1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * drivers/rtc/rtc-pl031.c
5 * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
7 * Author: Deepak Saxena <dsaxena@plexity.net>
9 * Copyright 2006 (c) MontaVista Software, Inc.
11 * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
12 * Copyright 2010 (c) ST-Ericsson AB
14 #include <linux/module.h>
15 #include <linux/rtc.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/amba/bus.h>
20 #include <linux/bcd.h>
21 #include <linux/delay.h>
22 #include <linux/pm_wakeirq.h>
23 #include <linux/slab.h>
26 * Register definitions
28 #define RTC_DR 0x00 /* Data read register */
29 #define RTC_MR 0x04 /* Match register */
30 #define RTC_LR 0x08 /* Data load register */
31 #define RTC_CR 0x0c /* Control register */
32 #define RTC_IMSC 0x10 /* Interrupt mask and set register */
33 #define RTC_RIS 0x14 /* Raw interrupt status register */
34 #define RTC_MIS 0x18 /* Masked interrupt status register */
35 #define RTC_ICR 0x1c /* Interrupt clear register */
36 /* ST variants have additional timer functionality */
37 #define RTC_TDR 0x20 /* Timer data read register */
38 #define RTC_TLR 0x24 /* Timer data load register */
39 #define RTC_TCR 0x28 /* Timer control register */
40 #define RTC_YDR 0x30 /* Year data read register */
41 #define RTC_YMR 0x34 /* Year match register */
42 #define RTC_YLR 0x38 /* Year data load register */
44 #define RTC_CR_EN (1 << 0) /* counter enable bit */
45 #define RTC_CR_CWEN (1 << 26) /* Clockwatch enable bit */
47 #define RTC_TCR_EN (1 << 1) /* Periodic timer enable bit */
49 /* Common bit definitions for Interrupt status and control registers */
50 #define RTC_BIT_AI (1 << 0) /* Alarm interrupt bit */
51 #define RTC_BIT_PI (1 << 1) /* Periodic interrupt bit. ST variants only. */
53 /* Common bit definations for ST v2 for reading/writing time */
54 #define RTC_SEC_SHIFT 0
55 #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
56 #define RTC_MIN_SHIFT 6
57 #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
58 #define RTC_HOUR_SHIFT 12
59 #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
60 #define RTC_WDAY_SHIFT 17
61 #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
62 #define RTC_MDAY_SHIFT 20
63 #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
64 #define RTC_MON_SHIFT 25
65 #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
67 #define RTC_TIMER_FREQ 32768
70 * struct pl031_vendor_data - per-vendor variations
71 * @ops: the vendor-specific operations used on this silicon version
72 * @clockwatch: if this is an ST Microelectronics silicon version with a
74 * @st_weekday: if this is an ST Microelectronics silicon version that need
76 * @irqflags: special IRQ flags per variant
78 struct pl031_vendor_data
{
79 struct rtc_class_ops ops
;
82 unsigned long irqflags
;
88 struct pl031_vendor_data
*vendor
;
89 struct rtc_device
*rtc
;
93 static int pl031_alarm_irq_enable(struct device
*dev
,
96 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
99 /* Clear any pending alarm interrupts. */
100 writel(RTC_BIT_AI
, ldata
->base
+ RTC_ICR
);
102 imsc
= readl(ldata
->base
+ RTC_IMSC
);
105 writel(imsc
| RTC_BIT_AI
, ldata
->base
+ RTC_IMSC
);
107 writel(imsc
& ~RTC_BIT_AI
, ldata
->base
+ RTC_IMSC
);
113 * Convert Gregorian date to ST v2 RTC format.
115 static int pl031_stv2_tm_to_time(struct device
*dev
,
116 struct rtc_time
*tm
, unsigned long *st_time
,
117 unsigned long *bcd_year
)
119 int year
= tm
->tm_year
+ 1900;
120 int wday
= tm
->tm_wday
;
122 /* wday masking is not working in hardware so wday must be valid */
123 if (wday
< -1 || wday
> 6) {
124 dev_err(dev
, "invalid wday value %d\n", tm
->tm_wday
);
126 } else if (wday
== -1) {
127 /* wday is not provided, calculate it here */
128 struct rtc_time calc_tm
;
130 rtc_time64_to_tm(rtc_tm_to_time64(tm
), &calc_tm
);
131 wday
= calc_tm
.tm_wday
;
134 *bcd_year
= (bin2bcd(year
% 100) | bin2bcd(year
/ 100) << 8);
136 *st_time
= ((tm
->tm_mon
+ 1) << RTC_MON_SHIFT
)
137 | (tm
->tm_mday
<< RTC_MDAY_SHIFT
)
138 | ((wday
+ 1) << RTC_WDAY_SHIFT
)
139 | (tm
->tm_hour
<< RTC_HOUR_SHIFT
)
140 | (tm
->tm_min
<< RTC_MIN_SHIFT
)
141 | (tm
->tm_sec
<< RTC_SEC_SHIFT
);
147 * Convert ST v2 RTC format to Gregorian date.
