, ptp_aux_kworker
);
236 ptp
->kworker
= kthread_create_worker(0, "ptp%d", ptp
->index
);
237 if (IS_ERR(ptp
->kworker
)) {
238 err
= PTR_ERR(ptp
->kworker
);
239 pr_err("failed to create ptp aux_worker %d\n", err
);
244 err
= ptp_populate_pin_groups(ptp
);
248 /* Register a new PPS source. */
250 struct pps_source_info pps
;
251 memset(&pps
, 0, sizeof(pps
));
252 snprintf(pps
.name
, PPS_MAX_NAME_LEN
, "ptp%d", index
);
253 pps
.mode
= PTP_PPS_MODE
;
254 pps
.owner
= info
->owner
;
255 ptp
->pps_source
= pps_register_source(&pps
, PTP_PPS_DEFAULTS
);
256 if (IS_ERR(ptp
->pps_source
)) {
257 err
= PTR_ERR(ptp
->pps_source
);
258 pr_err("failed to register pps source\n");
263 /* Initialize a new device of our class in our clock structure. */
264 device_initialize(&ptp
->dev
);
265 ptp
->dev
.devt
= ptp
->devid
;
266 ptp
->dev
.class = ptp_class
;
267 ptp
->dev
.parent
= parent
;
268 ptp
->dev
.groups
= ptp
->pin_attr_groups
;
269 ptp
->dev
.release
= ptp_clock_release
;
270 dev_set_drvdata(&ptp
->dev
, ptp
);
271 dev_set_name(&ptp
->dev
, "ptp%d", ptp
->index
);
273 /* Create a posix clock and link it to the device. */
274 err
= posix_clock_register(&ptp
->clock
, &ptp
->dev
);
276 pr_err("failed to create posix clock\n");
284 pps_unregister_source(ptp
->pps_source
);
286 ptp_cleanup_pin_groups(ptp
);
289 kthread_destroy_worker(ptp
->kworker
);
291 mutex_destroy(&ptp
->tsevq_mux
);
292 mutex_destroy(&ptp
->pincfg_mux
);
293 ida_simple_remove(&ptp_clocks_map
, index
);
299 EXPORT_SYMBOL(ptp_clock_register
);
301 int ptp_clock_unregister(struct ptp_clock
*ptp
)
304 wake_up_interruptible(&ptp
->tsev_wq
);
307 kthread_cancel_delayed_work_sync(&ptp
->aux_work
);
308 kthread_destroy_worker(ptp
->kworker
);
311 /* Release the clock's resources. */
313 pps_unregister_source(ptp
->pps_source
);
315 posix_clock_unregister(&ptp
->clock
);
319 EXPORT_SYMBOL(ptp_clock_unregister
);
321 void ptp_clock_event(struct ptp_clock
*ptp
, struct ptp_clock_event
*event
)
323 struct pps_event_time evt
;
325 switch (event
->type
) {
327 case PTP_CLOCK_ALARM
:
330 case PTP_CLOCK_EXTTS
:
331 enqueue_external_timestamp(&ptp
->tsevq
, event
);
332 wake_up_interruptible(&ptp
->tsev_wq
);
337 pps_event(ptp
->pps_source
, &evt
, PTP_PPS_EVENT
, NULL
);
340 case PTP_CLOCK_PPSUSR
:
341 pps_event(ptp
->pps_source
, &event
->pps_times
,
342 PTP_PPS_EVENT
, NULL
);
346 EXPORT_SYMBOL(ptp_clock_event
);
348 int ptp_clock_index(struct ptp_clock
*ptp
)
352 EXPORT_SYMBOL(ptp_clock_index
);
354 int ptp_find_pin(struct ptp_clock
*ptp
,
355 enum ptp_pin_function func
, unsigned int chan
)
357 struct ptp_pin_desc
*pin
= NULL
;
360 for (i
= 0; i
< ptp
->info
->n_pins
; i
++) {
361 if (ptp
->info
->pin_config
[i
].func
== func
&&
362 ptp
->info
->pin_config
[i
].chan
== chan
) {
363 pin
= &ptp
->info
->pin_config
[i
];
370 EXPORT_SYMBOL(ptp_find_pin
);
372 int ptp_find_pin_unlocked(struct ptp_clock
*ptp
,
373 enum ptp_pin_function func
, unsigned int chan
)
377 mutex_lock(&ptp
->pincfg_mux
);
379 result
= ptp_find_pin(ptp
, func
, chan
);
381 mutex_unlock(&ptp
->pincfg_mux
);
385 EXPORT_SYMBOL(ptp_find_pin_unlocked
);
387 int ptp_schedule_worker(struct ptp_clock
*ptp
, unsigned long delay
)
389 return kthread_mod_delayed_work(ptp
->kworker
, &ptp
->aux_work
, delay
);
391 EXPORT_SYMBOL(ptp_schedule_worker
);
393 void ptp_cancel_worker_sync(struct ptp_clock
*ptp
)
395 kthread_cancel_delayed_work_sync(&ptp
->aux_work
);
397 EXPORT_SYMBOL(ptp_cancel_worker_sync
);
399 /* module operations */
401 static void __exit
ptp_exit(void)
403 class_destroy(ptp_class
);
404 unregister_chrdev_region(ptp_devt
, MINORMASK
+ 1);
405 ida_destroy(&ptp_clocks_map
);
408 static int __init
ptp_init(void)
412 ptp_class
= class_create(THIS_MODULE
, "ptp");
413 if (IS_ERR(ptp_class
)) {
414 pr_err("ptp: failed to allocate class\n");
415 return PTR_ERR(ptp_class
);
418 err
= alloc_chrdev_region(&ptp_devt
, 0, MINORMASK
+ 1, "ptp");
420 pr_err("ptp: failed to allocate device region\n");
424 ptp_class
->dev_groups
= ptp_groups
;
425 pr_info("PTP clock support registered\n");
429 class_destroy(ptp_class
);
433 subsys_initcall(ptp_init
);
434 module_exit(ptp_exit
);
436 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
437 MODULE_DESCRIPTION("PTP clocks support");
438 MODULE_LICENSE("GPL");