149 static int pl031_stv2_time_to_tm(unsigned long st_time
, unsigned long bcd_year
,
152 tm
->tm_year
= bcd2bin(bcd_year
) + (bcd2bin(bcd_year
>> 8) * 100);
153 tm
->tm_mon
= ((st_time
& RTC_MON_MASK
) >> RTC_MON_SHIFT
) - 1;
154 tm
->tm_mday
= ((st_time
& RTC_MDAY_MASK
) >> RTC_MDAY_SHIFT
);
155 tm
->tm_wday
= ((st_time
& RTC_WDAY_MASK
) >> RTC_WDAY_SHIFT
) - 1;
156 tm
->tm_hour
= ((st_time
& RTC_HOUR_MASK
) >> RTC_HOUR_SHIFT
);
157 tm
->tm_min
= ((st_time
& RTC_MIN_MASK
) >> RTC_MIN_SHIFT
);
158 tm
->tm_sec
= ((st_time
& RTC_SEC_MASK
) >> RTC_SEC_SHIFT
);
160 tm
->tm_yday
= rtc_year_days(tm
->tm_mday
, tm
->tm_mon
, tm
->tm_year
);
166 static int pl031_stv2_read_time(struct device
*dev
, struct rtc_time
*tm
)
168 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
170 pl031_stv2_time_to_tm(readl(ldata
->base
+ RTC_DR
),
171 readl(ldata
->base
+ RTC_YDR
), tm
);
176 static int pl031_stv2_set_time(struct device
*dev
, struct rtc_time
*tm
)
179 unsigned long bcd_year
;
180 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
183 ret
= pl031_stv2_tm_to_time(dev
, tm
, &time
, &bcd_year
);
185 writel(bcd_year
, ldata
->base
+ RTC_YLR
);
186 writel(time
, ldata
->base
+ RTC_LR
);
192 static int pl031_stv2_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
194 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
197 ret
= pl031_stv2_time_to_tm(readl(ldata
->base
+ RTC_MR
),
198 readl(ldata
->base
+ RTC_YMR
), &alarm
->time
);
200 alarm
->pending
= readl(ldata
->base
+ RTC_RIS
) & RTC_BIT_AI
;
201 alarm
->enabled
= readl(ldata
->base
+ RTC_IMSC
) & RTC_BIT_AI
;
206 static int pl031_stv2_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
208 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
210 unsigned long bcd_year
;
213 ret
= pl031_stv2_tm_to_time(dev
, &alarm
->time
,
216 writel(bcd_year
, ldata
->base
+ RTC_YMR
);
217 writel(time
, ldata
->base
+ RTC_MR
);
219 pl031_alarm_irq_enable(dev
, alarm
->enabled
);
225 static irqreturn_t
pl031_interrupt(int irq
, void *dev_id
)
227 struct pl031_local
*ldata
= dev_id
;
228 unsigned long rtcmis
;
229 unsigned long events
= 0;
231 rtcmis
= readl(ldata
->base
+ RTC_MIS
);
232 if (rtcmis
& RTC_BIT_AI
) {
233 writel(RTC_BIT_AI
, ldata
->base
+ RTC_ICR
);
234 events
|= (RTC_AF
| RTC_IRQF
);
235 rtc_update_irq(ldata
->rtc
, 1, events
);
243 static int pl031_read_time(struct device
*dev
, struct rtc_time
*tm
)
245 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
247 rtc_time64_to_tm(readl(ldata
->base
+ RTC_DR
), tm
);
252 static int pl031_set_time(struct device
*dev
, struct rtc_time
*tm
)
254 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
256 writel(rtc_tm_to_time64(tm
), ldata
->base
+ RTC_LR
);
261 static int pl031_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
263 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
265 rtc_time64_to_tm(readl(ldata
->base
+ RTC_MR
), &alarm
->time
);
267 alarm
->pending
= readl(ldata
->base
+ RTC_RIS
) & RTC_BIT_AI
;
268 alarm
->enabled
= readl(ldata
->base
+ RTC_IMSC
) & RTC_BIT_AI
;
273 static int pl031_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
275 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
277 writel(rtc_tm_to_time64(&alarm
->time
), ldata
->base
+ RTC_MR
);
278 pl031_alarm_irq_enable(dev
, alarm
->enabled
);
283 static int pl031_remove(struct amba_device
*adev
)
285 struct pl031_local
*ldata
= dev_get_drvdata(&adev
->dev
);
287 dev_pm_clear_wake_irq(&adev
->dev
);
288 device_init_wakeup(&adev
->dev
, false);
290 free_irq(adev
->irq
[0], ldata
);
291 amba_release_regions(adev
);
296 static int pl031_probe(struct amba_device
*adev
, const struct amba_id
*id
)
299 struct pl031_local
*ldata
;
300 struct pl031_vendor_data
*vendor
= id
->data
;
301 struct rtc_class_ops
*ops
;
302 unsigned long time
, data
;
304 ret
= amba_request_regions(adev
, NULL
);
308 ldata
= devm_kzalloc(&adev
->dev
, sizeof(struct pl031_local
),
310 ops
= devm_kmemdup(&adev
->dev
, &vendor
->ops
, sizeof(vendor
->ops
),
312 if (!ldata
|| !ops
) {
317 ldata
->vendor
= vendor
;
318 ldata
->base
= devm_ioremap(&adev
->dev
, adev
->res
.start
,
319 resource_size(&adev
->res
));
325 amba_set_drvdata(adev
, ldata
);
327 dev_dbg(&adev
->dev
, "designer ID = 0x%02x\n", amba_manf(adev
));
328 dev_dbg(&adev
->dev
, "revision = 0x%01x\n", amba_rev(adev
));
330 data
= readl(ldata
->base
+ RTC_CR
);
331 /* Enable the clockwatch on ST Variants */
332 if (vendor
->clockwatch
)
336 writel(data
, ldata
->base
+ RTC_CR
);
339 * On ST PL031 variants, the RTC reset value does not provide correct
340 * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
342 if (vendor
->st_weekday
) {
343 if (readl(ldata
->base
+ RTC_YDR
) == 0x2000) {
344 time
= readl(ldata
->base
+ RTC_DR
);
346 (RTC_MON_MASK
| RTC_MDAY_MASK
| RTC_WDAY_MASK
))
348 time
= time
| (0x7 << RTC_WDAY_SHIFT
);
349 writel(0x2000, ldata
->base
+ RTC_YLR
);
350 writel(time
, ldata
->base
+ RTC_LR
);
356 /* When there's no interrupt, no point in exposing the alarm */
357 ops
->read_alarm
= NULL
;
358 ops
->set_alarm
= NULL
;
359 ops
->alarm_irq_enable
= NULL
;
362 device_init_wakeup(&adev
->dev
, true);
363 ldata
->rtc
= devm_rtc_allocate_device(&adev
->dev
);
364 if (IS_ERR(ldata
->rtc
)) {
365 ret
= PTR_ERR(ldata
->rtc
);
369 ldata
->rtc
->ops
= ops
;
370 ldata
->rtc
->range_min
= vendor
->range_min
;
371 ldata
->rtc
->range_max
= vendor
->range_max
;
373 ret
= devm_rtc_register_device(ldata
->rtc
);
378 ret
= request_irq(adev
->irq
[0], pl031_interrupt
,
379 vendor
->irqflags
, "rtc-pl031", ldata
);
382 dev_pm_set_wake_irq(&adev
->dev
, adev
->irq
[0]);
387 amba_release_regions(adev
);
393 /* Operations for the original ARM version */
394 static struct pl031_vendor_data arm_pl031
= {
396 .read_time
= pl031_read_time
,
397 .set_time
= pl031_set_time
,
398 .read_alarm
= pl031_read_alarm
,
399 .set_alarm
= pl031_set_alarm
,
400 .alarm_irq_enable
= pl031_alarm_irq_enable
,
402 .range_max
= U32_MAX
,
405 /* The First ST derivative */
406 static struct pl031_vendor_data stv1_pl031
= {
408 .read_time
= pl031_read_time
,
409 .set_time
= pl031_set_time
,
410 .read_alarm
= pl031_read_alarm
,
411 .set_alarm
= pl031_set_alarm
,
412 .alarm_irq_enable
= pl031_alarm_irq_enable
,
416 .range_max
= U32_MAX
,
419 /* And the second ST derivative */
420 static struct pl031_vendor_data stv2_pl031
= {
422 .read_time
= pl031_stv2_read_time
,
423 .set_time
= pl031_stv2_set_time
,
424 .read_alarm
= pl031_stv2_read_alarm
,
425 .set_alarm
= pl031_stv2_set_alarm
,
426 .alarm_irq_enable
= pl031_alarm_irq_enable
,
431 * This variant shares the IRQ with another block and must not
432 * suspend that IRQ line.
433 * TODO check if it shares with IRQF_NO_SUSPEND user, else we can
434 * remove IRQF_COND_SUSPEND
436 .irqflags
= IRQF_SHARED
| IRQF_COND_SUSPEND
,
437 .range_min
= RTC_TIMESTAMP_BEGIN_0000
,
438 .range_max
= RTC_TIMESTAMP_END_9999
,
441 static const struct amba_id pl031_ids
[] = {
447 /* ST Micro variants */
461 MODULE_DEVICE_TABLE(amba
, pl031_ids
);
463 static struct amba_driver pl031_driver
= {
467 .id_table
= pl031_ids
,
468 .probe
= pl031_probe
,
469 .remove
= pl031_remove
,
472 module_amba_driver(pl031_driver
);
474 MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>");
475 MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
476 MODULE_LICENSE("GPL");